SemaTemplate.cpp revision 9f6f6a107287bd81aedab8b578216535b0b51d0f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441                                            const ParsedTemplateArgument &Arg) {
442
443  switch (Arg.getKind()) {
444  case ParsedTemplateArgument::Type: {
445    TypeSourceInfo *DI;
446    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447    if (!DI)
448      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449    return TemplateArgumentLoc(TemplateArgument(T), DI);
450  }
451
452  case ParsedTemplateArgument::NonType: {
453    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454    return TemplateArgumentLoc(TemplateArgument(E), E);
455  }
456
457  case ParsedTemplateArgument::Template: {
458    TemplateName Template = Arg.getAsTemplate().get();
459    return TemplateArgumentLoc(TemplateArgument(Template),
460                               Arg.getScopeSpec().getRange(),
461                               Arg.getLocation());
462  }
463  }
464
465  llvm_unreachable("Unhandled parsed template argument");
466  return TemplateArgumentLoc();
467}
468
469/// \brief Translates template arguments as provided by the parser
470/// into template arguments used by semantic analysis.
471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472                                      TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474   TemplateArgs.addArgument(translateTemplateArgument(*this,
475                                                      TemplateArgsIn[I]));
476}
477
478/// ActOnTypeParameter - Called when a C++ template type parameter
479/// (e.g., "typename T") has been parsed. Typename specifies whether
480/// the keyword "typename" was used to declare the type parameter
481/// (otherwise, "class" was used), and KeyLoc is the location of the
482/// "class" or "typename" keyword. ParamName is the name of the
483/// parameter (NULL indicates an unnamed template parameter) and
484/// ParamName is the location of the parameter name (if any).
485/// If the type parameter has a default argument, it will be added
486/// later via ActOnTypeParameterDefault.
487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488                               SourceLocation EllipsisLoc,
489                               SourceLocation KeyLoc,
490                               IdentifierInfo *ParamName,
491                               SourceLocation ParamNameLoc,
492                               unsigned Depth, unsigned Position,
493                               SourceLocation EqualLoc,
494                               ParsedType DefaultArg) {
495  assert(S->isTemplateParamScope() &&
496         "Template type parameter not in template parameter scope!");
497  bool Invalid = false;
498
499  if (ParamName) {
500    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501                                           LookupOrdinaryName,
502                                           ForRedeclaration);
503    if (PrevDecl && PrevDecl->isTemplateParameter())
504      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505                                                           PrevDecl);
506  }
507
508  SourceLocation Loc = ParamNameLoc;
509  if (!ParamName)
510    Loc = KeyLoc;
511
512  TemplateTypeParmDecl *Param
513    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514                                   Loc, Depth, Position, ParamName, Typename,
515                                   Ellipsis);
516  if (Invalid)
517    Param->setInvalidDecl();
518
519  if (ParamName) {
520    // Add the template parameter into the current scope.
521    S->AddDecl(Param);
522    IdResolver.AddDecl(Param);
523  }
524
525  // Handle the default argument, if provided.
526  if (DefaultArg) {
527    TypeSourceInfo *DefaultTInfo;
528    GetTypeFromParser(DefaultArg, &DefaultTInfo);
529
530    assert(DefaultTInfo && "expected source information for type");
531
532    // C++0x [temp.param]p9:
533    // A default template-argument may be specified for any kind of
534    // template-parameter that is not a template parameter pack.
535    if (Ellipsis) {
536      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537      return Param;
538    }
539
540    // Check the template argument itself.
541    if (CheckTemplateArgument(Param, DefaultTInfo)) {
542      Param->setInvalidDecl();
543      return Param;
544    }
545
546    Param->setDefaultArgument(DefaultTInfo, false);
547  }
548
549  return Param;
550}
551
552/// \brief Check that the type of a non-type template parameter is
553/// well-formed.
554///
555/// \returns the (possibly-promoted) parameter type if valid;
556/// otherwise, produces a diagnostic and returns a NULL type.
557QualType
558Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
559  // We don't allow variably-modified types as the type of non-type template
560  // parameters.
561  if (T->isVariablyModifiedType()) {
562    Diag(Loc, diag::err_variably_modified_nontype_template_param)
563      << T;
564    return QualType();
565  }
566
567  // C++ [temp.param]p4:
568  //
569  // A non-type template-parameter shall have one of the following
570  // (optionally cv-qualified) types:
571  //
572  //       -- integral or enumeration type,
573  if (T->isIntegralOrEnumerationType() ||
574      //   -- pointer to object or pointer to function,
575      T->isPointerType() ||
576      //   -- reference to object or reference to function,
577      T->isReferenceType() ||
578      //   -- pointer to member.
579      T->isMemberPointerType() ||
580      // If T is a dependent type, we can't do the check now, so we
581      // assume that it is well-formed.
582      T->isDependentType())
583    return T;
584  // C++ [temp.param]p8:
585  //
586  //   A non-type template-parameter of type "array of T" or
587  //   "function returning T" is adjusted to be of type "pointer to
588  //   T" or "pointer to function returning T", respectively.
589  else if (T->isArrayType())
590    // FIXME: Keep the type prior to promotion?
591    return Context.getArrayDecayedType(T);
592  else if (T->isFunctionType())
593    // FIXME: Keep the type prior to promotion?
594    return Context.getPointerType(T);
595
596  Diag(Loc, diag::err_template_nontype_parm_bad_type)
597    << T;
598
599  return QualType();
600}
601
602Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
603                                          unsigned Depth,
604                                          unsigned Position,
605                                          SourceLocation EqualLoc,
606                                          Expr *Default) {
607  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
608  QualType T = TInfo->getType();
609
610  assert(S->isTemplateParamScope() &&
611         "Non-type template parameter not in template parameter scope!");
612  bool Invalid = false;
613
614  IdentifierInfo *ParamName = D.getIdentifier();
615  if (ParamName) {
616    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
617                                           LookupOrdinaryName,
618                                           ForRedeclaration);
619    if (PrevDecl && PrevDecl->isTemplateParameter())
620      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
621                                                           PrevDecl);
622  }
623
624  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
625  if (T.isNull()) {
626    T = Context.IntTy; // Recover with an 'int' type.
627    Invalid = true;
628  }
629
630  NonTypeTemplateParmDecl *Param
631    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
632                                      D.getIdentifierLoc(),
633                                      Depth, Position, ParamName, T, TInfo);
634  if (Invalid)
635    Param->setInvalidDecl();
636
637  if (D.getIdentifier()) {
638    // Add the template parameter into the current scope.
639    S->AddDecl(Param);
640    IdResolver.AddDecl(Param);
641  }
642
643  // Check the well-formedness of the default template argument, if provided.
644  if (Default) {
645    TemplateArgument Converted;
646    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
647      Param->setInvalidDecl();
648      return Param;
649    }
650
651    Param->setDefaultArgument(Default, false);
652  }
653
654  return Param;
655}
656
657/// ActOnTemplateTemplateParameter - Called when a C++ template template
658/// parameter (e.g. T in template <template <typename> class T> class array)
659/// has been parsed. S is the current scope.
660Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
661                                           SourceLocation TmpLoc,
662                                           TemplateParamsTy *Params,
663                                           IdentifierInfo *Name,
664                                           SourceLocation NameLoc,
665                                           unsigned Depth,
666                                           unsigned Position,
667                                           SourceLocation EqualLoc,
668                                       const ParsedTemplateArgument &Default) {
669  assert(S->isTemplateParamScope() &&
670         "Template template parameter not in template parameter scope!");
671
672  // Construct the parameter object.
673  TemplateTemplateParmDecl *Param =
674    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
675                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
676                                     Depth, Position, Name,
677                                     Params);
678
679  // If the template template parameter has a name, then link the identifier
680  // into the scope and lookup mechanisms.
681  if (Name) {
682    S->AddDecl(Param);
683    IdResolver.AddDecl(Param);
684  }
685
686  if (!Default.isInvalid()) {
687    // Check only that we have a template template argument. We don't want to
688    // try to check well-formedness now, because our template template parameter
689    // might have dependent types in its template parameters, which we wouldn't
690    // be able to match now.
691    //
692    // If none of the template template parameter's template arguments mention
693    // other template parameters, we could actually perform more checking here.
694    // However, it isn't worth doing.
695    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
696    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
697      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
698        << DefaultArg.getSourceRange();
699      return Param;
700    }
701
702    Param->setDefaultArgument(DefaultArg, false);
703  }
704
705  if (Params->size() == 0) {
706    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
707      << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
708    Param->setInvalidDecl();
709  }
710  return Param;
711}
712
713/// ActOnTemplateParameterList - Builds a TemplateParameterList that
714/// contains the template parameters in Params/NumParams.
715Sema::TemplateParamsTy *
716Sema::ActOnTemplateParameterList(unsigned Depth,
717                                 SourceLocation ExportLoc,
718                                 SourceLocation TemplateLoc,
719                                 SourceLocation LAngleLoc,
720                                 Decl **Params, unsigned NumParams,
721                                 SourceLocation RAngleLoc) {
722  if (ExportLoc.isValid())
723    Diag(ExportLoc, diag::warn_template_export_unsupported);
724
725  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
726                                       (NamedDecl**)Params, NumParams,
727                                       RAngleLoc);
728}
729
730static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
731  if (SS.isSet())
732    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
733                        SS.getRange());
734}
735
736DeclResult
737Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
738                         SourceLocation KWLoc, CXXScopeSpec &SS,
739                         IdentifierInfo *Name, SourceLocation NameLoc,
740                         AttributeList *Attr,
741                         TemplateParameterList *TemplateParams,
742                         AccessSpecifier AS) {
743  assert(TemplateParams && TemplateParams->size() > 0 &&
744         "No template parameters");
745  assert(TUK != TUK_Reference && "Can only declare or define class templates");
746  bool Invalid = false;
747
748  // Check that we can declare a template here.
749  if (CheckTemplateDeclScope(S, TemplateParams))
750    return true;
751
752  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
753  assert(Kind != TTK_Enum && "can't build template of enumerated type");
754
755  // There is no such thing as an unnamed class template.
756  if (!Name) {
757    Diag(KWLoc, diag::err_template_unnamed_class);
758    return true;
759  }
760
761  // Find any previous declaration with this name.
762  DeclContext *SemanticContext;
763  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
764                        ForRedeclaration);
765  if (SS.isNotEmpty() && !SS.isInvalid()) {
766    SemanticContext = computeDeclContext(SS, true);
767    if (!SemanticContext) {
768      // FIXME: Produce a reasonable diagnostic here
769      return true;
770    }
771
772    if (RequireCompleteDeclContext(SS, SemanticContext))
773      return true;
774
775    LookupQualifiedName(Previous, SemanticContext);
776  } else {
777    SemanticContext = CurContext;
778    LookupName(Previous, S);
779  }
780
781  if (Previous.isAmbiguous())
782    return true;
783
784  NamedDecl *PrevDecl = 0;
785  if (Previous.begin() != Previous.end())
786    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
787
788  // If there is a previous declaration with the same name, check
789  // whether this is a valid redeclaration.
790  ClassTemplateDecl *PrevClassTemplate
791    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
792
793  // We may have found the injected-class-name of a class template,
794  // class template partial specialization, or class template specialization.
795  // In these cases, grab the template that is being defined or specialized.
796  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
797      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
798    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
799    PrevClassTemplate
800      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
801    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
802      PrevClassTemplate
803        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
804            ->getSpecializedTemplate();
805    }
806  }
807
808  if (TUK == TUK_Friend) {
809    // C++ [namespace.memdef]p3:
810    //   [...] When looking for a prior declaration of a class or a function
811    //   declared as a friend, and when the name of the friend class or
812    //   function is neither a qualified name nor a template-id, scopes outside
813    //   the innermost enclosing namespace scope are not considered.
814    if (!SS.isSet()) {
815      DeclContext *OutermostContext = CurContext;
816      while (!OutermostContext->isFileContext())
817        OutermostContext = OutermostContext->getLookupParent();
818
819      if (PrevDecl &&
820          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
821           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
822        SemanticContext = PrevDecl->getDeclContext();
823      } else {
824        // Declarations in outer scopes don't matter. However, the outermost
825        // context we computed is the semantic context for our new
826        // declaration.
827        PrevDecl = PrevClassTemplate = 0;
828        SemanticContext = OutermostContext;
829      }
830    }
831
832    if (CurContext->isDependentContext()) {
833      // If this is a dependent context, we don't want to link the friend
834      // class template to the template in scope, because that would perform
835      // checking of the template parameter lists that can't be performed
836      // until the outer context is instantiated.
837      PrevDecl = PrevClassTemplate = 0;
838    }
839  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
840    PrevDecl = PrevClassTemplate = 0;
841
842  if (PrevClassTemplate) {
843    // Ensure that the template parameter lists are compatible.
844    if (!TemplateParameterListsAreEqual(TemplateParams,
845                                   PrevClassTemplate->getTemplateParameters(),
846                                        /*Complain=*/true,
847                                        TPL_TemplateMatch))
848      return true;
849
850    // C++ [temp.class]p4:
851    //   In a redeclaration, partial specialization, explicit
852    //   specialization or explicit instantiation of a class template,
853    //   the class-key shall agree in kind with the original class
854    //   template declaration (7.1.5.3).
855    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
856    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
857      Diag(KWLoc, diag::err_use_with_wrong_tag)
858        << Name
859        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
860      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
861      Kind = PrevRecordDecl->getTagKind();
862    }
863
864    // Check for redefinition of this class template.
865    if (TUK == TUK_Definition) {
866      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
867        Diag(NameLoc, diag::err_redefinition) << Name;
868        Diag(Def->getLocation(), diag::note_previous_definition);
869        // FIXME: Would it make sense to try to "forget" the previous
870        // definition, as part of error recovery?
871        return true;
872      }
873    }
874  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
875    // Maybe we will complain about the shadowed template parameter.
876    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
877    // Just pretend that we didn't see the previous declaration.
878    PrevDecl = 0;
879  } else if (PrevDecl) {
880    // C++ [temp]p5:
881    //   A class template shall not have the same name as any other
882    //   template, class, function, object, enumeration, enumerator,
883    //   namespace, or type in the same scope (3.3), except as specified
884    //   in (14.5.4).
885    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
886    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
887    return true;
888  }
889
890  // Check the template parameter list of this declaration, possibly
891  // merging in the template parameter list from the previous class
892  // template declaration.
893  if (CheckTemplateParameterList(TemplateParams,
894            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
895                                 TPC_ClassTemplate))
896    Invalid = true;
897
898  if (SS.isSet()) {
899    // If the name of the template was qualified, we must be defining the
900    // template out-of-line.
901    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
902        !(TUK == TUK_Friend && CurContext->isDependentContext()))
903      Diag(NameLoc, diag::err_member_def_does_not_match)
904        << Name << SemanticContext << SS.getRange();
905  }
906
907  CXXRecordDecl *NewClass =
908    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
909                          PrevClassTemplate?
910                            PrevClassTemplate->getTemplatedDecl() : 0,
911                          /*DelayTypeCreation=*/true);
912  SetNestedNameSpecifier(NewClass, SS);
913
914  ClassTemplateDecl *NewTemplate
915    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
916                                DeclarationName(Name), TemplateParams,
917                                NewClass, PrevClassTemplate);
918  NewClass->setDescribedClassTemplate(NewTemplate);
919
920  // Build the type for the class template declaration now.
921  QualType T = NewTemplate->getInjectedClassNameSpecialization();
922  T = Context.getInjectedClassNameType(NewClass, T);
923  assert(T->isDependentType() && "Class template type is not dependent?");
924  (void)T;
925
926  // If we are providing an explicit specialization of a member that is a
927  // class template, make a note of that.
928  if (PrevClassTemplate &&
929      PrevClassTemplate->getInstantiatedFromMemberTemplate())
930    PrevClassTemplate->setMemberSpecialization();
931
932  // Set the access specifier.
933  if (!Invalid && TUK != TUK_Friend)
934    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
935
936  // Set the lexical context of these templates
937  NewClass->setLexicalDeclContext(CurContext);
938  NewTemplate->setLexicalDeclContext(CurContext);
939
940  if (TUK == TUK_Definition)
941    NewClass->startDefinition();
942
943  if (Attr)
944    ProcessDeclAttributeList(S, NewClass, Attr);
945
946  if (TUK != TUK_Friend)
947    PushOnScopeChains(NewTemplate, S);
948  else {
949    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
950      NewTemplate->setAccess(PrevClassTemplate->getAccess());
951      NewClass->setAccess(PrevClassTemplate->getAccess());
952    }
953
954    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
955                                       PrevClassTemplate != NULL);
956
957    // Friend templates are visible in fairly strange ways.
958    if (!CurContext->isDependentContext()) {
959      DeclContext *DC = SemanticContext->getRedeclContext();
960      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
961      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
962        PushOnScopeChains(NewTemplate, EnclosingScope,
963                          /* AddToContext = */ false);
964    }
965
966    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
967                                            NewClass->getLocation(),
968                                            NewTemplate,
969                                    /*FIXME:*/NewClass->getLocation());
970    Friend->setAccess(AS_public);
971    CurContext->addDecl(Friend);
972  }
973
974  if (Invalid) {
975    NewTemplate->setInvalidDecl();
976    NewClass->setInvalidDecl();
977  }
978  return NewTemplate;
979}
980
981/// \brief Diagnose the presence of a default template argument on a
982/// template parameter, which is ill-formed in certain contexts.
983///
984/// \returns true if the default template argument should be dropped.
985static bool DiagnoseDefaultTemplateArgument(Sema &S,
986                                            Sema::TemplateParamListContext TPC,
987                                            SourceLocation ParamLoc,
988                                            SourceRange DefArgRange) {
989  switch (TPC) {
990  case Sema::TPC_ClassTemplate:
991    return false;
992
993  case Sema::TPC_FunctionTemplate:
994    // C++ [temp.param]p9:
995    //   A default template-argument shall not be specified in a
996    //   function template declaration or a function template
997    //   definition [...]
998    // (This sentence is not in C++0x, per DR226).
999    if (!S.getLangOptions().CPlusPlus0x)
1000      S.Diag(ParamLoc,
1001             diag::err_template_parameter_default_in_function_template)
1002        << DefArgRange;
1003    return false;
1004
1005  case Sema::TPC_ClassTemplateMember:
1006    // C++0x [temp.param]p9:
1007    //   A default template-argument shall not be specified in the
1008    //   template-parameter-lists of the definition of a member of a
1009    //   class template that appears outside of the member's class.
1010    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1011      << DefArgRange;
1012    return true;
1013
1014  case Sema::TPC_FriendFunctionTemplate:
1015    // C++ [temp.param]p9:
1016    //   A default template-argument shall not be specified in a
1017    //   friend template declaration.
1018    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1019      << DefArgRange;
1020    return true;
1021
1022    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1023    // for friend function templates if there is only a single
1024    // declaration (and it is a definition). Strange!
1025  }
1026
1027  return false;
1028}
1029
1030/// \brief Checks the validity of a template parameter list, possibly
1031/// considering the template parameter list from a previous
1032/// declaration.
1033///
1034/// If an "old" template parameter list is provided, it must be
1035/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1036/// template parameter list.
1037///
1038/// \param NewParams Template parameter list for a new template
1039/// declaration. This template parameter list will be updated with any
1040/// default arguments that are carried through from the previous
1041/// template parameter list.
1042///
1043/// \param OldParams If provided, template parameter list from a
1044/// previous declaration of the same template. Default template
1045/// arguments will be merged from the old template parameter list to
1046/// the new template parameter list.
1047///
1048/// \param TPC Describes the context in which we are checking the given
1049/// template parameter list.
1050///
1051/// \returns true if an error occurred, false otherwise.
1052bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1053                                      TemplateParameterList *OldParams,
1054                                      TemplateParamListContext TPC) {
1055  bool Invalid = false;
1056
1057  // C++ [temp.param]p10:
1058  //   The set of default template-arguments available for use with a
1059  //   template declaration or definition is obtained by merging the
1060  //   default arguments from the definition (if in scope) and all
1061  //   declarations in scope in the same way default function
1062  //   arguments are (8.3.6).
1063  bool SawDefaultArgument = false;
1064  SourceLocation PreviousDefaultArgLoc;
1065
1066  bool SawParameterPack = false;
1067  SourceLocation ParameterPackLoc;
1068
1069  // Dummy initialization to avoid warnings.
1070  TemplateParameterList::iterator OldParam = NewParams->end();
1071  if (OldParams)
1072    OldParam = OldParams->begin();
1073
1074  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1075                                    NewParamEnd = NewParams->end();
1076       NewParam != NewParamEnd; ++NewParam) {
1077    // Variables used to diagnose redundant default arguments
1078    bool RedundantDefaultArg = false;
1079    SourceLocation OldDefaultLoc;
1080    SourceLocation NewDefaultLoc;
1081
1082    // Variables used to diagnose missing default arguments
1083    bool MissingDefaultArg = false;
1084
1085    // C++0x [temp.param]p11:
1086    // If a template parameter of a class template is a template parameter pack,
1087    // it must be the last template parameter.
1088    if (SawParameterPack) {
1089      Diag(ParameterPackLoc,
1090           diag::err_template_param_pack_must_be_last_template_parameter);
1091      Invalid = true;
1092    }
1093
1094    if (TemplateTypeParmDecl *NewTypeParm
1095          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1096      // Check the presence of a default argument here.
1097      if (NewTypeParm->hasDefaultArgument() &&
1098          DiagnoseDefaultTemplateArgument(*this, TPC,
1099                                          NewTypeParm->getLocation(),
1100               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1101                                                       .getSourceRange()))
1102        NewTypeParm->removeDefaultArgument();
1103
1104      // Merge default arguments for template type parameters.
1105      TemplateTypeParmDecl *OldTypeParm
1106          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1107
1108      if (NewTypeParm->isParameterPack()) {
1109        assert(!NewTypeParm->hasDefaultArgument() &&
1110               "Parameter packs can't have a default argument!");
1111        SawParameterPack = true;
1112        ParameterPackLoc = NewTypeParm->getLocation();
1113      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1114                 NewTypeParm->hasDefaultArgument()) {
1115        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1116        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1117        SawDefaultArgument = true;
1118        RedundantDefaultArg = true;
1119        PreviousDefaultArgLoc = NewDefaultLoc;
1120      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1121        // Merge the default argument from the old declaration to the
1122        // new declaration.
1123        SawDefaultArgument = true;
1124        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1125                                        true);
1126        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1127      } else if (NewTypeParm->hasDefaultArgument()) {
1128        SawDefaultArgument = true;
1129        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1130      } else if (SawDefaultArgument)
1131        MissingDefaultArg = true;
1132    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1133               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1134      // Check the presence of a default argument here.
1135      if (NewNonTypeParm->hasDefaultArgument() &&
1136          DiagnoseDefaultTemplateArgument(*this, TPC,
1137                                          NewNonTypeParm->getLocation(),
1138                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1139        NewNonTypeParm->removeDefaultArgument();
1140      }
1141
1142      // Merge default arguments for non-type template parameters
1143      NonTypeTemplateParmDecl *OldNonTypeParm
1144        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1145      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1146          NewNonTypeParm->hasDefaultArgument()) {
1147        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1149        SawDefaultArgument = true;
1150        RedundantDefaultArg = true;
1151        PreviousDefaultArgLoc = NewDefaultLoc;
1152      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1153        // Merge the default argument from the old declaration to the
1154        // new declaration.
1155        SawDefaultArgument = true;
1156        // FIXME: We need to create a new kind of "default argument"
1157        // expression that points to a previous template template
1158        // parameter.
1159        NewNonTypeParm->setDefaultArgument(
1160                                         OldNonTypeParm->getDefaultArgument(),
1161                                         /*Inherited=*/ true);
1162        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1163      } else if (NewNonTypeParm->hasDefaultArgument()) {
1164        SawDefaultArgument = true;
1165        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1166      } else if (SawDefaultArgument)
1167        MissingDefaultArg = true;
1168    } else {
1169      // Check the presence of a default argument here.
1170      TemplateTemplateParmDecl *NewTemplateParm
1171        = cast<TemplateTemplateParmDecl>(*NewParam);
1172      if (NewTemplateParm->hasDefaultArgument() &&
1173          DiagnoseDefaultTemplateArgument(*this, TPC,
1174                                          NewTemplateParm->getLocation(),
1175                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1176        NewTemplateParm->removeDefaultArgument();
1177
1178      // Merge default arguments for template template parameters
1179      TemplateTemplateParmDecl *OldTemplateParm
1180        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1181      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1182          NewTemplateParm->hasDefaultArgument()) {
1183        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1184        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1185        SawDefaultArgument = true;
1186        RedundantDefaultArg = true;
1187        PreviousDefaultArgLoc = NewDefaultLoc;
1188      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1189        // Merge the default argument from the old declaration to the
1190        // new declaration.
1191        SawDefaultArgument = true;
1192        // FIXME: We need to create a new kind of "default argument" expression
1193        // that points to a previous template template parameter.
1194        NewTemplateParm->setDefaultArgument(
1195                                          OldTemplateParm->getDefaultArgument(),
1196                                          /*Inherited=*/ true);
1197        PreviousDefaultArgLoc
1198          = OldTemplateParm->getDefaultArgument().getLocation();
1199      } else if (NewTemplateParm->hasDefaultArgument()) {
1200        SawDefaultArgument = true;
1201        PreviousDefaultArgLoc
1202          = NewTemplateParm->getDefaultArgument().getLocation();
1203      } else if (SawDefaultArgument)
1204        MissingDefaultArg = true;
1205    }
1206
1207    if (RedundantDefaultArg) {
1208      // C++ [temp.param]p12:
1209      //   A template-parameter shall not be given default arguments
1210      //   by two different declarations in the same scope.
1211      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1212      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1213      Invalid = true;
1214    } else if (MissingDefaultArg) {
1215      // C++ [temp.param]p11:
1216      //   If a template-parameter has a default template-argument,
1217      //   all subsequent template-parameters shall have a default
1218      //   template-argument supplied.
1219      Diag((*NewParam)->getLocation(),
1220           diag::err_template_param_default_arg_missing);
1221      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1222      Invalid = true;
1223    }
1224
1225    // If we have an old template parameter list that we're merging
1226    // in, move on to the next parameter.
1227    if (OldParams)
1228      ++OldParam;
1229  }
1230
1231  return Invalid;
1232}
1233
1234namespace {
1235
1236/// A class which looks for a use of a certain level of template
1237/// parameter.
1238struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1239  typedef RecursiveASTVisitor<DependencyChecker> super;
1240
1241  unsigned Depth;
1242  bool Match;
1243
1244  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1245    NamedDecl *ND = Params->getParam(0);
1246    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1247      Depth = PD->getDepth();
1248    } else if (NonTypeTemplateParmDecl *PD =
1249                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1250      Depth = PD->getDepth();
1251    } else {
1252      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1253    }
1254  }
1255
1256  bool Matches(unsigned ParmDepth) {
1257    if (ParmDepth >= Depth) {
1258      Match = true;
1259      return true;
1260    }
1261    return false;
1262  }
1263
1264  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1265    return !Matches(T->getDepth());
1266  }
1267
1268  bool TraverseTemplateName(TemplateName N) {
1269    if (TemplateTemplateParmDecl *PD =
1270          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1271      if (Matches(PD->getDepth())) return false;
1272    return super::TraverseTemplateName(N);
1273  }
1274
1275  bool VisitDeclRefExpr(DeclRefExpr *E) {
1276    if (NonTypeTemplateParmDecl *PD =
1277          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1278      if (PD->getDepth() == Depth) {
1279        Match = true;
1280        return false;
1281      }
1282    }
1283    return super::VisitDeclRefExpr(E);
1284  }
1285};
1286}
1287
1288/// Determines whether a template-id depends on the given parameter
1289/// list.
1290static bool
1291DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1292                            TemplateParameterList *Params) {
1293  DependencyChecker Checker(Params);
1294  Checker.TraverseType(QualType(TemplateId, 0));
1295  return Checker.Match;
1296}
1297
1298/// \brief Match the given template parameter lists to the given scope
1299/// specifier, returning the template parameter list that applies to the
1300/// name.
1301///
1302/// \param DeclStartLoc the start of the declaration that has a scope
1303/// specifier or a template parameter list.
1304///
1305/// \param SS the scope specifier that will be matched to the given template
1306/// parameter lists. This scope specifier precedes a qualified name that is
1307/// being declared.
1308///
1309/// \param ParamLists the template parameter lists, from the outermost to the
1310/// innermost template parameter lists.
1311///
1312/// \param NumParamLists the number of template parameter lists in ParamLists.
1313///
1314/// \param IsFriend Whether to apply the slightly different rules for
1315/// matching template parameters to scope specifiers in friend
1316/// declarations.
1317///
1318/// \param IsExplicitSpecialization will be set true if the entity being
1319/// declared is an explicit specialization, false otherwise.
1320///
1321/// \returns the template parameter list, if any, that corresponds to the
1322/// name that is preceded by the scope specifier @p SS. This template
1323/// parameter list may be have template parameters (if we're declaring a
1324/// template) or may have no template parameters (if we're declaring a
1325/// template specialization), or may be NULL (if we were's declaring isn't
1326/// itself a template).
1327TemplateParameterList *
1328Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1329                                              const CXXScopeSpec &SS,
1330                                          TemplateParameterList **ParamLists,
1331                                              unsigned NumParamLists,
1332                                              bool IsFriend,
1333                                              bool &IsExplicitSpecialization,
1334                                              bool &Invalid) {
1335  IsExplicitSpecialization = false;
1336
1337  // Find the template-ids that occur within the nested-name-specifier. These
1338  // template-ids will match up with the template parameter lists.
1339  llvm::SmallVector<const TemplateSpecializationType *, 4>
1340    TemplateIdsInSpecifier;
1341  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1342    ExplicitSpecializationsInSpecifier;
1343  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1344       NNS; NNS = NNS->getPrefix()) {
1345    const Type *T = NNS->getAsType();
1346    if (!T) break;
1347
1348    // C++0x [temp.expl.spec]p17:
1349    //   A member or a member template may be nested within many
1350    //   enclosing class templates. In an explicit specialization for
1351    //   such a member, the member declaration shall be preceded by a
1352    //   template<> for each enclosing class template that is
1353    //   explicitly specialized.
1354    //
1355    // Following the existing practice of GNU and EDG, we allow a typedef of a
1356    // template specialization type.
1357    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1358      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1359
1360    if (const TemplateSpecializationType *SpecType
1361                                  = dyn_cast<TemplateSpecializationType>(T)) {
1362      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1363      if (!Template)
1364        continue; // FIXME: should this be an error? probably...
1365
1366      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1367        ClassTemplateSpecializationDecl *SpecDecl
1368          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1369        // If the nested name specifier refers to an explicit specialization,
1370        // we don't need a template<> header.
1371        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1372          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1373          continue;
1374        }
1375      }
1376
1377      TemplateIdsInSpecifier.push_back(SpecType);
1378    }
1379  }
1380
1381  // Reverse the list of template-ids in the scope specifier, so that we can
1382  // more easily match up the template-ids and the template parameter lists.
1383  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1384
1385  SourceLocation FirstTemplateLoc = DeclStartLoc;
1386  if (NumParamLists)
1387    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1388
1389  // Match the template-ids found in the specifier to the template parameter
1390  // lists.
1391  unsigned ParamIdx = 0, TemplateIdx = 0;
1392  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1393       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1394    const TemplateSpecializationType *TemplateId
1395      = TemplateIdsInSpecifier[TemplateIdx];
1396    bool DependentTemplateId = TemplateId->isDependentType();
1397
1398    // In friend declarations we can have template-ids which don't
1399    // depend on the corresponding template parameter lists.  But
1400    // assume that empty parameter lists are supposed to match this
1401    // template-id.
1402    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1403      if (!DependentTemplateId ||
1404          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1405        continue;
1406    }
1407
1408    if (ParamIdx >= NumParamLists) {
1409      // We have a template-id without a corresponding template parameter
1410      // list.
1411
1412      // ...which is fine if this is a friend declaration.
1413      if (IsFriend) {
1414        IsExplicitSpecialization = true;
1415        break;
1416      }
1417
1418      if (DependentTemplateId) {
1419        // FIXME: the location information here isn't great.
1420        Diag(SS.getRange().getBegin(),
1421             diag::err_template_spec_needs_template_parameters)
1422          << QualType(TemplateId, 0)
1423          << SS.getRange();
1424        Invalid = true;
1425      } else {
1426        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1427          << SS.getRange()
1428          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1429        IsExplicitSpecialization = true;
1430      }
1431      return 0;
1432    }
1433
1434    // Check the template parameter list against its corresponding template-id.
1435    if (DependentTemplateId) {
1436      TemplateParameterList *ExpectedTemplateParams = 0;
1437
1438      // Are there cases in (e.g.) friends where this won't match?
1439      if (const InjectedClassNameType *Injected
1440            = TemplateId->getAs<InjectedClassNameType>()) {
1441        CXXRecordDecl *Record = Injected->getDecl();
1442        if (ClassTemplatePartialSpecializationDecl *Partial =
1443              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1444          ExpectedTemplateParams = Partial->getTemplateParameters();
1445        else
1446          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1447            ->getTemplateParameters();
1448      }
1449
1450      if (ExpectedTemplateParams)
1451        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1452                                       ExpectedTemplateParams,
1453                                       true, TPL_TemplateMatch);
1454
1455      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1456                                 TPC_ClassTemplateMember);
1457    } else if (ParamLists[ParamIdx]->size() > 0)
1458      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1459           diag::err_template_param_list_matches_nontemplate)
1460        << TemplateId
1461        << ParamLists[ParamIdx]->getSourceRange();
1462    else
1463      IsExplicitSpecialization = true;
1464
1465    ++ParamIdx;
1466  }
1467
1468  // If there were at least as many template-ids as there were template
1469  // parameter lists, then there are no template parameter lists remaining for
1470  // the declaration itself.
1471  if (ParamIdx >= NumParamLists)
1472    return 0;
1473
1474  // If there were too many template parameter lists, complain about that now.
1475  if (ParamIdx != NumParamLists - 1) {
1476    while (ParamIdx < NumParamLists - 1) {
1477      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1478      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1479           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1480                               : diag::err_template_spec_extra_headers)
1481        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1482                       ParamLists[ParamIdx]->getRAngleLoc());
1483
1484      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1485        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1486             diag::note_explicit_template_spec_does_not_need_header)
1487          << ExplicitSpecializationsInSpecifier.back();
1488        ExplicitSpecializationsInSpecifier.pop_back();
1489      }
1490
1491      // We have a template parameter list with no corresponding scope, which
1492      // means that the resulting template declaration can't be instantiated
1493      // properly (we'll end up with dependent nodes when we shouldn't).
1494      if (!isExplicitSpecHeader)
1495        Invalid = true;
1496
1497      ++ParamIdx;
1498    }
1499  }
1500
1501  // Return the last template parameter list, which corresponds to the
1502  // entity being declared.
1503  return ParamLists[NumParamLists - 1];
1504}
1505
1506QualType Sema::CheckTemplateIdType(TemplateName Name,
1507                                   SourceLocation TemplateLoc,
1508                              const TemplateArgumentListInfo &TemplateArgs) {
1509  TemplateDecl *Template = Name.getAsTemplateDecl();
1510  if (!Template) {
1511    // The template name does not resolve to a template, so we just
1512    // build a dependent template-id type.
1513    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1514  }
1515
1516  // Check that the template argument list is well-formed for this
1517  // template.
1518  llvm::SmallVector<TemplateArgument, 4> Converted;
1519  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1520                                false, Converted))
1521    return QualType();
1522
1523  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1524         "Converted template argument list is too short!");
1525
1526  QualType CanonType;
1527
1528  if (Name.isDependent() ||
1529      TemplateSpecializationType::anyDependentTemplateArguments(
1530                                                      TemplateArgs)) {
1531    // This class template specialization is a dependent
1532    // type. Therefore, its canonical type is another class template
1533    // specialization type that contains all of the converted
1534    // arguments in canonical form. This ensures that, e.g., A<T> and
1535    // A<T, T> have identical types when A is declared as:
1536    //
1537    //   template<typename T, typename U = T> struct A;
1538    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1539    CanonType = Context.getTemplateSpecializationType(CanonName,
1540                                                      Converted.data(),
1541                                                      Converted.size());
1542
1543    // FIXME: CanonType is not actually the canonical type, and unfortunately
1544    // it is a TemplateSpecializationType that we will never use again.
1545    // In the future, we need to teach getTemplateSpecializationType to only
1546    // build the canonical type and return that to us.
1547    CanonType = Context.getCanonicalType(CanonType);
1548
1549    // This might work out to be a current instantiation, in which
1550    // case the canonical type needs to be the InjectedClassNameType.
1551    //
1552    // TODO: in theory this could be a simple hashtable lookup; most
1553    // changes to CurContext don't change the set of current
1554    // instantiations.
1555    if (isa<ClassTemplateDecl>(Template)) {
1556      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1557        // If we get out to a namespace, we're done.
1558        if (Ctx->isFileContext()) break;
1559
1560        // If this isn't a record, keep looking.
1561        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1562        if (!Record) continue;
1563
1564        // Look for one of the two cases with InjectedClassNameTypes
1565        // and check whether it's the same template.
1566        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1567            !Record->getDescribedClassTemplate())
1568          continue;
1569
1570        // Fetch the injected class name type and check whether its
1571        // injected type is equal to the type we just built.
1572        QualType ICNT = Context.getTypeDeclType(Record);
1573        QualType Injected = cast<InjectedClassNameType>(ICNT)
1574          ->getInjectedSpecializationType();
1575
1576        if (CanonType != Injected->getCanonicalTypeInternal())
1577          continue;
1578
1579        // If so, the canonical type of this TST is the injected
1580        // class name type of the record we just found.
1581        assert(ICNT.isCanonical());
1582        CanonType = ICNT;
1583        break;
1584      }
1585    }
1586  } else if (ClassTemplateDecl *ClassTemplate
1587               = dyn_cast<ClassTemplateDecl>(Template)) {
1588    // Find the class template specialization declaration that
1589    // corresponds to these arguments.
1590    void *InsertPos = 0;
1591    ClassTemplateSpecializationDecl *Decl
1592      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1593                                          InsertPos);
1594    if (!Decl) {
1595      // This is the first time we have referenced this class template
1596      // specialization. Create the canonical declaration and add it to
1597      // the set of specializations.
1598      Decl = ClassTemplateSpecializationDecl::Create(Context,
1599                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1600                                                ClassTemplate->getDeclContext(),
1601                                                ClassTemplate->getLocation(),
1602                                                     ClassTemplate,
1603                                                     Converted.data(),
1604                                                     Converted.size(), 0);
1605      ClassTemplate->AddSpecialization(Decl, InsertPos);
1606      Decl->setLexicalDeclContext(CurContext);
1607    }
1608
1609    CanonType = Context.getTypeDeclType(Decl);
1610    assert(isa<RecordType>(CanonType) &&
1611           "type of non-dependent specialization is not a RecordType");
1612  }
1613
1614  // Build the fully-sugared type for this class template
1615  // specialization, which refers back to the class template
1616  // specialization we created or found.
1617  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1618}
1619
1620TypeResult
1621Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1622                          SourceLocation LAngleLoc,
1623                          ASTTemplateArgsPtr TemplateArgsIn,
1624                          SourceLocation RAngleLoc) {
1625  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1626
1627  // Translate the parser's template argument list in our AST format.
1628  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1629  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1630
1631  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1632  TemplateArgsIn.release();
1633
1634  if (Result.isNull())
1635    return true;
1636
1637  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1638  TemplateSpecializationTypeLoc TL
1639    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1640  TL.setTemplateNameLoc(TemplateLoc);
1641  TL.setLAngleLoc(LAngleLoc);
1642  TL.setRAngleLoc(RAngleLoc);
1643  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1644    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1645
1646  return CreateParsedType(Result, DI);
1647}
1648
1649TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1650                                        TypeResult TypeResult,
1651                                        TagUseKind TUK,
1652                                        TypeSpecifierType TagSpec,
1653                                        SourceLocation TagLoc) {
1654  if (TypeResult.isInvalid())
1655    return ::TypeResult();
1656
1657  TypeSourceInfo *DI;
1658  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1659
1660  // Verify the tag specifier.
1661  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1662
1663  if (const RecordType *RT = Type->getAs<RecordType>()) {
1664    RecordDecl *D = RT->getDecl();
1665
1666    IdentifierInfo *Id = D->getIdentifier();
1667    assert(Id && "templated class must have an identifier");
1668
1669    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1670      Diag(TagLoc, diag::err_use_with_wrong_tag)
1671        << Type
1672        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1673      Diag(D->getLocation(), diag::note_previous_use);
1674    }
1675  }
1676
1677  ElaboratedTypeKeyword Keyword
1678    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1679  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1680
1681  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1682  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1683  TL.setKeywordLoc(TagLoc);
1684  TL.setQualifierRange(SS.getRange());
1685  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1686  return CreateParsedType(ElabType, ElabDI);
1687}
1688
1689ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1690                                                 LookupResult &R,
1691                                                 bool RequiresADL,
1692                                 const TemplateArgumentListInfo &TemplateArgs) {
1693  // FIXME: Can we do any checking at this point? I guess we could check the
1694  // template arguments that we have against the template name, if the template
1695  // name refers to a single template. That's not a terribly common case,
1696  // though.
1697
1698  // These should be filtered out by our callers.
1699  assert(!R.empty() && "empty lookup results when building templateid");
1700  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1701
1702  NestedNameSpecifier *Qualifier = 0;
1703  SourceRange QualifierRange;
1704  if (SS.isSet()) {
1705    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1706    QualifierRange = SS.getRange();
1707  }
1708
1709  // We don't want lookup warnings at this point.
1710  R.suppressDiagnostics();
1711
1712  bool Dependent
1713    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1714                                              &TemplateArgs);
1715  UnresolvedLookupExpr *ULE
1716    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1717                                   Qualifier, QualifierRange,
1718                                   R.getLookupNameInfo(),
1719                                   RequiresADL, TemplateArgs,
1720                                   R.begin(), R.end());
1721
1722  return Owned(ULE);
1723}
1724
1725// We actually only call this from template instantiation.
1726ExprResult
1727Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1728                                   const DeclarationNameInfo &NameInfo,
1729                             const TemplateArgumentListInfo &TemplateArgs) {
1730  DeclContext *DC;
1731  if (!(DC = computeDeclContext(SS, false)) ||
1732      DC->isDependentContext() ||
1733      RequireCompleteDeclContext(SS, DC))
1734    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1735
1736  bool MemberOfUnknownSpecialization;
1737  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1738  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1739                     MemberOfUnknownSpecialization);
1740
1741  if (R.isAmbiguous())
1742    return ExprError();
1743
1744  if (R.empty()) {
1745    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1746      << NameInfo.getName() << SS.getRange();
1747    return ExprError();
1748  }
1749
1750  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1751    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1752      << (NestedNameSpecifier*) SS.getScopeRep()
1753      << NameInfo.getName() << SS.getRange();
1754    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1755    return ExprError();
1756  }
1757
1758  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1759}
1760
1761/// \brief Form a dependent template name.
1762///
1763/// This action forms a dependent template name given the template
1764/// name and its (presumably dependent) scope specifier. For
1765/// example, given "MetaFun::template apply", the scope specifier \p
1766/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1767/// of the "template" keyword, and "apply" is the \p Name.
1768TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1769                                                  SourceLocation TemplateKWLoc,
1770                                                  CXXScopeSpec &SS,
1771                                                  UnqualifiedId &Name,
1772                                                  ParsedType ObjectType,
1773                                                  bool EnteringContext,
1774                                                  TemplateTy &Result) {
1775  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1776      !getLangOptions().CPlusPlus0x)
1777    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1778      << FixItHint::CreateRemoval(TemplateKWLoc);
1779
1780  DeclContext *LookupCtx = 0;
1781  if (SS.isSet())
1782    LookupCtx = computeDeclContext(SS, EnteringContext);
1783  if (!LookupCtx && ObjectType)
1784    LookupCtx = computeDeclContext(ObjectType.get());
1785  if (LookupCtx) {
1786    // C++0x [temp.names]p5:
1787    //   If a name prefixed by the keyword template is not the name of
1788    //   a template, the program is ill-formed. [Note: the keyword
1789    //   template may not be applied to non-template members of class
1790    //   templates. -end note ] [ Note: as is the case with the
1791    //   typename prefix, the template prefix is allowed in cases
1792    //   where it is not strictly necessary; i.e., when the
1793    //   nested-name-specifier or the expression on the left of the ->
1794    //   or . is not dependent on a template-parameter, or the use
1795    //   does not appear in the scope of a template. -end note]
1796    //
1797    // Note: C++03 was more strict here, because it banned the use of
1798    // the "template" keyword prior to a template-name that was not a
1799    // dependent name. C++ DR468 relaxed this requirement (the
1800    // "template" keyword is now permitted). We follow the C++0x
1801    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1802    bool MemberOfUnknownSpecialization;
1803    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1804                                          ObjectType, EnteringContext, Result,
1805                                          MemberOfUnknownSpecialization);
1806    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1807        isa<CXXRecordDecl>(LookupCtx) &&
1808        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1809      // This is a dependent template. Handle it below.
1810    } else if (TNK == TNK_Non_template) {
1811      Diag(Name.getSourceRange().getBegin(),
1812           diag::err_template_kw_refers_to_non_template)
1813        << GetNameFromUnqualifiedId(Name).getName()
1814        << Name.getSourceRange()
1815        << TemplateKWLoc;
1816      return TNK_Non_template;
1817    } else {
1818      // We found something; return it.
1819      return TNK;
1820    }
1821  }
1822
1823  NestedNameSpecifier *Qualifier
1824    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1825
1826  switch (Name.getKind()) {
1827  case UnqualifiedId::IK_Identifier:
1828    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1829                                                              Name.Identifier));
1830    return TNK_Dependent_template_name;
1831
1832  case UnqualifiedId::IK_OperatorFunctionId:
1833    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1834                                             Name.OperatorFunctionId.Operator));
1835    return TNK_Dependent_template_name;
1836
1837  case UnqualifiedId::IK_LiteralOperatorId:
1838    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1839
1840  default:
1841    break;
1842  }
1843
1844  Diag(Name.getSourceRange().getBegin(),
1845       diag::err_template_kw_refers_to_non_template)
1846    << GetNameFromUnqualifiedId(Name).getName()
1847    << Name.getSourceRange()
1848    << TemplateKWLoc;
1849  return TNK_Non_template;
1850}
1851
1852bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1853                                     const TemplateArgumentLoc &AL,
1854                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1855  const TemplateArgument &Arg = AL.getArgument();
1856
1857  // Check template type parameter.
1858  switch(Arg.getKind()) {
1859  case TemplateArgument::Type:
1860    // C++ [temp.arg.type]p1:
1861    //   A template-argument for a template-parameter which is a
1862    //   type shall be a type-id.
1863    break;
1864  case TemplateArgument::Template: {
1865    // We have a template type parameter but the template argument
1866    // is a template without any arguments.
1867    SourceRange SR = AL.getSourceRange();
1868    TemplateName Name = Arg.getAsTemplate();
1869    Diag(SR.getBegin(), diag::err_template_missing_args)
1870      << Name << SR;
1871    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1872      Diag(Decl->getLocation(), diag::note_template_decl_here);
1873
1874    return true;
1875  }
1876  default: {
1877    // We have a template type parameter but the template argument
1878    // is not a type.
1879    SourceRange SR = AL.getSourceRange();
1880    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1881    Diag(Param->getLocation(), diag::note_template_param_here);
1882
1883    return true;
1884  }
1885  }
1886
1887  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1888    return true;
1889
1890  // Add the converted template type argument.
1891  Converted.push_back(
1892                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1893  return false;
1894}
1895
1896/// \brief Substitute template arguments into the default template argument for
1897/// the given template type parameter.
1898///
1899/// \param SemaRef the semantic analysis object for which we are performing
1900/// the substitution.
1901///
1902/// \param Template the template that we are synthesizing template arguments
1903/// for.
1904///
1905/// \param TemplateLoc the location of the template name that started the
1906/// template-id we are checking.
1907///
1908/// \param RAngleLoc the location of the right angle bracket ('>') that
1909/// terminates the template-id.
1910///
1911/// \param Param the template template parameter whose default we are
1912/// substituting into.
1913///
1914/// \param Converted the list of template arguments provided for template
1915/// parameters that precede \p Param in the template parameter list.
1916///
1917/// \returns the substituted template argument, or NULL if an error occurred.
1918static TypeSourceInfo *
1919SubstDefaultTemplateArgument(Sema &SemaRef,
1920                             TemplateDecl *Template,
1921                             SourceLocation TemplateLoc,
1922                             SourceLocation RAngleLoc,
1923                             TemplateTypeParmDecl *Param,
1924                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1925  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1926
1927  // If the argument type is dependent, instantiate it now based
1928  // on the previously-computed template arguments.
1929  if (ArgType->getType()->isDependentType()) {
1930    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1931                                      Converted.data(), Converted.size());
1932
1933    MultiLevelTemplateArgumentList AllTemplateArgs
1934      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1935
1936    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1937                                     Template, Converted.data(),
1938                                     Converted.size(),
1939                                     SourceRange(TemplateLoc, RAngleLoc));
1940
1941    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1942                                Param->getDefaultArgumentLoc(),
1943                                Param->getDeclName());
1944  }
1945
1946  return ArgType;
1947}
1948
1949/// \brief Substitute template arguments into the default template argument for
1950/// the given non-type template parameter.
1951///
1952/// \param SemaRef the semantic analysis object for which we are performing
1953/// the substitution.
1954///
1955/// \param Template the template that we are synthesizing template arguments
1956/// for.
1957///
1958/// \param TemplateLoc the location of the template name that started the
1959/// template-id we are checking.
1960///
1961/// \param RAngleLoc the location of the right angle bracket ('>') that
1962/// terminates the template-id.
1963///
1964/// \param Param the non-type template parameter whose default we are
1965/// substituting into.
1966///
1967/// \param Converted the list of template arguments provided for template
1968/// parameters that precede \p Param in the template parameter list.
1969///
1970/// \returns the substituted template argument, or NULL if an error occurred.
1971static ExprResult
1972SubstDefaultTemplateArgument(Sema &SemaRef,
1973                             TemplateDecl *Template,
1974                             SourceLocation TemplateLoc,
1975                             SourceLocation RAngleLoc,
1976                             NonTypeTemplateParmDecl *Param,
1977                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1978  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1979                                    Converted.data(), Converted.size());
1980
1981  MultiLevelTemplateArgumentList AllTemplateArgs
1982    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1983
1984  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1985                                   Template, Converted.data(),
1986                                   Converted.size(),
1987                                   SourceRange(TemplateLoc, RAngleLoc));
1988
1989  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1990}
1991
1992/// \brief Substitute template arguments into the default template argument for
1993/// the given template template parameter.
1994///
1995/// \param SemaRef the semantic analysis object for which we are performing
1996/// the substitution.
1997///
1998/// \param Template the template that we are synthesizing template arguments
1999/// for.
2000///
2001/// \param TemplateLoc the location of the template name that started the
2002/// template-id we are checking.
2003///
2004/// \param RAngleLoc the location of the right angle bracket ('>') that
2005/// terminates the template-id.
2006///
2007/// \param Param the template template parameter whose default we are
2008/// substituting into.
2009///
2010/// \param Converted the list of template arguments provided for template
2011/// parameters that precede \p Param in the template parameter list.
2012///
2013/// \returns the substituted template argument, or NULL if an error occurred.
2014static TemplateName
2015SubstDefaultTemplateArgument(Sema &SemaRef,
2016                             TemplateDecl *Template,
2017                             SourceLocation TemplateLoc,
2018                             SourceLocation RAngleLoc,
2019                             TemplateTemplateParmDecl *Param,
2020                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2021  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2022                                    Converted.data(), Converted.size());
2023
2024  MultiLevelTemplateArgumentList AllTemplateArgs
2025    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2026
2027  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2028                                   Template, Converted.data(),
2029                                   Converted.size(),
2030                                   SourceRange(TemplateLoc, RAngleLoc));
2031
2032  return SemaRef.SubstTemplateName(
2033                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2034                              Param->getDefaultArgument().getTemplateNameLoc(),
2035                                   AllTemplateArgs);
2036}
2037
2038/// \brief If the given template parameter has a default template
2039/// argument, substitute into that default template argument and
2040/// return the corresponding template argument.
2041TemplateArgumentLoc
2042Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2043                                              SourceLocation TemplateLoc,
2044                                              SourceLocation RAngleLoc,
2045                                              Decl *Param,
2046                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2047   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2048    if (!TypeParm->hasDefaultArgument())
2049      return TemplateArgumentLoc();
2050
2051    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2052                                                      TemplateLoc,
2053                                                      RAngleLoc,
2054                                                      TypeParm,
2055                                                      Converted);
2056    if (DI)
2057      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2058
2059    return TemplateArgumentLoc();
2060  }
2061
2062  if (NonTypeTemplateParmDecl *NonTypeParm
2063        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2064    if (!NonTypeParm->hasDefaultArgument())
2065      return TemplateArgumentLoc();
2066
2067    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2068                                                        TemplateLoc,
2069                                                        RAngleLoc,
2070                                                        NonTypeParm,
2071                                                        Converted);
2072    if (Arg.isInvalid())
2073      return TemplateArgumentLoc();
2074
2075    Expr *ArgE = Arg.takeAs<Expr>();
2076    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2077  }
2078
2079  TemplateTemplateParmDecl *TempTempParm
2080    = cast<TemplateTemplateParmDecl>(Param);
2081  if (!TempTempParm->hasDefaultArgument())
2082    return TemplateArgumentLoc();
2083
2084  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2085                                                    TemplateLoc,
2086                                                    RAngleLoc,
2087                                                    TempTempParm,
2088                                                    Converted);
2089  if (TName.isNull())
2090    return TemplateArgumentLoc();
2091
2092  return TemplateArgumentLoc(TemplateArgument(TName),
2093                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2094                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2095}
2096
2097/// \brief Check that the given template argument corresponds to the given
2098/// template parameter.
2099bool Sema::CheckTemplateArgument(NamedDecl *Param,
2100                                 const TemplateArgumentLoc &Arg,
2101                                 TemplateDecl *Template,
2102                                 SourceLocation TemplateLoc,
2103                                 SourceLocation RAngleLoc,
2104                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2105                                 CheckTemplateArgumentKind CTAK) {
2106  // Check template type parameters.
2107  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2108    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2109
2110  // Check non-type template parameters.
2111  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2112    // Do substitution on the type of the non-type template parameter
2113    // with the template arguments we've seen thus far.  But if the
2114    // template has a dependent context then we cannot substitute yet.
2115    QualType NTTPType = NTTP->getType();
2116    if (NTTPType->isDependentType() &&
2117        !isa<TemplateTemplateParmDecl>(Template) &&
2118        !Template->getDeclContext()->isDependentContext()) {
2119      // Do substitution on the type of the non-type template parameter.
2120      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2121                                 NTTP, Converted.data(), Converted.size(),
2122                                 SourceRange(TemplateLoc, RAngleLoc));
2123
2124      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2125                                        Converted.data(), Converted.size());
2126      NTTPType = SubstType(NTTPType,
2127                           MultiLevelTemplateArgumentList(TemplateArgs),
2128                           NTTP->getLocation(),
2129                           NTTP->getDeclName());
2130      // If that worked, check the non-type template parameter type
2131      // for validity.
2132      if (!NTTPType.isNull())
2133        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2134                                                     NTTP->getLocation());
2135      if (NTTPType.isNull())
2136        return true;
2137    }
2138
2139    switch (Arg.getArgument().getKind()) {
2140    case TemplateArgument::Null:
2141      assert(false && "Should never see a NULL template argument here");
2142      return true;
2143
2144    case TemplateArgument::Expression: {
2145      Expr *E = Arg.getArgument().getAsExpr();
2146      TemplateArgument Result;
2147      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2148        return true;
2149
2150      Converted.push_back(Result);
2151      break;
2152    }
2153
2154    case TemplateArgument::Declaration:
2155    case TemplateArgument::Integral:
2156      // We've already checked this template argument, so just copy
2157      // it to the list of converted arguments.
2158      Converted.push_back(Arg.getArgument());
2159      break;
2160
2161    case TemplateArgument::Template:
2162      // We were given a template template argument. It may not be ill-formed;
2163      // see below.
2164      if (DependentTemplateName *DTN
2165            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2166        // We have a template argument such as \c T::template X, which we
2167        // parsed as a template template argument. However, since we now
2168        // know that we need a non-type template argument, convert this
2169        // template name into an expression.
2170
2171        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2172                                     Arg.getTemplateNameLoc());
2173
2174        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2175                                                    DTN->getQualifier(),
2176                                               Arg.getTemplateQualifierRange(),
2177                                                    NameInfo);
2178
2179        TemplateArgument Result;
2180        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2181          return true;
2182
2183        Converted.push_back(Result);
2184        break;
2185      }
2186
2187      // We have a template argument that actually does refer to a class
2188      // template, template alias, or template template parameter, and
2189      // therefore cannot be a non-type template argument.
2190      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2191        << Arg.getSourceRange();
2192
2193      Diag(Param->getLocation(), diag::note_template_param_here);
2194      return true;
2195
2196    case TemplateArgument::Type: {
2197      // We have a non-type template parameter but the template
2198      // argument is a type.
2199
2200      // C++ [temp.arg]p2:
2201      //   In a template-argument, an ambiguity between a type-id and
2202      //   an expression is resolved to a type-id, regardless of the
2203      //   form of the corresponding template-parameter.
2204      //
2205      // We warn specifically about this case, since it can be rather
2206      // confusing for users.
2207      QualType T = Arg.getArgument().getAsType();
2208      SourceRange SR = Arg.getSourceRange();
2209      if (T->isFunctionType())
2210        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2211      else
2212        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2213      Diag(Param->getLocation(), diag::note_template_param_here);
2214      return true;
2215    }
2216
2217    case TemplateArgument::Pack:
2218      llvm_unreachable("Caller must expand template argument packs");
2219      break;
2220    }
2221
2222    return false;
2223  }
2224
2225
2226  // Check template template parameters.
2227  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2228
2229  // Substitute into the template parameter list of the template
2230  // template parameter, since previously-supplied template arguments
2231  // may appear within the template template parameter.
2232  {
2233    // Set up a template instantiation context.
2234    LocalInstantiationScope Scope(*this);
2235    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2236                               TempParm, Converted.data(), Converted.size(),
2237                               SourceRange(TemplateLoc, RAngleLoc));
2238
2239    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2240                                      Converted.data(), Converted.size());
2241    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2242                      SubstDecl(TempParm, CurContext,
2243                                MultiLevelTemplateArgumentList(TemplateArgs)));
2244    if (!TempParm)
2245      return true;
2246
2247    // FIXME: TempParam is leaked.
2248  }
2249
2250  switch (Arg.getArgument().getKind()) {
2251  case TemplateArgument::Null:
2252    assert(false && "Should never see a NULL template argument here");
2253    return true;
2254
2255  case TemplateArgument::Template:
2256    if (CheckTemplateArgument(TempParm, Arg))
2257      return true;
2258
2259    Converted.push_back(Arg.getArgument());
2260    break;
2261
2262  case TemplateArgument::Expression:
2263  case TemplateArgument::Type:
2264    // We have a template template parameter but the template
2265    // argument does not refer to a template.
2266    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2267    return true;
2268
2269  case TemplateArgument::Declaration:
2270    llvm_unreachable(
2271                       "Declaration argument with template template parameter");
2272    break;
2273  case TemplateArgument::Integral:
2274    llvm_unreachable(
2275                          "Integral argument with template template parameter");
2276    break;
2277
2278  case TemplateArgument::Pack:
2279    llvm_unreachable("Caller must expand template argument packs");
2280    break;
2281  }
2282
2283  return false;
2284}
2285
2286/// \brief Check that the given template argument list is well-formed
2287/// for specializing the given template.
2288bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2289                                     SourceLocation TemplateLoc,
2290                                const TemplateArgumentListInfo &TemplateArgs,
2291                                     bool PartialTemplateArgs,
2292                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2293  TemplateParameterList *Params = Template->getTemplateParameters();
2294  unsigned NumParams = Params->size();
2295  unsigned NumArgs = TemplateArgs.size();
2296  bool Invalid = false;
2297
2298  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2299
2300  bool HasParameterPack =
2301    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2302
2303  if ((NumArgs > NumParams && !HasParameterPack) ||
2304      (NumArgs < Params->getMinRequiredArguments() &&
2305       !PartialTemplateArgs)) {
2306    // FIXME: point at either the first arg beyond what we can handle,
2307    // or the '>', depending on whether we have too many or too few
2308    // arguments.
2309    SourceRange Range;
2310    if (NumArgs > NumParams)
2311      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2312    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2313      << (NumArgs > NumParams)
2314      << (isa<ClassTemplateDecl>(Template)? 0 :
2315          isa<FunctionTemplateDecl>(Template)? 1 :
2316          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2317      << Template << Range;
2318    Diag(Template->getLocation(), diag::note_template_decl_here)
2319      << Params->getSourceRange();
2320    Invalid = true;
2321  }
2322
2323  // C++ [temp.arg]p1:
2324  //   [...] The type and form of each template-argument specified in
2325  //   a template-id shall match the type and form specified for the
2326  //   corresponding parameter declared by the template in its
2327  //   template-parameter-list.
2328  unsigned ArgIdx = 0;
2329  for (TemplateParameterList::iterator Param = Params->begin(),
2330                                       ParamEnd = Params->end();
2331       Param != ParamEnd; ++Param, ++ArgIdx) {
2332    if (ArgIdx > NumArgs && PartialTemplateArgs)
2333      break;
2334
2335    // If we have a template parameter pack, check every remaining template
2336    // argument against that template parameter pack.
2337    if ((*Param)->isTemplateParameterPack()) {
2338      Diag(TemplateLoc, diag::err_variadic_templates_unsupported);
2339      return true;
2340    }
2341
2342    if (ArgIdx < NumArgs) {
2343      // Check the template argument we were given.
2344      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2345                                TemplateLoc, RAngleLoc, Converted))
2346        return true;
2347
2348      continue;
2349    }
2350
2351    // We have a default template argument that we will use.
2352    TemplateArgumentLoc Arg;
2353
2354    // Retrieve the default template argument from the template
2355    // parameter. For each kind of template parameter, we substitute the
2356    // template arguments provided thus far and any "outer" template arguments
2357    // (when the template parameter was part of a nested template) into
2358    // the default argument.
2359    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2360      if (!TTP->hasDefaultArgument()) {
2361        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2362        break;
2363      }
2364
2365      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2366                                                             Template,
2367                                                             TemplateLoc,
2368                                                             RAngleLoc,
2369                                                             TTP,
2370                                                             Converted);
2371      if (!ArgType)
2372        return true;
2373
2374      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2375                                ArgType);
2376    } else if (NonTypeTemplateParmDecl *NTTP
2377                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2378      if (!NTTP->hasDefaultArgument()) {
2379        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2380        break;
2381      }
2382
2383      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2384                                                              TemplateLoc,
2385                                                              RAngleLoc,
2386                                                              NTTP,
2387                                                              Converted);
2388      if (E.isInvalid())
2389        return true;
2390
2391      Expr *Ex = E.takeAs<Expr>();
2392      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2393    } else {
2394      TemplateTemplateParmDecl *TempParm
2395        = cast<TemplateTemplateParmDecl>(*Param);
2396
2397      if (!TempParm->hasDefaultArgument()) {
2398        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2399        break;
2400      }
2401
2402      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2403                                                       TemplateLoc,
2404                                                       RAngleLoc,
2405                                                       TempParm,
2406                                                       Converted);
2407      if (Name.isNull())
2408        return true;
2409
2410      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2411                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2412                  TempParm->getDefaultArgument().getTemplateNameLoc());
2413    }
2414
2415    // Introduce an instantiation record that describes where we are using
2416    // the default template argument.
2417    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2418                                        Converted.data(), Converted.size(),
2419                                        SourceRange(TemplateLoc, RAngleLoc));
2420
2421    // Check the default template argument.
2422    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2423                              RAngleLoc, Converted))
2424      return true;
2425  }
2426
2427  return Invalid;
2428}
2429
2430namespace {
2431  class UnnamedLocalNoLinkageFinder
2432    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2433  {
2434    Sema &S;
2435    SourceRange SR;
2436
2437    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2438
2439  public:
2440    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2441
2442    bool Visit(QualType T) {
2443      return inherited::Visit(T.getTypePtr());
2444    }
2445
2446#define TYPE(Class, Parent) \
2447    bool Visit##Class##Type(const Class##Type *);
2448#define ABSTRACT_TYPE(Class, Parent) \
2449    bool Visit##Class##Type(const Class##Type *) { return false; }
2450#define NON_CANONICAL_TYPE(Class, Parent) \
2451    bool Visit##Class##Type(const Class##Type *) { return false; }
2452#include "clang/AST/TypeNodes.def"
2453
2454    bool VisitTagDecl(const TagDecl *Tag);
2455    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2456  };
2457}
2458
2459bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2460  return false;
2461}
2462
2463bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2464  return Visit(T->getElementType());
2465}
2466
2467bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2468  return Visit(T->getPointeeType());
2469}
2470
2471bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2472                                                    const BlockPointerType* T) {
2473  return Visit(T->getPointeeType());
2474}
2475
2476bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2477                                                const LValueReferenceType* T) {
2478  return Visit(T->getPointeeType());
2479}
2480
2481bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2482                                                const RValueReferenceType* T) {
2483  return Visit(T->getPointeeType());
2484}
2485
2486bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2487                                                  const MemberPointerType* T) {
2488  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2489}
2490
2491bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2492                                                  const ConstantArrayType* T) {
2493  return Visit(T->getElementType());
2494}
2495
2496bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2497                                                 const IncompleteArrayType* T) {
2498  return Visit(T->getElementType());
2499}
2500
2501bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2502                                                   const VariableArrayType* T) {
2503  return Visit(T->getElementType());
2504}
2505
2506bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2507                                            const DependentSizedArrayType* T) {
2508  return Visit(T->getElementType());
2509}
2510
2511bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2512                                         const DependentSizedExtVectorType* T) {
2513  return Visit(T->getElementType());
2514}
2515
2516bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2517  return Visit(T->getElementType());
2518}
2519
2520bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2521  return Visit(T->getElementType());
2522}
2523
2524bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2525                                                  const FunctionProtoType* T) {
2526  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2527                                         AEnd = T->arg_type_end();
2528       A != AEnd; ++A) {
2529    if (Visit(*A))
2530      return true;
2531  }
2532
2533  return Visit(T->getResultType());
2534}
2535
2536bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2537                                               const FunctionNoProtoType* T) {
2538  return Visit(T->getResultType());
2539}
2540
2541bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2542                                                  const UnresolvedUsingType*) {
2543  return false;
2544}
2545
2546bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2547  return false;
2548}
2549
2550bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2551  return Visit(T->getUnderlyingType());
2552}
2553
2554bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2555  return false;
2556}
2557
2558bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2559  return VisitTagDecl(T->getDecl());
2560}
2561
2562bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2563  return VisitTagDecl(T->getDecl());
2564}
2565
2566bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2567                                                 const TemplateTypeParmType*) {
2568  return false;
2569}
2570
2571bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2572                                            const TemplateSpecializationType*) {
2573  return false;
2574}
2575
2576bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2577                                              const InjectedClassNameType* T) {
2578  return VisitTagDecl(T->getDecl());
2579}
2580
2581bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2582                                                   const DependentNameType* T) {
2583  return VisitNestedNameSpecifier(T->getQualifier());
2584}
2585
2586bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2587                                 const DependentTemplateSpecializationType* T) {
2588  return VisitNestedNameSpecifier(T->getQualifier());
2589}
2590
2591bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2592  return false;
2593}
2594
2595bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2596                                                   const ObjCInterfaceType *) {
2597  return false;
2598}
2599
2600bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2601                                                const ObjCObjectPointerType *) {
2602  return false;
2603}
2604
2605bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2606  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2607    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2608      << S.Context.getTypeDeclType(Tag) << SR;
2609    return true;
2610  }
2611
2612  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2613    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2614    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2615    return true;
2616  }
2617
2618  return false;
2619}
2620
2621bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2622                                                    NestedNameSpecifier *NNS) {
2623  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2624    return true;
2625
2626  switch (NNS->getKind()) {
2627  case NestedNameSpecifier::Identifier:
2628  case NestedNameSpecifier::Namespace:
2629  case NestedNameSpecifier::Global:
2630    return false;
2631
2632  case NestedNameSpecifier::TypeSpec:
2633  case NestedNameSpecifier::TypeSpecWithTemplate:
2634    return Visit(QualType(NNS->getAsType(), 0));
2635  }
2636  return false;
2637}
2638
2639
2640/// \brief Check a template argument against its corresponding
2641/// template type parameter.
2642///
2643/// This routine implements the semantics of C++ [temp.arg.type]. It
2644/// returns true if an error occurred, and false otherwise.
2645bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2646                                 TypeSourceInfo *ArgInfo) {
2647  assert(ArgInfo && "invalid TypeSourceInfo");
2648  QualType Arg = ArgInfo->getType();
2649  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2650
2651  if (Arg->isVariablyModifiedType()) {
2652    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2653  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2654    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2655  }
2656
2657  // C++03 [temp.arg.type]p2:
2658  //   A local type, a type with no linkage, an unnamed type or a type
2659  //   compounded from any of these types shall not be used as a
2660  //   template-argument for a template type-parameter.
2661  //
2662  // C++0x allows these, and even in C++03 we allow them as an extension with
2663  // a warning.
2664  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2665    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2666    (void)Finder.Visit(Context.getCanonicalType(Arg));
2667  }
2668
2669  return false;
2670}
2671
2672/// \brief Checks whether the given template argument is the address
2673/// of an object or function according to C++ [temp.arg.nontype]p1.
2674static bool
2675CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2676                                               NonTypeTemplateParmDecl *Param,
2677                                               QualType ParamType,
2678                                               Expr *ArgIn,
2679                                               TemplateArgument &Converted) {
2680  bool Invalid = false;
2681  Expr *Arg = ArgIn;
2682  QualType ArgType = Arg->getType();
2683
2684  // See through any implicit casts we added to fix the type.
2685  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2686    Arg = Cast->getSubExpr();
2687
2688  // C++ [temp.arg.nontype]p1:
2689  //
2690  //   A template-argument for a non-type, non-template
2691  //   template-parameter shall be one of: [...]
2692  //
2693  //     -- the address of an object or function with external
2694  //        linkage, including function templates and function
2695  //        template-ids but excluding non-static class members,
2696  //        expressed as & id-expression where the & is optional if
2697  //        the name refers to a function or array, or if the
2698  //        corresponding template-parameter is a reference; or
2699  DeclRefExpr *DRE = 0;
2700
2701  // In C++98/03 mode, give an extension warning on any extra parentheses.
2702  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2703  bool ExtraParens = false;
2704  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2705    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2706      S.Diag(Arg->getSourceRange().getBegin(),
2707             diag::ext_template_arg_extra_parens)
2708        << Arg->getSourceRange();
2709      ExtraParens = true;
2710    }
2711
2712    Arg = Parens->getSubExpr();
2713  }
2714
2715  bool AddressTaken = false;
2716  SourceLocation AddrOpLoc;
2717  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2718    if (UnOp->getOpcode() == UO_AddrOf) {
2719      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2720      AddressTaken = true;
2721      AddrOpLoc = UnOp->getOperatorLoc();
2722    }
2723  } else
2724    DRE = dyn_cast<DeclRefExpr>(Arg);
2725
2726  if (!DRE) {
2727    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2728      << Arg->getSourceRange();
2729    S.Diag(Param->getLocation(), diag::note_template_param_here);
2730    return true;
2731  }
2732
2733  // Stop checking the precise nature of the argument if it is value dependent,
2734  // it should be checked when instantiated.
2735  if (Arg->isValueDependent()) {
2736    Converted = TemplateArgument(ArgIn);
2737    return false;
2738  }
2739
2740  if (!isa<ValueDecl>(DRE->getDecl())) {
2741    S.Diag(Arg->getSourceRange().getBegin(),
2742           diag::err_template_arg_not_object_or_func_form)
2743      << Arg->getSourceRange();
2744    S.Diag(Param->getLocation(), diag::note_template_param_here);
2745    return true;
2746  }
2747
2748  NamedDecl *Entity = 0;
2749
2750  // Cannot refer to non-static data members
2751  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2752    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2753      << Field << Arg->getSourceRange();
2754    S.Diag(Param->getLocation(), diag::note_template_param_here);
2755    return true;
2756  }
2757
2758  // Cannot refer to non-static member functions
2759  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2760    if (!Method->isStatic()) {
2761      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2762        << Method << Arg->getSourceRange();
2763      S.Diag(Param->getLocation(), diag::note_template_param_here);
2764      return true;
2765    }
2766
2767  // Functions must have external linkage.
2768  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2769    if (!isExternalLinkage(Func->getLinkage())) {
2770      S.Diag(Arg->getSourceRange().getBegin(),
2771             diag::err_template_arg_function_not_extern)
2772        << Func << Arg->getSourceRange();
2773      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2774        << true;
2775      return true;
2776    }
2777
2778    // Okay: we've named a function with external linkage.
2779    Entity = Func;
2780
2781    // If the template parameter has pointer type, the function decays.
2782    if (ParamType->isPointerType() && !AddressTaken)
2783      ArgType = S.Context.getPointerType(Func->getType());
2784    else if (AddressTaken && ParamType->isReferenceType()) {
2785      // If we originally had an address-of operator, but the
2786      // parameter has reference type, complain and (if things look
2787      // like they will work) drop the address-of operator.
2788      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2789                                            ParamType.getNonReferenceType())) {
2790        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2791          << ParamType;
2792        S.Diag(Param->getLocation(), diag::note_template_param_here);
2793        return true;
2794      }
2795
2796      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2797        << ParamType
2798        << FixItHint::CreateRemoval(AddrOpLoc);
2799      S.Diag(Param->getLocation(), diag::note_template_param_here);
2800
2801      ArgType = Func->getType();
2802    }
2803  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2804    if (!isExternalLinkage(Var->getLinkage())) {
2805      S.Diag(Arg->getSourceRange().getBegin(),
2806             diag::err_template_arg_object_not_extern)
2807        << Var << Arg->getSourceRange();
2808      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2809        << true;
2810      return true;
2811    }
2812
2813    // A value of reference type is not an object.
2814    if (Var->getType()->isReferenceType()) {
2815      S.Diag(Arg->getSourceRange().getBegin(),
2816             diag::err_template_arg_reference_var)
2817        << Var->getType() << Arg->getSourceRange();
2818      S.Diag(Param->getLocation(), diag::note_template_param_here);
2819      return true;
2820    }
2821
2822    // Okay: we've named an object with external linkage
2823    Entity = Var;
2824
2825    // If the template parameter has pointer type, we must have taken
2826    // the address of this object.
2827    if (ParamType->isReferenceType()) {
2828      if (AddressTaken) {
2829        // If we originally had an address-of operator, but the
2830        // parameter has reference type, complain and (if things look
2831        // like they will work) drop the address-of operator.
2832        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2833                                            ParamType.getNonReferenceType())) {
2834          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2835            << ParamType;
2836          S.Diag(Param->getLocation(), diag::note_template_param_here);
2837          return true;
2838        }
2839
2840        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2841          << ParamType
2842          << FixItHint::CreateRemoval(AddrOpLoc);
2843        S.Diag(Param->getLocation(), diag::note_template_param_here);
2844
2845        ArgType = Var->getType();
2846      }
2847    } else if (!AddressTaken && ParamType->isPointerType()) {
2848      if (Var->getType()->isArrayType()) {
2849        // Array-to-pointer decay.
2850        ArgType = S.Context.getArrayDecayedType(Var->getType());
2851      } else {
2852        // If the template parameter has pointer type but the address of
2853        // this object was not taken, complain and (possibly) recover by
2854        // taking the address of the entity.
2855        ArgType = S.Context.getPointerType(Var->getType());
2856        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2857          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2858            << ParamType;
2859          S.Diag(Param->getLocation(), diag::note_template_param_here);
2860          return true;
2861        }
2862
2863        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2864          << ParamType
2865          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2866
2867        S.Diag(Param->getLocation(), diag::note_template_param_here);
2868      }
2869    }
2870  } else {
2871    // We found something else, but we don't know specifically what it is.
2872    S.Diag(Arg->getSourceRange().getBegin(),
2873           diag::err_template_arg_not_object_or_func)
2874      << Arg->getSourceRange();
2875    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2876    return true;
2877  }
2878
2879  if (ParamType->isPointerType() &&
2880      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2881      S.IsQualificationConversion(ArgType, ParamType)) {
2882    // For pointer-to-object types, qualification conversions are
2883    // permitted.
2884  } else {
2885    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2886      if (!ParamRef->getPointeeType()->isFunctionType()) {
2887        // C++ [temp.arg.nontype]p5b3:
2888        //   For a non-type template-parameter of type reference to
2889        //   object, no conversions apply. The type referred to by the
2890        //   reference may be more cv-qualified than the (otherwise
2891        //   identical) type of the template- argument. The
2892        //   template-parameter is bound directly to the
2893        //   template-argument, which shall be an lvalue.
2894
2895        // FIXME: Other qualifiers?
2896        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2897        unsigned ArgQuals = ArgType.getCVRQualifiers();
2898
2899        if ((ParamQuals | ArgQuals) != ParamQuals) {
2900          S.Diag(Arg->getSourceRange().getBegin(),
2901                 diag::err_template_arg_ref_bind_ignores_quals)
2902            << ParamType << Arg->getType()
2903            << Arg->getSourceRange();
2904          S.Diag(Param->getLocation(), diag::note_template_param_here);
2905          return true;
2906        }
2907      }
2908    }
2909
2910    // At this point, the template argument refers to an object or
2911    // function with external linkage. We now need to check whether the
2912    // argument and parameter types are compatible.
2913    if (!S.Context.hasSameUnqualifiedType(ArgType,
2914                                          ParamType.getNonReferenceType())) {
2915      // We can't perform this conversion or binding.
2916      if (ParamType->isReferenceType())
2917        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2918          << ParamType << Arg->getType() << Arg->getSourceRange();
2919      else
2920        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2921          << Arg->getType() << ParamType << Arg->getSourceRange();
2922      S.Diag(Param->getLocation(), diag::note_template_param_here);
2923      return true;
2924    }
2925  }
2926
2927  // Create the template argument.
2928  Converted = TemplateArgument(Entity->getCanonicalDecl());
2929  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2930  return false;
2931}
2932
2933/// \brief Checks whether the given template argument is a pointer to
2934/// member constant according to C++ [temp.arg.nontype]p1.
2935bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2936                                                TemplateArgument &Converted) {
2937  bool Invalid = false;
2938
2939  // See through any implicit casts we added to fix the type.
2940  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2941    Arg = Cast->getSubExpr();
2942
2943  // C++ [temp.arg.nontype]p1:
2944  //
2945  //   A template-argument for a non-type, non-template
2946  //   template-parameter shall be one of: [...]
2947  //
2948  //     -- a pointer to member expressed as described in 5.3.1.
2949  DeclRefExpr *DRE = 0;
2950
2951  // In C++98/03 mode, give an extension warning on any extra parentheses.
2952  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2953  bool ExtraParens = false;
2954  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2955    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2956      Diag(Arg->getSourceRange().getBegin(),
2957           diag::ext_template_arg_extra_parens)
2958        << Arg->getSourceRange();
2959      ExtraParens = true;
2960    }
2961
2962    Arg = Parens->getSubExpr();
2963  }
2964
2965  // A pointer-to-member constant written &Class::member.
2966  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2967    if (UnOp->getOpcode() == UO_AddrOf) {
2968      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2969      if (DRE && !DRE->getQualifier())
2970        DRE = 0;
2971    }
2972  }
2973  // A constant of pointer-to-member type.
2974  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2975    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2976      if (VD->getType()->isMemberPointerType()) {
2977        if (isa<NonTypeTemplateParmDecl>(VD) ||
2978            (isa<VarDecl>(VD) &&
2979             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2980          if (Arg->isTypeDependent() || Arg->isValueDependent())
2981            Converted = TemplateArgument(Arg);
2982          else
2983            Converted = TemplateArgument(VD->getCanonicalDecl());
2984          return Invalid;
2985        }
2986      }
2987    }
2988
2989    DRE = 0;
2990  }
2991
2992  if (!DRE)
2993    return Diag(Arg->getSourceRange().getBegin(),
2994                diag::err_template_arg_not_pointer_to_member_form)
2995      << Arg->getSourceRange();
2996
2997  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2998    assert((isa<FieldDecl>(DRE->getDecl()) ||
2999            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3000           "Only non-static member pointers can make it here");
3001
3002    // Okay: this is the address of a non-static member, and therefore
3003    // a member pointer constant.
3004    if (Arg->isTypeDependent() || Arg->isValueDependent())
3005      Converted = TemplateArgument(Arg);
3006    else
3007      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3008    return Invalid;
3009  }
3010
3011  // We found something else, but we don't know specifically what it is.
3012  Diag(Arg->getSourceRange().getBegin(),
3013       diag::err_template_arg_not_pointer_to_member_form)
3014      << Arg->getSourceRange();
3015  Diag(DRE->getDecl()->getLocation(),
3016       diag::note_template_arg_refers_here);
3017  return true;
3018}
3019
3020/// \brief Check a template argument against its corresponding
3021/// non-type template parameter.
3022///
3023/// This routine implements the semantics of C++ [temp.arg.nontype].
3024/// It returns true if an error occurred, and false otherwise. \p
3025/// InstantiatedParamType is the type of the non-type template
3026/// parameter after it has been instantiated.
3027///
3028/// If no error was detected, Converted receives the converted template argument.
3029bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3030                                 QualType InstantiatedParamType, Expr *&Arg,
3031                                 TemplateArgument &Converted,
3032                                 CheckTemplateArgumentKind CTAK) {
3033  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3034
3035  // If either the parameter has a dependent type or the argument is
3036  // type-dependent, there's nothing we can check now.
3037  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3038    // FIXME: Produce a cloned, canonical expression?
3039    Converted = TemplateArgument(Arg);
3040    return false;
3041  }
3042
3043  // C++ [temp.arg.nontype]p5:
3044  //   The following conversions are performed on each expression used
3045  //   as a non-type template-argument. If a non-type
3046  //   template-argument cannot be converted to the type of the
3047  //   corresponding template-parameter then the program is
3048  //   ill-formed.
3049  //
3050  //     -- for a non-type template-parameter of integral or
3051  //        enumeration type, integral promotions (4.5) and integral
3052  //        conversions (4.7) are applied.
3053  QualType ParamType = InstantiatedParamType;
3054  QualType ArgType = Arg->getType();
3055  if (ParamType->isIntegralOrEnumerationType()) {
3056    // C++ [temp.arg.nontype]p1:
3057    //   A template-argument for a non-type, non-template
3058    //   template-parameter shall be one of:
3059    //
3060    //     -- an integral constant-expression of integral or enumeration
3061    //        type; or
3062    //     -- the name of a non-type template-parameter; or
3063    SourceLocation NonConstantLoc;
3064    llvm::APSInt Value;
3065    if (!ArgType->isIntegralOrEnumerationType()) {
3066      Diag(Arg->getSourceRange().getBegin(),
3067           diag::err_template_arg_not_integral_or_enumeral)
3068        << ArgType << Arg->getSourceRange();
3069      Diag(Param->getLocation(), diag::note_template_param_here);
3070      return true;
3071    } else if (!Arg->isValueDependent() &&
3072               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3073      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3074        << ArgType << Arg->getSourceRange();
3075      return true;
3076    }
3077
3078    // From here on out, all we care about are the unqualified forms
3079    // of the parameter and argument types.
3080    ParamType = ParamType.getUnqualifiedType();
3081    ArgType = ArgType.getUnqualifiedType();
3082
3083    // Try to convert the argument to the parameter's type.
3084    if (Context.hasSameType(ParamType, ArgType)) {
3085      // Okay: no conversion necessary
3086    } else if (CTAK == CTAK_Deduced) {
3087      // C++ [temp.deduct.type]p17:
3088      //   If, in the declaration of a function template with a non-type
3089      //   template-parameter, the non-type template- parameter is used
3090      //   in an expression in the function parameter-list and, if the
3091      //   corresponding template-argument is deduced, the
3092      //   template-argument type shall match the type of the
3093      //   template-parameter exactly, except that a template-argument
3094      //   deduced from an array bound may be of any integral type.
3095      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3096        << ArgType << ParamType;
3097      Diag(Param->getLocation(), diag::note_template_param_here);
3098      return true;
3099    } else if (ParamType->isBooleanType()) {
3100      // This is an integral-to-boolean conversion.
3101      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3102    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3103               !ParamType->isEnumeralType()) {
3104      // This is an integral promotion or conversion.
3105      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3106    } else {
3107      // We can't perform this conversion.
3108      Diag(Arg->getSourceRange().getBegin(),
3109           diag::err_template_arg_not_convertible)
3110        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3111      Diag(Param->getLocation(), diag::note_template_param_here);
3112      return true;
3113    }
3114
3115    QualType IntegerType = Context.getCanonicalType(ParamType);
3116    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3117      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3118
3119    if (!Arg->isValueDependent()) {
3120      llvm::APSInt OldValue = Value;
3121
3122      // Coerce the template argument's value to the value it will have
3123      // based on the template parameter's type.
3124      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3125      if (Value.getBitWidth() != AllowedBits)
3126        Value = Value.extOrTrunc(AllowedBits);
3127      Value.setIsSigned(IntegerType->isSignedIntegerType());
3128
3129      // Complain if an unsigned parameter received a negative value.
3130      if (IntegerType->isUnsignedIntegerType()
3131          && (OldValue.isSigned() && OldValue.isNegative())) {
3132        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3133          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3134          << Arg->getSourceRange();
3135        Diag(Param->getLocation(), diag::note_template_param_here);
3136      }
3137
3138      // Complain if we overflowed the template parameter's type.
3139      unsigned RequiredBits;
3140      if (IntegerType->isUnsignedIntegerType())
3141        RequiredBits = OldValue.getActiveBits();
3142      else if (OldValue.isUnsigned())
3143        RequiredBits = OldValue.getActiveBits() + 1;
3144      else
3145        RequiredBits = OldValue.getMinSignedBits();
3146      if (RequiredBits > AllowedBits) {
3147        Diag(Arg->getSourceRange().getBegin(),
3148             diag::warn_template_arg_too_large)
3149          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3150          << Arg->getSourceRange();
3151        Diag(Param->getLocation(), diag::note_template_param_here);
3152      }
3153    }
3154
3155    // Add the value of this argument to the list of converted
3156    // arguments. We use the bitwidth and signedness of the template
3157    // parameter.
3158    if (Arg->isValueDependent()) {
3159      // The argument is value-dependent. Create a new
3160      // TemplateArgument with the converted expression.
3161      Converted = TemplateArgument(Arg);
3162      return false;
3163    }
3164
3165    Converted = TemplateArgument(Value,
3166                                 ParamType->isEnumeralType() ? ParamType
3167                                                             : IntegerType);
3168    return false;
3169  }
3170
3171  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3172
3173  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3174  // from a template argument of type std::nullptr_t to a non-type
3175  // template parameter of type pointer to object, pointer to
3176  // function, or pointer-to-member, respectively.
3177  if (ArgType->isNullPtrType() &&
3178      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3179    Converted = TemplateArgument((NamedDecl *)0);
3180    return false;
3181  }
3182
3183  // Handle pointer-to-function, reference-to-function, and
3184  // pointer-to-member-function all in (roughly) the same way.
3185  if (// -- For a non-type template-parameter of type pointer to
3186      //    function, only the function-to-pointer conversion (4.3) is
3187      //    applied. If the template-argument represents a set of
3188      //    overloaded functions (or a pointer to such), the matching
3189      //    function is selected from the set (13.4).
3190      (ParamType->isPointerType() &&
3191       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3192      // -- For a non-type template-parameter of type reference to
3193      //    function, no conversions apply. If the template-argument
3194      //    represents a set of overloaded functions, the matching
3195      //    function is selected from the set (13.4).
3196      (ParamType->isReferenceType() &&
3197       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3198      // -- For a non-type template-parameter of type pointer to
3199      //    member function, no conversions apply. If the
3200      //    template-argument represents a set of overloaded member
3201      //    functions, the matching member function is selected from
3202      //    the set (13.4).
3203      (ParamType->isMemberPointerType() &&
3204       ParamType->getAs<MemberPointerType>()->getPointeeType()
3205         ->isFunctionType())) {
3206
3207    if (Arg->getType() == Context.OverloadTy) {
3208      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3209                                                                true,
3210                                                                FoundResult)) {
3211        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3212          return true;
3213
3214        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3215        ArgType = Arg->getType();
3216      } else
3217        return true;
3218    }
3219
3220    if (!ParamType->isMemberPointerType())
3221      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3222                                                            ParamType,
3223                                                            Arg, Converted);
3224
3225    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3226      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3227    } else if (!Context.hasSameUnqualifiedType(ArgType,
3228                                           ParamType.getNonReferenceType())) {
3229      // We can't perform this conversion.
3230      Diag(Arg->getSourceRange().getBegin(),
3231           diag::err_template_arg_not_convertible)
3232        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3233      Diag(Param->getLocation(), diag::note_template_param_here);
3234      return true;
3235    }
3236
3237    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3238  }
3239
3240  if (ParamType->isPointerType()) {
3241    //   -- for a non-type template-parameter of type pointer to
3242    //      object, qualification conversions (4.4) and the
3243    //      array-to-pointer conversion (4.2) are applied.
3244    // C++0x also allows a value of std::nullptr_t.
3245    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3246           "Only object pointers allowed here");
3247
3248    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3249                                                          ParamType,
3250                                                          Arg, Converted);
3251  }
3252
3253  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3254    //   -- For a non-type template-parameter of type reference to
3255    //      object, no conversions apply. The type referred to by the
3256    //      reference may be more cv-qualified than the (otherwise
3257    //      identical) type of the template-argument. The
3258    //      template-parameter is bound directly to the
3259    //      template-argument, which must be an lvalue.
3260    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3261           "Only object references allowed here");
3262
3263    if (Arg->getType() == Context.OverloadTy) {
3264      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3265                                                 ParamRefType->getPointeeType(),
3266                                                                true,
3267                                                                FoundResult)) {
3268        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3269          return true;
3270
3271        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3272        ArgType = Arg->getType();
3273      } else
3274        return true;
3275    }
3276
3277    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3278                                                          ParamType,
3279                                                          Arg, Converted);
3280  }
3281
3282  //     -- For a non-type template-parameter of type pointer to data
3283  //        member, qualification conversions (4.4) are applied.
3284  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3285
3286  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3287    // Types match exactly: nothing more to do here.
3288  } else if (IsQualificationConversion(ArgType, ParamType)) {
3289    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3290  } else {
3291    // We can't perform this conversion.
3292    Diag(Arg->getSourceRange().getBegin(),
3293         diag::err_template_arg_not_convertible)
3294      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3295    Diag(Param->getLocation(), diag::note_template_param_here);
3296    return true;
3297  }
3298
3299  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3300}
3301
3302/// \brief Check a template argument against its corresponding
3303/// template template parameter.
3304///
3305/// This routine implements the semantics of C++ [temp.arg.template].
3306/// It returns true if an error occurred, and false otherwise.
3307bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3308                                 const TemplateArgumentLoc &Arg) {
3309  TemplateName Name = Arg.getArgument().getAsTemplate();
3310  TemplateDecl *Template = Name.getAsTemplateDecl();
3311  if (!Template) {
3312    // Any dependent template name is fine.
3313    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3314    return false;
3315  }
3316
3317  // C++ [temp.arg.template]p1:
3318  //   A template-argument for a template template-parameter shall be
3319  //   the name of a class template, expressed as id-expression. Only
3320  //   primary class templates are considered when matching the
3321  //   template template argument with the corresponding parameter;
3322  //   partial specializations are not considered even if their
3323  //   parameter lists match that of the template template parameter.
3324  //
3325  // Note that we also allow template template parameters here, which
3326  // will happen when we are dealing with, e.g., class template
3327  // partial specializations.
3328  if (!isa<ClassTemplateDecl>(Template) &&
3329      !isa<TemplateTemplateParmDecl>(Template)) {
3330    assert(isa<FunctionTemplateDecl>(Template) &&
3331           "Only function templates are possible here");
3332    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3333    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3334      << Template;
3335  }
3336
3337  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3338                                         Param->getTemplateParameters(),
3339                                         true,
3340                                         TPL_TemplateTemplateArgumentMatch,
3341                                         Arg.getLocation());
3342}
3343
3344/// \brief Given a non-type template argument that refers to a
3345/// declaration and the type of its corresponding non-type template
3346/// parameter, produce an expression that properly refers to that
3347/// declaration.
3348ExprResult
3349Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3350                                              QualType ParamType,
3351                                              SourceLocation Loc) {
3352  assert(Arg.getKind() == TemplateArgument::Declaration &&
3353         "Only declaration template arguments permitted here");
3354  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3355
3356  if (VD->getDeclContext()->isRecord() &&
3357      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3358    // If the value is a class member, we might have a pointer-to-member.
3359    // Determine whether the non-type template template parameter is of
3360    // pointer-to-member type. If so, we need to build an appropriate
3361    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3362    // would refer to the member itself.
3363    if (ParamType->isMemberPointerType()) {
3364      QualType ClassType
3365        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3366      NestedNameSpecifier *Qualifier
3367        = NestedNameSpecifier::Create(Context, 0, false,
3368                                      ClassType.getTypePtr());
3369      CXXScopeSpec SS;
3370      SS.setScopeRep(Qualifier);
3371
3372      // The actual value-ness of this is unimportant, but for
3373      // internal consistency's sake, references to instance methods
3374      // are r-values.
3375      ExprValueKind VK = VK_LValue;
3376      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3377        VK = VK_RValue;
3378
3379      ExprResult RefExpr = BuildDeclRefExpr(VD,
3380                                            VD->getType().getNonReferenceType(),
3381                                            VK,
3382                                            Loc,
3383                                            &SS);
3384      if (RefExpr.isInvalid())
3385        return ExprError();
3386
3387      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3388
3389      // We might need to perform a trailing qualification conversion, since
3390      // the element type on the parameter could be more qualified than the
3391      // element type in the expression we constructed.
3392      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3393                                    ParamType.getUnqualifiedType())) {
3394        Expr *RefE = RefExpr.takeAs<Expr>();
3395        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3396        RefExpr = Owned(RefE);
3397      }
3398
3399      assert(!RefExpr.isInvalid() &&
3400             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3401                                 ParamType.getUnqualifiedType()));
3402      return move(RefExpr);
3403    }
3404  }
3405
3406  QualType T = VD->getType().getNonReferenceType();
3407  if (ParamType->isPointerType()) {
3408    // When the non-type template parameter is a pointer, take the
3409    // address of the declaration.
3410    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3411    if (RefExpr.isInvalid())
3412      return ExprError();
3413
3414    if (T->isFunctionType() || T->isArrayType()) {
3415      // Decay functions and arrays.
3416      Expr *RefE = (Expr *)RefExpr.get();
3417      DefaultFunctionArrayConversion(RefE);
3418      if (RefE != RefExpr.get()) {
3419        RefExpr.release();
3420        RefExpr = Owned(RefE);
3421      }
3422
3423      return move(RefExpr);
3424    }
3425
3426    // Take the address of everything else
3427    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3428  }
3429
3430  ExprValueKind VK = VK_RValue;
3431
3432  // If the non-type template parameter has reference type, qualify the
3433  // resulting declaration reference with the extra qualifiers on the
3434  // type that the reference refers to.
3435  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3436    VK = VK_LValue;
3437    T = Context.getQualifiedType(T,
3438                              TargetRef->getPointeeType().getQualifiers());
3439  }
3440
3441  return BuildDeclRefExpr(VD, T, VK, Loc);
3442}
3443
3444/// \brief Construct a new expression that refers to the given
3445/// integral template argument with the given source-location
3446/// information.
3447///
3448/// This routine takes care of the mapping from an integral template
3449/// argument (which may have any integral type) to the appropriate
3450/// literal value.
3451ExprResult
3452Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3453                                                  SourceLocation Loc) {
3454  assert(Arg.getKind() == TemplateArgument::Integral &&
3455         "Operation is only value for integral template arguments");
3456  QualType T = Arg.getIntegralType();
3457  if (T->isCharType() || T->isWideCharType())
3458    return Owned(new (Context) CharacterLiteral(
3459                                             Arg.getAsIntegral()->getZExtValue(),
3460                                             T->isWideCharType(),
3461                                             T,
3462                                             Loc));
3463  if (T->isBooleanType())
3464    return Owned(new (Context) CXXBoolLiteralExpr(
3465                                            Arg.getAsIntegral()->getBoolValue(),
3466                                            T,
3467                                            Loc));
3468
3469  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3470}
3471
3472
3473/// \brief Determine whether the given template parameter lists are
3474/// equivalent.
3475///
3476/// \param New  The new template parameter list, typically written in the
3477/// source code as part of a new template declaration.
3478///
3479/// \param Old  The old template parameter list, typically found via
3480/// name lookup of the template declared with this template parameter
3481/// list.
3482///
3483/// \param Complain  If true, this routine will produce a diagnostic if
3484/// the template parameter lists are not equivalent.
3485///
3486/// \param Kind describes how we are to match the template parameter lists.
3487///
3488/// \param TemplateArgLoc If this source location is valid, then we
3489/// are actually checking the template parameter list of a template
3490/// argument (New) against the template parameter list of its
3491/// corresponding template template parameter (Old). We produce
3492/// slightly different diagnostics in this scenario.
3493///
3494/// \returns True if the template parameter lists are equal, false
3495/// otherwise.
3496bool
3497Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3498                                     TemplateParameterList *Old,
3499                                     bool Complain,
3500                                     TemplateParameterListEqualKind Kind,
3501                                     SourceLocation TemplateArgLoc) {
3502  if (Old->size() != New->size()) {
3503    if (Complain) {
3504      unsigned NextDiag = diag::err_template_param_list_different_arity;
3505      if (TemplateArgLoc.isValid()) {
3506        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3507        NextDiag = diag::note_template_param_list_different_arity;
3508      }
3509      Diag(New->getTemplateLoc(), NextDiag)
3510          << (New->size() > Old->size())
3511          << (Kind != TPL_TemplateMatch)
3512          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3513      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3514        << (Kind != TPL_TemplateMatch)
3515        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3516    }
3517
3518    return false;
3519  }
3520
3521  for (TemplateParameterList::iterator OldParm = Old->begin(),
3522         OldParmEnd = Old->end(), NewParm = New->begin();
3523       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3524    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3525      if (Complain) {
3526        unsigned NextDiag = diag::err_template_param_different_kind;
3527        if (TemplateArgLoc.isValid()) {
3528          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3529          NextDiag = diag::note_template_param_different_kind;
3530        }
3531        Diag((*NewParm)->getLocation(), NextDiag)
3532          << (Kind != TPL_TemplateMatch);
3533        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3534          << (Kind != TPL_TemplateMatch);
3535      }
3536      return false;
3537    }
3538
3539    if (TemplateTypeParmDecl *OldTTP
3540                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3541      // Template type parameters are equivalent if either both are template
3542      // type parameter packs or neither are (since we know we're at the same
3543      // index).
3544      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3545      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3546        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3547        // allow one to match a template parameter pack in the template
3548        // parameter list of a template template parameter to one or more
3549        // template parameters in the template parameter list of the
3550        // corresponding template template argument.
3551        if (Complain) {
3552          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3553          if (TemplateArgLoc.isValid()) {
3554            Diag(TemplateArgLoc,
3555                 diag::err_template_arg_template_params_mismatch);
3556            NextDiag = diag::note_template_parameter_pack_non_pack;
3557          }
3558          Diag(NewTTP->getLocation(), NextDiag)
3559            << 0 << NewTTP->isParameterPack();
3560          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3561            << 0 << OldTTP->isParameterPack();
3562        }
3563        return false;
3564      }
3565    } else if (NonTypeTemplateParmDecl *OldNTTP
3566                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3567      // The types of non-type template parameters must agree.
3568      NonTypeTemplateParmDecl *NewNTTP
3569        = cast<NonTypeTemplateParmDecl>(*NewParm);
3570
3571      // If we are matching a template template argument to a template
3572      // template parameter and one of the non-type template parameter types
3573      // is dependent, then we must wait until template instantiation time
3574      // to actually compare the arguments.
3575      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3576          (OldNTTP->getType()->isDependentType() ||
3577           NewNTTP->getType()->isDependentType()))
3578        continue;
3579
3580      if (Context.getCanonicalType(OldNTTP->getType()) !=
3581            Context.getCanonicalType(NewNTTP->getType())) {
3582        if (Complain) {
3583          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3584          if (TemplateArgLoc.isValid()) {
3585            Diag(TemplateArgLoc,
3586                 diag::err_template_arg_template_params_mismatch);
3587            NextDiag = diag::note_template_nontype_parm_different_type;
3588          }
3589          Diag(NewNTTP->getLocation(), NextDiag)
3590            << NewNTTP->getType()
3591            << (Kind != TPL_TemplateMatch);
3592          Diag(OldNTTP->getLocation(),
3593               diag::note_template_nontype_parm_prev_declaration)
3594            << OldNTTP->getType();
3595        }
3596        return false;
3597      }
3598    } else {
3599      // The template parameter lists of template template
3600      // parameters must agree.
3601      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3602             "Only template template parameters handled here");
3603      TemplateTemplateParmDecl *OldTTP
3604        = cast<TemplateTemplateParmDecl>(*OldParm);
3605      TemplateTemplateParmDecl *NewTTP
3606        = cast<TemplateTemplateParmDecl>(*NewParm);
3607      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3608                                          OldTTP->getTemplateParameters(),
3609                                          Complain,
3610              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3611                                          TemplateArgLoc))
3612        return false;
3613    }
3614  }
3615
3616  return true;
3617}
3618
3619/// \brief Check whether a template can be declared within this scope.
3620///
3621/// If the template declaration is valid in this scope, returns
3622/// false. Otherwise, issues a diagnostic and returns true.
3623bool
3624Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3625  // Find the nearest enclosing declaration scope.
3626  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3627         (S->getFlags() & Scope::TemplateParamScope) != 0)
3628    S = S->getParent();
3629
3630  // C++ [temp]p2:
3631  //   A template-declaration can appear only as a namespace scope or
3632  //   class scope declaration.
3633  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3634  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3635      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3636    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3637             << TemplateParams->getSourceRange();
3638
3639  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3640    Ctx = Ctx->getParent();
3641
3642  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3643    return false;
3644
3645  return Diag(TemplateParams->getTemplateLoc(),
3646              diag::err_template_outside_namespace_or_class_scope)
3647    << TemplateParams->getSourceRange();
3648}
3649
3650/// \brief Determine what kind of template specialization the given declaration
3651/// is.
3652static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3653  if (!D)
3654    return TSK_Undeclared;
3655
3656  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3657    return Record->getTemplateSpecializationKind();
3658  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3659    return Function->getTemplateSpecializationKind();
3660  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3661    return Var->getTemplateSpecializationKind();
3662
3663  return TSK_Undeclared;
3664}
3665
3666/// \brief Check whether a specialization is well-formed in the current
3667/// context.
3668///
3669/// This routine determines whether a template specialization can be declared
3670/// in the current context (C++ [temp.expl.spec]p2).
3671///
3672/// \param S the semantic analysis object for which this check is being
3673/// performed.
3674///
3675/// \param Specialized the entity being specialized or instantiated, which
3676/// may be a kind of template (class template, function template, etc.) or
3677/// a member of a class template (member function, static data member,
3678/// member class).
3679///
3680/// \param PrevDecl the previous declaration of this entity, if any.
3681///
3682/// \param Loc the location of the explicit specialization or instantiation of
3683/// this entity.
3684///
3685/// \param IsPartialSpecialization whether this is a partial specialization of
3686/// a class template.
3687///
3688/// \returns true if there was an error that we cannot recover from, false
3689/// otherwise.
3690static bool CheckTemplateSpecializationScope(Sema &S,
3691                                             NamedDecl *Specialized,
3692                                             NamedDecl *PrevDecl,
3693                                             SourceLocation Loc,
3694                                             bool IsPartialSpecialization) {
3695  // Keep these "kind" numbers in sync with the %select statements in the
3696  // various diagnostics emitted by this routine.
3697  int EntityKind = 0;
3698  bool isTemplateSpecialization = false;
3699  if (isa<ClassTemplateDecl>(Specialized)) {
3700    EntityKind = IsPartialSpecialization? 1 : 0;
3701    isTemplateSpecialization = true;
3702  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3703    EntityKind = 2;
3704    isTemplateSpecialization = true;
3705  } else if (isa<CXXMethodDecl>(Specialized))
3706    EntityKind = 3;
3707  else if (isa<VarDecl>(Specialized))
3708    EntityKind = 4;
3709  else if (isa<RecordDecl>(Specialized))
3710    EntityKind = 5;
3711  else {
3712    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3713    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3714    return true;
3715  }
3716
3717  // C++ [temp.expl.spec]p2:
3718  //   An explicit specialization shall be declared in the namespace
3719  //   of which the template is a member, or, for member templates, in
3720  //   the namespace of which the enclosing class or enclosing class
3721  //   template is a member. An explicit specialization of a member
3722  //   function, member class or static data member of a class
3723  //   template shall be declared in the namespace of which the class
3724  //   template is a member. Such a declaration may also be a
3725  //   definition. If the declaration is not a definition, the
3726  //   specialization may be defined later in the name- space in which
3727  //   the explicit specialization was declared, or in a namespace
3728  //   that encloses the one in which the explicit specialization was
3729  //   declared.
3730  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3731    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3732      << Specialized;
3733    return true;
3734  }
3735
3736  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3737    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3738      << Specialized;
3739    return true;
3740  }
3741
3742  // C++ [temp.class.spec]p6:
3743  //   A class template partial specialization may be declared or redeclared
3744  //   in any namespace scope in which its definition may be defined (14.5.1
3745  //   and 14.5.2).
3746  bool ComplainedAboutScope = false;
3747  DeclContext *SpecializedContext
3748    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3749  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3750  if ((!PrevDecl ||
3751       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3752       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3753    // C++ [temp.exp.spec]p2:
3754    //   An explicit specialization shall be declared in the namespace of which
3755    //   the template is a member, or, for member templates, in the namespace
3756    //   of which the enclosing class or enclosing class template is a member.
3757    //   An explicit specialization of a member function, member class or
3758    //   static data member of a class template shall be declared in the
3759    //   namespace of which the class template is a member.
3760    //
3761    // C++0x [temp.expl.spec]p2:
3762    //   An explicit specialization shall be declared in a namespace enclosing
3763    //   the specialized template.
3764    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3765        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3766      bool IsCPlusPlus0xExtension
3767        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3768      if (isa<TranslationUnitDecl>(SpecializedContext))
3769        S.Diag(Loc, IsCPlusPlus0xExtension
3770                      ? diag::ext_template_spec_decl_out_of_scope_global
3771                      : diag::err_template_spec_decl_out_of_scope_global)
3772          << EntityKind << Specialized;
3773      else if (isa<NamespaceDecl>(SpecializedContext))
3774        S.Diag(Loc, IsCPlusPlus0xExtension
3775                      ? diag::ext_template_spec_decl_out_of_scope
3776                      : diag::err_template_spec_decl_out_of_scope)
3777          << EntityKind << Specialized
3778          << cast<NamedDecl>(SpecializedContext);
3779
3780      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3781      ComplainedAboutScope = true;
3782    }
3783  }
3784
3785  // Make sure that this redeclaration (or definition) occurs in an enclosing
3786  // namespace.
3787  // Note that HandleDeclarator() performs this check for explicit
3788  // specializations of function templates, static data members, and member
3789  // functions, so we skip the check here for those kinds of entities.
3790  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3791  // Should we refactor that check, so that it occurs later?
3792  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3793      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3794        isa<FunctionDecl>(Specialized))) {
3795    if (isa<TranslationUnitDecl>(SpecializedContext))
3796      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3797        << EntityKind << Specialized;
3798    else if (isa<NamespaceDecl>(SpecializedContext))
3799      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3800        << EntityKind << Specialized
3801        << cast<NamedDecl>(SpecializedContext);
3802
3803    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3804  }
3805
3806  // FIXME: check for specialization-after-instantiation errors and such.
3807
3808  return false;
3809}
3810
3811/// \brief Check the non-type template arguments of a class template
3812/// partial specialization according to C++ [temp.class.spec]p9.
3813///
3814/// \param TemplateParams the template parameters of the primary class
3815/// template.
3816///
3817/// \param TemplateArg the template arguments of the class template
3818/// partial specialization.
3819///
3820/// \param MirrorsPrimaryTemplate will be set true if the class
3821/// template partial specialization arguments are identical to the
3822/// implicit template arguments of the primary template. This is not
3823/// necessarily an error (C++0x), and it is left to the caller to diagnose
3824/// this condition when it is an error.
3825///
3826/// \returns true if there was an error, false otherwise.
3827bool Sema::CheckClassTemplatePartialSpecializationArgs(
3828                                        TemplateParameterList *TemplateParams,
3829                         llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs,
3830                                        bool &MirrorsPrimaryTemplate) {
3831  // FIXME: the interface to this function will have to change to
3832  // accommodate variadic templates.
3833  MirrorsPrimaryTemplate = true;
3834
3835  const TemplateArgument *ArgList = TemplateArgs.data();
3836
3837  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3838    // Determine whether the template argument list of the partial
3839    // specialization is identical to the implicit argument list of
3840    // the primary template. The caller may need to diagnostic this as
3841    // an error per C++ [temp.class.spec]p9b3.
3842    if (MirrorsPrimaryTemplate) {
3843      if (TemplateTypeParmDecl *TTP
3844            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3845        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3846              Context.getCanonicalType(ArgList[I].getAsType()))
3847          MirrorsPrimaryTemplate = false;
3848      } else if (TemplateTemplateParmDecl *TTP
3849                   = dyn_cast<TemplateTemplateParmDecl>(
3850                                                 TemplateParams->getParam(I))) {
3851        TemplateName Name = ArgList[I].getAsTemplate();
3852        TemplateTemplateParmDecl *ArgDecl
3853          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3854        if (!ArgDecl ||
3855            ArgDecl->getIndex() != TTP->getIndex() ||
3856            ArgDecl->getDepth() != TTP->getDepth())
3857          MirrorsPrimaryTemplate = false;
3858      }
3859    }
3860
3861    NonTypeTemplateParmDecl *Param
3862      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3863    if (!Param) {
3864      continue;
3865    }
3866
3867    Expr *ArgExpr = ArgList[I].getAsExpr();
3868    if (!ArgExpr) {
3869      MirrorsPrimaryTemplate = false;
3870      continue;
3871    }
3872
3873    // C++ [temp.class.spec]p8:
3874    //   A non-type argument is non-specialized if it is the name of a
3875    //   non-type parameter. All other non-type arguments are
3876    //   specialized.
3877    //
3878    // Below, we check the two conditions that only apply to
3879    // specialized non-type arguments, so skip any non-specialized
3880    // arguments.
3881    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3882      if (NonTypeTemplateParmDecl *NTTP
3883            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3884        if (MirrorsPrimaryTemplate &&
3885            (Param->getIndex() != NTTP->getIndex() ||
3886             Param->getDepth() != NTTP->getDepth()))
3887          MirrorsPrimaryTemplate = false;
3888
3889        continue;
3890      }
3891
3892    // C++ [temp.class.spec]p9:
3893    //   Within the argument list of a class template partial
3894    //   specialization, the following restrictions apply:
3895    //     -- A partially specialized non-type argument expression
3896    //        shall not involve a template parameter of the partial
3897    //        specialization except when the argument expression is a
3898    //        simple identifier.
3899    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3900      Diag(ArgExpr->getLocStart(),
3901           diag::err_dependent_non_type_arg_in_partial_spec)
3902        << ArgExpr->getSourceRange();
3903      return true;
3904    }
3905
3906    //     -- The type of a template parameter corresponding to a
3907    //        specialized non-type argument shall not be dependent on a
3908    //        parameter of the specialization.
3909    if (Param->getType()->isDependentType()) {
3910      Diag(ArgExpr->getLocStart(),
3911           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3912        << Param->getType()
3913        << ArgExpr->getSourceRange();
3914      Diag(Param->getLocation(), diag::note_template_param_here);
3915      return true;
3916    }
3917
3918    MirrorsPrimaryTemplate = false;
3919  }
3920
3921  return false;
3922}
3923
3924/// \brief Retrieve the previous declaration of the given declaration.
3925static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3926  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3927    return VD->getPreviousDeclaration();
3928  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3929    return FD->getPreviousDeclaration();
3930  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3931    return TD->getPreviousDeclaration();
3932  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3933    return TD->getPreviousDeclaration();
3934  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3935    return FTD->getPreviousDeclaration();
3936  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3937    return CTD->getPreviousDeclaration();
3938  return 0;
3939}
3940
3941DeclResult
3942Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3943                                       TagUseKind TUK,
3944                                       SourceLocation KWLoc,
3945                                       CXXScopeSpec &SS,
3946                                       TemplateTy TemplateD,
3947                                       SourceLocation TemplateNameLoc,
3948                                       SourceLocation LAngleLoc,
3949                                       ASTTemplateArgsPtr TemplateArgsIn,
3950                                       SourceLocation RAngleLoc,
3951                                       AttributeList *Attr,
3952                               MultiTemplateParamsArg TemplateParameterLists) {
3953  assert(TUK != TUK_Reference && "References are not specializations");
3954
3955  // Find the class template we're specializing
3956  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3957  ClassTemplateDecl *ClassTemplate
3958    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3959
3960  if (!ClassTemplate) {
3961    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3962      << (Name.getAsTemplateDecl() &&
3963          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3964    return true;
3965  }
3966
3967  bool isExplicitSpecialization = false;
3968  bool isPartialSpecialization = false;
3969
3970  // Check the validity of the template headers that introduce this
3971  // template.
3972  // FIXME: We probably shouldn't complain about these headers for
3973  // friend declarations.
3974  bool Invalid = false;
3975  TemplateParameterList *TemplateParams
3976    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3977                        (TemplateParameterList**)TemplateParameterLists.get(),
3978                                              TemplateParameterLists.size(),
3979                                              TUK == TUK_Friend,
3980                                              isExplicitSpecialization,
3981                                              Invalid);
3982  if (Invalid)
3983    return true;
3984
3985  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3986  if (TemplateParams)
3987    --NumMatchedTemplateParamLists;
3988
3989  if (TemplateParams && TemplateParams->size() > 0) {
3990    isPartialSpecialization = true;
3991
3992    // C++ [temp.class.spec]p10:
3993    //   The template parameter list of a specialization shall not
3994    //   contain default template argument values.
3995    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3996      Decl *Param = TemplateParams->getParam(I);
3997      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3998        if (TTP->hasDefaultArgument()) {
3999          Diag(TTP->getDefaultArgumentLoc(),
4000               diag::err_default_arg_in_partial_spec);
4001          TTP->removeDefaultArgument();
4002        }
4003      } else if (NonTypeTemplateParmDecl *NTTP
4004                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4005        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4006          Diag(NTTP->getDefaultArgumentLoc(),
4007               diag::err_default_arg_in_partial_spec)
4008            << DefArg->getSourceRange();
4009          NTTP->removeDefaultArgument();
4010        }
4011      } else {
4012        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4013        if (TTP->hasDefaultArgument()) {
4014          Diag(TTP->getDefaultArgument().getLocation(),
4015               diag::err_default_arg_in_partial_spec)
4016            << TTP->getDefaultArgument().getSourceRange();
4017          TTP->removeDefaultArgument();
4018        }
4019      }
4020    }
4021  } else if (TemplateParams) {
4022    if (TUK == TUK_Friend)
4023      Diag(KWLoc, diag::err_template_spec_friend)
4024        << FixItHint::CreateRemoval(
4025                                SourceRange(TemplateParams->getTemplateLoc(),
4026                                            TemplateParams->getRAngleLoc()))
4027        << SourceRange(LAngleLoc, RAngleLoc);
4028    else
4029      isExplicitSpecialization = true;
4030  } else if (TUK != TUK_Friend) {
4031    Diag(KWLoc, diag::err_template_spec_needs_header)
4032      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4033    isExplicitSpecialization = true;
4034  }
4035
4036  // Check that the specialization uses the same tag kind as the
4037  // original template.
4038  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4039  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4040  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4041                                    Kind, KWLoc,
4042                                    *ClassTemplate->getIdentifier())) {
4043    Diag(KWLoc, diag::err_use_with_wrong_tag)
4044      << ClassTemplate
4045      << FixItHint::CreateReplacement(KWLoc,
4046                            ClassTemplate->getTemplatedDecl()->getKindName());
4047    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4048         diag::note_previous_use);
4049    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4050  }
4051
4052  // Translate the parser's template argument list in our AST format.
4053  TemplateArgumentListInfo TemplateArgs;
4054  TemplateArgs.setLAngleLoc(LAngleLoc);
4055  TemplateArgs.setRAngleLoc(RAngleLoc);
4056  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4057
4058  // Check that the template argument list is well-formed for this
4059  // template.
4060  llvm::SmallVector<TemplateArgument, 4> Converted;
4061  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4062                                TemplateArgs, false, Converted))
4063    return true;
4064
4065  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4066         "Converted template argument list is too short!");
4067
4068  // Find the class template (partial) specialization declaration that
4069  // corresponds to these arguments.
4070  if (isPartialSpecialization) {
4071    bool MirrorsPrimaryTemplate;
4072    if (CheckClassTemplatePartialSpecializationArgs(
4073                                         ClassTemplate->getTemplateParameters(),
4074                                         Converted, MirrorsPrimaryTemplate))
4075      return true;
4076
4077    if (MirrorsPrimaryTemplate) {
4078      // C++ [temp.class.spec]p9b3:
4079      //
4080      //   -- The argument list of the specialization shall not be identical
4081      //      to the implicit argument list of the primary template.
4082      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4083        << (TUK == TUK_Definition)
4084        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4085      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4086                                ClassTemplate->getIdentifier(),
4087                                TemplateNameLoc,
4088                                Attr,
4089                                TemplateParams,
4090                                AS_none);
4091    }
4092
4093    // FIXME: Diagnose friend partial specializations
4094
4095    if (!Name.isDependent() &&
4096        !TemplateSpecializationType::anyDependentTemplateArguments(
4097                                             TemplateArgs.getArgumentArray(),
4098                                                         TemplateArgs.size())) {
4099      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4100        << ClassTemplate->getDeclName();
4101      isPartialSpecialization = false;
4102    }
4103  }
4104
4105  void *InsertPos = 0;
4106  ClassTemplateSpecializationDecl *PrevDecl = 0;
4107
4108  if (isPartialSpecialization)
4109    // FIXME: Template parameter list matters, too
4110    PrevDecl
4111      = ClassTemplate->findPartialSpecialization(Converted.data(),
4112                                                 Converted.size(),
4113                                                 InsertPos);
4114  else
4115    PrevDecl
4116      = ClassTemplate->findSpecialization(Converted.data(),
4117                                          Converted.size(), InsertPos);
4118
4119  ClassTemplateSpecializationDecl *Specialization = 0;
4120
4121  // Check whether we can declare a class template specialization in
4122  // the current scope.
4123  if (TUK != TUK_Friend &&
4124      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4125                                       TemplateNameLoc,
4126                                       isPartialSpecialization))
4127    return true;
4128
4129  // The canonical type
4130  QualType CanonType;
4131  if (PrevDecl &&
4132      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4133               TUK == TUK_Friend)) {
4134    // Since the only prior class template specialization with these
4135    // arguments was referenced but not declared, or we're only
4136    // referencing this specialization as a friend, reuse that
4137    // declaration node as our own, updating its source location to
4138    // reflect our new declaration.
4139    Specialization = PrevDecl;
4140    Specialization->setLocation(TemplateNameLoc);
4141    PrevDecl = 0;
4142    CanonType = Context.getTypeDeclType(Specialization);
4143  } else if (isPartialSpecialization) {
4144    // Build the canonical type that describes the converted template
4145    // arguments of the class template partial specialization.
4146    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4147    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4148                                                  Converted.data(),
4149                                                  Converted.size());
4150
4151    // Create a new class template partial specialization declaration node.
4152    ClassTemplatePartialSpecializationDecl *PrevPartial
4153      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4154    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4155                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4156    ClassTemplatePartialSpecializationDecl *Partial
4157      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4158                                             ClassTemplate->getDeclContext(),
4159                                                       TemplateNameLoc,
4160                                                       TemplateParams,
4161                                                       ClassTemplate,
4162                                                       Converted.data(),
4163                                                       Converted.size(),
4164                                                       TemplateArgs,
4165                                                       CanonType,
4166                                                       PrevPartial,
4167                                                       SequenceNumber);
4168    SetNestedNameSpecifier(Partial, SS);
4169    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4170      Partial->setTemplateParameterListsInfo(Context,
4171                                             NumMatchedTemplateParamLists,
4172                    (TemplateParameterList**) TemplateParameterLists.release());
4173    }
4174
4175    if (!PrevPartial)
4176      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4177    Specialization = Partial;
4178
4179    // If we are providing an explicit specialization of a member class
4180    // template specialization, make a note of that.
4181    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4182      PrevPartial->setMemberSpecialization();
4183
4184    // Check that all of the template parameters of the class template
4185    // partial specialization are deducible from the template
4186    // arguments. If not, this class template partial specialization
4187    // will never be used.
4188    llvm::SmallVector<bool, 8> DeducibleParams;
4189    DeducibleParams.resize(TemplateParams->size());
4190    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4191                               TemplateParams->getDepth(),
4192                               DeducibleParams);
4193    unsigned NumNonDeducible = 0;
4194    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4195      if (!DeducibleParams[I])
4196        ++NumNonDeducible;
4197
4198    if (NumNonDeducible) {
4199      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4200        << (NumNonDeducible > 1)
4201        << SourceRange(TemplateNameLoc, RAngleLoc);
4202      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4203        if (!DeducibleParams[I]) {
4204          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4205          if (Param->getDeclName())
4206            Diag(Param->getLocation(),
4207                 diag::note_partial_spec_unused_parameter)
4208              << Param->getDeclName();
4209          else
4210            Diag(Param->getLocation(),
4211                 diag::note_partial_spec_unused_parameter)
4212              << "<anonymous>";
4213        }
4214      }
4215    }
4216  } else {
4217    // Create a new class template specialization declaration node for
4218    // this explicit specialization or friend declaration.
4219    Specialization
4220      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4221                                             ClassTemplate->getDeclContext(),
4222                                                TemplateNameLoc,
4223                                                ClassTemplate,
4224                                                Converted.data(),
4225                                                Converted.size(),
4226                                                PrevDecl);
4227    SetNestedNameSpecifier(Specialization, SS);
4228    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4229      Specialization->setTemplateParameterListsInfo(Context,
4230                                                  NumMatchedTemplateParamLists,
4231                    (TemplateParameterList**) TemplateParameterLists.release());
4232    }
4233
4234    if (!PrevDecl)
4235      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4236
4237    CanonType = Context.getTypeDeclType(Specialization);
4238  }
4239
4240  // C++ [temp.expl.spec]p6:
4241  //   If a template, a member template or the member of a class template is
4242  //   explicitly specialized then that specialization shall be declared
4243  //   before the first use of that specialization that would cause an implicit
4244  //   instantiation to take place, in every translation unit in which such a
4245  //   use occurs; no diagnostic is required.
4246  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4247    bool Okay = false;
4248    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4249      // Is there any previous explicit specialization declaration?
4250      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4251        Okay = true;
4252        break;
4253      }
4254    }
4255
4256    if (!Okay) {
4257      SourceRange Range(TemplateNameLoc, RAngleLoc);
4258      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4259        << Context.getTypeDeclType(Specialization) << Range;
4260
4261      Diag(PrevDecl->getPointOfInstantiation(),
4262           diag::note_instantiation_required_here)
4263        << (PrevDecl->getTemplateSpecializationKind()
4264                                                != TSK_ImplicitInstantiation);
4265      return true;
4266    }
4267  }
4268
4269  // If this is not a friend, note that this is an explicit specialization.
4270  if (TUK != TUK_Friend)
4271    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4272
4273  // Check that this isn't a redefinition of this specialization.
4274  if (TUK == TUK_Definition) {
4275    if (RecordDecl *Def = Specialization->getDefinition()) {
4276      SourceRange Range(TemplateNameLoc, RAngleLoc);
4277      Diag(TemplateNameLoc, diag::err_redefinition)
4278        << Context.getTypeDeclType(Specialization) << Range;
4279      Diag(Def->getLocation(), diag::note_previous_definition);
4280      Specialization->setInvalidDecl();
4281      return true;
4282    }
4283  }
4284
4285  // Build the fully-sugared type for this class template
4286  // specialization as the user wrote in the specialization
4287  // itself. This means that we'll pretty-print the type retrieved
4288  // from the specialization's declaration the way that the user
4289  // actually wrote the specialization, rather than formatting the
4290  // name based on the "canonical" representation used to store the
4291  // template arguments in the specialization.
4292  TypeSourceInfo *WrittenTy
4293    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4294                                                TemplateArgs, CanonType);
4295  if (TUK != TUK_Friend) {
4296    Specialization->setTypeAsWritten(WrittenTy);
4297    if (TemplateParams)
4298      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4299  }
4300  TemplateArgsIn.release();
4301
4302  // C++ [temp.expl.spec]p9:
4303  //   A template explicit specialization is in the scope of the
4304  //   namespace in which the template was defined.
4305  //
4306  // We actually implement this paragraph where we set the semantic
4307  // context (in the creation of the ClassTemplateSpecializationDecl),
4308  // but we also maintain the lexical context where the actual
4309  // definition occurs.
4310  Specialization->setLexicalDeclContext(CurContext);
4311
4312  // We may be starting the definition of this specialization.
4313  if (TUK == TUK_Definition)
4314    Specialization->startDefinition();
4315
4316  if (TUK == TUK_Friend) {
4317    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4318                                            TemplateNameLoc,
4319                                            WrittenTy,
4320                                            /*FIXME:*/KWLoc);
4321    Friend->setAccess(AS_public);
4322    CurContext->addDecl(Friend);
4323  } else {
4324    // Add the specialization into its lexical context, so that it can
4325    // be seen when iterating through the list of declarations in that
4326    // context. However, specializations are not found by name lookup.
4327    CurContext->addDecl(Specialization);
4328  }
4329  return Specialization;
4330}
4331
4332Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4333                              MultiTemplateParamsArg TemplateParameterLists,
4334                                    Declarator &D) {
4335  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4336}
4337
4338Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4339                               MultiTemplateParamsArg TemplateParameterLists,
4340                                            Declarator &D) {
4341  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4342  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4343
4344  if (FTI.hasPrototype) {
4345    // FIXME: Diagnose arguments without names in C.
4346  }
4347
4348  Scope *ParentScope = FnBodyScope->getParent();
4349
4350  Decl *DP = HandleDeclarator(ParentScope, D,
4351                              move(TemplateParameterLists),
4352                              /*IsFunctionDefinition=*/true);
4353  if (FunctionTemplateDecl *FunctionTemplate
4354        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4355    return ActOnStartOfFunctionDef(FnBodyScope,
4356                                   FunctionTemplate->getTemplatedDecl());
4357  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4358    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4359  return 0;
4360}
4361
4362/// \brief Strips various properties off an implicit instantiation
4363/// that has just been explicitly specialized.
4364static void StripImplicitInstantiation(NamedDecl *D) {
4365  D->dropAttrs();
4366
4367  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4368    FD->setInlineSpecified(false);
4369  }
4370}
4371
4372/// \brief Diagnose cases where we have an explicit template specialization
4373/// before/after an explicit template instantiation, producing diagnostics
4374/// for those cases where they are required and determining whether the
4375/// new specialization/instantiation will have any effect.
4376///
4377/// \param NewLoc the location of the new explicit specialization or
4378/// instantiation.
4379///
4380/// \param NewTSK the kind of the new explicit specialization or instantiation.
4381///
4382/// \param PrevDecl the previous declaration of the entity.
4383///
4384/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4385///
4386/// \param PrevPointOfInstantiation if valid, indicates where the previus
4387/// declaration was instantiated (either implicitly or explicitly).
4388///
4389/// \param HasNoEffect will be set to true to indicate that the new
4390/// specialization or instantiation has no effect and should be ignored.
4391///
4392/// \returns true if there was an error that should prevent the introduction of
4393/// the new declaration into the AST, false otherwise.
4394bool
4395Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4396                                             TemplateSpecializationKind NewTSK,
4397                                             NamedDecl *PrevDecl,
4398                                             TemplateSpecializationKind PrevTSK,
4399                                        SourceLocation PrevPointOfInstantiation,
4400                                             bool &HasNoEffect) {
4401  HasNoEffect = false;
4402
4403  switch (NewTSK) {
4404  case TSK_Undeclared:
4405  case TSK_ImplicitInstantiation:
4406    assert(false && "Don't check implicit instantiations here");
4407    return false;
4408
4409  case TSK_ExplicitSpecialization:
4410    switch (PrevTSK) {
4411    case TSK_Undeclared:
4412    case TSK_ExplicitSpecialization:
4413      // Okay, we're just specializing something that is either already
4414      // explicitly specialized or has merely been mentioned without any
4415      // instantiation.
4416      return false;
4417
4418    case TSK_ImplicitInstantiation:
4419      if (PrevPointOfInstantiation.isInvalid()) {
4420        // The declaration itself has not actually been instantiated, so it is
4421        // still okay to specialize it.
4422        StripImplicitInstantiation(PrevDecl);
4423        return false;
4424      }
4425      // Fall through
4426
4427    case TSK_ExplicitInstantiationDeclaration:
4428    case TSK_ExplicitInstantiationDefinition:
4429      assert((PrevTSK == TSK_ImplicitInstantiation ||
4430              PrevPointOfInstantiation.isValid()) &&
4431             "Explicit instantiation without point of instantiation?");
4432
4433      // C++ [temp.expl.spec]p6:
4434      //   If a template, a member template or the member of a class template
4435      //   is explicitly specialized then that specialization shall be declared
4436      //   before the first use of that specialization that would cause an
4437      //   implicit instantiation to take place, in every translation unit in
4438      //   which such a use occurs; no diagnostic is required.
4439      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4440        // Is there any previous explicit specialization declaration?
4441        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4442          return false;
4443      }
4444
4445      Diag(NewLoc, diag::err_specialization_after_instantiation)
4446        << PrevDecl;
4447      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4448        << (PrevTSK != TSK_ImplicitInstantiation);
4449
4450      return true;
4451    }
4452    break;
4453
4454  case TSK_ExplicitInstantiationDeclaration:
4455    switch (PrevTSK) {
4456    case TSK_ExplicitInstantiationDeclaration:
4457      // This explicit instantiation declaration is redundant (that's okay).
4458      HasNoEffect = true;
4459      return false;
4460
4461    case TSK_Undeclared:
4462    case TSK_ImplicitInstantiation:
4463      // We're explicitly instantiating something that may have already been
4464      // implicitly instantiated; that's fine.
4465      return false;
4466
4467    case TSK_ExplicitSpecialization:
4468      // C++0x [temp.explicit]p4:
4469      //   For a given set of template parameters, if an explicit instantiation
4470      //   of a template appears after a declaration of an explicit
4471      //   specialization for that template, the explicit instantiation has no
4472      //   effect.
4473      HasNoEffect = true;
4474      return false;
4475
4476    case TSK_ExplicitInstantiationDefinition:
4477      // C++0x [temp.explicit]p10:
4478      //   If an entity is the subject of both an explicit instantiation
4479      //   declaration and an explicit instantiation definition in the same
4480      //   translation unit, the definition shall follow the declaration.
4481      Diag(NewLoc,
4482           diag::err_explicit_instantiation_declaration_after_definition);
4483      Diag(PrevPointOfInstantiation,
4484           diag::note_explicit_instantiation_definition_here);
4485      assert(PrevPointOfInstantiation.isValid() &&
4486             "Explicit instantiation without point of instantiation?");
4487      HasNoEffect = true;
4488      return false;
4489    }
4490    break;
4491
4492  case TSK_ExplicitInstantiationDefinition:
4493    switch (PrevTSK) {
4494    case TSK_Undeclared:
4495    case TSK_ImplicitInstantiation:
4496      // We're explicitly instantiating something that may have already been
4497      // implicitly instantiated; that's fine.
4498      return false;
4499
4500    case TSK_ExplicitSpecialization:
4501      // C++ DR 259, C++0x [temp.explicit]p4:
4502      //   For a given set of template parameters, if an explicit
4503      //   instantiation of a template appears after a declaration of
4504      //   an explicit specialization for that template, the explicit
4505      //   instantiation has no effect.
4506      //
4507      // In C++98/03 mode, we only give an extension warning here, because it
4508      // is not harmful to try to explicitly instantiate something that
4509      // has been explicitly specialized.
4510      if (!getLangOptions().CPlusPlus0x) {
4511        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4512          << PrevDecl;
4513        Diag(PrevDecl->getLocation(),
4514             diag::note_previous_template_specialization);
4515      }
4516      HasNoEffect = true;
4517      return false;
4518
4519    case TSK_ExplicitInstantiationDeclaration:
4520      // We're explicity instantiating a definition for something for which we
4521      // were previously asked to suppress instantiations. That's fine.
4522      return false;
4523
4524    case TSK_ExplicitInstantiationDefinition:
4525      // C++0x [temp.spec]p5:
4526      //   For a given template and a given set of template-arguments,
4527      //     - an explicit instantiation definition shall appear at most once
4528      //       in a program,
4529      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4530        << PrevDecl;
4531      Diag(PrevPointOfInstantiation,
4532           diag::note_previous_explicit_instantiation);
4533      HasNoEffect = true;
4534      return false;
4535    }
4536    break;
4537  }
4538
4539  assert(false && "Missing specialization/instantiation case?");
4540
4541  return false;
4542}
4543
4544/// \brief Perform semantic analysis for the given dependent function
4545/// template specialization.  The only possible way to get a dependent
4546/// function template specialization is with a friend declaration,
4547/// like so:
4548///
4549///   template <class T> void foo(T);
4550///   template <class T> class A {
4551///     friend void foo<>(T);
4552///   };
4553///
4554/// There really isn't any useful analysis we can do here, so we
4555/// just store the information.
4556bool
4557Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4558                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4559                                                   LookupResult &Previous) {
4560  // Remove anything from Previous that isn't a function template in
4561  // the correct context.
4562  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4563  LookupResult::Filter F = Previous.makeFilter();
4564  while (F.hasNext()) {
4565    NamedDecl *D = F.next()->getUnderlyingDecl();
4566    if (!isa<FunctionTemplateDecl>(D) ||
4567        !FDLookupContext->InEnclosingNamespaceSetOf(
4568                              D->getDeclContext()->getRedeclContext()))
4569      F.erase();
4570  }
4571  F.done();
4572
4573  // Should this be diagnosed here?
4574  if (Previous.empty()) return true;
4575
4576  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4577                                         ExplicitTemplateArgs);
4578  return false;
4579}
4580
4581/// \brief Perform semantic analysis for the given function template
4582/// specialization.
4583///
4584/// This routine performs all of the semantic analysis required for an
4585/// explicit function template specialization. On successful completion,
4586/// the function declaration \p FD will become a function template
4587/// specialization.
4588///
4589/// \param FD the function declaration, which will be updated to become a
4590/// function template specialization.
4591///
4592/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4593/// if any. Note that this may be valid info even when 0 arguments are
4594/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4595/// as it anyway contains info on the angle brackets locations.
4596///
4597/// \param PrevDecl the set of declarations that may be specialized by
4598/// this function specialization.
4599bool
4600Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4601                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4602                                          LookupResult &Previous) {
4603  // The set of function template specializations that could match this
4604  // explicit function template specialization.
4605  UnresolvedSet<8> Candidates;
4606
4607  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4608  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4609         I != E; ++I) {
4610    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4611    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4612      // Only consider templates found within the same semantic lookup scope as
4613      // FD.
4614      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4615                                Ovl->getDeclContext()->getRedeclContext()))
4616        continue;
4617
4618      // C++ [temp.expl.spec]p11:
4619      //   A trailing template-argument can be left unspecified in the
4620      //   template-id naming an explicit function template specialization
4621      //   provided it can be deduced from the function argument type.
4622      // Perform template argument deduction to determine whether we may be
4623      // specializing this template.
4624      // FIXME: It is somewhat wasteful to build
4625      TemplateDeductionInfo Info(Context, FD->getLocation());
4626      FunctionDecl *Specialization = 0;
4627      if (TemplateDeductionResult TDK
4628            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4629                                      FD->getType(),
4630                                      Specialization,
4631                                      Info)) {
4632        // FIXME: Template argument deduction failed; record why it failed, so
4633        // that we can provide nifty diagnostics.
4634        (void)TDK;
4635        continue;
4636      }
4637
4638      // Record this candidate.
4639      Candidates.addDecl(Specialization, I.getAccess());
4640    }
4641  }
4642
4643  // Find the most specialized function template.
4644  UnresolvedSetIterator Result
4645    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4646                         TPOC_Other, FD->getLocation(),
4647                  PDiag(diag::err_function_template_spec_no_match)
4648                    << FD->getDeclName(),
4649                  PDiag(diag::err_function_template_spec_ambiguous)
4650                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4651                  PDiag(diag::note_function_template_spec_matched));
4652  if (Result == Candidates.end())
4653    return true;
4654
4655  // Ignore access information;  it doesn't figure into redeclaration checking.
4656  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4657  Specialization->setLocation(FD->getLocation());
4658
4659  // FIXME: Check if the prior specialization has a point of instantiation.
4660  // If so, we have run afoul of .
4661
4662  // If this is a friend declaration, then we're not really declaring
4663  // an explicit specialization.
4664  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4665
4666  // Check the scope of this explicit specialization.
4667  if (!isFriend &&
4668      CheckTemplateSpecializationScope(*this,
4669                                       Specialization->getPrimaryTemplate(),
4670                                       Specialization, FD->getLocation(),
4671                                       false))
4672    return true;
4673
4674  // C++ [temp.expl.spec]p6:
4675  //   If a template, a member template or the member of a class template is
4676  //   explicitly specialized then that specialization shall be declared
4677  //   before the first use of that specialization that would cause an implicit
4678  //   instantiation to take place, in every translation unit in which such a
4679  //   use occurs; no diagnostic is required.
4680  FunctionTemplateSpecializationInfo *SpecInfo
4681    = Specialization->getTemplateSpecializationInfo();
4682  assert(SpecInfo && "Function template specialization info missing?");
4683
4684  bool HasNoEffect = false;
4685  if (!isFriend &&
4686      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4687                                             TSK_ExplicitSpecialization,
4688                                             Specialization,
4689                                   SpecInfo->getTemplateSpecializationKind(),
4690                                         SpecInfo->getPointOfInstantiation(),
4691                                             HasNoEffect))
4692    return true;
4693
4694  // Mark the prior declaration as an explicit specialization, so that later
4695  // clients know that this is an explicit specialization.
4696  if (!isFriend) {
4697    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4698    MarkUnusedFileScopedDecl(Specialization);
4699  }
4700
4701  // Turn the given function declaration into a function template
4702  // specialization, with the template arguments from the previous
4703  // specialization.
4704  // Take copies of (semantic and syntactic) template argument lists.
4705  const TemplateArgumentList* TemplArgs = new (Context)
4706    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4707  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4708    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4709  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4710                                        TemplArgs, /*InsertPos=*/0,
4711                                    SpecInfo->getTemplateSpecializationKind(),
4712                                        TemplArgsAsWritten);
4713
4714  // The "previous declaration" for this function template specialization is
4715  // the prior function template specialization.
4716  Previous.clear();
4717  Previous.addDecl(Specialization);
4718  return false;
4719}
4720
4721/// \brief Perform semantic analysis for the given non-template member
4722/// specialization.
4723///
4724/// This routine performs all of the semantic analysis required for an
4725/// explicit member function specialization. On successful completion,
4726/// the function declaration \p FD will become a member function
4727/// specialization.
4728///
4729/// \param Member the member declaration, which will be updated to become a
4730/// specialization.
4731///
4732/// \param Previous the set of declarations, one of which may be specialized
4733/// by this function specialization;  the set will be modified to contain the
4734/// redeclared member.
4735bool
4736Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4737  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4738
4739  // Try to find the member we are instantiating.
4740  NamedDecl *Instantiation = 0;
4741  NamedDecl *InstantiatedFrom = 0;
4742  MemberSpecializationInfo *MSInfo = 0;
4743
4744  if (Previous.empty()) {
4745    // Nowhere to look anyway.
4746  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4747    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4748           I != E; ++I) {
4749      NamedDecl *D = (*I)->getUnderlyingDecl();
4750      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4751        if (Context.hasSameType(Function->getType(), Method->getType())) {
4752          Instantiation = Method;
4753          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4754          MSInfo = Method->getMemberSpecializationInfo();
4755          break;
4756        }
4757      }
4758    }
4759  } else if (isa<VarDecl>(Member)) {
4760    VarDecl *PrevVar;
4761    if (Previous.isSingleResult() &&
4762        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4763      if (PrevVar->isStaticDataMember()) {
4764        Instantiation = PrevVar;
4765        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4766        MSInfo = PrevVar->getMemberSpecializationInfo();
4767      }
4768  } else if (isa<RecordDecl>(Member)) {
4769    CXXRecordDecl *PrevRecord;
4770    if (Previous.isSingleResult() &&
4771        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4772      Instantiation = PrevRecord;
4773      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4774      MSInfo = PrevRecord->getMemberSpecializationInfo();
4775    }
4776  }
4777
4778  if (!Instantiation) {
4779    // There is no previous declaration that matches. Since member
4780    // specializations are always out-of-line, the caller will complain about
4781    // this mismatch later.
4782    return false;
4783  }
4784
4785  // If this is a friend, just bail out here before we start turning
4786  // things into explicit specializations.
4787  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4788    // Preserve instantiation information.
4789    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4790      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4791                                      cast<CXXMethodDecl>(InstantiatedFrom),
4792        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4793    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4794      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4795                                      cast<CXXRecordDecl>(InstantiatedFrom),
4796        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4797    }
4798
4799    Previous.clear();
4800    Previous.addDecl(Instantiation);
4801    return false;
4802  }
4803
4804  // Make sure that this is a specialization of a member.
4805  if (!InstantiatedFrom) {
4806    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4807      << Member;
4808    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4809    return true;
4810  }
4811
4812  // C++ [temp.expl.spec]p6:
4813  //   If a template, a member template or the member of a class template is
4814  //   explicitly specialized then that spe- cialization shall be declared
4815  //   before the first use of that specialization that would cause an implicit
4816  //   instantiation to take place, in every translation unit in which such a
4817  //   use occurs; no diagnostic is required.
4818  assert(MSInfo && "Member specialization info missing?");
4819
4820  bool HasNoEffect = false;
4821  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4822                                             TSK_ExplicitSpecialization,
4823                                             Instantiation,
4824                                     MSInfo->getTemplateSpecializationKind(),
4825                                           MSInfo->getPointOfInstantiation(),
4826                                             HasNoEffect))
4827    return true;
4828
4829  // Check the scope of this explicit specialization.
4830  if (CheckTemplateSpecializationScope(*this,
4831                                       InstantiatedFrom,
4832                                       Instantiation, Member->getLocation(),
4833                                       false))
4834    return true;
4835
4836  // Note that this is an explicit instantiation of a member.
4837  // the original declaration to note that it is an explicit specialization
4838  // (if it was previously an implicit instantiation). This latter step
4839  // makes bookkeeping easier.
4840  if (isa<FunctionDecl>(Member)) {
4841    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4842    if (InstantiationFunction->getTemplateSpecializationKind() ==
4843          TSK_ImplicitInstantiation) {
4844      InstantiationFunction->setTemplateSpecializationKind(
4845                                                  TSK_ExplicitSpecialization);
4846      InstantiationFunction->setLocation(Member->getLocation());
4847    }
4848
4849    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4850                                        cast<CXXMethodDecl>(InstantiatedFrom),
4851                                                  TSK_ExplicitSpecialization);
4852    MarkUnusedFileScopedDecl(InstantiationFunction);
4853  } else if (isa<VarDecl>(Member)) {
4854    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4855    if (InstantiationVar->getTemplateSpecializationKind() ==
4856          TSK_ImplicitInstantiation) {
4857      InstantiationVar->setTemplateSpecializationKind(
4858                                                  TSK_ExplicitSpecialization);
4859      InstantiationVar->setLocation(Member->getLocation());
4860    }
4861
4862    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4863                                                cast<VarDecl>(InstantiatedFrom),
4864                                                TSK_ExplicitSpecialization);
4865    MarkUnusedFileScopedDecl(InstantiationVar);
4866  } else {
4867    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4868    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4869    if (InstantiationClass->getTemplateSpecializationKind() ==
4870          TSK_ImplicitInstantiation) {
4871      InstantiationClass->setTemplateSpecializationKind(
4872                                                   TSK_ExplicitSpecialization);
4873      InstantiationClass->setLocation(Member->getLocation());
4874    }
4875
4876    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4877                                        cast<CXXRecordDecl>(InstantiatedFrom),
4878                                                   TSK_ExplicitSpecialization);
4879  }
4880
4881  // Save the caller the trouble of having to figure out which declaration
4882  // this specialization matches.
4883  Previous.clear();
4884  Previous.addDecl(Instantiation);
4885  return false;
4886}
4887
4888/// \brief Check the scope of an explicit instantiation.
4889///
4890/// \returns true if a serious error occurs, false otherwise.
4891static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4892                                            SourceLocation InstLoc,
4893                                            bool WasQualifiedName) {
4894  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4895  DeclContext *CurContext = S.CurContext->getRedeclContext();
4896
4897  if (CurContext->isRecord()) {
4898    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4899      << D;
4900    return true;
4901  }
4902
4903  // C++0x [temp.explicit]p2:
4904  //   An explicit instantiation shall appear in an enclosing namespace of its
4905  //   template.
4906  //
4907  // This is DR275, which we do not retroactively apply to C++98/03.
4908  if (S.getLangOptions().CPlusPlus0x &&
4909      !CurContext->Encloses(OrigContext)) {
4910    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4911      S.Diag(InstLoc,
4912             S.getLangOptions().CPlusPlus0x?
4913                 diag::err_explicit_instantiation_out_of_scope
4914               : diag::warn_explicit_instantiation_out_of_scope_0x)
4915        << D << NS;
4916    else
4917      S.Diag(InstLoc,
4918             S.getLangOptions().CPlusPlus0x?
4919                 diag::err_explicit_instantiation_must_be_global
4920               : diag::warn_explicit_instantiation_out_of_scope_0x)
4921        << D;
4922    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4923    return false;
4924  }
4925
4926  // C++0x [temp.explicit]p2:
4927  //   If the name declared in the explicit instantiation is an unqualified
4928  //   name, the explicit instantiation shall appear in the namespace where
4929  //   its template is declared or, if that namespace is inline (7.3.1), any
4930  //   namespace from its enclosing namespace set.
4931  if (WasQualifiedName)
4932    return false;
4933
4934  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4935    return false;
4936
4937  S.Diag(InstLoc,
4938         S.getLangOptions().CPlusPlus0x?
4939             diag::err_explicit_instantiation_unqualified_wrong_namespace
4940           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4941    << D << OrigContext;
4942  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4943  return false;
4944}
4945
4946/// \brief Determine whether the given scope specifier has a template-id in it.
4947static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4948  if (!SS.isSet())
4949    return false;
4950
4951  // C++0x [temp.explicit]p2:
4952  //   If the explicit instantiation is for a member function, a member class
4953  //   or a static data member of a class template specialization, the name of
4954  //   the class template specialization in the qualified-id for the member
4955  //   name shall be a simple-template-id.
4956  //
4957  // C++98 has the same restriction, just worded differently.
4958  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4959       NNS; NNS = NNS->getPrefix())
4960    if (Type *T = NNS->getAsType())
4961      if (isa<TemplateSpecializationType>(T))
4962        return true;
4963
4964  return false;
4965}
4966
4967// Explicit instantiation of a class template specialization
4968DeclResult
4969Sema::ActOnExplicitInstantiation(Scope *S,
4970                                 SourceLocation ExternLoc,
4971                                 SourceLocation TemplateLoc,
4972                                 unsigned TagSpec,
4973                                 SourceLocation KWLoc,
4974                                 const CXXScopeSpec &SS,
4975                                 TemplateTy TemplateD,
4976                                 SourceLocation TemplateNameLoc,
4977                                 SourceLocation LAngleLoc,
4978                                 ASTTemplateArgsPtr TemplateArgsIn,
4979                                 SourceLocation RAngleLoc,
4980                                 AttributeList *Attr) {
4981  // Find the class template we're specializing
4982  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4983  ClassTemplateDecl *ClassTemplate
4984    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4985
4986  // Check that the specialization uses the same tag kind as the
4987  // original template.
4988  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4989  assert(Kind != TTK_Enum &&
4990         "Invalid enum tag in class template explicit instantiation!");
4991  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4992                                    Kind, KWLoc,
4993                                    *ClassTemplate->getIdentifier())) {
4994    Diag(KWLoc, diag::err_use_with_wrong_tag)
4995      << ClassTemplate
4996      << FixItHint::CreateReplacement(KWLoc,
4997                            ClassTemplate->getTemplatedDecl()->getKindName());
4998    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4999         diag::note_previous_use);
5000    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5001  }
5002
5003  // C++0x [temp.explicit]p2:
5004  //   There are two forms of explicit instantiation: an explicit instantiation
5005  //   definition and an explicit instantiation declaration. An explicit
5006  //   instantiation declaration begins with the extern keyword. [...]
5007  TemplateSpecializationKind TSK
5008    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5009                           : TSK_ExplicitInstantiationDeclaration;
5010
5011  // Translate the parser's template argument list in our AST format.
5012  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5013  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5014
5015  // Check that the template argument list is well-formed for this
5016  // template.
5017  llvm::SmallVector<TemplateArgument, 4> Converted;
5018  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5019                                TemplateArgs, false, Converted))
5020    return true;
5021
5022  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5023         "Converted template argument list is too short!");
5024
5025  // Find the class template specialization declaration that
5026  // corresponds to these arguments.
5027  void *InsertPos = 0;
5028  ClassTemplateSpecializationDecl *PrevDecl
5029    = ClassTemplate->findSpecialization(Converted.data(),
5030                                        Converted.size(), InsertPos);
5031
5032  TemplateSpecializationKind PrevDecl_TSK
5033    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5034
5035  // C++0x [temp.explicit]p2:
5036  //   [...] An explicit instantiation shall appear in an enclosing
5037  //   namespace of its template. [...]
5038  //
5039  // This is C++ DR 275.
5040  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5041                                      SS.isSet()))
5042    return true;
5043
5044  ClassTemplateSpecializationDecl *Specialization = 0;
5045
5046  bool ReusedDecl = false;
5047  bool HasNoEffect = false;
5048  if (PrevDecl) {
5049    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5050                                               PrevDecl, PrevDecl_TSK,
5051                                            PrevDecl->getPointOfInstantiation(),
5052                                               HasNoEffect))
5053      return PrevDecl;
5054
5055    // Even though HasNoEffect == true means that this explicit instantiation
5056    // has no effect on semantics, we go on to put its syntax in the AST.
5057
5058    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5059        PrevDecl_TSK == TSK_Undeclared) {
5060      // Since the only prior class template specialization with these
5061      // arguments was referenced but not declared, reuse that
5062      // declaration node as our own, updating the source location
5063      // for the template name to reflect our new declaration.
5064      // (Other source locations will be updated later.)
5065      Specialization = PrevDecl;
5066      Specialization->setLocation(TemplateNameLoc);
5067      PrevDecl = 0;
5068      ReusedDecl = true;
5069    }
5070  }
5071
5072  if (!Specialization) {
5073    // Create a new class template specialization declaration node for
5074    // this explicit specialization.
5075    Specialization
5076      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5077                                             ClassTemplate->getDeclContext(),
5078                                                TemplateNameLoc,
5079                                                ClassTemplate,
5080                                                Converted.data(),
5081                                                Converted.size(),
5082                                                PrevDecl);
5083    SetNestedNameSpecifier(Specialization, SS);
5084
5085    if (!HasNoEffect && !PrevDecl) {
5086      // Insert the new specialization.
5087      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5088    }
5089  }
5090
5091  // Build the fully-sugared type for this explicit instantiation as
5092  // the user wrote in the explicit instantiation itself. This means
5093  // that we'll pretty-print the type retrieved from the
5094  // specialization's declaration the way that the user actually wrote
5095  // the explicit instantiation, rather than formatting the name based
5096  // on the "canonical" representation used to store the template
5097  // arguments in the specialization.
5098  TypeSourceInfo *WrittenTy
5099    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5100                                                TemplateArgs,
5101                                  Context.getTypeDeclType(Specialization));
5102  Specialization->setTypeAsWritten(WrittenTy);
5103  TemplateArgsIn.release();
5104
5105  // Set source locations for keywords.
5106  Specialization->setExternLoc(ExternLoc);
5107  Specialization->setTemplateKeywordLoc(TemplateLoc);
5108
5109  // Add the explicit instantiation into its lexical context. However,
5110  // since explicit instantiations are never found by name lookup, we
5111  // just put it into the declaration context directly.
5112  Specialization->setLexicalDeclContext(CurContext);
5113  CurContext->addDecl(Specialization);
5114
5115  // Syntax is now OK, so return if it has no other effect on semantics.
5116  if (HasNoEffect) {
5117    // Set the template specialization kind.
5118    Specialization->setTemplateSpecializationKind(TSK);
5119    return Specialization;
5120  }
5121
5122  // C++ [temp.explicit]p3:
5123  //   A definition of a class template or class member template
5124  //   shall be in scope at the point of the explicit instantiation of
5125  //   the class template or class member template.
5126  //
5127  // This check comes when we actually try to perform the
5128  // instantiation.
5129  ClassTemplateSpecializationDecl *Def
5130    = cast_or_null<ClassTemplateSpecializationDecl>(
5131                                              Specialization->getDefinition());
5132  if (!Def)
5133    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5134  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5135    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5136    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5137  }
5138
5139  // Instantiate the members of this class template specialization.
5140  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5141                                       Specialization->getDefinition());
5142  if (Def) {
5143    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5144
5145    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5146    // TSK_ExplicitInstantiationDefinition
5147    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5148        TSK == TSK_ExplicitInstantiationDefinition)
5149      Def->setTemplateSpecializationKind(TSK);
5150
5151    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5152  }
5153
5154  // Set the template specialization kind.
5155  Specialization->setTemplateSpecializationKind(TSK);
5156  return Specialization;
5157}
5158
5159// Explicit instantiation of a member class of a class template.
5160DeclResult
5161Sema::ActOnExplicitInstantiation(Scope *S,
5162                                 SourceLocation ExternLoc,
5163                                 SourceLocation TemplateLoc,
5164                                 unsigned TagSpec,
5165                                 SourceLocation KWLoc,
5166                                 CXXScopeSpec &SS,
5167                                 IdentifierInfo *Name,
5168                                 SourceLocation NameLoc,
5169                                 AttributeList *Attr) {
5170
5171  bool Owned = false;
5172  bool IsDependent = false;
5173  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5174                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5175                        MultiTemplateParamsArg(*this, 0, 0),
5176                        Owned, IsDependent, false, false,
5177                        TypeResult());
5178  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5179
5180  if (!TagD)
5181    return true;
5182
5183  TagDecl *Tag = cast<TagDecl>(TagD);
5184  if (Tag->isEnum()) {
5185    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5186      << Context.getTypeDeclType(Tag);
5187    return true;
5188  }
5189
5190  if (Tag->isInvalidDecl())
5191    return true;
5192
5193  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5194  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5195  if (!Pattern) {
5196    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5197      << Context.getTypeDeclType(Record);
5198    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5199    return true;
5200  }
5201
5202  // C++0x [temp.explicit]p2:
5203  //   If the explicit instantiation is for a class or member class, the
5204  //   elaborated-type-specifier in the declaration shall include a
5205  //   simple-template-id.
5206  //
5207  // C++98 has the same restriction, just worded differently.
5208  if (!ScopeSpecifierHasTemplateId(SS))
5209    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5210      << Record << SS.getRange();
5211
5212  // C++0x [temp.explicit]p2:
5213  //   There are two forms of explicit instantiation: an explicit instantiation
5214  //   definition and an explicit instantiation declaration. An explicit
5215  //   instantiation declaration begins with the extern keyword. [...]
5216  TemplateSpecializationKind TSK
5217    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5218                           : TSK_ExplicitInstantiationDeclaration;
5219
5220  // C++0x [temp.explicit]p2:
5221  //   [...] An explicit instantiation shall appear in an enclosing
5222  //   namespace of its template. [...]
5223  //
5224  // This is C++ DR 275.
5225  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5226
5227  // Verify that it is okay to explicitly instantiate here.
5228  CXXRecordDecl *PrevDecl
5229    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5230  if (!PrevDecl && Record->getDefinition())
5231    PrevDecl = Record;
5232  if (PrevDecl) {
5233    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5234    bool HasNoEffect = false;
5235    assert(MSInfo && "No member specialization information?");
5236    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5237                                               PrevDecl,
5238                                        MSInfo->getTemplateSpecializationKind(),
5239                                             MSInfo->getPointOfInstantiation(),
5240                                               HasNoEffect))
5241      return true;
5242    if (HasNoEffect)
5243      return TagD;
5244  }
5245
5246  CXXRecordDecl *RecordDef
5247    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5248  if (!RecordDef) {
5249    // C++ [temp.explicit]p3:
5250    //   A definition of a member class of a class template shall be in scope
5251    //   at the point of an explicit instantiation of the member class.
5252    CXXRecordDecl *Def
5253      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5254    if (!Def) {
5255      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5256        << 0 << Record->getDeclName() << Record->getDeclContext();
5257      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5258        << Pattern;
5259      return true;
5260    } else {
5261      if (InstantiateClass(NameLoc, Record, Def,
5262                           getTemplateInstantiationArgs(Record),
5263                           TSK))
5264        return true;
5265
5266      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5267      if (!RecordDef)
5268        return true;
5269    }
5270  }
5271
5272  // Instantiate all of the members of the class.
5273  InstantiateClassMembers(NameLoc, RecordDef,
5274                          getTemplateInstantiationArgs(Record), TSK);
5275
5276  if (TSK == TSK_ExplicitInstantiationDefinition)
5277    MarkVTableUsed(NameLoc, RecordDef, true);
5278
5279  // FIXME: We don't have any representation for explicit instantiations of
5280  // member classes. Such a representation is not needed for compilation, but it
5281  // should be available for clients that want to see all of the declarations in
5282  // the source code.
5283  return TagD;
5284}
5285
5286DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5287                                            SourceLocation ExternLoc,
5288                                            SourceLocation TemplateLoc,
5289                                            Declarator &D) {
5290  // Explicit instantiations always require a name.
5291  // TODO: check if/when DNInfo should replace Name.
5292  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5293  DeclarationName Name = NameInfo.getName();
5294  if (!Name) {
5295    if (!D.isInvalidType())
5296      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5297           diag::err_explicit_instantiation_requires_name)
5298        << D.getDeclSpec().getSourceRange()
5299        << D.getSourceRange();
5300
5301    return true;
5302  }
5303
5304  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5305  // we find one that is.
5306  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5307         (S->getFlags() & Scope::TemplateParamScope) != 0)
5308    S = S->getParent();
5309
5310  // Determine the type of the declaration.
5311  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5312  QualType R = T->getType();
5313  if (R.isNull())
5314    return true;
5315
5316  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5317    // Cannot explicitly instantiate a typedef.
5318    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5319      << Name;
5320    return true;
5321  }
5322
5323  // C++0x [temp.explicit]p1:
5324  //   [...] An explicit instantiation of a function template shall not use the
5325  //   inline or constexpr specifiers.
5326  // Presumably, this also applies to member functions of class templates as
5327  // well.
5328  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5329    Diag(D.getDeclSpec().getInlineSpecLoc(),
5330         diag::err_explicit_instantiation_inline)
5331      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5332
5333  // FIXME: check for constexpr specifier.
5334
5335  // C++0x [temp.explicit]p2:
5336  //   There are two forms of explicit instantiation: an explicit instantiation
5337  //   definition and an explicit instantiation declaration. An explicit
5338  //   instantiation declaration begins with the extern keyword. [...]
5339  TemplateSpecializationKind TSK
5340    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5341                           : TSK_ExplicitInstantiationDeclaration;
5342
5343  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5344  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5345
5346  if (!R->isFunctionType()) {
5347    // C++ [temp.explicit]p1:
5348    //   A [...] static data member of a class template can be explicitly
5349    //   instantiated from the member definition associated with its class
5350    //   template.
5351    if (Previous.isAmbiguous())
5352      return true;
5353
5354    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5355    if (!Prev || !Prev->isStaticDataMember()) {
5356      // We expect to see a data data member here.
5357      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5358        << Name;
5359      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5360           P != PEnd; ++P)
5361        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5362      return true;
5363    }
5364
5365    if (!Prev->getInstantiatedFromStaticDataMember()) {
5366      // FIXME: Check for explicit specialization?
5367      Diag(D.getIdentifierLoc(),
5368           diag::err_explicit_instantiation_data_member_not_instantiated)
5369        << Prev;
5370      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5371      // FIXME: Can we provide a note showing where this was declared?
5372      return true;
5373    }
5374
5375    // C++0x [temp.explicit]p2:
5376    //   If the explicit instantiation is for a member function, a member class
5377    //   or a static data member of a class template specialization, the name of
5378    //   the class template specialization in the qualified-id for the member
5379    //   name shall be a simple-template-id.
5380    //
5381    // C++98 has the same restriction, just worded differently.
5382    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5383      Diag(D.getIdentifierLoc(),
5384           diag::ext_explicit_instantiation_without_qualified_id)
5385        << Prev << D.getCXXScopeSpec().getRange();
5386
5387    // Check the scope of this explicit instantiation.
5388    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5389
5390    // Verify that it is okay to explicitly instantiate here.
5391    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5392    assert(MSInfo && "Missing static data member specialization info?");
5393    bool HasNoEffect = false;
5394    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5395                                        MSInfo->getTemplateSpecializationKind(),
5396                                              MSInfo->getPointOfInstantiation(),
5397                                               HasNoEffect))
5398      return true;
5399    if (HasNoEffect)
5400      return (Decl*) 0;
5401
5402    // Instantiate static data member.
5403    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5404    if (TSK == TSK_ExplicitInstantiationDefinition)
5405      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5406
5407    // FIXME: Create an ExplicitInstantiation node?
5408    return (Decl*) 0;
5409  }
5410
5411  // If the declarator is a template-id, translate the parser's template
5412  // argument list into our AST format.
5413  bool HasExplicitTemplateArgs = false;
5414  TemplateArgumentListInfo TemplateArgs;
5415  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5416    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5417    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5418    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5419    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5420                                       TemplateId->getTemplateArgs(),
5421                                       TemplateId->NumArgs);
5422    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5423    HasExplicitTemplateArgs = true;
5424    TemplateArgsPtr.release();
5425  }
5426
5427  // C++ [temp.explicit]p1:
5428  //   A [...] function [...] can be explicitly instantiated from its template.
5429  //   A member function [...] of a class template can be explicitly
5430  //  instantiated from the member definition associated with its class
5431  //  template.
5432  UnresolvedSet<8> Matches;
5433  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5434       P != PEnd; ++P) {
5435    NamedDecl *Prev = *P;
5436    if (!HasExplicitTemplateArgs) {
5437      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5438        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5439          Matches.clear();
5440
5441          Matches.addDecl(Method, P.getAccess());
5442          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5443            break;
5444        }
5445      }
5446    }
5447
5448    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5449    if (!FunTmpl)
5450      continue;
5451
5452    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5453    FunctionDecl *Specialization = 0;
5454    if (TemplateDeductionResult TDK
5455          = DeduceTemplateArguments(FunTmpl,
5456                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5457                                    R, Specialization, Info)) {
5458      // FIXME: Keep track of almost-matches?
5459      (void)TDK;
5460      continue;
5461    }
5462
5463    Matches.addDecl(Specialization, P.getAccess());
5464  }
5465
5466  // Find the most specialized function template specialization.
5467  UnresolvedSetIterator Result
5468    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5469                         D.getIdentifierLoc(),
5470                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5471                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5472                         PDiag(diag::note_explicit_instantiation_candidate));
5473
5474  if (Result == Matches.end())
5475    return true;
5476
5477  // Ignore access control bits, we don't need them for redeclaration checking.
5478  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5479
5480  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5481    Diag(D.getIdentifierLoc(),
5482         diag::err_explicit_instantiation_member_function_not_instantiated)
5483      << Specialization
5484      << (Specialization->getTemplateSpecializationKind() ==
5485          TSK_ExplicitSpecialization);
5486    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5487    return true;
5488  }
5489
5490  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5491  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5492    PrevDecl = Specialization;
5493
5494  if (PrevDecl) {
5495    bool HasNoEffect = false;
5496    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5497                                               PrevDecl,
5498                                     PrevDecl->getTemplateSpecializationKind(),
5499                                          PrevDecl->getPointOfInstantiation(),
5500                                               HasNoEffect))
5501      return true;
5502
5503    // FIXME: We may still want to build some representation of this
5504    // explicit specialization.
5505    if (HasNoEffect)
5506      return (Decl*) 0;
5507  }
5508
5509  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5510
5511  if (TSK == TSK_ExplicitInstantiationDefinition)
5512    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5513
5514  // C++0x [temp.explicit]p2:
5515  //   If the explicit instantiation is for a member function, a member class
5516  //   or a static data member of a class template specialization, the name of
5517  //   the class template specialization in the qualified-id for the member
5518  //   name shall be a simple-template-id.
5519  //
5520  // C++98 has the same restriction, just worded differently.
5521  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5522  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5523      D.getCXXScopeSpec().isSet() &&
5524      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5525    Diag(D.getIdentifierLoc(),
5526         diag::ext_explicit_instantiation_without_qualified_id)
5527    << Specialization << D.getCXXScopeSpec().getRange();
5528
5529  CheckExplicitInstantiationScope(*this,
5530                   FunTmpl? (NamedDecl *)FunTmpl
5531                          : Specialization->getInstantiatedFromMemberFunction(),
5532                                  D.getIdentifierLoc(),
5533                                  D.getCXXScopeSpec().isSet());
5534
5535  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5536  return (Decl*) 0;
5537}
5538
5539TypeResult
5540Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5541                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5542                        SourceLocation TagLoc, SourceLocation NameLoc) {
5543  // This has to hold, because SS is expected to be defined.
5544  assert(Name && "Expected a name in a dependent tag");
5545
5546  NestedNameSpecifier *NNS
5547    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5548  if (!NNS)
5549    return true;
5550
5551  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5552
5553  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5554    Diag(NameLoc, diag::err_dependent_tag_decl)
5555      << (TUK == TUK_Definition) << Kind << SS.getRange();
5556    return true;
5557  }
5558
5559  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5560  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5561}
5562
5563TypeResult
5564Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5565                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5566                        SourceLocation IdLoc) {
5567  NestedNameSpecifier *NNS
5568    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5569  if (!NNS)
5570    return true;
5571
5572  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5573      !getLangOptions().CPlusPlus0x)
5574    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5575      << FixItHint::CreateRemoval(TypenameLoc);
5576
5577  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5578                                 TypenameLoc, SS.getRange(), IdLoc);
5579  if (T.isNull())
5580    return true;
5581
5582  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5583  if (isa<DependentNameType>(T)) {
5584    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5585    TL.setKeywordLoc(TypenameLoc);
5586    TL.setQualifierRange(SS.getRange());
5587    TL.setNameLoc(IdLoc);
5588  } else {
5589    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5590    TL.setKeywordLoc(TypenameLoc);
5591    TL.setQualifierRange(SS.getRange());
5592    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5593  }
5594
5595  return CreateParsedType(T, TSI);
5596}
5597
5598TypeResult
5599Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5600                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5601                        ParsedType Ty) {
5602  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5603      !getLangOptions().CPlusPlus0x)
5604    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5605      << FixItHint::CreateRemoval(TypenameLoc);
5606
5607  TypeSourceInfo *InnerTSI = 0;
5608  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5609
5610  assert(isa<TemplateSpecializationType>(T) &&
5611         "Expected a template specialization type");
5612
5613  if (computeDeclContext(SS, false)) {
5614    // If we can compute a declaration context, then the "typename"
5615    // keyword was superfluous. Just build an ElaboratedType to keep
5616    // track of the nested-name-specifier.
5617
5618    // Push the inner type, preserving its source locations if possible.
5619    TypeLocBuilder Builder;
5620    if (InnerTSI)
5621      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5622    else
5623      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5624
5625    /* Note: NNS already embedded in template specialization type T. */
5626    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5627    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5628    TL.setKeywordLoc(TypenameLoc);
5629    TL.setQualifierRange(SS.getRange());
5630
5631    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5632    return CreateParsedType(T, TSI);
5633  }
5634
5635  // TODO: it's really silly that we make a template specialization
5636  // type earlier only to drop it again here.
5637  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5638  DependentTemplateName *DTN =
5639    TST->getTemplateName().getAsDependentTemplateName();
5640  assert(DTN && "dependent template has non-dependent name?");
5641  assert(DTN->getQualifier()
5642         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5643  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5644                                                     DTN->getQualifier(),
5645                                                     DTN->getIdentifier(),
5646                                                     TST->getNumArgs(),
5647                                                     TST->getArgs());
5648  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5649  DependentTemplateSpecializationTypeLoc TL =
5650    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5651  if (InnerTSI) {
5652    TemplateSpecializationTypeLoc TSTL =
5653      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5654    TL.setLAngleLoc(TSTL.getLAngleLoc());
5655    TL.setRAngleLoc(TSTL.getRAngleLoc());
5656    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5657      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5658  } else {
5659    TL.initializeLocal(SourceLocation());
5660  }
5661  TL.setKeywordLoc(TypenameLoc);
5662  TL.setQualifierRange(SS.getRange());
5663  return CreateParsedType(T, TSI);
5664}
5665
5666/// \brief Build the type that describes a C++ typename specifier,
5667/// e.g., "typename T::type".
5668QualType
5669Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5670                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5671                        SourceLocation KeywordLoc, SourceRange NNSRange,
5672                        SourceLocation IILoc) {
5673  CXXScopeSpec SS;
5674  SS.setScopeRep(NNS);
5675  SS.setRange(NNSRange);
5676
5677  DeclContext *Ctx = computeDeclContext(SS);
5678  if (!Ctx) {
5679    // If the nested-name-specifier is dependent and couldn't be
5680    // resolved to a type, build a typename type.
5681    assert(NNS->isDependent());
5682    return Context.getDependentNameType(Keyword, NNS, &II);
5683  }
5684
5685  // If the nested-name-specifier refers to the current instantiation,
5686  // the "typename" keyword itself is superfluous. In C++03, the
5687  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5688  // allows such extraneous "typename" keywords, and we retroactively
5689  // apply this DR to C++03 code with only a warning. In any case we continue.
5690
5691  if (RequireCompleteDeclContext(SS, Ctx))
5692    return QualType();
5693
5694  DeclarationName Name(&II);
5695  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5696  LookupQualifiedName(Result, Ctx);
5697  unsigned DiagID = 0;
5698  Decl *Referenced = 0;
5699  switch (Result.getResultKind()) {
5700  case LookupResult::NotFound:
5701    DiagID = diag::err_typename_nested_not_found;
5702    break;
5703
5704  case LookupResult::FoundUnresolvedValue: {
5705    // We found a using declaration that is a value. Most likely, the using
5706    // declaration itself is meant to have the 'typename' keyword.
5707    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5708                          IILoc);
5709    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5710      << Name << Ctx << FullRange;
5711    if (UnresolvedUsingValueDecl *Using
5712          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5713      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5714      Diag(Loc, diag::note_using_value_decl_missing_typename)
5715        << FixItHint::CreateInsertion(Loc, "typename ");
5716    }
5717  }
5718  // Fall through to create a dependent typename type, from which we can recover
5719  // better.
5720
5721  case LookupResult::NotFoundInCurrentInstantiation:
5722    // Okay, it's a member of an unknown instantiation.
5723    return Context.getDependentNameType(Keyword, NNS, &II);
5724
5725  case LookupResult::Found:
5726    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5727      // We found a type. Build an ElaboratedType, since the
5728      // typename-specifier was just sugar.
5729      return Context.getElaboratedType(ETK_Typename, NNS,
5730                                       Context.getTypeDeclType(Type));
5731    }
5732
5733    DiagID = diag::err_typename_nested_not_type;
5734    Referenced = Result.getFoundDecl();
5735    break;
5736
5737
5738    llvm_unreachable("unresolved using decl in non-dependent context");
5739    return QualType();
5740
5741  case LookupResult::FoundOverloaded:
5742    DiagID = diag::err_typename_nested_not_type;
5743    Referenced = *Result.begin();
5744    break;
5745
5746  case LookupResult::Ambiguous:
5747    return QualType();
5748  }
5749
5750  // If we get here, it's because name lookup did not find a
5751  // type. Emit an appropriate diagnostic and return an error.
5752  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5753                        IILoc);
5754  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5755  if (Referenced)
5756    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5757      << Name;
5758  return QualType();
5759}
5760
5761namespace {
5762  // See Sema::RebuildTypeInCurrentInstantiation
5763  class CurrentInstantiationRebuilder
5764    : public TreeTransform<CurrentInstantiationRebuilder> {
5765    SourceLocation Loc;
5766    DeclarationName Entity;
5767
5768  public:
5769    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5770
5771    CurrentInstantiationRebuilder(Sema &SemaRef,
5772                                  SourceLocation Loc,
5773                                  DeclarationName Entity)
5774    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5775      Loc(Loc), Entity(Entity) { }
5776
5777    /// \brief Determine whether the given type \p T has already been
5778    /// transformed.
5779    ///
5780    /// For the purposes of type reconstruction, a type has already been
5781    /// transformed if it is NULL or if it is not dependent.
5782    bool AlreadyTransformed(QualType T) {
5783      return T.isNull() || !T->isDependentType();
5784    }
5785
5786    /// \brief Returns the location of the entity whose type is being
5787    /// rebuilt.
5788    SourceLocation getBaseLocation() { return Loc; }
5789
5790    /// \brief Returns the name of the entity whose type is being rebuilt.
5791    DeclarationName getBaseEntity() { return Entity; }
5792
5793    /// \brief Sets the "base" location and entity when that
5794    /// information is known based on another transformation.
5795    void setBase(SourceLocation Loc, DeclarationName Entity) {
5796      this->Loc = Loc;
5797      this->Entity = Entity;
5798    }
5799  };
5800}
5801
5802/// \brief Rebuilds a type within the context of the current instantiation.
5803///
5804/// The type \p T is part of the type of an out-of-line member definition of
5805/// a class template (or class template partial specialization) that was parsed
5806/// and constructed before we entered the scope of the class template (or
5807/// partial specialization thereof). This routine will rebuild that type now
5808/// that we have entered the declarator's scope, which may produce different
5809/// canonical types, e.g.,
5810///
5811/// \code
5812/// template<typename T>
5813/// struct X {
5814///   typedef T* pointer;
5815///   pointer data();
5816/// };
5817///
5818/// template<typename T>
5819/// typename X<T>::pointer X<T>::data() { ... }
5820/// \endcode
5821///
5822/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5823/// since we do not know that we can look into X<T> when we parsed the type.
5824/// This function will rebuild the type, performing the lookup of "pointer"
5825/// in X<T> and returning an ElaboratedType whose canonical type is the same
5826/// as the canonical type of T*, allowing the return types of the out-of-line
5827/// definition and the declaration to match.
5828TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5829                                                        SourceLocation Loc,
5830                                                        DeclarationName Name) {
5831  if (!T || !T->getType()->isDependentType())
5832    return T;
5833
5834  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5835  return Rebuilder.TransformType(T);
5836}
5837
5838ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5839  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5840                                          DeclarationName());
5841  return Rebuilder.TransformExpr(E);
5842}
5843
5844bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5845  if (SS.isInvalid()) return true;
5846
5847  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5848  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5849                                          DeclarationName());
5850  NestedNameSpecifier *Rebuilt =
5851    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5852  if (!Rebuilt) return true;
5853
5854  SS.setScopeRep(Rebuilt);
5855  return false;
5856}
5857
5858/// \brief Produces a formatted string that describes the binding of
5859/// template parameters to template arguments.
5860std::string
5861Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5862                                      const TemplateArgumentList &Args) {
5863  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5864}
5865
5866std::string
5867Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5868                                      const TemplateArgument *Args,
5869                                      unsigned NumArgs) {
5870  std::string Result;
5871
5872  if (!Params || Params->size() == 0 || NumArgs == 0)
5873    return Result;
5874
5875  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5876    if (I >= NumArgs)
5877      break;
5878
5879    if (I == 0)
5880      Result += "[with ";
5881    else
5882      Result += ", ";
5883
5884    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5885      Result += Id->getName();
5886    } else {
5887      Result += '$';
5888      Result += llvm::utostr(I);
5889    }
5890
5891    Result += " = ";
5892
5893    switch (Args[I].getKind()) {
5894      case TemplateArgument::Null:
5895        Result += "<no value>";
5896        break;
5897
5898      case TemplateArgument::Type: {
5899        std::string TypeStr;
5900        Args[I].getAsType().getAsStringInternal(TypeStr,
5901                                                Context.PrintingPolicy);
5902        Result += TypeStr;
5903        break;
5904      }
5905
5906      case TemplateArgument::Declaration: {
5907        bool Unnamed = true;
5908        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5909          if (ND->getDeclName()) {
5910            Unnamed = false;
5911            Result += ND->getNameAsString();
5912          }
5913        }
5914
5915        if (Unnamed) {
5916          Result += "<anonymous>";
5917        }
5918        break;
5919      }
5920
5921      case TemplateArgument::Template: {
5922        std::string Str;
5923        llvm::raw_string_ostream OS(Str);
5924        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5925        Result += OS.str();
5926        break;
5927      }
5928
5929      case TemplateArgument::Integral: {
5930        Result += Args[I].getAsIntegral()->toString(10);
5931        break;
5932      }
5933
5934      case TemplateArgument::Expression: {
5935        // FIXME: This is non-optimal, since we're regurgitating the
5936        // expression we were given.
5937        std::string Str;
5938        {
5939          llvm::raw_string_ostream OS(Str);
5940          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5941                                           Context.PrintingPolicy);
5942        }
5943        Result += Str;
5944        break;
5945      }
5946
5947      case TemplateArgument::Pack:
5948        // FIXME: Format template argument packs
5949        Result += "<template argument pack>";
5950        break;
5951    }
5952  }
5953
5954  Result += ']';
5955  return Result;
5956}
5957