SemaTemplate.cpp revision 9f6f6a107287bd81aedab8b578216535b0b51d0f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 441 const ParsedTemplateArgument &Arg) { 442 443 switch (Arg.getKind()) { 444 case ParsedTemplateArgument::Type: { 445 TypeSourceInfo *DI; 446 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 447 if (!DI) 448 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 449 return TemplateArgumentLoc(TemplateArgument(T), DI); 450 } 451 452 case ParsedTemplateArgument::NonType: { 453 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 454 return TemplateArgumentLoc(TemplateArgument(E), E); 455 } 456 457 case ParsedTemplateArgument::Template: { 458 TemplateName Template = Arg.getAsTemplate().get(); 459 return TemplateArgumentLoc(TemplateArgument(Template), 460 Arg.getScopeSpec().getRange(), 461 Arg.getLocation()); 462 } 463 } 464 465 llvm_unreachable("Unhandled parsed template argument"); 466 return TemplateArgumentLoc(); 467} 468 469/// \brief Translates template arguments as provided by the parser 470/// into template arguments used by semantic analysis. 471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 472 TemplateArgumentListInfo &TemplateArgs) { 473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 474 TemplateArgs.addArgument(translateTemplateArgument(*this, 475 TemplateArgsIn[I])); 476} 477 478/// ActOnTypeParameter - Called when a C++ template type parameter 479/// (e.g., "typename T") has been parsed. Typename specifies whether 480/// the keyword "typename" was used to declare the type parameter 481/// (otherwise, "class" was used), and KeyLoc is the location of the 482/// "class" or "typename" keyword. ParamName is the name of the 483/// parameter (NULL indicates an unnamed template parameter) and 484/// ParamName is the location of the parameter name (if any). 485/// If the type parameter has a default argument, it will be added 486/// later via ActOnTypeParameterDefault. 487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 488 SourceLocation EllipsisLoc, 489 SourceLocation KeyLoc, 490 IdentifierInfo *ParamName, 491 SourceLocation ParamNameLoc, 492 unsigned Depth, unsigned Position, 493 SourceLocation EqualLoc, 494 ParsedType DefaultArg) { 495 assert(S->isTemplateParamScope() && 496 "Template type parameter not in template parameter scope!"); 497 bool Invalid = false; 498 499 if (ParamName) { 500 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 501 LookupOrdinaryName, 502 ForRedeclaration); 503 if (PrevDecl && PrevDecl->isTemplateParameter()) 504 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 505 PrevDecl); 506 } 507 508 SourceLocation Loc = ParamNameLoc; 509 if (!ParamName) 510 Loc = KeyLoc; 511 512 TemplateTypeParmDecl *Param 513 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 514 Loc, Depth, Position, ParamName, Typename, 515 Ellipsis); 516 if (Invalid) 517 Param->setInvalidDecl(); 518 519 if (ParamName) { 520 // Add the template parameter into the current scope. 521 S->AddDecl(Param); 522 IdResolver.AddDecl(Param); 523 } 524 525 // Handle the default argument, if provided. 526 if (DefaultArg) { 527 TypeSourceInfo *DefaultTInfo; 528 GetTypeFromParser(DefaultArg, &DefaultTInfo); 529 530 assert(DefaultTInfo && "expected source information for type"); 531 532 // C++0x [temp.param]p9: 533 // A default template-argument may be specified for any kind of 534 // template-parameter that is not a template parameter pack. 535 if (Ellipsis) { 536 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 537 return Param; 538 } 539 540 // Check the template argument itself. 541 if (CheckTemplateArgument(Param, DefaultTInfo)) { 542 Param->setInvalidDecl(); 543 return Param; 544 } 545 546 Param->setDefaultArgument(DefaultTInfo, false); 547 } 548 549 return Param; 550} 551 552/// \brief Check that the type of a non-type template parameter is 553/// well-formed. 554/// 555/// \returns the (possibly-promoted) parameter type if valid; 556/// otherwise, produces a diagnostic and returns a NULL type. 557QualType 558Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 559 // We don't allow variably-modified types as the type of non-type template 560 // parameters. 561 if (T->isVariablyModifiedType()) { 562 Diag(Loc, diag::err_variably_modified_nontype_template_param) 563 << T; 564 return QualType(); 565 } 566 567 // C++ [temp.param]p4: 568 // 569 // A non-type template-parameter shall have one of the following 570 // (optionally cv-qualified) types: 571 // 572 // -- integral or enumeration type, 573 if (T->isIntegralOrEnumerationType() || 574 // -- pointer to object or pointer to function, 575 T->isPointerType() || 576 // -- reference to object or reference to function, 577 T->isReferenceType() || 578 // -- pointer to member. 579 T->isMemberPointerType() || 580 // If T is a dependent type, we can't do the check now, so we 581 // assume that it is well-formed. 582 T->isDependentType()) 583 return T; 584 // C++ [temp.param]p8: 585 // 586 // A non-type template-parameter of type "array of T" or 587 // "function returning T" is adjusted to be of type "pointer to 588 // T" or "pointer to function returning T", respectively. 589 else if (T->isArrayType()) 590 // FIXME: Keep the type prior to promotion? 591 return Context.getArrayDecayedType(T); 592 else if (T->isFunctionType()) 593 // FIXME: Keep the type prior to promotion? 594 return Context.getPointerType(T); 595 596 Diag(Loc, diag::err_template_nontype_parm_bad_type) 597 << T; 598 599 return QualType(); 600} 601 602Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 603 unsigned Depth, 604 unsigned Position, 605 SourceLocation EqualLoc, 606 Expr *Default) { 607 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 608 QualType T = TInfo->getType(); 609 610 assert(S->isTemplateParamScope() && 611 "Non-type template parameter not in template parameter scope!"); 612 bool Invalid = false; 613 614 IdentifierInfo *ParamName = D.getIdentifier(); 615 if (ParamName) { 616 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 617 LookupOrdinaryName, 618 ForRedeclaration); 619 if (PrevDecl && PrevDecl->isTemplateParameter()) 620 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 621 PrevDecl); 622 } 623 624 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 625 if (T.isNull()) { 626 T = Context.IntTy; // Recover with an 'int' type. 627 Invalid = true; 628 } 629 630 NonTypeTemplateParmDecl *Param 631 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 632 D.getIdentifierLoc(), 633 Depth, Position, ParamName, T, TInfo); 634 if (Invalid) 635 Param->setInvalidDecl(); 636 637 if (D.getIdentifier()) { 638 // Add the template parameter into the current scope. 639 S->AddDecl(Param); 640 IdResolver.AddDecl(Param); 641 } 642 643 // Check the well-formedness of the default template argument, if provided. 644 if (Default) { 645 TemplateArgument Converted; 646 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 647 Param->setInvalidDecl(); 648 return Param; 649 } 650 651 Param->setDefaultArgument(Default, false); 652 } 653 654 return Param; 655} 656 657/// ActOnTemplateTemplateParameter - Called when a C++ template template 658/// parameter (e.g. T in template <template <typename> class T> class array) 659/// has been parsed. S is the current scope. 660Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 661 SourceLocation TmpLoc, 662 TemplateParamsTy *Params, 663 IdentifierInfo *Name, 664 SourceLocation NameLoc, 665 unsigned Depth, 666 unsigned Position, 667 SourceLocation EqualLoc, 668 const ParsedTemplateArgument &Default) { 669 assert(S->isTemplateParamScope() && 670 "Template template parameter not in template parameter scope!"); 671 672 // Construct the parameter object. 673 TemplateTemplateParmDecl *Param = 674 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 675 NameLoc.isInvalid()? TmpLoc : NameLoc, 676 Depth, Position, Name, 677 Params); 678 679 // If the template template parameter has a name, then link the identifier 680 // into the scope and lookup mechanisms. 681 if (Name) { 682 S->AddDecl(Param); 683 IdResolver.AddDecl(Param); 684 } 685 686 if (!Default.isInvalid()) { 687 // Check only that we have a template template argument. We don't want to 688 // try to check well-formedness now, because our template template parameter 689 // might have dependent types in its template parameters, which we wouldn't 690 // be able to match now. 691 // 692 // If none of the template template parameter's template arguments mention 693 // other template parameters, we could actually perform more checking here. 694 // However, it isn't worth doing. 695 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 696 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 697 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 698 << DefaultArg.getSourceRange(); 699 return Param; 700 } 701 702 Param->setDefaultArgument(DefaultArg, false); 703 } 704 705 if (Params->size() == 0) { 706 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 707 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 708 Param->setInvalidDecl(); 709 } 710 return Param; 711} 712 713/// ActOnTemplateParameterList - Builds a TemplateParameterList that 714/// contains the template parameters in Params/NumParams. 715Sema::TemplateParamsTy * 716Sema::ActOnTemplateParameterList(unsigned Depth, 717 SourceLocation ExportLoc, 718 SourceLocation TemplateLoc, 719 SourceLocation LAngleLoc, 720 Decl **Params, unsigned NumParams, 721 SourceLocation RAngleLoc) { 722 if (ExportLoc.isValid()) 723 Diag(ExportLoc, diag::warn_template_export_unsupported); 724 725 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 726 (NamedDecl**)Params, NumParams, 727 RAngleLoc); 728} 729 730static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 731 if (SS.isSet()) 732 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 733 SS.getRange()); 734} 735 736DeclResult 737Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 738 SourceLocation KWLoc, CXXScopeSpec &SS, 739 IdentifierInfo *Name, SourceLocation NameLoc, 740 AttributeList *Attr, 741 TemplateParameterList *TemplateParams, 742 AccessSpecifier AS) { 743 assert(TemplateParams && TemplateParams->size() > 0 && 744 "No template parameters"); 745 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 746 bool Invalid = false; 747 748 // Check that we can declare a template here. 749 if (CheckTemplateDeclScope(S, TemplateParams)) 750 return true; 751 752 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 753 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 754 755 // There is no such thing as an unnamed class template. 756 if (!Name) { 757 Diag(KWLoc, diag::err_template_unnamed_class); 758 return true; 759 } 760 761 // Find any previous declaration with this name. 762 DeclContext *SemanticContext; 763 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 764 ForRedeclaration); 765 if (SS.isNotEmpty() && !SS.isInvalid()) { 766 SemanticContext = computeDeclContext(SS, true); 767 if (!SemanticContext) { 768 // FIXME: Produce a reasonable diagnostic here 769 return true; 770 } 771 772 if (RequireCompleteDeclContext(SS, SemanticContext)) 773 return true; 774 775 LookupQualifiedName(Previous, SemanticContext); 776 } else { 777 SemanticContext = CurContext; 778 LookupName(Previous, S); 779 } 780 781 if (Previous.isAmbiguous()) 782 return true; 783 784 NamedDecl *PrevDecl = 0; 785 if (Previous.begin() != Previous.end()) 786 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 787 788 // If there is a previous declaration with the same name, check 789 // whether this is a valid redeclaration. 790 ClassTemplateDecl *PrevClassTemplate 791 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 792 793 // We may have found the injected-class-name of a class template, 794 // class template partial specialization, or class template specialization. 795 // In these cases, grab the template that is being defined or specialized. 796 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 797 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 798 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 799 PrevClassTemplate 800 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 801 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 802 PrevClassTemplate 803 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 804 ->getSpecializedTemplate(); 805 } 806 } 807 808 if (TUK == TUK_Friend) { 809 // C++ [namespace.memdef]p3: 810 // [...] When looking for a prior declaration of a class or a function 811 // declared as a friend, and when the name of the friend class or 812 // function is neither a qualified name nor a template-id, scopes outside 813 // the innermost enclosing namespace scope are not considered. 814 if (!SS.isSet()) { 815 DeclContext *OutermostContext = CurContext; 816 while (!OutermostContext->isFileContext()) 817 OutermostContext = OutermostContext->getLookupParent(); 818 819 if (PrevDecl && 820 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 821 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 822 SemanticContext = PrevDecl->getDeclContext(); 823 } else { 824 // Declarations in outer scopes don't matter. However, the outermost 825 // context we computed is the semantic context for our new 826 // declaration. 827 PrevDecl = PrevClassTemplate = 0; 828 SemanticContext = OutermostContext; 829 } 830 } 831 832 if (CurContext->isDependentContext()) { 833 // If this is a dependent context, we don't want to link the friend 834 // class template to the template in scope, because that would perform 835 // checking of the template parameter lists that can't be performed 836 // until the outer context is instantiated. 837 PrevDecl = PrevClassTemplate = 0; 838 } 839 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 840 PrevDecl = PrevClassTemplate = 0; 841 842 if (PrevClassTemplate) { 843 // Ensure that the template parameter lists are compatible. 844 if (!TemplateParameterListsAreEqual(TemplateParams, 845 PrevClassTemplate->getTemplateParameters(), 846 /*Complain=*/true, 847 TPL_TemplateMatch)) 848 return true; 849 850 // C++ [temp.class]p4: 851 // In a redeclaration, partial specialization, explicit 852 // specialization or explicit instantiation of a class template, 853 // the class-key shall agree in kind with the original class 854 // template declaration (7.1.5.3). 855 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 856 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 857 Diag(KWLoc, diag::err_use_with_wrong_tag) 858 << Name 859 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 860 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 861 Kind = PrevRecordDecl->getTagKind(); 862 } 863 864 // Check for redefinition of this class template. 865 if (TUK == TUK_Definition) { 866 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 867 Diag(NameLoc, diag::err_redefinition) << Name; 868 Diag(Def->getLocation(), diag::note_previous_definition); 869 // FIXME: Would it make sense to try to "forget" the previous 870 // definition, as part of error recovery? 871 return true; 872 } 873 } 874 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 875 // Maybe we will complain about the shadowed template parameter. 876 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 877 // Just pretend that we didn't see the previous declaration. 878 PrevDecl = 0; 879 } else if (PrevDecl) { 880 // C++ [temp]p5: 881 // A class template shall not have the same name as any other 882 // template, class, function, object, enumeration, enumerator, 883 // namespace, or type in the same scope (3.3), except as specified 884 // in (14.5.4). 885 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 886 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 887 return true; 888 } 889 890 // Check the template parameter list of this declaration, possibly 891 // merging in the template parameter list from the previous class 892 // template declaration. 893 if (CheckTemplateParameterList(TemplateParams, 894 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 895 TPC_ClassTemplate)) 896 Invalid = true; 897 898 if (SS.isSet()) { 899 // If the name of the template was qualified, we must be defining the 900 // template out-of-line. 901 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 902 !(TUK == TUK_Friend && CurContext->isDependentContext())) 903 Diag(NameLoc, diag::err_member_def_does_not_match) 904 << Name << SemanticContext << SS.getRange(); 905 } 906 907 CXXRecordDecl *NewClass = 908 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 909 PrevClassTemplate? 910 PrevClassTemplate->getTemplatedDecl() : 0, 911 /*DelayTypeCreation=*/true); 912 SetNestedNameSpecifier(NewClass, SS); 913 914 ClassTemplateDecl *NewTemplate 915 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 916 DeclarationName(Name), TemplateParams, 917 NewClass, PrevClassTemplate); 918 NewClass->setDescribedClassTemplate(NewTemplate); 919 920 // Build the type for the class template declaration now. 921 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 922 T = Context.getInjectedClassNameType(NewClass, T); 923 assert(T->isDependentType() && "Class template type is not dependent?"); 924 (void)T; 925 926 // If we are providing an explicit specialization of a member that is a 927 // class template, make a note of that. 928 if (PrevClassTemplate && 929 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 930 PrevClassTemplate->setMemberSpecialization(); 931 932 // Set the access specifier. 933 if (!Invalid && TUK != TUK_Friend) 934 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 935 936 // Set the lexical context of these templates 937 NewClass->setLexicalDeclContext(CurContext); 938 NewTemplate->setLexicalDeclContext(CurContext); 939 940 if (TUK == TUK_Definition) 941 NewClass->startDefinition(); 942 943 if (Attr) 944 ProcessDeclAttributeList(S, NewClass, Attr); 945 946 if (TUK != TUK_Friend) 947 PushOnScopeChains(NewTemplate, S); 948 else { 949 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 950 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 951 NewClass->setAccess(PrevClassTemplate->getAccess()); 952 } 953 954 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 955 PrevClassTemplate != NULL); 956 957 // Friend templates are visible in fairly strange ways. 958 if (!CurContext->isDependentContext()) { 959 DeclContext *DC = SemanticContext->getRedeclContext(); 960 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 961 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 962 PushOnScopeChains(NewTemplate, EnclosingScope, 963 /* AddToContext = */ false); 964 } 965 966 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 967 NewClass->getLocation(), 968 NewTemplate, 969 /*FIXME:*/NewClass->getLocation()); 970 Friend->setAccess(AS_public); 971 CurContext->addDecl(Friend); 972 } 973 974 if (Invalid) { 975 NewTemplate->setInvalidDecl(); 976 NewClass->setInvalidDecl(); 977 } 978 return NewTemplate; 979} 980 981/// \brief Diagnose the presence of a default template argument on a 982/// template parameter, which is ill-formed in certain contexts. 983/// 984/// \returns true if the default template argument should be dropped. 985static bool DiagnoseDefaultTemplateArgument(Sema &S, 986 Sema::TemplateParamListContext TPC, 987 SourceLocation ParamLoc, 988 SourceRange DefArgRange) { 989 switch (TPC) { 990 case Sema::TPC_ClassTemplate: 991 return false; 992 993 case Sema::TPC_FunctionTemplate: 994 // C++ [temp.param]p9: 995 // A default template-argument shall not be specified in a 996 // function template declaration or a function template 997 // definition [...] 998 // (This sentence is not in C++0x, per DR226). 999 if (!S.getLangOptions().CPlusPlus0x) 1000 S.Diag(ParamLoc, 1001 diag::err_template_parameter_default_in_function_template) 1002 << DefArgRange; 1003 return false; 1004 1005 case Sema::TPC_ClassTemplateMember: 1006 // C++0x [temp.param]p9: 1007 // A default template-argument shall not be specified in the 1008 // template-parameter-lists of the definition of a member of a 1009 // class template that appears outside of the member's class. 1010 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1011 << DefArgRange; 1012 return true; 1013 1014 case Sema::TPC_FriendFunctionTemplate: 1015 // C++ [temp.param]p9: 1016 // A default template-argument shall not be specified in a 1017 // friend template declaration. 1018 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1019 << DefArgRange; 1020 return true; 1021 1022 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1023 // for friend function templates if there is only a single 1024 // declaration (and it is a definition). Strange! 1025 } 1026 1027 return false; 1028} 1029 1030/// \brief Checks the validity of a template parameter list, possibly 1031/// considering the template parameter list from a previous 1032/// declaration. 1033/// 1034/// If an "old" template parameter list is provided, it must be 1035/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1036/// template parameter list. 1037/// 1038/// \param NewParams Template parameter list for a new template 1039/// declaration. This template parameter list will be updated with any 1040/// default arguments that are carried through from the previous 1041/// template parameter list. 1042/// 1043/// \param OldParams If provided, template parameter list from a 1044/// previous declaration of the same template. Default template 1045/// arguments will be merged from the old template parameter list to 1046/// the new template parameter list. 1047/// 1048/// \param TPC Describes the context in which we are checking the given 1049/// template parameter list. 1050/// 1051/// \returns true if an error occurred, false otherwise. 1052bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1053 TemplateParameterList *OldParams, 1054 TemplateParamListContext TPC) { 1055 bool Invalid = false; 1056 1057 // C++ [temp.param]p10: 1058 // The set of default template-arguments available for use with a 1059 // template declaration or definition is obtained by merging the 1060 // default arguments from the definition (if in scope) and all 1061 // declarations in scope in the same way default function 1062 // arguments are (8.3.6). 1063 bool SawDefaultArgument = false; 1064 SourceLocation PreviousDefaultArgLoc; 1065 1066 bool SawParameterPack = false; 1067 SourceLocation ParameterPackLoc; 1068 1069 // Dummy initialization to avoid warnings. 1070 TemplateParameterList::iterator OldParam = NewParams->end(); 1071 if (OldParams) 1072 OldParam = OldParams->begin(); 1073 1074 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1075 NewParamEnd = NewParams->end(); 1076 NewParam != NewParamEnd; ++NewParam) { 1077 // Variables used to diagnose redundant default arguments 1078 bool RedundantDefaultArg = false; 1079 SourceLocation OldDefaultLoc; 1080 SourceLocation NewDefaultLoc; 1081 1082 // Variables used to diagnose missing default arguments 1083 bool MissingDefaultArg = false; 1084 1085 // C++0x [temp.param]p11: 1086 // If a template parameter of a class template is a template parameter pack, 1087 // it must be the last template parameter. 1088 if (SawParameterPack) { 1089 Diag(ParameterPackLoc, 1090 diag::err_template_param_pack_must_be_last_template_parameter); 1091 Invalid = true; 1092 } 1093 1094 if (TemplateTypeParmDecl *NewTypeParm 1095 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1096 // Check the presence of a default argument here. 1097 if (NewTypeParm->hasDefaultArgument() && 1098 DiagnoseDefaultTemplateArgument(*this, TPC, 1099 NewTypeParm->getLocation(), 1100 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1101 .getSourceRange())) 1102 NewTypeParm->removeDefaultArgument(); 1103 1104 // Merge default arguments for template type parameters. 1105 TemplateTypeParmDecl *OldTypeParm 1106 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1107 1108 if (NewTypeParm->isParameterPack()) { 1109 assert(!NewTypeParm->hasDefaultArgument() && 1110 "Parameter packs can't have a default argument!"); 1111 SawParameterPack = true; 1112 ParameterPackLoc = NewTypeParm->getLocation(); 1113 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1114 NewTypeParm->hasDefaultArgument()) { 1115 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1116 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1117 SawDefaultArgument = true; 1118 RedundantDefaultArg = true; 1119 PreviousDefaultArgLoc = NewDefaultLoc; 1120 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1121 // Merge the default argument from the old declaration to the 1122 // new declaration. 1123 SawDefaultArgument = true; 1124 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1125 true); 1126 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1127 } else if (NewTypeParm->hasDefaultArgument()) { 1128 SawDefaultArgument = true; 1129 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1130 } else if (SawDefaultArgument) 1131 MissingDefaultArg = true; 1132 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1133 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1134 // Check the presence of a default argument here. 1135 if (NewNonTypeParm->hasDefaultArgument() && 1136 DiagnoseDefaultTemplateArgument(*this, TPC, 1137 NewNonTypeParm->getLocation(), 1138 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1139 NewNonTypeParm->removeDefaultArgument(); 1140 } 1141 1142 // Merge default arguments for non-type template parameters 1143 NonTypeTemplateParmDecl *OldNonTypeParm 1144 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1145 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1146 NewNonTypeParm->hasDefaultArgument()) { 1147 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1148 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1149 SawDefaultArgument = true; 1150 RedundantDefaultArg = true; 1151 PreviousDefaultArgLoc = NewDefaultLoc; 1152 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1153 // Merge the default argument from the old declaration to the 1154 // new declaration. 1155 SawDefaultArgument = true; 1156 // FIXME: We need to create a new kind of "default argument" 1157 // expression that points to a previous template template 1158 // parameter. 1159 NewNonTypeParm->setDefaultArgument( 1160 OldNonTypeParm->getDefaultArgument(), 1161 /*Inherited=*/ true); 1162 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1163 } else if (NewNonTypeParm->hasDefaultArgument()) { 1164 SawDefaultArgument = true; 1165 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1166 } else if (SawDefaultArgument) 1167 MissingDefaultArg = true; 1168 } else { 1169 // Check the presence of a default argument here. 1170 TemplateTemplateParmDecl *NewTemplateParm 1171 = cast<TemplateTemplateParmDecl>(*NewParam); 1172 if (NewTemplateParm->hasDefaultArgument() && 1173 DiagnoseDefaultTemplateArgument(*this, TPC, 1174 NewTemplateParm->getLocation(), 1175 NewTemplateParm->getDefaultArgument().getSourceRange())) 1176 NewTemplateParm->removeDefaultArgument(); 1177 1178 // Merge default arguments for template template parameters 1179 TemplateTemplateParmDecl *OldTemplateParm 1180 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1181 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1182 NewTemplateParm->hasDefaultArgument()) { 1183 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1184 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1185 SawDefaultArgument = true; 1186 RedundantDefaultArg = true; 1187 PreviousDefaultArgLoc = NewDefaultLoc; 1188 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1189 // Merge the default argument from the old declaration to the 1190 // new declaration. 1191 SawDefaultArgument = true; 1192 // FIXME: We need to create a new kind of "default argument" expression 1193 // that points to a previous template template parameter. 1194 NewTemplateParm->setDefaultArgument( 1195 OldTemplateParm->getDefaultArgument(), 1196 /*Inherited=*/ true); 1197 PreviousDefaultArgLoc 1198 = OldTemplateParm->getDefaultArgument().getLocation(); 1199 } else if (NewTemplateParm->hasDefaultArgument()) { 1200 SawDefaultArgument = true; 1201 PreviousDefaultArgLoc 1202 = NewTemplateParm->getDefaultArgument().getLocation(); 1203 } else if (SawDefaultArgument) 1204 MissingDefaultArg = true; 1205 } 1206 1207 if (RedundantDefaultArg) { 1208 // C++ [temp.param]p12: 1209 // A template-parameter shall not be given default arguments 1210 // by two different declarations in the same scope. 1211 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1212 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1213 Invalid = true; 1214 } else if (MissingDefaultArg) { 1215 // C++ [temp.param]p11: 1216 // If a template-parameter has a default template-argument, 1217 // all subsequent template-parameters shall have a default 1218 // template-argument supplied. 1219 Diag((*NewParam)->getLocation(), 1220 diag::err_template_param_default_arg_missing); 1221 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1222 Invalid = true; 1223 } 1224 1225 // If we have an old template parameter list that we're merging 1226 // in, move on to the next parameter. 1227 if (OldParams) 1228 ++OldParam; 1229 } 1230 1231 return Invalid; 1232} 1233 1234namespace { 1235 1236/// A class which looks for a use of a certain level of template 1237/// parameter. 1238struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1239 typedef RecursiveASTVisitor<DependencyChecker> super; 1240 1241 unsigned Depth; 1242 bool Match; 1243 1244 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1245 NamedDecl *ND = Params->getParam(0); 1246 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1247 Depth = PD->getDepth(); 1248 } else if (NonTypeTemplateParmDecl *PD = 1249 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1250 Depth = PD->getDepth(); 1251 } else { 1252 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1253 } 1254 } 1255 1256 bool Matches(unsigned ParmDepth) { 1257 if (ParmDepth >= Depth) { 1258 Match = true; 1259 return true; 1260 } 1261 return false; 1262 } 1263 1264 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1265 return !Matches(T->getDepth()); 1266 } 1267 1268 bool TraverseTemplateName(TemplateName N) { 1269 if (TemplateTemplateParmDecl *PD = 1270 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1271 if (Matches(PD->getDepth())) return false; 1272 return super::TraverseTemplateName(N); 1273 } 1274 1275 bool VisitDeclRefExpr(DeclRefExpr *E) { 1276 if (NonTypeTemplateParmDecl *PD = 1277 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1278 if (PD->getDepth() == Depth) { 1279 Match = true; 1280 return false; 1281 } 1282 } 1283 return super::VisitDeclRefExpr(E); 1284 } 1285}; 1286} 1287 1288/// Determines whether a template-id depends on the given parameter 1289/// list. 1290static bool 1291DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1292 TemplateParameterList *Params) { 1293 DependencyChecker Checker(Params); 1294 Checker.TraverseType(QualType(TemplateId, 0)); 1295 return Checker.Match; 1296} 1297 1298/// \brief Match the given template parameter lists to the given scope 1299/// specifier, returning the template parameter list that applies to the 1300/// name. 1301/// 1302/// \param DeclStartLoc the start of the declaration that has a scope 1303/// specifier or a template parameter list. 1304/// 1305/// \param SS the scope specifier that will be matched to the given template 1306/// parameter lists. This scope specifier precedes a qualified name that is 1307/// being declared. 1308/// 1309/// \param ParamLists the template parameter lists, from the outermost to the 1310/// innermost template parameter lists. 1311/// 1312/// \param NumParamLists the number of template parameter lists in ParamLists. 1313/// 1314/// \param IsFriend Whether to apply the slightly different rules for 1315/// matching template parameters to scope specifiers in friend 1316/// declarations. 1317/// 1318/// \param IsExplicitSpecialization will be set true if the entity being 1319/// declared is an explicit specialization, false otherwise. 1320/// 1321/// \returns the template parameter list, if any, that corresponds to the 1322/// name that is preceded by the scope specifier @p SS. This template 1323/// parameter list may be have template parameters (if we're declaring a 1324/// template) or may have no template parameters (if we're declaring a 1325/// template specialization), or may be NULL (if we were's declaring isn't 1326/// itself a template). 1327TemplateParameterList * 1328Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1329 const CXXScopeSpec &SS, 1330 TemplateParameterList **ParamLists, 1331 unsigned NumParamLists, 1332 bool IsFriend, 1333 bool &IsExplicitSpecialization, 1334 bool &Invalid) { 1335 IsExplicitSpecialization = false; 1336 1337 // Find the template-ids that occur within the nested-name-specifier. These 1338 // template-ids will match up with the template parameter lists. 1339 llvm::SmallVector<const TemplateSpecializationType *, 4> 1340 TemplateIdsInSpecifier; 1341 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1342 ExplicitSpecializationsInSpecifier; 1343 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1344 NNS; NNS = NNS->getPrefix()) { 1345 const Type *T = NNS->getAsType(); 1346 if (!T) break; 1347 1348 // C++0x [temp.expl.spec]p17: 1349 // A member or a member template may be nested within many 1350 // enclosing class templates. In an explicit specialization for 1351 // such a member, the member declaration shall be preceded by a 1352 // template<> for each enclosing class template that is 1353 // explicitly specialized. 1354 // 1355 // Following the existing practice of GNU and EDG, we allow a typedef of a 1356 // template specialization type. 1357 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1358 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1359 1360 if (const TemplateSpecializationType *SpecType 1361 = dyn_cast<TemplateSpecializationType>(T)) { 1362 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1363 if (!Template) 1364 continue; // FIXME: should this be an error? probably... 1365 1366 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1367 ClassTemplateSpecializationDecl *SpecDecl 1368 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1369 // If the nested name specifier refers to an explicit specialization, 1370 // we don't need a template<> header. 1371 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1372 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1373 continue; 1374 } 1375 } 1376 1377 TemplateIdsInSpecifier.push_back(SpecType); 1378 } 1379 } 1380 1381 // Reverse the list of template-ids in the scope specifier, so that we can 1382 // more easily match up the template-ids and the template parameter lists. 1383 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1384 1385 SourceLocation FirstTemplateLoc = DeclStartLoc; 1386 if (NumParamLists) 1387 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1388 1389 // Match the template-ids found in the specifier to the template parameter 1390 // lists. 1391 unsigned ParamIdx = 0, TemplateIdx = 0; 1392 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1393 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1394 const TemplateSpecializationType *TemplateId 1395 = TemplateIdsInSpecifier[TemplateIdx]; 1396 bool DependentTemplateId = TemplateId->isDependentType(); 1397 1398 // In friend declarations we can have template-ids which don't 1399 // depend on the corresponding template parameter lists. But 1400 // assume that empty parameter lists are supposed to match this 1401 // template-id. 1402 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1403 if (!DependentTemplateId || 1404 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1405 continue; 1406 } 1407 1408 if (ParamIdx >= NumParamLists) { 1409 // We have a template-id without a corresponding template parameter 1410 // list. 1411 1412 // ...which is fine if this is a friend declaration. 1413 if (IsFriend) { 1414 IsExplicitSpecialization = true; 1415 break; 1416 } 1417 1418 if (DependentTemplateId) { 1419 // FIXME: the location information here isn't great. 1420 Diag(SS.getRange().getBegin(), 1421 diag::err_template_spec_needs_template_parameters) 1422 << QualType(TemplateId, 0) 1423 << SS.getRange(); 1424 Invalid = true; 1425 } else { 1426 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1427 << SS.getRange() 1428 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1429 IsExplicitSpecialization = true; 1430 } 1431 return 0; 1432 } 1433 1434 // Check the template parameter list against its corresponding template-id. 1435 if (DependentTemplateId) { 1436 TemplateParameterList *ExpectedTemplateParams = 0; 1437 1438 // Are there cases in (e.g.) friends where this won't match? 1439 if (const InjectedClassNameType *Injected 1440 = TemplateId->getAs<InjectedClassNameType>()) { 1441 CXXRecordDecl *Record = Injected->getDecl(); 1442 if (ClassTemplatePartialSpecializationDecl *Partial = 1443 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1444 ExpectedTemplateParams = Partial->getTemplateParameters(); 1445 else 1446 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1447 ->getTemplateParameters(); 1448 } 1449 1450 if (ExpectedTemplateParams) 1451 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1452 ExpectedTemplateParams, 1453 true, TPL_TemplateMatch); 1454 1455 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1456 TPC_ClassTemplateMember); 1457 } else if (ParamLists[ParamIdx]->size() > 0) 1458 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1459 diag::err_template_param_list_matches_nontemplate) 1460 << TemplateId 1461 << ParamLists[ParamIdx]->getSourceRange(); 1462 else 1463 IsExplicitSpecialization = true; 1464 1465 ++ParamIdx; 1466 } 1467 1468 // If there were at least as many template-ids as there were template 1469 // parameter lists, then there are no template parameter lists remaining for 1470 // the declaration itself. 1471 if (ParamIdx >= NumParamLists) 1472 return 0; 1473 1474 // If there were too many template parameter lists, complain about that now. 1475 if (ParamIdx != NumParamLists - 1) { 1476 while (ParamIdx < NumParamLists - 1) { 1477 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1478 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1479 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1480 : diag::err_template_spec_extra_headers) 1481 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1482 ParamLists[ParamIdx]->getRAngleLoc()); 1483 1484 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1485 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1486 diag::note_explicit_template_spec_does_not_need_header) 1487 << ExplicitSpecializationsInSpecifier.back(); 1488 ExplicitSpecializationsInSpecifier.pop_back(); 1489 } 1490 1491 // We have a template parameter list with no corresponding scope, which 1492 // means that the resulting template declaration can't be instantiated 1493 // properly (we'll end up with dependent nodes when we shouldn't). 1494 if (!isExplicitSpecHeader) 1495 Invalid = true; 1496 1497 ++ParamIdx; 1498 } 1499 } 1500 1501 // Return the last template parameter list, which corresponds to the 1502 // entity being declared. 1503 return ParamLists[NumParamLists - 1]; 1504} 1505 1506QualType Sema::CheckTemplateIdType(TemplateName Name, 1507 SourceLocation TemplateLoc, 1508 const TemplateArgumentListInfo &TemplateArgs) { 1509 TemplateDecl *Template = Name.getAsTemplateDecl(); 1510 if (!Template) { 1511 // The template name does not resolve to a template, so we just 1512 // build a dependent template-id type. 1513 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1514 } 1515 1516 // Check that the template argument list is well-formed for this 1517 // template. 1518 llvm::SmallVector<TemplateArgument, 4> Converted; 1519 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1520 false, Converted)) 1521 return QualType(); 1522 1523 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1524 "Converted template argument list is too short!"); 1525 1526 QualType CanonType; 1527 1528 if (Name.isDependent() || 1529 TemplateSpecializationType::anyDependentTemplateArguments( 1530 TemplateArgs)) { 1531 // This class template specialization is a dependent 1532 // type. Therefore, its canonical type is another class template 1533 // specialization type that contains all of the converted 1534 // arguments in canonical form. This ensures that, e.g., A<T> and 1535 // A<T, T> have identical types when A is declared as: 1536 // 1537 // template<typename T, typename U = T> struct A; 1538 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1539 CanonType = Context.getTemplateSpecializationType(CanonName, 1540 Converted.data(), 1541 Converted.size()); 1542 1543 // FIXME: CanonType is not actually the canonical type, and unfortunately 1544 // it is a TemplateSpecializationType that we will never use again. 1545 // In the future, we need to teach getTemplateSpecializationType to only 1546 // build the canonical type and return that to us. 1547 CanonType = Context.getCanonicalType(CanonType); 1548 1549 // This might work out to be a current instantiation, in which 1550 // case the canonical type needs to be the InjectedClassNameType. 1551 // 1552 // TODO: in theory this could be a simple hashtable lookup; most 1553 // changes to CurContext don't change the set of current 1554 // instantiations. 1555 if (isa<ClassTemplateDecl>(Template)) { 1556 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1557 // If we get out to a namespace, we're done. 1558 if (Ctx->isFileContext()) break; 1559 1560 // If this isn't a record, keep looking. 1561 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1562 if (!Record) continue; 1563 1564 // Look for one of the two cases with InjectedClassNameTypes 1565 // and check whether it's the same template. 1566 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1567 !Record->getDescribedClassTemplate()) 1568 continue; 1569 1570 // Fetch the injected class name type and check whether its 1571 // injected type is equal to the type we just built. 1572 QualType ICNT = Context.getTypeDeclType(Record); 1573 QualType Injected = cast<InjectedClassNameType>(ICNT) 1574 ->getInjectedSpecializationType(); 1575 1576 if (CanonType != Injected->getCanonicalTypeInternal()) 1577 continue; 1578 1579 // If so, the canonical type of this TST is the injected 1580 // class name type of the record we just found. 1581 assert(ICNT.isCanonical()); 1582 CanonType = ICNT; 1583 break; 1584 } 1585 } 1586 } else if (ClassTemplateDecl *ClassTemplate 1587 = dyn_cast<ClassTemplateDecl>(Template)) { 1588 // Find the class template specialization declaration that 1589 // corresponds to these arguments. 1590 void *InsertPos = 0; 1591 ClassTemplateSpecializationDecl *Decl 1592 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1593 InsertPos); 1594 if (!Decl) { 1595 // This is the first time we have referenced this class template 1596 // specialization. Create the canonical declaration and add it to 1597 // the set of specializations. 1598 Decl = ClassTemplateSpecializationDecl::Create(Context, 1599 ClassTemplate->getTemplatedDecl()->getTagKind(), 1600 ClassTemplate->getDeclContext(), 1601 ClassTemplate->getLocation(), 1602 ClassTemplate, 1603 Converted.data(), 1604 Converted.size(), 0); 1605 ClassTemplate->AddSpecialization(Decl, InsertPos); 1606 Decl->setLexicalDeclContext(CurContext); 1607 } 1608 1609 CanonType = Context.getTypeDeclType(Decl); 1610 assert(isa<RecordType>(CanonType) && 1611 "type of non-dependent specialization is not a RecordType"); 1612 } 1613 1614 // Build the fully-sugared type for this class template 1615 // specialization, which refers back to the class template 1616 // specialization we created or found. 1617 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1618} 1619 1620TypeResult 1621Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1622 SourceLocation LAngleLoc, 1623 ASTTemplateArgsPtr TemplateArgsIn, 1624 SourceLocation RAngleLoc) { 1625 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1626 1627 // Translate the parser's template argument list in our AST format. 1628 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1629 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1630 1631 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1632 TemplateArgsIn.release(); 1633 1634 if (Result.isNull()) 1635 return true; 1636 1637 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1638 TemplateSpecializationTypeLoc TL 1639 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1640 TL.setTemplateNameLoc(TemplateLoc); 1641 TL.setLAngleLoc(LAngleLoc); 1642 TL.setRAngleLoc(RAngleLoc); 1643 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1644 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1645 1646 return CreateParsedType(Result, DI); 1647} 1648 1649TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1650 TypeResult TypeResult, 1651 TagUseKind TUK, 1652 TypeSpecifierType TagSpec, 1653 SourceLocation TagLoc) { 1654 if (TypeResult.isInvalid()) 1655 return ::TypeResult(); 1656 1657 TypeSourceInfo *DI; 1658 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1659 1660 // Verify the tag specifier. 1661 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1662 1663 if (const RecordType *RT = Type->getAs<RecordType>()) { 1664 RecordDecl *D = RT->getDecl(); 1665 1666 IdentifierInfo *Id = D->getIdentifier(); 1667 assert(Id && "templated class must have an identifier"); 1668 1669 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1670 Diag(TagLoc, diag::err_use_with_wrong_tag) 1671 << Type 1672 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1673 Diag(D->getLocation(), diag::note_previous_use); 1674 } 1675 } 1676 1677 ElaboratedTypeKeyword Keyword 1678 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1679 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1680 1681 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1682 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1683 TL.setKeywordLoc(TagLoc); 1684 TL.setQualifierRange(SS.getRange()); 1685 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1686 return CreateParsedType(ElabType, ElabDI); 1687} 1688 1689ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1690 LookupResult &R, 1691 bool RequiresADL, 1692 const TemplateArgumentListInfo &TemplateArgs) { 1693 // FIXME: Can we do any checking at this point? I guess we could check the 1694 // template arguments that we have against the template name, if the template 1695 // name refers to a single template. That's not a terribly common case, 1696 // though. 1697 1698 // These should be filtered out by our callers. 1699 assert(!R.empty() && "empty lookup results when building templateid"); 1700 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1701 1702 NestedNameSpecifier *Qualifier = 0; 1703 SourceRange QualifierRange; 1704 if (SS.isSet()) { 1705 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1706 QualifierRange = SS.getRange(); 1707 } 1708 1709 // We don't want lookup warnings at this point. 1710 R.suppressDiagnostics(); 1711 1712 bool Dependent 1713 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1714 &TemplateArgs); 1715 UnresolvedLookupExpr *ULE 1716 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1717 Qualifier, QualifierRange, 1718 R.getLookupNameInfo(), 1719 RequiresADL, TemplateArgs, 1720 R.begin(), R.end()); 1721 1722 return Owned(ULE); 1723} 1724 1725// We actually only call this from template instantiation. 1726ExprResult 1727Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1728 const DeclarationNameInfo &NameInfo, 1729 const TemplateArgumentListInfo &TemplateArgs) { 1730 DeclContext *DC; 1731 if (!(DC = computeDeclContext(SS, false)) || 1732 DC->isDependentContext() || 1733 RequireCompleteDeclContext(SS, DC)) 1734 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1735 1736 bool MemberOfUnknownSpecialization; 1737 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1738 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1739 MemberOfUnknownSpecialization); 1740 1741 if (R.isAmbiguous()) 1742 return ExprError(); 1743 1744 if (R.empty()) { 1745 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1746 << NameInfo.getName() << SS.getRange(); 1747 return ExprError(); 1748 } 1749 1750 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1751 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1752 << (NestedNameSpecifier*) SS.getScopeRep() 1753 << NameInfo.getName() << SS.getRange(); 1754 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1755 return ExprError(); 1756 } 1757 1758 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1759} 1760 1761/// \brief Form a dependent template name. 1762/// 1763/// This action forms a dependent template name given the template 1764/// name and its (presumably dependent) scope specifier. For 1765/// example, given "MetaFun::template apply", the scope specifier \p 1766/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1767/// of the "template" keyword, and "apply" is the \p Name. 1768TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1769 SourceLocation TemplateKWLoc, 1770 CXXScopeSpec &SS, 1771 UnqualifiedId &Name, 1772 ParsedType ObjectType, 1773 bool EnteringContext, 1774 TemplateTy &Result) { 1775 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1776 !getLangOptions().CPlusPlus0x) 1777 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1778 << FixItHint::CreateRemoval(TemplateKWLoc); 1779 1780 DeclContext *LookupCtx = 0; 1781 if (SS.isSet()) 1782 LookupCtx = computeDeclContext(SS, EnteringContext); 1783 if (!LookupCtx && ObjectType) 1784 LookupCtx = computeDeclContext(ObjectType.get()); 1785 if (LookupCtx) { 1786 // C++0x [temp.names]p5: 1787 // If a name prefixed by the keyword template is not the name of 1788 // a template, the program is ill-formed. [Note: the keyword 1789 // template may not be applied to non-template members of class 1790 // templates. -end note ] [ Note: as is the case with the 1791 // typename prefix, the template prefix is allowed in cases 1792 // where it is not strictly necessary; i.e., when the 1793 // nested-name-specifier or the expression on the left of the -> 1794 // or . is not dependent on a template-parameter, or the use 1795 // does not appear in the scope of a template. -end note] 1796 // 1797 // Note: C++03 was more strict here, because it banned the use of 1798 // the "template" keyword prior to a template-name that was not a 1799 // dependent name. C++ DR468 relaxed this requirement (the 1800 // "template" keyword is now permitted). We follow the C++0x 1801 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1802 bool MemberOfUnknownSpecialization; 1803 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1804 ObjectType, EnteringContext, Result, 1805 MemberOfUnknownSpecialization); 1806 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1807 isa<CXXRecordDecl>(LookupCtx) && 1808 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1809 // This is a dependent template. Handle it below. 1810 } else if (TNK == TNK_Non_template) { 1811 Diag(Name.getSourceRange().getBegin(), 1812 diag::err_template_kw_refers_to_non_template) 1813 << GetNameFromUnqualifiedId(Name).getName() 1814 << Name.getSourceRange() 1815 << TemplateKWLoc; 1816 return TNK_Non_template; 1817 } else { 1818 // We found something; return it. 1819 return TNK; 1820 } 1821 } 1822 1823 NestedNameSpecifier *Qualifier 1824 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1825 1826 switch (Name.getKind()) { 1827 case UnqualifiedId::IK_Identifier: 1828 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1829 Name.Identifier)); 1830 return TNK_Dependent_template_name; 1831 1832 case UnqualifiedId::IK_OperatorFunctionId: 1833 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1834 Name.OperatorFunctionId.Operator)); 1835 return TNK_Dependent_template_name; 1836 1837 case UnqualifiedId::IK_LiteralOperatorId: 1838 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1839 1840 default: 1841 break; 1842 } 1843 1844 Diag(Name.getSourceRange().getBegin(), 1845 diag::err_template_kw_refers_to_non_template) 1846 << GetNameFromUnqualifiedId(Name).getName() 1847 << Name.getSourceRange() 1848 << TemplateKWLoc; 1849 return TNK_Non_template; 1850} 1851 1852bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1853 const TemplateArgumentLoc &AL, 1854 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1855 const TemplateArgument &Arg = AL.getArgument(); 1856 1857 // Check template type parameter. 1858 switch(Arg.getKind()) { 1859 case TemplateArgument::Type: 1860 // C++ [temp.arg.type]p1: 1861 // A template-argument for a template-parameter which is a 1862 // type shall be a type-id. 1863 break; 1864 case TemplateArgument::Template: { 1865 // We have a template type parameter but the template argument 1866 // is a template without any arguments. 1867 SourceRange SR = AL.getSourceRange(); 1868 TemplateName Name = Arg.getAsTemplate(); 1869 Diag(SR.getBegin(), diag::err_template_missing_args) 1870 << Name << SR; 1871 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1872 Diag(Decl->getLocation(), diag::note_template_decl_here); 1873 1874 return true; 1875 } 1876 default: { 1877 // We have a template type parameter but the template argument 1878 // is not a type. 1879 SourceRange SR = AL.getSourceRange(); 1880 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1881 Diag(Param->getLocation(), diag::note_template_param_here); 1882 1883 return true; 1884 } 1885 } 1886 1887 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1888 return true; 1889 1890 // Add the converted template type argument. 1891 Converted.push_back( 1892 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1893 return false; 1894} 1895 1896/// \brief Substitute template arguments into the default template argument for 1897/// the given template type parameter. 1898/// 1899/// \param SemaRef the semantic analysis object for which we are performing 1900/// the substitution. 1901/// 1902/// \param Template the template that we are synthesizing template arguments 1903/// for. 1904/// 1905/// \param TemplateLoc the location of the template name that started the 1906/// template-id we are checking. 1907/// 1908/// \param RAngleLoc the location of the right angle bracket ('>') that 1909/// terminates the template-id. 1910/// 1911/// \param Param the template template parameter whose default we are 1912/// substituting into. 1913/// 1914/// \param Converted the list of template arguments provided for template 1915/// parameters that precede \p Param in the template parameter list. 1916/// 1917/// \returns the substituted template argument, or NULL if an error occurred. 1918static TypeSourceInfo * 1919SubstDefaultTemplateArgument(Sema &SemaRef, 1920 TemplateDecl *Template, 1921 SourceLocation TemplateLoc, 1922 SourceLocation RAngleLoc, 1923 TemplateTypeParmDecl *Param, 1924 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1925 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1926 1927 // If the argument type is dependent, instantiate it now based 1928 // on the previously-computed template arguments. 1929 if (ArgType->getType()->isDependentType()) { 1930 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1931 Converted.data(), Converted.size()); 1932 1933 MultiLevelTemplateArgumentList AllTemplateArgs 1934 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1935 1936 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1937 Template, Converted.data(), 1938 Converted.size(), 1939 SourceRange(TemplateLoc, RAngleLoc)); 1940 1941 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1942 Param->getDefaultArgumentLoc(), 1943 Param->getDeclName()); 1944 } 1945 1946 return ArgType; 1947} 1948 1949/// \brief Substitute template arguments into the default template argument for 1950/// the given non-type template parameter. 1951/// 1952/// \param SemaRef the semantic analysis object for which we are performing 1953/// the substitution. 1954/// 1955/// \param Template the template that we are synthesizing template arguments 1956/// for. 1957/// 1958/// \param TemplateLoc the location of the template name that started the 1959/// template-id we are checking. 1960/// 1961/// \param RAngleLoc the location of the right angle bracket ('>') that 1962/// terminates the template-id. 1963/// 1964/// \param Param the non-type template parameter whose default we are 1965/// substituting into. 1966/// 1967/// \param Converted the list of template arguments provided for template 1968/// parameters that precede \p Param in the template parameter list. 1969/// 1970/// \returns the substituted template argument, or NULL if an error occurred. 1971static ExprResult 1972SubstDefaultTemplateArgument(Sema &SemaRef, 1973 TemplateDecl *Template, 1974 SourceLocation TemplateLoc, 1975 SourceLocation RAngleLoc, 1976 NonTypeTemplateParmDecl *Param, 1977 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1978 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1979 Converted.data(), Converted.size()); 1980 1981 MultiLevelTemplateArgumentList AllTemplateArgs 1982 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1983 1984 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1985 Template, Converted.data(), 1986 Converted.size(), 1987 SourceRange(TemplateLoc, RAngleLoc)); 1988 1989 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1990} 1991 1992/// \brief Substitute template arguments into the default template argument for 1993/// the given template template parameter. 1994/// 1995/// \param SemaRef the semantic analysis object for which we are performing 1996/// the substitution. 1997/// 1998/// \param Template the template that we are synthesizing template arguments 1999/// for. 2000/// 2001/// \param TemplateLoc the location of the template name that started the 2002/// template-id we are checking. 2003/// 2004/// \param RAngleLoc the location of the right angle bracket ('>') that 2005/// terminates the template-id. 2006/// 2007/// \param Param the template template parameter whose default we are 2008/// substituting into. 2009/// 2010/// \param Converted the list of template arguments provided for template 2011/// parameters that precede \p Param in the template parameter list. 2012/// 2013/// \returns the substituted template argument, or NULL if an error occurred. 2014static TemplateName 2015SubstDefaultTemplateArgument(Sema &SemaRef, 2016 TemplateDecl *Template, 2017 SourceLocation TemplateLoc, 2018 SourceLocation RAngleLoc, 2019 TemplateTemplateParmDecl *Param, 2020 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2021 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2022 Converted.data(), Converted.size()); 2023 2024 MultiLevelTemplateArgumentList AllTemplateArgs 2025 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2026 2027 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2028 Template, Converted.data(), 2029 Converted.size(), 2030 SourceRange(TemplateLoc, RAngleLoc)); 2031 2032 return SemaRef.SubstTemplateName( 2033 Param->getDefaultArgument().getArgument().getAsTemplate(), 2034 Param->getDefaultArgument().getTemplateNameLoc(), 2035 AllTemplateArgs); 2036} 2037 2038/// \brief If the given template parameter has a default template 2039/// argument, substitute into that default template argument and 2040/// return the corresponding template argument. 2041TemplateArgumentLoc 2042Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2043 SourceLocation TemplateLoc, 2044 SourceLocation RAngleLoc, 2045 Decl *Param, 2046 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2047 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2048 if (!TypeParm->hasDefaultArgument()) 2049 return TemplateArgumentLoc(); 2050 2051 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2052 TemplateLoc, 2053 RAngleLoc, 2054 TypeParm, 2055 Converted); 2056 if (DI) 2057 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2058 2059 return TemplateArgumentLoc(); 2060 } 2061 2062 if (NonTypeTemplateParmDecl *NonTypeParm 2063 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2064 if (!NonTypeParm->hasDefaultArgument()) 2065 return TemplateArgumentLoc(); 2066 2067 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2068 TemplateLoc, 2069 RAngleLoc, 2070 NonTypeParm, 2071 Converted); 2072 if (Arg.isInvalid()) 2073 return TemplateArgumentLoc(); 2074 2075 Expr *ArgE = Arg.takeAs<Expr>(); 2076 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2077 } 2078 2079 TemplateTemplateParmDecl *TempTempParm 2080 = cast<TemplateTemplateParmDecl>(Param); 2081 if (!TempTempParm->hasDefaultArgument()) 2082 return TemplateArgumentLoc(); 2083 2084 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2085 TemplateLoc, 2086 RAngleLoc, 2087 TempTempParm, 2088 Converted); 2089 if (TName.isNull()) 2090 return TemplateArgumentLoc(); 2091 2092 return TemplateArgumentLoc(TemplateArgument(TName), 2093 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2094 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2095} 2096 2097/// \brief Check that the given template argument corresponds to the given 2098/// template parameter. 2099bool Sema::CheckTemplateArgument(NamedDecl *Param, 2100 const TemplateArgumentLoc &Arg, 2101 TemplateDecl *Template, 2102 SourceLocation TemplateLoc, 2103 SourceLocation RAngleLoc, 2104 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2105 CheckTemplateArgumentKind CTAK) { 2106 // Check template type parameters. 2107 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2108 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2109 2110 // Check non-type template parameters. 2111 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2112 // Do substitution on the type of the non-type template parameter 2113 // with the template arguments we've seen thus far. But if the 2114 // template has a dependent context then we cannot substitute yet. 2115 QualType NTTPType = NTTP->getType(); 2116 if (NTTPType->isDependentType() && 2117 !isa<TemplateTemplateParmDecl>(Template) && 2118 !Template->getDeclContext()->isDependentContext()) { 2119 // Do substitution on the type of the non-type template parameter. 2120 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2121 NTTP, Converted.data(), Converted.size(), 2122 SourceRange(TemplateLoc, RAngleLoc)); 2123 2124 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2125 Converted.data(), Converted.size()); 2126 NTTPType = SubstType(NTTPType, 2127 MultiLevelTemplateArgumentList(TemplateArgs), 2128 NTTP->getLocation(), 2129 NTTP->getDeclName()); 2130 // If that worked, check the non-type template parameter type 2131 // for validity. 2132 if (!NTTPType.isNull()) 2133 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2134 NTTP->getLocation()); 2135 if (NTTPType.isNull()) 2136 return true; 2137 } 2138 2139 switch (Arg.getArgument().getKind()) { 2140 case TemplateArgument::Null: 2141 assert(false && "Should never see a NULL template argument here"); 2142 return true; 2143 2144 case TemplateArgument::Expression: { 2145 Expr *E = Arg.getArgument().getAsExpr(); 2146 TemplateArgument Result; 2147 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2148 return true; 2149 2150 Converted.push_back(Result); 2151 break; 2152 } 2153 2154 case TemplateArgument::Declaration: 2155 case TemplateArgument::Integral: 2156 // We've already checked this template argument, so just copy 2157 // it to the list of converted arguments. 2158 Converted.push_back(Arg.getArgument()); 2159 break; 2160 2161 case TemplateArgument::Template: 2162 // We were given a template template argument. It may not be ill-formed; 2163 // see below. 2164 if (DependentTemplateName *DTN 2165 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2166 // We have a template argument such as \c T::template X, which we 2167 // parsed as a template template argument. However, since we now 2168 // know that we need a non-type template argument, convert this 2169 // template name into an expression. 2170 2171 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2172 Arg.getTemplateNameLoc()); 2173 2174 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2175 DTN->getQualifier(), 2176 Arg.getTemplateQualifierRange(), 2177 NameInfo); 2178 2179 TemplateArgument Result; 2180 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2181 return true; 2182 2183 Converted.push_back(Result); 2184 break; 2185 } 2186 2187 // We have a template argument that actually does refer to a class 2188 // template, template alias, or template template parameter, and 2189 // therefore cannot be a non-type template argument. 2190 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2191 << Arg.getSourceRange(); 2192 2193 Diag(Param->getLocation(), diag::note_template_param_here); 2194 return true; 2195 2196 case TemplateArgument::Type: { 2197 // We have a non-type template parameter but the template 2198 // argument is a type. 2199 2200 // C++ [temp.arg]p2: 2201 // In a template-argument, an ambiguity between a type-id and 2202 // an expression is resolved to a type-id, regardless of the 2203 // form of the corresponding template-parameter. 2204 // 2205 // We warn specifically about this case, since it can be rather 2206 // confusing for users. 2207 QualType T = Arg.getArgument().getAsType(); 2208 SourceRange SR = Arg.getSourceRange(); 2209 if (T->isFunctionType()) 2210 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2211 else 2212 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2213 Diag(Param->getLocation(), diag::note_template_param_here); 2214 return true; 2215 } 2216 2217 case TemplateArgument::Pack: 2218 llvm_unreachable("Caller must expand template argument packs"); 2219 break; 2220 } 2221 2222 return false; 2223 } 2224 2225 2226 // Check template template parameters. 2227 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2228 2229 // Substitute into the template parameter list of the template 2230 // template parameter, since previously-supplied template arguments 2231 // may appear within the template template parameter. 2232 { 2233 // Set up a template instantiation context. 2234 LocalInstantiationScope Scope(*this); 2235 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2236 TempParm, Converted.data(), Converted.size(), 2237 SourceRange(TemplateLoc, RAngleLoc)); 2238 2239 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2240 Converted.data(), Converted.size()); 2241 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2242 SubstDecl(TempParm, CurContext, 2243 MultiLevelTemplateArgumentList(TemplateArgs))); 2244 if (!TempParm) 2245 return true; 2246 2247 // FIXME: TempParam is leaked. 2248 } 2249 2250 switch (Arg.getArgument().getKind()) { 2251 case TemplateArgument::Null: 2252 assert(false && "Should never see a NULL template argument here"); 2253 return true; 2254 2255 case TemplateArgument::Template: 2256 if (CheckTemplateArgument(TempParm, Arg)) 2257 return true; 2258 2259 Converted.push_back(Arg.getArgument()); 2260 break; 2261 2262 case TemplateArgument::Expression: 2263 case TemplateArgument::Type: 2264 // We have a template template parameter but the template 2265 // argument does not refer to a template. 2266 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2267 return true; 2268 2269 case TemplateArgument::Declaration: 2270 llvm_unreachable( 2271 "Declaration argument with template template parameter"); 2272 break; 2273 case TemplateArgument::Integral: 2274 llvm_unreachable( 2275 "Integral argument with template template parameter"); 2276 break; 2277 2278 case TemplateArgument::Pack: 2279 llvm_unreachable("Caller must expand template argument packs"); 2280 break; 2281 } 2282 2283 return false; 2284} 2285 2286/// \brief Check that the given template argument list is well-formed 2287/// for specializing the given template. 2288bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2289 SourceLocation TemplateLoc, 2290 const TemplateArgumentListInfo &TemplateArgs, 2291 bool PartialTemplateArgs, 2292 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2293 TemplateParameterList *Params = Template->getTemplateParameters(); 2294 unsigned NumParams = Params->size(); 2295 unsigned NumArgs = TemplateArgs.size(); 2296 bool Invalid = false; 2297 2298 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2299 2300 bool HasParameterPack = 2301 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2302 2303 if ((NumArgs > NumParams && !HasParameterPack) || 2304 (NumArgs < Params->getMinRequiredArguments() && 2305 !PartialTemplateArgs)) { 2306 // FIXME: point at either the first arg beyond what we can handle, 2307 // or the '>', depending on whether we have too many or too few 2308 // arguments. 2309 SourceRange Range; 2310 if (NumArgs > NumParams) 2311 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2312 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2313 << (NumArgs > NumParams) 2314 << (isa<ClassTemplateDecl>(Template)? 0 : 2315 isa<FunctionTemplateDecl>(Template)? 1 : 2316 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2317 << Template << Range; 2318 Diag(Template->getLocation(), diag::note_template_decl_here) 2319 << Params->getSourceRange(); 2320 Invalid = true; 2321 } 2322 2323 // C++ [temp.arg]p1: 2324 // [...] The type and form of each template-argument specified in 2325 // a template-id shall match the type and form specified for the 2326 // corresponding parameter declared by the template in its 2327 // template-parameter-list. 2328 unsigned ArgIdx = 0; 2329 for (TemplateParameterList::iterator Param = Params->begin(), 2330 ParamEnd = Params->end(); 2331 Param != ParamEnd; ++Param, ++ArgIdx) { 2332 if (ArgIdx > NumArgs && PartialTemplateArgs) 2333 break; 2334 2335 // If we have a template parameter pack, check every remaining template 2336 // argument against that template parameter pack. 2337 if ((*Param)->isTemplateParameterPack()) { 2338 Diag(TemplateLoc, diag::err_variadic_templates_unsupported); 2339 return true; 2340 } 2341 2342 if (ArgIdx < NumArgs) { 2343 // Check the template argument we were given. 2344 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2345 TemplateLoc, RAngleLoc, Converted)) 2346 return true; 2347 2348 continue; 2349 } 2350 2351 // We have a default template argument that we will use. 2352 TemplateArgumentLoc Arg; 2353 2354 // Retrieve the default template argument from the template 2355 // parameter. For each kind of template parameter, we substitute the 2356 // template arguments provided thus far and any "outer" template arguments 2357 // (when the template parameter was part of a nested template) into 2358 // the default argument. 2359 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2360 if (!TTP->hasDefaultArgument()) { 2361 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2362 break; 2363 } 2364 2365 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2366 Template, 2367 TemplateLoc, 2368 RAngleLoc, 2369 TTP, 2370 Converted); 2371 if (!ArgType) 2372 return true; 2373 2374 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2375 ArgType); 2376 } else if (NonTypeTemplateParmDecl *NTTP 2377 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2378 if (!NTTP->hasDefaultArgument()) { 2379 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2380 break; 2381 } 2382 2383 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2384 TemplateLoc, 2385 RAngleLoc, 2386 NTTP, 2387 Converted); 2388 if (E.isInvalid()) 2389 return true; 2390 2391 Expr *Ex = E.takeAs<Expr>(); 2392 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2393 } else { 2394 TemplateTemplateParmDecl *TempParm 2395 = cast<TemplateTemplateParmDecl>(*Param); 2396 2397 if (!TempParm->hasDefaultArgument()) { 2398 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2399 break; 2400 } 2401 2402 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2403 TemplateLoc, 2404 RAngleLoc, 2405 TempParm, 2406 Converted); 2407 if (Name.isNull()) 2408 return true; 2409 2410 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2411 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2412 TempParm->getDefaultArgument().getTemplateNameLoc()); 2413 } 2414 2415 // Introduce an instantiation record that describes where we are using 2416 // the default template argument. 2417 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2418 Converted.data(), Converted.size(), 2419 SourceRange(TemplateLoc, RAngleLoc)); 2420 2421 // Check the default template argument. 2422 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2423 RAngleLoc, Converted)) 2424 return true; 2425 } 2426 2427 return Invalid; 2428} 2429 2430namespace { 2431 class UnnamedLocalNoLinkageFinder 2432 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2433 { 2434 Sema &S; 2435 SourceRange SR; 2436 2437 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2438 2439 public: 2440 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2441 2442 bool Visit(QualType T) { 2443 return inherited::Visit(T.getTypePtr()); 2444 } 2445 2446#define TYPE(Class, Parent) \ 2447 bool Visit##Class##Type(const Class##Type *); 2448#define ABSTRACT_TYPE(Class, Parent) \ 2449 bool Visit##Class##Type(const Class##Type *) { return false; } 2450#define NON_CANONICAL_TYPE(Class, Parent) \ 2451 bool Visit##Class##Type(const Class##Type *) { return false; } 2452#include "clang/AST/TypeNodes.def" 2453 2454 bool VisitTagDecl(const TagDecl *Tag); 2455 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2456 }; 2457} 2458 2459bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2460 return false; 2461} 2462 2463bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2464 return Visit(T->getElementType()); 2465} 2466 2467bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2468 return Visit(T->getPointeeType()); 2469} 2470 2471bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2472 const BlockPointerType* T) { 2473 return Visit(T->getPointeeType()); 2474} 2475 2476bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2477 const LValueReferenceType* T) { 2478 return Visit(T->getPointeeType()); 2479} 2480 2481bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2482 const RValueReferenceType* T) { 2483 return Visit(T->getPointeeType()); 2484} 2485 2486bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2487 const MemberPointerType* T) { 2488 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2489} 2490 2491bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2492 const ConstantArrayType* T) { 2493 return Visit(T->getElementType()); 2494} 2495 2496bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2497 const IncompleteArrayType* T) { 2498 return Visit(T->getElementType()); 2499} 2500 2501bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2502 const VariableArrayType* T) { 2503 return Visit(T->getElementType()); 2504} 2505 2506bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2507 const DependentSizedArrayType* T) { 2508 return Visit(T->getElementType()); 2509} 2510 2511bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2512 const DependentSizedExtVectorType* T) { 2513 return Visit(T->getElementType()); 2514} 2515 2516bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2517 return Visit(T->getElementType()); 2518} 2519 2520bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2521 return Visit(T->getElementType()); 2522} 2523 2524bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2525 const FunctionProtoType* T) { 2526 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2527 AEnd = T->arg_type_end(); 2528 A != AEnd; ++A) { 2529 if (Visit(*A)) 2530 return true; 2531 } 2532 2533 return Visit(T->getResultType()); 2534} 2535 2536bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2537 const FunctionNoProtoType* T) { 2538 return Visit(T->getResultType()); 2539} 2540 2541bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2542 const UnresolvedUsingType*) { 2543 return false; 2544} 2545 2546bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2547 return false; 2548} 2549 2550bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2551 return Visit(T->getUnderlyingType()); 2552} 2553 2554bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2555 return false; 2556} 2557 2558bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2559 return VisitTagDecl(T->getDecl()); 2560} 2561 2562bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2563 return VisitTagDecl(T->getDecl()); 2564} 2565 2566bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2567 const TemplateTypeParmType*) { 2568 return false; 2569} 2570 2571bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2572 const TemplateSpecializationType*) { 2573 return false; 2574} 2575 2576bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2577 const InjectedClassNameType* T) { 2578 return VisitTagDecl(T->getDecl()); 2579} 2580 2581bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2582 const DependentNameType* T) { 2583 return VisitNestedNameSpecifier(T->getQualifier()); 2584} 2585 2586bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2587 const DependentTemplateSpecializationType* T) { 2588 return VisitNestedNameSpecifier(T->getQualifier()); 2589} 2590 2591bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2592 return false; 2593} 2594 2595bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2596 const ObjCInterfaceType *) { 2597 return false; 2598} 2599 2600bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2601 const ObjCObjectPointerType *) { 2602 return false; 2603} 2604 2605bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2606 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2607 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2608 << S.Context.getTypeDeclType(Tag) << SR; 2609 return true; 2610 } 2611 2612 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2613 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2614 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2615 return true; 2616 } 2617 2618 return false; 2619} 2620 2621bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2622 NestedNameSpecifier *NNS) { 2623 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2624 return true; 2625 2626 switch (NNS->getKind()) { 2627 case NestedNameSpecifier::Identifier: 2628 case NestedNameSpecifier::Namespace: 2629 case NestedNameSpecifier::Global: 2630 return false; 2631 2632 case NestedNameSpecifier::TypeSpec: 2633 case NestedNameSpecifier::TypeSpecWithTemplate: 2634 return Visit(QualType(NNS->getAsType(), 0)); 2635 } 2636 return false; 2637} 2638 2639 2640/// \brief Check a template argument against its corresponding 2641/// template type parameter. 2642/// 2643/// This routine implements the semantics of C++ [temp.arg.type]. It 2644/// returns true if an error occurred, and false otherwise. 2645bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2646 TypeSourceInfo *ArgInfo) { 2647 assert(ArgInfo && "invalid TypeSourceInfo"); 2648 QualType Arg = ArgInfo->getType(); 2649 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2650 2651 if (Arg->isVariablyModifiedType()) { 2652 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2653 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2654 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2655 } 2656 2657 // C++03 [temp.arg.type]p2: 2658 // A local type, a type with no linkage, an unnamed type or a type 2659 // compounded from any of these types shall not be used as a 2660 // template-argument for a template type-parameter. 2661 // 2662 // C++0x allows these, and even in C++03 we allow them as an extension with 2663 // a warning. 2664 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2665 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2666 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2667 } 2668 2669 return false; 2670} 2671 2672/// \brief Checks whether the given template argument is the address 2673/// of an object or function according to C++ [temp.arg.nontype]p1. 2674static bool 2675CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2676 NonTypeTemplateParmDecl *Param, 2677 QualType ParamType, 2678 Expr *ArgIn, 2679 TemplateArgument &Converted) { 2680 bool Invalid = false; 2681 Expr *Arg = ArgIn; 2682 QualType ArgType = Arg->getType(); 2683 2684 // See through any implicit casts we added to fix the type. 2685 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2686 Arg = Cast->getSubExpr(); 2687 2688 // C++ [temp.arg.nontype]p1: 2689 // 2690 // A template-argument for a non-type, non-template 2691 // template-parameter shall be one of: [...] 2692 // 2693 // -- the address of an object or function with external 2694 // linkage, including function templates and function 2695 // template-ids but excluding non-static class members, 2696 // expressed as & id-expression where the & is optional if 2697 // the name refers to a function or array, or if the 2698 // corresponding template-parameter is a reference; or 2699 DeclRefExpr *DRE = 0; 2700 2701 // In C++98/03 mode, give an extension warning on any extra parentheses. 2702 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2703 bool ExtraParens = false; 2704 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2705 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2706 S.Diag(Arg->getSourceRange().getBegin(), 2707 diag::ext_template_arg_extra_parens) 2708 << Arg->getSourceRange(); 2709 ExtraParens = true; 2710 } 2711 2712 Arg = Parens->getSubExpr(); 2713 } 2714 2715 bool AddressTaken = false; 2716 SourceLocation AddrOpLoc; 2717 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2718 if (UnOp->getOpcode() == UO_AddrOf) { 2719 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2720 AddressTaken = true; 2721 AddrOpLoc = UnOp->getOperatorLoc(); 2722 } 2723 } else 2724 DRE = dyn_cast<DeclRefExpr>(Arg); 2725 2726 if (!DRE) { 2727 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2728 << Arg->getSourceRange(); 2729 S.Diag(Param->getLocation(), diag::note_template_param_here); 2730 return true; 2731 } 2732 2733 // Stop checking the precise nature of the argument if it is value dependent, 2734 // it should be checked when instantiated. 2735 if (Arg->isValueDependent()) { 2736 Converted = TemplateArgument(ArgIn); 2737 return false; 2738 } 2739 2740 if (!isa<ValueDecl>(DRE->getDecl())) { 2741 S.Diag(Arg->getSourceRange().getBegin(), 2742 diag::err_template_arg_not_object_or_func_form) 2743 << Arg->getSourceRange(); 2744 S.Diag(Param->getLocation(), diag::note_template_param_here); 2745 return true; 2746 } 2747 2748 NamedDecl *Entity = 0; 2749 2750 // Cannot refer to non-static data members 2751 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2752 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2753 << Field << Arg->getSourceRange(); 2754 S.Diag(Param->getLocation(), diag::note_template_param_here); 2755 return true; 2756 } 2757 2758 // Cannot refer to non-static member functions 2759 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2760 if (!Method->isStatic()) { 2761 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2762 << Method << Arg->getSourceRange(); 2763 S.Diag(Param->getLocation(), diag::note_template_param_here); 2764 return true; 2765 } 2766 2767 // Functions must have external linkage. 2768 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2769 if (!isExternalLinkage(Func->getLinkage())) { 2770 S.Diag(Arg->getSourceRange().getBegin(), 2771 diag::err_template_arg_function_not_extern) 2772 << Func << Arg->getSourceRange(); 2773 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2774 << true; 2775 return true; 2776 } 2777 2778 // Okay: we've named a function with external linkage. 2779 Entity = Func; 2780 2781 // If the template parameter has pointer type, the function decays. 2782 if (ParamType->isPointerType() && !AddressTaken) 2783 ArgType = S.Context.getPointerType(Func->getType()); 2784 else if (AddressTaken && ParamType->isReferenceType()) { 2785 // If we originally had an address-of operator, but the 2786 // parameter has reference type, complain and (if things look 2787 // like they will work) drop the address-of operator. 2788 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2789 ParamType.getNonReferenceType())) { 2790 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2791 << ParamType; 2792 S.Diag(Param->getLocation(), diag::note_template_param_here); 2793 return true; 2794 } 2795 2796 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2797 << ParamType 2798 << FixItHint::CreateRemoval(AddrOpLoc); 2799 S.Diag(Param->getLocation(), diag::note_template_param_here); 2800 2801 ArgType = Func->getType(); 2802 } 2803 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2804 if (!isExternalLinkage(Var->getLinkage())) { 2805 S.Diag(Arg->getSourceRange().getBegin(), 2806 diag::err_template_arg_object_not_extern) 2807 << Var << Arg->getSourceRange(); 2808 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2809 << true; 2810 return true; 2811 } 2812 2813 // A value of reference type is not an object. 2814 if (Var->getType()->isReferenceType()) { 2815 S.Diag(Arg->getSourceRange().getBegin(), 2816 diag::err_template_arg_reference_var) 2817 << Var->getType() << Arg->getSourceRange(); 2818 S.Diag(Param->getLocation(), diag::note_template_param_here); 2819 return true; 2820 } 2821 2822 // Okay: we've named an object with external linkage 2823 Entity = Var; 2824 2825 // If the template parameter has pointer type, we must have taken 2826 // the address of this object. 2827 if (ParamType->isReferenceType()) { 2828 if (AddressTaken) { 2829 // If we originally had an address-of operator, but the 2830 // parameter has reference type, complain and (if things look 2831 // like they will work) drop the address-of operator. 2832 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2833 ParamType.getNonReferenceType())) { 2834 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2835 << ParamType; 2836 S.Diag(Param->getLocation(), diag::note_template_param_here); 2837 return true; 2838 } 2839 2840 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2841 << ParamType 2842 << FixItHint::CreateRemoval(AddrOpLoc); 2843 S.Diag(Param->getLocation(), diag::note_template_param_here); 2844 2845 ArgType = Var->getType(); 2846 } 2847 } else if (!AddressTaken && ParamType->isPointerType()) { 2848 if (Var->getType()->isArrayType()) { 2849 // Array-to-pointer decay. 2850 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2851 } else { 2852 // If the template parameter has pointer type but the address of 2853 // this object was not taken, complain and (possibly) recover by 2854 // taking the address of the entity. 2855 ArgType = S.Context.getPointerType(Var->getType()); 2856 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2857 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2858 << ParamType; 2859 S.Diag(Param->getLocation(), diag::note_template_param_here); 2860 return true; 2861 } 2862 2863 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2864 << ParamType 2865 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2866 2867 S.Diag(Param->getLocation(), diag::note_template_param_here); 2868 } 2869 } 2870 } else { 2871 // We found something else, but we don't know specifically what it is. 2872 S.Diag(Arg->getSourceRange().getBegin(), 2873 diag::err_template_arg_not_object_or_func) 2874 << Arg->getSourceRange(); 2875 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2876 return true; 2877 } 2878 2879 if (ParamType->isPointerType() && 2880 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2881 S.IsQualificationConversion(ArgType, ParamType)) { 2882 // For pointer-to-object types, qualification conversions are 2883 // permitted. 2884 } else { 2885 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2886 if (!ParamRef->getPointeeType()->isFunctionType()) { 2887 // C++ [temp.arg.nontype]p5b3: 2888 // For a non-type template-parameter of type reference to 2889 // object, no conversions apply. The type referred to by the 2890 // reference may be more cv-qualified than the (otherwise 2891 // identical) type of the template- argument. The 2892 // template-parameter is bound directly to the 2893 // template-argument, which shall be an lvalue. 2894 2895 // FIXME: Other qualifiers? 2896 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2897 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2898 2899 if ((ParamQuals | ArgQuals) != ParamQuals) { 2900 S.Diag(Arg->getSourceRange().getBegin(), 2901 diag::err_template_arg_ref_bind_ignores_quals) 2902 << ParamType << Arg->getType() 2903 << Arg->getSourceRange(); 2904 S.Diag(Param->getLocation(), diag::note_template_param_here); 2905 return true; 2906 } 2907 } 2908 } 2909 2910 // At this point, the template argument refers to an object or 2911 // function with external linkage. We now need to check whether the 2912 // argument and parameter types are compatible. 2913 if (!S.Context.hasSameUnqualifiedType(ArgType, 2914 ParamType.getNonReferenceType())) { 2915 // We can't perform this conversion or binding. 2916 if (ParamType->isReferenceType()) 2917 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2918 << ParamType << Arg->getType() << Arg->getSourceRange(); 2919 else 2920 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2921 << Arg->getType() << ParamType << Arg->getSourceRange(); 2922 S.Diag(Param->getLocation(), diag::note_template_param_here); 2923 return true; 2924 } 2925 } 2926 2927 // Create the template argument. 2928 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2929 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2930 return false; 2931} 2932 2933/// \brief Checks whether the given template argument is a pointer to 2934/// member constant according to C++ [temp.arg.nontype]p1. 2935bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2936 TemplateArgument &Converted) { 2937 bool Invalid = false; 2938 2939 // See through any implicit casts we added to fix the type. 2940 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2941 Arg = Cast->getSubExpr(); 2942 2943 // C++ [temp.arg.nontype]p1: 2944 // 2945 // A template-argument for a non-type, non-template 2946 // template-parameter shall be one of: [...] 2947 // 2948 // -- a pointer to member expressed as described in 5.3.1. 2949 DeclRefExpr *DRE = 0; 2950 2951 // In C++98/03 mode, give an extension warning on any extra parentheses. 2952 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2953 bool ExtraParens = false; 2954 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2955 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 2956 Diag(Arg->getSourceRange().getBegin(), 2957 diag::ext_template_arg_extra_parens) 2958 << Arg->getSourceRange(); 2959 ExtraParens = true; 2960 } 2961 2962 Arg = Parens->getSubExpr(); 2963 } 2964 2965 // A pointer-to-member constant written &Class::member. 2966 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2967 if (UnOp->getOpcode() == UO_AddrOf) { 2968 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2969 if (DRE && !DRE->getQualifier()) 2970 DRE = 0; 2971 } 2972 } 2973 // A constant of pointer-to-member type. 2974 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2975 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2976 if (VD->getType()->isMemberPointerType()) { 2977 if (isa<NonTypeTemplateParmDecl>(VD) || 2978 (isa<VarDecl>(VD) && 2979 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2980 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2981 Converted = TemplateArgument(Arg); 2982 else 2983 Converted = TemplateArgument(VD->getCanonicalDecl()); 2984 return Invalid; 2985 } 2986 } 2987 } 2988 2989 DRE = 0; 2990 } 2991 2992 if (!DRE) 2993 return Diag(Arg->getSourceRange().getBegin(), 2994 diag::err_template_arg_not_pointer_to_member_form) 2995 << Arg->getSourceRange(); 2996 2997 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2998 assert((isa<FieldDecl>(DRE->getDecl()) || 2999 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3000 "Only non-static member pointers can make it here"); 3001 3002 // Okay: this is the address of a non-static member, and therefore 3003 // a member pointer constant. 3004 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3005 Converted = TemplateArgument(Arg); 3006 else 3007 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3008 return Invalid; 3009 } 3010 3011 // We found something else, but we don't know specifically what it is. 3012 Diag(Arg->getSourceRange().getBegin(), 3013 diag::err_template_arg_not_pointer_to_member_form) 3014 << Arg->getSourceRange(); 3015 Diag(DRE->getDecl()->getLocation(), 3016 diag::note_template_arg_refers_here); 3017 return true; 3018} 3019 3020/// \brief Check a template argument against its corresponding 3021/// non-type template parameter. 3022/// 3023/// This routine implements the semantics of C++ [temp.arg.nontype]. 3024/// It returns true if an error occurred, and false otherwise. \p 3025/// InstantiatedParamType is the type of the non-type template 3026/// parameter after it has been instantiated. 3027/// 3028/// If no error was detected, Converted receives the converted template argument. 3029bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3030 QualType InstantiatedParamType, Expr *&Arg, 3031 TemplateArgument &Converted, 3032 CheckTemplateArgumentKind CTAK) { 3033 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3034 3035 // If either the parameter has a dependent type or the argument is 3036 // type-dependent, there's nothing we can check now. 3037 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3038 // FIXME: Produce a cloned, canonical expression? 3039 Converted = TemplateArgument(Arg); 3040 return false; 3041 } 3042 3043 // C++ [temp.arg.nontype]p5: 3044 // The following conversions are performed on each expression used 3045 // as a non-type template-argument. If a non-type 3046 // template-argument cannot be converted to the type of the 3047 // corresponding template-parameter then the program is 3048 // ill-formed. 3049 // 3050 // -- for a non-type template-parameter of integral or 3051 // enumeration type, integral promotions (4.5) and integral 3052 // conversions (4.7) are applied. 3053 QualType ParamType = InstantiatedParamType; 3054 QualType ArgType = Arg->getType(); 3055 if (ParamType->isIntegralOrEnumerationType()) { 3056 // C++ [temp.arg.nontype]p1: 3057 // A template-argument for a non-type, non-template 3058 // template-parameter shall be one of: 3059 // 3060 // -- an integral constant-expression of integral or enumeration 3061 // type; or 3062 // -- the name of a non-type template-parameter; or 3063 SourceLocation NonConstantLoc; 3064 llvm::APSInt Value; 3065 if (!ArgType->isIntegralOrEnumerationType()) { 3066 Diag(Arg->getSourceRange().getBegin(), 3067 diag::err_template_arg_not_integral_or_enumeral) 3068 << ArgType << Arg->getSourceRange(); 3069 Diag(Param->getLocation(), diag::note_template_param_here); 3070 return true; 3071 } else if (!Arg->isValueDependent() && 3072 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3073 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3074 << ArgType << Arg->getSourceRange(); 3075 return true; 3076 } 3077 3078 // From here on out, all we care about are the unqualified forms 3079 // of the parameter and argument types. 3080 ParamType = ParamType.getUnqualifiedType(); 3081 ArgType = ArgType.getUnqualifiedType(); 3082 3083 // Try to convert the argument to the parameter's type. 3084 if (Context.hasSameType(ParamType, ArgType)) { 3085 // Okay: no conversion necessary 3086 } else if (CTAK == CTAK_Deduced) { 3087 // C++ [temp.deduct.type]p17: 3088 // If, in the declaration of a function template with a non-type 3089 // template-parameter, the non-type template- parameter is used 3090 // in an expression in the function parameter-list and, if the 3091 // corresponding template-argument is deduced, the 3092 // template-argument type shall match the type of the 3093 // template-parameter exactly, except that a template-argument 3094 // deduced from an array bound may be of any integral type. 3095 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3096 << ArgType << ParamType; 3097 Diag(Param->getLocation(), diag::note_template_param_here); 3098 return true; 3099 } else if (ParamType->isBooleanType()) { 3100 // This is an integral-to-boolean conversion. 3101 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3102 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3103 !ParamType->isEnumeralType()) { 3104 // This is an integral promotion or conversion. 3105 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3106 } else { 3107 // We can't perform this conversion. 3108 Diag(Arg->getSourceRange().getBegin(), 3109 diag::err_template_arg_not_convertible) 3110 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3111 Diag(Param->getLocation(), diag::note_template_param_here); 3112 return true; 3113 } 3114 3115 QualType IntegerType = Context.getCanonicalType(ParamType); 3116 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3117 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3118 3119 if (!Arg->isValueDependent()) { 3120 llvm::APSInt OldValue = Value; 3121 3122 // Coerce the template argument's value to the value it will have 3123 // based on the template parameter's type. 3124 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3125 if (Value.getBitWidth() != AllowedBits) 3126 Value = Value.extOrTrunc(AllowedBits); 3127 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3128 3129 // Complain if an unsigned parameter received a negative value. 3130 if (IntegerType->isUnsignedIntegerType() 3131 && (OldValue.isSigned() && OldValue.isNegative())) { 3132 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3133 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3134 << Arg->getSourceRange(); 3135 Diag(Param->getLocation(), diag::note_template_param_here); 3136 } 3137 3138 // Complain if we overflowed the template parameter's type. 3139 unsigned RequiredBits; 3140 if (IntegerType->isUnsignedIntegerType()) 3141 RequiredBits = OldValue.getActiveBits(); 3142 else if (OldValue.isUnsigned()) 3143 RequiredBits = OldValue.getActiveBits() + 1; 3144 else 3145 RequiredBits = OldValue.getMinSignedBits(); 3146 if (RequiredBits > AllowedBits) { 3147 Diag(Arg->getSourceRange().getBegin(), 3148 diag::warn_template_arg_too_large) 3149 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3150 << Arg->getSourceRange(); 3151 Diag(Param->getLocation(), diag::note_template_param_here); 3152 } 3153 } 3154 3155 // Add the value of this argument to the list of converted 3156 // arguments. We use the bitwidth and signedness of the template 3157 // parameter. 3158 if (Arg->isValueDependent()) { 3159 // The argument is value-dependent. Create a new 3160 // TemplateArgument with the converted expression. 3161 Converted = TemplateArgument(Arg); 3162 return false; 3163 } 3164 3165 Converted = TemplateArgument(Value, 3166 ParamType->isEnumeralType() ? ParamType 3167 : IntegerType); 3168 return false; 3169 } 3170 3171 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3172 3173 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3174 // from a template argument of type std::nullptr_t to a non-type 3175 // template parameter of type pointer to object, pointer to 3176 // function, or pointer-to-member, respectively. 3177 if (ArgType->isNullPtrType() && 3178 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3179 Converted = TemplateArgument((NamedDecl *)0); 3180 return false; 3181 } 3182 3183 // Handle pointer-to-function, reference-to-function, and 3184 // pointer-to-member-function all in (roughly) the same way. 3185 if (// -- For a non-type template-parameter of type pointer to 3186 // function, only the function-to-pointer conversion (4.3) is 3187 // applied. If the template-argument represents a set of 3188 // overloaded functions (or a pointer to such), the matching 3189 // function is selected from the set (13.4). 3190 (ParamType->isPointerType() && 3191 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3192 // -- For a non-type template-parameter of type reference to 3193 // function, no conversions apply. If the template-argument 3194 // represents a set of overloaded functions, the matching 3195 // function is selected from the set (13.4). 3196 (ParamType->isReferenceType() && 3197 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3198 // -- For a non-type template-parameter of type pointer to 3199 // member function, no conversions apply. If the 3200 // template-argument represents a set of overloaded member 3201 // functions, the matching member function is selected from 3202 // the set (13.4). 3203 (ParamType->isMemberPointerType() && 3204 ParamType->getAs<MemberPointerType>()->getPointeeType() 3205 ->isFunctionType())) { 3206 3207 if (Arg->getType() == Context.OverloadTy) { 3208 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3209 true, 3210 FoundResult)) { 3211 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3212 return true; 3213 3214 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3215 ArgType = Arg->getType(); 3216 } else 3217 return true; 3218 } 3219 3220 if (!ParamType->isMemberPointerType()) 3221 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3222 ParamType, 3223 Arg, Converted); 3224 3225 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 3226 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3227 } else if (!Context.hasSameUnqualifiedType(ArgType, 3228 ParamType.getNonReferenceType())) { 3229 // We can't perform this conversion. 3230 Diag(Arg->getSourceRange().getBegin(), 3231 diag::err_template_arg_not_convertible) 3232 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3233 Diag(Param->getLocation(), diag::note_template_param_here); 3234 return true; 3235 } 3236 3237 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3238 } 3239 3240 if (ParamType->isPointerType()) { 3241 // -- for a non-type template-parameter of type pointer to 3242 // object, qualification conversions (4.4) and the 3243 // array-to-pointer conversion (4.2) are applied. 3244 // C++0x also allows a value of std::nullptr_t. 3245 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3246 "Only object pointers allowed here"); 3247 3248 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3249 ParamType, 3250 Arg, Converted); 3251 } 3252 3253 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3254 // -- For a non-type template-parameter of type reference to 3255 // object, no conversions apply. The type referred to by the 3256 // reference may be more cv-qualified than the (otherwise 3257 // identical) type of the template-argument. The 3258 // template-parameter is bound directly to the 3259 // template-argument, which must be an lvalue. 3260 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3261 "Only object references allowed here"); 3262 3263 if (Arg->getType() == Context.OverloadTy) { 3264 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3265 ParamRefType->getPointeeType(), 3266 true, 3267 FoundResult)) { 3268 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3269 return true; 3270 3271 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3272 ArgType = Arg->getType(); 3273 } else 3274 return true; 3275 } 3276 3277 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3278 ParamType, 3279 Arg, Converted); 3280 } 3281 3282 // -- For a non-type template-parameter of type pointer to data 3283 // member, qualification conversions (4.4) are applied. 3284 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3285 3286 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3287 // Types match exactly: nothing more to do here. 3288 } else if (IsQualificationConversion(ArgType, ParamType)) { 3289 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3290 } else { 3291 // We can't perform this conversion. 3292 Diag(Arg->getSourceRange().getBegin(), 3293 diag::err_template_arg_not_convertible) 3294 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3295 Diag(Param->getLocation(), diag::note_template_param_here); 3296 return true; 3297 } 3298 3299 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3300} 3301 3302/// \brief Check a template argument against its corresponding 3303/// template template parameter. 3304/// 3305/// This routine implements the semantics of C++ [temp.arg.template]. 3306/// It returns true if an error occurred, and false otherwise. 3307bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3308 const TemplateArgumentLoc &Arg) { 3309 TemplateName Name = Arg.getArgument().getAsTemplate(); 3310 TemplateDecl *Template = Name.getAsTemplateDecl(); 3311 if (!Template) { 3312 // Any dependent template name is fine. 3313 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3314 return false; 3315 } 3316 3317 // C++ [temp.arg.template]p1: 3318 // A template-argument for a template template-parameter shall be 3319 // the name of a class template, expressed as id-expression. Only 3320 // primary class templates are considered when matching the 3321 // template template argument with the corresponding parameter; 3322 // partial specializations are not considered even if their 3323 // parameter lists match that of the template template parameter. 3324 // 3325 // Note that we also allow template template parameters here, which 3326 // will happen when we are dealing with, e.g., class template 3327 // partial specializations. 3328 if (!isa<ClassTemplateDecl>(Template) && 3329 !isa<TemplateTemplateParmDecl>(Template)) { 3330 assert(isa<FunctionTemplateDecl>(Template) && 3331 "Only function templates are possible here"); 3332 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3333 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3334 << Template; 3335 } 3336 3337 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3338 Param->getTemplateParameters(), 3339 true, 3340 TPL_TemplateTemplateArgumentMatch, 3341 Arg.getLocation()); 3342} 3343 3344/// \brief Given a non-type template argument that refers to a 3345/// declaration and the type of its corresponding non-type template 3346/// parameter, produce an expression that properly refers to that 3347/// declaration. 3348ExprResult 3349Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3350 QualType ParamType, 3351 SourceLocation Loc) { 3352 assert(Arg.getKind() == TemplateArgument::Declaration && 3353 "Only declaration template arguments permitted here"); 3354 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3355 3356 if (VD->getDeclContext()->isRecord() && 3357 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3358 // If the value is a class member, we might have a pointer-to-member. 3359 // Determine whether the non-type template template parameter is of 3360 // pointer-to-member type. If so, we need to build an appropriate 3361 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3362 // would refer to the member itself. 3363 if (ParamType->isMemberPointerType()) { 3364 QualType ClassType 3365 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3366 NestedNameSpecifier *Qualifier 3367 = NestedNameSpecifier::Create(Context, 0, false, 3368 ClassType.getTypePtr()); 3369 CXXScopeSpec SS; 3370 SS.setScopeRep(Qualifier); 3371 3372 // The actual value-ness of this is unimportant, but for 3373 // internal consistency's sake, references to instance methods 3374 // are r-values. 3375 ExprValueKind VK = VK_LValue; 3376 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3377 VK = VK_RValue; 3378 3379 ExprResult RefExpr = BuildDeclRefExpr(VD, 3380 VD->getType().getNonReferenceType(), 3381 VK, 3382 Loc, 3383 &SS); 3384 if (RefExpr.isInvalid()) 3385 return ExprError(); 3386 3387 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3388 3389 // We might need to perform a trailing qualification conversion, since 3390 // the element type on the parameter could be more qualified than the 3391 // element type in the expression we constructed. 3392 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3393 ParamType.getUnqualifiedType())) { 3394 Expr *RefE = RefExpr.takeAs<Expr>(); 3395 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3396 RefExpr = Owned(RefE); 3397 } 3398 3399 assert(!RefExpr.isInvalid() && 3400 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3401 ParamType.getUnqualifiedType())); 3402 return move(RefExpr); 3403 } 3404 } 3405 3406 QualType T = VD->getType().getNonReferenceType(); 3407 if (ParamType->isPointerType()) { 3408 // When the non-type template parameter is a pointer, take the 3409 // address of the declaration. 3410 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3411 if (RefExpr.isInvalid()) 3412 return ExprError(); 3413 3414 if (T->isFunctionType() || T->isArrayType()) { 3415 // Decay functions and arrays. 3416 Expr *RefE = (Expr *)RefExpr.get(); 3417 DefaultFunctionArrayConversion(RefE); 3418 if (RefE != RefExpr.get()) { 3419 RefExpr.release(); 3420 RefExpr = Owned(RefE); 3421 } 3422 3423 return move(RefExpr); 3424 } 3425 3426 // Take the address of everything else 3427 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3428 } 3429 3430 ExprValueKind VK = VK_RValue; 3431 3432 // If the non-type template parameter has reference type, qualify the 3433 // resulting declaration reference with the extra qualifiers on the 3434 // type that the reference refers to. 3435 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3436 VK = VK_LValue; 3437 T = Context.getQualifiedType(T, 3438 TargetRef->getPointeeType().getQualifiers()); 3439 } 3440 3441 return BuildDeclRefExpr(VD, T, VK, Loc); 3442} 3443 3444/// \brief Construct a new expression that refers to the given 3445/// integral template argument with the given source-location 3446/// information. 3447/// 3448/// This routine takes care of the mapping from an integral template 3449/// argument (which may have any integral type) to the appropriate 3450/// literal value. 3451ExprResult 3452Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3453 SourceLocation Loc) { 3454 assert(Arg.getKind() == TemplateArgument::Integral && 3455 "Operation is only value for integral template arguments"); 3456 QualType T = Arg.getIntegralType(); 3457 if (T->isCharType() || T->isWideCharType()) 3458 return Owned(new (Context) CharacterLiteral( 3459 Arg.getAsIntegral()->getZExtValue(), 3460 T->isWideCharType(), 3461 T, 3462 Loc)); 3463 if (T->isBooleanType()) 3464 return Owned(new (Context) CXXBoolLiteralExpr( 3465 Arg.getAsIntegral()->getBoolValue(), 3466 T, 3467 Loc)); 3468 3469 return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc)); 3470} 3471 3472 3473/// \brief Determine whether the given template parameter lists are 3474/// equivalent. 3475/// 3476/// \param New The new template parameter list, typically written in the 3477/// source code as part of a new template declaration. 3478/// 3479/// \param Old The old template parameter list, typically found via 3480/// name lookup of the template declared with this template parameter 3481/// list. 3482/// 3483/// \param Complain If true, this routine will produce a diagnostic if 3484/// the template parameter lists are not equivalent. 3485/// 3486/// \param Kind describes how we are to match the template parameter lists. 3487/// 3488/// \param TemplateArgLoc If this source location is valid, then we 3489/// are actually checking the template parameter list of a template 3490/// argument (New) against the template parameter list of its 3491/// corresponding template template parameter (Old). We produce 3492/// slightly different diagnostics in this scenario. 3493/// 3494/// \returns True if the template parameter lists are equal, false 3495/// otherwise. 3496bool 3497Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3498 TemplateParameterList *Old, 3499 bool Complain, 3500 TemplateParameterListEqualKind Kind, 3501 SourceLocation TemplateArgLoc) { 3502 if (Old->size() != New->size()) { 3503 if (Complain) { 3504 unsigned NextDiag = diag::err_template_param_list_different_arity; 3505 if (TemplateArgLoc.isValid()) { 3506 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3507 NextDiag = diag::note_template_param_list_different_arity; 3508 } 3509 Diag(New->getTemplateLoc(), NextDiag) 3510 << (New->size() > Old->size()) 3511 << (Kind != TPL_TemplateMatch) 3512 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3513 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3514 << (Kind != TPL_TemplateMatch) 3515 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3516 } 3517 3518 return false; 3519 } 3520 3521 for (TemplateParameterList::iterator OldParm = Old->begin(), 3522 OldParmEnd = Old->end(), NewParm = New->begin(); 3523 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3524 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3525 if (Complain) { 3526 unsigned NextDiag = diag::err_template_param_different_kind; 3527 if (TemplateArgLoc.isValid()) { 3528 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3529 NextDiag = diag::note_template_param_different_kind; 3530 } 3531 Diag((*NewParm)->getLocation(), NextDiag) 3532 << (Kind != TPL_TemplateMatch); 3533 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3534 << (Kind != TPL_TemplateMatch); 3535 } 3536 return false; 3537 } 3538 3539 if (TemplateTypeParmDecl *OldTTP 3540 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3541 // Template type parameters are equivalent if either both are template 3542 // type parameter packs or neither are (since we know we're at the same 3543 // index). 3544 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3545 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3546 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3547 // allow one to match a template parameter pack in the template 3548 // parameter list of a template template parameter to one or more 3549 // template parameters in the template parameter list of the 3550 // corresponding template template argument. 3551 if (Complain) { 3552 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3553 if (TemplateArgLoc.isValid()) { 3554 Diag(TemplateArgLoc, 3555 diag::err_template_arg_template_params_mismatch); 3556 NextDiag = diag::note_template_parameter_pack_non_pack; 3557 } 3558 Diag(NewTTP->getLocation(), NextDiag) 3559 << 0 << NewTTP->isParameterPack(); 3560 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3561 << 0 << OldTTP->isParameterPack(); 3562 } 3563 return false; 3564 } 3565 } else if (NonTypeTemplateParmDecl *OldNTTP 3566 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3567 // The types of non-type template parameters must agree. 3568 NonTypeTemplateParmDecl *NewNTTP 3569 = cast<NonTypeTemplateParmDecl>(*NewParm); 3570 3571 // If we are matching a template template argument to a template 3572 // template parameter and one of the non-type template parameter types 3573 // is dependent, then we must wait until template instantiation time 3574 // to actually compare the arguments. 3575 if (Kind == TPL_TemplateTemplateArgumentMatch && 3576 (OldNTTP->getType()->isDependentType() || 3577 NewNTTP->getType()->isDependentType())) 3578 continue; 3579 3580 if (Context.getCanonicalType(OldNTTP->getType()) != 3581 Context.getCanonicalType(NewNTTP->getType())) { 3582 if (Complain) { 3583 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3584 if (TemplateArgLoc.isValid()) { 3585 Diag(TemplateArgLoc, 3586 diag::err_template_arg_template_params_mismatch); 3587 NextDiag = diag::note_template_nontype_parm_different_type; 3588 } 3589 Diag(NewNTTP->getLocation(), NextDiag) 3590 << NewNTTP->getType() 3591 << (Kind != TPL_TemplateMatch); 3592 Diag(OldNTTP->getLocation(), 3593 diag::note_template_nontype_parm_prev_declaration) 3594 << OldNTTP->getType(); 3595 } 3596 return false; 3597 } 3598 } else { 3599 // The template parameter lists of template template 3600 // parameters must agree. 3601 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3602 "Only template template parameters handled here"); 3603 TemplateTemplateParmDecl *OldTTP 3604 = cast<TemplateTemplateParmDecl>(*OldParm); 3605 TemplateTemplateParmDecl *NewTTP 3606 = cast<TemplateTemplateParmDecl>(*NewParm); 3607 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3608 OldTTP->getTemplateParameters(), 3609 Complain, 3610 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3611 TemplateArgLoc)) 3612 return false; 3613 } 3614 } 3615 3616 return true; 3617} 3618 3619/// \brief Check whether a template can be declared within this scope. 3620/// 3621/// If the template declaration is valid in this scope, returns 3622/// false. Otherwise, issues a diagnostic and returns true. 3623bool 3624Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3625 // Find the nearest enclosing declaration scope. 3626 while ((S->getFlags() & Scope::DeclScope) == 0 || 3627 (S->getFlags() & Scope::TemplateParamScope) != 0) 3628 S = S->getParent(); 3629 3630 // C++ [temp]p2: 3631 // A template-declaration can appear only as a namespace scope or 3632 // class scope declaration. 3633 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3634 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3635 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3636 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3637 << TemplateParams->getSourceRange(); 3638 3639 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3640 Ctx = Ctx->getParent(); 3641 3642 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3643 return false; 3644 3645 return Diag(TemplateParams->getTemplateLoc(), 3646 diag::err_template_outside_namespace_or_class_scope) 3647 << TemplateParams->getSourceRange(); 3648} 3649 3650/// \brief Determine what kind of template specialization the given declaration 3651/// is. 3652static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3653 if (!D) 3654 return TSK_Undeclared; 3655 3656 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3657 return Record->getTemplateSpecializationKind(); 3658 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3659 return Function->getTemplateSpecializationKind(); 3660 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3661 return Var->getTemplateSpecializationKind(); 3662 3663 return TSK_Undeclared; 3664} 3665 3666/// \brief Check whether a specialization is well-formed in the current 3667/// context. 3668/// 3669/// This routine determines whether a template specialization can be declared 3670/// in the current context (C++ [temp.expl.spec]p2). 3671/// 3672/// \param S the semantic analysis object for which this check is being 3673/// performed. 3674/// 3675/// \param Specialized the entity being specialized or instantiated, which 3676/// may be a kind of template (class template, function template, etc.) or 3677/// a member of a class template (member function, static data member, 3678/// member class). 3679/// 3680/// \param PrevDecl the previous declaration of this entity, if any. 3681/// 3682/// \param Loc the location of the explicit specialization or instantiation of 3683/// this entity. 3684/// 3685/// \param IsPartialSpecialization whether this is a partial specialization of 3686/// a class template. 3687/// 3688/// \returns true if there was an error that we cannot recover from, false 3689/// otherwise. 3690static bool CheckTemplateSpecializationScope(Sema &S, 3691 NamedDecl *Specialized, 3692 NamedDecl *PrevDecl, 3693 SourceLocation Loc, 3694 bool IsPartialSpecialization) { 3695 // Keep these "kind" numbers in sync with the %select statements in the 3696 // various diagnostics emitted by this routine. 3697 int EntityKind = 0; 3698 bool isTemplateSpecialization = false; 3699 if (isa<ClassTemplateDecl>(Specialized)) { 3700 EntityKind = IsPartialSpecialization? 1 : 0; 3701 isTemplateSpecialization = true; 3702 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3703 EntityKind = 2; 3704 isTemplateSpecialization = true; 3705 } else if (isa<CXXMethodDecl>(Specialized)) 3706 EntityKind = 3; 3707 else if (isa<VarDecl>(Specialized)) 3708 EntityKind = 4; 3709 else if (isa<RecordDecl>(Specialized)) 3710 EntityKind = 5; 3711 else { 3712 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3713 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3714 return true; 3715 } 3716 3717 // C++ [temp.expl.spec]p2: 3718 // An explicit specialization shall be declared in the namespace 3719 // of which the template is a member, or, for member templates, in 3720 // the namespace of which the enclosing class or enclosing class 3721 // template is a member. An explicit specialization of a member 3722 // function, member class or static data member of a class 3723 // template shall be declared in the namespace of which the class 3724 // template is a member. Such a declaration may also be a 3725 // definition. If the declaration is not a definition, the 3726 // specialization may be defined later in the name- space in which 3727 // the explicit specialization was declared, or in a namespace 3728 // that encloses the one in which the explicit specialization was 3729 // declared. 3730 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 3731 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3732 << Specialized; 3733 return true; 3734 } 3735 3736 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3737 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3738 << Specialized; 3739 return true; 3740 } 3741 3742 // C++ [temp.class.spec]p6: 3743 // A class template partial specialization may be declared or redeclared 3744 // in any namespace scope in which its definition may be defined (14.5.1 3745 // and 14.5.2). 3746 bool ComplainedAboutScope = false; 3747 DeclContext *SpecializedContext 3748 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3749 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3750 if ((!PrevDecl || 3751 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3752 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3753 // C++ [temp.exp.spec]p2: 3754 // An explicit specialization shall be declared in the namespace of which 3755 // the template is a member, or, for member templates, in the namespace 3756 // of which the enclosing class or enclosing class template is a member. 3757 // An explicit specialization of a member function, member class or 3758 // static data member of a class template shall be declared in the 3759 // namespace of which the class template is a member. 3760 // 3761 // C++0x [temp.expl.spec]p2: 3762 // An explicit specialization shall be declared in a namespace enclosing 3763 // the specialized template. 3764 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 3765 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 3766 bool IsCPlusPlus0xExtension 3767 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 3768 if (isa<TranslationUnitDecl>(SpecializedContext)) 3769 S.Diag(Loc, IsCPlusPlus0xExtension 3770 ? diag::ext_template_spec_decl_out_of_scope_global 3771 : diag::err_template_spec_decl_out_of_scope_global) 3772 << EntityKind << Specialized; 3773 else if (isa<NamespaceDecl>(SpecializedContext)) 3774 S.Diag(Loc, IsCPlusPlus0xExtension 3775 ? diag::ext_template_spec_decl_out_of_scope 3776 : diag::err_template_spec_decl_out_of_scope) 3777 << EntityKind << Specialized 3778 << cast<NamedDecl>(SpecializedContext); 3779 3780 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3781 ComplainedAboutScope = true; 3782 } 3783 } 3784 3785 // Make sure that this redeclaration (or definition) occurs in an enclosing 3786 // namespace. 3787 // Note that HandleDeclarator() performs this check for explicit 3788 // specializations of function templates, static data members, and member 3789 // functions, so we skip the check here for those kinds of entities. 3790 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3791 // Should we refactor that check, so that it occurs later? 3792 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3793 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3794 isa<FunctionDecl>(Specialized))) { 3795 if (isa<TranslationUnitDecl>(SpecializedContext)) 3796 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3797 << EntityKind << Specialized; 3798 else if (isa<NamespaceDecl>(SpecializedContext)) 3799 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3800 << EntityKind << Specialized 3801 << cast<NamedDecl>(SpecializedContext); 3802 3803 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3804 } 3805 3806 // FIXME: check for specialization-after-instantiation errors and such. 3807 3808 return false; 3809} 3810 3811/// \brief Check the non-type template arguments of a class template 3812/// partial specialization according to C++ [temp.class.spec]p9. 3813/// 3814/// \param TemplateParams the template parameters of the primary class 3815/// template. 3816/// 3817/// \param TemplateArg the template arguments of the class template 3818/// partial specialization. 3819/// 3820/// \param MirrorsPrimaryTemplate will be set true if the class 3821/// template partial specialization arguments are identical to the 3822/// implicit template arguments of the primary template. This is not 3823/// necessarily an error (C++0x), and it is left to the caller to diagnose 3824/// this condition when it is an error. 3825/// 3826/// \returns true if there was an error, false otherwise. 3827bool Sema::CheckClassTemplatePartialSpecializationArgs( 3828 TemplateParameterList *TemplateParams, 3829 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs, 3830 bool &MirrorsPrimaryTemplate) { 3831 // FIXME: the interface to this function will have to change to 3832 // accommodate variadic templates. 3833 MirrorsPrimaryTemplate = true; 3834 3835 const TemplateArgument *ArgList = TemplateArgs.data(); 3836 3837 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3838 // Determine whether the template argument list of the partial 3839 // specialization is identical to the implicit argument list of 3840 // the primary template. The caller may need to diagnostic this as 3841 // an error per C++ [temp.class.spec]p9b3. 3842 if (MirrorsPrimaryTemplate) { 3843 if (TemplateTypeParmDecl *TTP 3844 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3845 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3846 Context.getCanonicalType(ArgList[I].getAsType())) 3847 MirrorsPrimaryTemplate = false; 3848 } else if (TemplateTemplateParmDecl *TTP 3849 = dyn_cast<TemplateTemplateParmDecl>( 3850 TemplateParams->getParam(I))) { 3851 TemplateName Name = ArgList[I].getAsTemplate(); 3852 TemplateTemplateParmDecl *ArgDecl 3853 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3854 if (!ArgDecl || 3855 ArgDecl->getIndex() != TTP->getIndex() || 3856 ArgDecl->getDepth() != TTP->getDepth()) 3857 MirrorsPrimaryTemplate = false; 3858 } 3859 } 3860 3861 NonTypeTemplateParmDecl *Param 3862 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3863 if (!Param) { 3864 continue; 3865 } 3866 3867 Expr *ArgExpr = ArgList[I].getAsExpr(); 3868 if (!ArgExpr) { 3869 MirrorsPrimaryTemplate = false; 3870 continue; 3871 } 3872 3873 // C++ [temp.class.spec]p8: 3874 // A non-type argument is non-specialized if it is the name of a 3875 // non-type parameter. All other non-type arguments are 3876 // specialized. 3877 // 3878 // Below, we check the two conditions that only apply to 3879 // specialized non-type arguments, so skip any non-specialized 3880 // arguments. 3881 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3882 if (NonTypeTemplateParmDecl *NTTP 3883 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3884 if (MirrorsPrimaryTemplate && 3885 (Param->getIndex() != NTTP->getIndex() || 3886 Param->getDepth() != NTTP->getDepth())) 3887 MirrorsPrimaryTemplate = false; 3888 3889 continue; 3890 } 3891 3892 // C++ [temp.class.spec]p9: 3893 // Within the argument list of a class template partial 3894 // specialization, the following restrictions apply: 3895 // -- A partially specialized non-type argument expression 3896 // shall not involve a template parameter of the partial 3897 // specialization except when the argument expression is a 3898 // simple identifier. 3899 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3900 Diag(ArgExpr->getLocStart(), 3901 diag::err_dependent_non_type_arg_in_partial_spec) 3902 << ArgExpr->getSourceRange(); 3903 return true; 3904 } 3905 3906 // -- The type of a template parameter corresponding to a 3907 // specialized non-type argument shall not be dependent on a 3908 // parameter of the specialization. 3909 if (Param->getType()->isDependentType()) { 3910 Diag(ArgExpr->getLocStart(), 3911 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3912 << Param->getType() 3913 << ArgExpr->getSourceRange(); 3914 Diag(Param->getLocation(), diag::note_template_param_here); 3915 return true; 3916 } 3917 3918 MirrorsPrimaryTemplate = false; 3919 } 3920 3921 return false; 3922} 3923 3924/// \brief Retrieve the previous declaration of the given declaration. 3925static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3926 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3927 return VD->getPreviousDeclaration(); 3928 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3929 return FD->getPreviousDeclaration(); 3930 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3931 return TD->getPreviousDeclaration(); 3932 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3933 return TD->getPreviousDeclaration(); 3934 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3935 return FTD->getPreviousDeclaration(); 3936 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3937 return CTD->getPreviousDeclaration(); 3938 return 0; 3939} 3940 3941DeclResult 3942Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3943 TagUseKind TUK, 3944 SourceLocation KWLoc, 3945 CXXScopeSpec &SS, 3946 TemplateTy TemplateD, 3947 SourceLocation TemplateNameLoc, 3948 SourceLocation LAngleLoc, 3949 ASTTemplateArgsPtr TemplateArgsIn, 3950 SourceLocation RAngleLoc, 3951 AttributeList *Attr, 3952 MultiTemplateParamsArg TemplateParameterLists) { 3953 assert(TUK != TUK_Reference && "References are not specializations"); 3954 3955 // Find the class template we're specializing 3956 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3957 ClassTemplateDecl *ClassTemplate 3958 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3959 3960 if (!ClassTemplate) { 3961 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3962 << (Name.getAsTemplateDecl() && 3963 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3964 return true; 3965 } 3966 3967 bool isExplicitSpecialization = false; 3968 bool isPartialSpecialization = false; 3969 3970 // Check the validity of the template headers that introduce this 3971 // template. 3972 // FIXME: We probably shouldn't complain about these headers for 3973 // friend declarations. 3974 bool Invalid = false; 3975 TemplateParameterList *TemplateParams 3976 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3977 (TemplateParameterList**)TemplateParameterLists.get(), 3978 TemplateParameterLists.size(), 3979 TUK == TUK_Friend, 3980 isExplicitSpecialization, 3981 Invalid); 3982 if (Invalid) 3983 return true; 3984 3985 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3986 if (TemplateParams) 3987 --NumMatchedTemplateParamLists; 3988 3989 if (TemplateParams && TemplateParams->size() > 0) { 3990 isPartialSpecialization = true; 3991 3992 // C++ [temp.class.spec]p10: 3993 // The template parameter list of a specialization shall not 3994 // contain default template argument values. 3995 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3996 Decl *Param = TemplateParams->getParam(I); 3997 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3998 if (TTP->hasDefaultArgument()) { 3999 Diag(TTP->getDefaultArgumentLoc(), 4000 diag::err_default_arg_in_partial_spec); 4001 TTP->removeDefaultArgument(); 4002 } 4003 } else if (NonTypeTemplateParmDecl *NTTP 4004 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4005 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4006 Diag(NTTP->getDefaultArgumentLoc(), 4007 diag::err_default_arg_in_partial_spec) 4008 << DefArg->getSourceRange(); 4009 NTTP->removeDefaultArgument(); 4010 } 4011 } else { 4012 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4013 if (TTP->hasDefaultArgument()) { 4014 Diag(TTP->getDefaultArgument().getLocation(), 4015 diag::err_default_arg_in_partial_spec) 4016 << TTP->getDefaultArgument().getSourceRange(); 4017 TTP->removeDefaultArgument(); 4018 } 4019 } 4020 } 4021 } else if (TemplateParams) { 4022 if (TUK == TUK_Friend) 4023 Diag(KWLoc, diag::err_template_spec_friend) 4024 << FixItHint::CreateRemoval( 4025 SourceRange(TemplateParams->getTemplateLoc(), 4026 TemplateParams->getRAngleLoc())) 4027 << SourceRange(LAngleLoc, RAngleLoc); 4028 else 4029 isExplicitSpecialization = true; 4030 } else if (TUK != TUK_Friend) { 4031 Diag(KWLoc, diag::err_template_spec_needs_header) 4032 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4033 isExplicitSpecialization = true; 4034 } 4035 4036 // Check that the specialization uses the same tag kind as the 4037 // original template. 4038 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4039 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4040 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4041 Kind, KWLoc, 4042 *ClassTemplate->getIdentifier())) { 4043 Diag(KWLoc, diag::err_use_with_wrong_tag) 4044 << ClassTemplate 4045 << FixItHint::CreateReplacement(KWLoc, 4046 ClassTemplate->getTemplatedDecl()->getKindName()); 4047 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4048 diag::note_previous_use); 4049 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4050 } 4051 4052 // Translate the parser's template argument list in our AST format. 4053 TemplateArgumentListInfo TemplateArgs; 4054 TemplateArgs.setLAngleLoc(LAngleLoc); 4055 TemplateArgs.setRAngleLoc(RAngleLoc); 4056 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4057 4058 // Check that the template argument list is well-formed for this 4059 // template. 4060 llvm::SmallVector<TemplateArgument, 4> Converted; 4061 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4062 TemplateArgs, false, Converted)) 4063 return true; 4064 4065 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4066 "Converted template argument list is too short!"); 4067 4068 // Find the class template (partial) specialization declaration that 4069 // corresponds to these arguments. 4070 if (isPartialSpecialization) { 4071 bool MirrorsPrimaryTemplate; 4072 if (CheckClassTemplatePartialSpecializationArgs( 4073 ClassTemplate->getTemplateParameters(), 4074 Converted, MirrorsPrimaryTemplate)) 4075 return true; 4076 4077 if (MirrorsPrimaryTemplate) { 4078 // C++ [temp.class.spec]p9b3: 4079 // 4080 // -- The argument list of the specialization shall not be identical 4081 // to the implicit argument list of the primary template. 4082 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4083 << (TUK == TUK_Definition) 4084 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4085 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4086 ClassTemplate->getIdentifier(), 4087 TemplateNameLoc, 4088 Attr, 4089 TemplateParams, 4090 AS_none); 4091 } 4092 4093 // FIXME: Diagnose friend partial specializations 4094 4095 if (!Name.isDependent() && 4096 !TemplateSpecializationType::anyDependentTemplateArguments( 4097 TemplateArgs.getArgumentArray(), 4098 TemplateArgs.size())) { 4099 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4100 << ClassTemplate->getDeclName(); 4101 isPartialSpecialization = false; 4102 } 4103 } 4104 4105 void *InsertPos = 0; 4106 ClassTemplateSpecializationDecl *PrevDecl = 0; 4107 4108 if (isPartialSpecialization) 4109 // FIXME: Template parameter list matters, too 4110 PrevDecl 4111 = ClassTemplate->findPartialSpecialization(Converted.data(), 4112 Converted.size(), 4113 InsertPos); 4114 else 4115 PrevDecl 4116 = ClassTemplate->findSpecialization(Converted.data(), 4117 Converted.size(), InsertPos); 4118 4119 ClassTemplateSpecializationDecl *Specialization = 0; 4120 4121 // Check whether we can declare a class template specialization in 4122 // the current scope. 4123 if (TUK != TUK_Friend && 4124 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4125 TemplateNameLoc, 4126 isPartialSpecialization)) 4127 return true; 4128 4129 // The canonical type 4130 QualType CanonType; 4131 if (PrevDecl && 4132 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4133 TUK == TUK_Friend)) { 4134 // Since the only prior class template specialization with these 4135 // arguments was referenced but not declared, or we're only 4136 // referencing this specialization as a friend, reuse that 4137 // declaration node as our own, updating its source location to 4138 // reflect our new declaration. 4139 Specialization = PrevDecl; 4140 Specialization->setLocation(TemplateNameLoc); 4141 PrevDecl = 0; 4142 CanonType = Context.getTypeDeclType(Specialization); 4143 } else if (isPartialSpecialization) { 4144 // Build the canonical type that describes the converted template 4145 // arguments of the class template partial specialization. 4146 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4147 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4148 Converted.data(), 4149 Converted.size()); 4150 4151 // Create a new class template partial specialization declaration node. 4152 ClassTemplatePartialSpecializationDecl *PrevPartial 4153 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4154 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4155 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4156 ClassTemplatePartialSpecializationDecl *Partial 4157 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4158 ClassTemplate->getDeclContext(), 4159 TemplateNameLoc, 4160 TemplateParams, 4161 ClassTemplate, 4162 Converted.data(), 4163 Converted.size(), 4164 TemplateArgs, 4165 CanonType, 4166 PrevPartial, 4167 SequenceNumber); 4168 SetNestedNameSpecifier(Partial, SS); 4169 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4170 Partial->setTemplateParameterListsInfo(Context, 4171 NumMatchedTemplateParamLists, 4172 (TemplateParameterList**) TemplateParameterLists.release()); 4173 } 4174 4175 if (!PrevPartial) 4176 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4177 Specialization = Partial; 4178 4179 // If we are providing an explicit specialization of a member class 4180 // template specialization, make a note of that. 4181 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4182 PrevPartial->setMemberSpecialization(); 4183 4184 // Check that all of the template parameters of the class template 4185 // partial specialization are deducible from the template 4186 // arguments. If not, this class template partial specialization 4187 // will never be used. 4188 llvm::SmallVector<bool, 8> DeducibleParams; 4189 DeducibleParams.resize(TemplateParams->size()); 4190 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4191 TemplateParams->getDepth(), 4192 DeducibleParams); 4193 unsigned NumNonDeducible = 0; 4194 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4195 if (!DeducibleParams[I]) 4196 ++NumNonDeducible; 4197 4198 if (NumNonDeducible) { 4199 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4200 << (NumNonDeducible > 1) 4201 << SourceRange(TemplateNameLoc, RAngleLoc); 4202 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4203 if (!DeducibleParams[I]) { 4204 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4205 if (Param->getDeclName()) 4206 Diag(Param->getLocation(), 4207 diag::note_partial_spec_unused_parameter) 4208 << Param->getDeclName(); 4209 else 4210 Diag(Param->getLocation(), 4211 diag::note_partial_spec_unused_parameter) 4212 << "<anonymous>"; 4213 } 4214 } 4215 } 4216 } else { 4217 // Create a new class template specialization declaration node for 4218 // this explicit specialization or friend declaration. 4219 Specialization 4220 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4221 ClassTemplate->getDeclContext(), 4222 TemplateNameLoc, 4223 ClassTemplate, 4224 Converted.data(), 4225 Converted.size(), 4226 PrevDecl); 4227 SetNestedNameSpecifier(Specialization, SS); 4228 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4229 Specialization->setTemplateParameterListsInfo(Context, 4230 NumMatchedTemplateParamLists, 4231 (TemplateParameterList**) TemplateParameterLists.release()); 4232 } 4233 4234 if (!PrevDecl) 4235 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4236 4237 CanonType = Context.getTypeDeclType(Specialization); 4238 } 4239 4240 // C++ [temp.expl.spec]p6: 4241 // If a template, a member template or the member of a class template is 4242 // explicitly specialized then that specialization shall be declared 4243 // before the first use of that specialization that would cause an implicit 4244 // instantiation to take place, in every translation unit in which such a 4245 // use occurs; no diagnostic is required. 4246 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4247 bool Okay = false; 4248 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4249 // Is there any previous explicit specialization declaration? 4250 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4251 Okay = true; 4252 break; 4253 } 4254 } 4255 4256 if (!Okay) { 4257 SourceRange Range(TemplateNameLoc, RAngleLoc); 4258 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4259 << Context.getTypeDeclType(Specialization) << Range; 4260 4261 Diag(PrevDecl->getPointOfInstantiation(), 4262 diag::note_instantiation_required_here) 4263 << (PrevDecl->getTemplateSpecializationKind() 4264 != TSK_ImplicitInstantiation); 4265 return true; 4266 } 4267 } 4268 4269 // If this is not a friend, note that this is an explicit specialization. 4270 if (TUK != TUK_Friend) 4271 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4272 4273 // Check that this isn't a redefinition of this specialization. 4274 if (TUK == TUK_Definition) { 4275 if (RecordDecl *Def = Specialization->getDefinition()) { 4276 SourceRange Range(TemplateNameLoc, RAngleLoc); 4277 Diag(TemplateNameLoc, diag::err_redefinition) 4278 << Context.getTypeDeclType(Specialization) << Range; 4279 Diag(Def->getLocation(), diag::note_previous_definition); 4280 Specialization->setInvalidDecl(); 4281 return true; 4282 } 4283 } 4284 4285 // Build the fully-sugared type for this class template 4286 // specialization as the user wrote in the specialization 4287 // itself. This means that we'll pretty-print the type retrieved 4288 // from the specialization's declaration the way that the user 4289 // actually wrote the specialization, rather than formatting the 4290 // name based on the "canonical" representation used to store the 4291 // template arguments in the specialization. 4292 TypeSourceInfo *WrittenTy 4293 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4294 TemplateArgs, CanonType); 4295 if (TUK != TUK_Friend) { 4296 Specialization->setTypeAsWritten(WrittenTy); 4297 if (TemplateParams) 4298 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4299 } 4300 TemplateArgsIn.release(); 4301 4302 // C++ [temp.expl.spec]p9: 4303 // A template explicit specialization is in the scope of the 4304 // namespace in which the template was defined. 4305 // 4306 // We actually implement this paragraph where we set the semantic 4307 // context (in the creation of the ClassTemplateSpecializationDecl), 4308 // but we also maintain the lexical context where the actual 4309 // definition occurs. 4310 Specialization->setLexicalDeclContext(CurContext); 4311 4312 // We may be starting the definition of this specialization. 4313 if (TUK == TUK_Definition) 4314 Specialization->startDefinition(); 4315 4316 if (TUK == TUK_Friend) { 4317 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4318 TemplateNameLoc, 4319 WrittenTy, 4320 /*FIXME:*/KWLoc); 4321 Friend->setAccess(AS_public); 4322 CurContext->addDecl(Friend); 4323 } else { 4324 // Add the specialization into its lexical context, so that it can 4325 // be seen when iterating through the list of declarations in that 4326 // context. However, specializations are not found by name lookup. 4327 CurContext->addDecl(Specialization); 4328 } 4329 return Specialization; 4330} 4331 4332Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4333 MultiTemplateParamsArg TemplateParameterLists, 4334 Declarator &D) { 4335 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4336} 4337 4338Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4339 MultiTemplateParamsArg TemplateParameterLists, 4340 Declarator &D) { 4341 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4342 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4343 4344 if (FTI.hasPrototype) { 4345 // FIXME: Diagnose arguments without names in C. 4346 } 4347 4348 Scope *ParentScope = FnBodyScope->getParent(); 4349 4350 Decl *DP = HandleDeclarator(ParentScope, D, 4351 move(TemplateParameterLists), 4352 /*IsFunctionDefinition=*/true); 4353 if (FunctionTemplateDecl *FunctionTemplate 4354 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4355 return ActOnStartOfFunctionDef(FnBodyScope, 4356 FunctionTemplate->getTemplatedDecl()); 4357 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4358 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4359 return 0; 4360} 4361 4362/// \brief Strips various properties off an implicit instantiation 4363/// that has just been explicitly specialized. 4364static void StripImplicitInstantiation(NamedDecl *D) { 4365 D->dropAttrs(); 4366 4367 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4368 FD->setInlineSpecified(false); 4369 } 4370} 4371 4372/// \brief Diagnose cases where we have an explicit template specialization 4373/// before/after an explicit template instantiation, producing diagnostics 4374/// for those cases where they are required and determining whether the 4375/// new specialization/instantiation will have any effect. 4376/// 4377/// \param NewLoc the location of the new explicit specialization or 4378/// instantiation. 4379/// 4380/// \param NewTSK the kind of the new explicit specialization or instantiation. 4381/// 4382/// \param PrevDecl the previous declaration of the entity. 4383/// 4384/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4385/// 4386/// \param PrevPointOfInstantiation if valid, indicates where the previus 4387/// declaration was instantiated (either implicitly or explicitly). 4388/// 4389/// \param HasNoEffect will be set to true to indicate that the new 4390/// specialization or instantiation has no effect and should be ignored. 4391/// 4392/// \returns true if there was an error that should prevent the introduction of 4393/// the new declaration into the AST, false otherwise. 4394bool 4395Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4396 TemplateSpecializationKind NewTSK, 4397 NamedDecl *PrevDecl, 4398 TemplateSpecializationKind PrevTSK, 4399 SourceLocation PrevPointOfInstantiation, 4400 bool &HasNoEffect) { 4401 HasNoEffect = false; 4402 4403 switch (NewTSK) { 4404 case TSK_Undeclared: 4405 case TSK_ImplicitInstantiation: 4406 assert(false && "Don't check implicit instantiations here"); 4407 return false; 4408 4409 case TSK_ExplicitSpecialization: 4410 switch (PrevTSK) { 4411 case TSK_Undeclared: 4412 case TSK_ExplicitSpecialization: 4413 // Okay, we're just specializing something that is either already 4414 // explicitly specialized or has merely been mentioned without any 4415 // instantiation. 4416 return false; 4417 4418 case TSK_ImplicitInstantiation: 4419 if (PrevPointOfInstantiation.isInvalid()) { 4420 // The declaration itself has not actually been instantiated, so it is 4421 // still okay to specialize it. 4422 StripImplicitInstantiation(PrevDecl); 4423 return false; 4424 } 4425 // Fall through 4426 4427 case TSK_ExplicitInstantiationDeclaration: 4428 case TSK_ExplicitInstantiationDefinition: 4429 assert((PrevTSK == TSK_ImplicitInstantiation || 4430 PrevPointOfInstantiation.isValid()) && 4431 "Explicit instantiation without point of instantiation?"); 4432 4433 // C++ [temp.expl.spec]p6: 4434 // If a template, a member template or the member of a class template 4435 // is explicitly specialized then that specialization shall be declared 4436 // before the first use of that specialization that would cause an 4437 // implicit instantiation to take place, in every translation unit in 4438 // which such a use occurs; no diagnostic is required. 4439 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4440 // Is there any previous explicit specialization declaration? 4441 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4442 return false; 4443 } 4444 4445 Diag(NewLoc, diag::err_specialization_after_instantiation) 4446 << PrevDecl; 4447 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4448 << (PrevTSK != TSK_ImplicitInstantiation); 4449 4450 return true; 4451 } 4452 break; 4453 4454 case TSK_ExplicitInstantiationDeclaration: 4455 switch (PrevTSK) { 4456 case TSK_ExplicitInstantiationDeclaration: 4457 // This explicit instantiation declaration is redundant (that's okay). 4458 HasNoEffect = true; 4459 return false; 4460 4461 case TSK_Undeclared: 4462 case TSK_ImplicitInstantiation: 4463 // We're explicitly instantiating something that may have already been 4464 // implicitly instantiated; that's fine. 4465 return false; 4466 4467 case TSK_ExplicitSpecialization: 4468 // C++0x [temp.explicit]p4: 4469 // For a given set of template parameters, if an explicit instantiation 4470 // of a template appears after a declaration of an explicit 4471 // specialization for that template, the explicit instantiation has no 4472 // effect. 4473 HasNoEffect = true; 4474 return false; 4475 4476 case TSK_ExplicitInstantiationDefinition: 4477 // C++0x [temp.explicit]p10: 4478 // If an entity is the subject of both an explicit instantiation 4479 // declaration and an explicit instantiation definition in the same 4480 // translation unit, the definition shall follow the declaration. 4481 Diag(NewLoc, 4482 diag::err_explicit_instantiation_declaration_after_definition); 4483 Diag(PrevPointOfInstantiation, 4484 diag::note_explicit_instantiation_definition_here); 4485 assert(PrevPointOfInstantiation.isValid() && 4486 "Explicit instantiation without point of instantiation?"); 4487 HasNoEffect = true; 4488 return false; 4489 } 4490 break; 4491 4492 case TSK_ExplicitInstantiationDefinition: 4493 switch (PrevTSK) { 4494 case TSK_Undeclared: 4495 case TSK_ImplicitInstantiation: 4496 // We're explicitly instantiating something that may have already been 4497 // implicitly instantiated; that's fine. 4498 return false; 4499 4500 case TSK_ExplicitSpecialization: 4501 // C++ DR 259, C++0x [temp.explicit]p4: 4502 // For a given set of template parameters, if an explicit 4503 // instantiation of a template appears after a declaration of 4504 // an explicit specialization for that template, the explicit 4505 // instantiation has no effect. 4506 // 4507 // In C++98/03 mode, we only give an extension warning here, because it 4508 // is not harmful to try to explicitly instantiate something that 4509 // has been explicitly specialized. 4510 if (!getLangOptions().CPlusPlus0x) { 4511 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4512 << PrevDecl; 4513 Diag(PrevDecl->getLocation(), 4514 diag::note_previous_template_specialization); 4515 } 4516 HasNoEffect = true; 4517 return false; 4518 4519 case TSK_ExplicitInstantiationDeclaration: 4520 // We're explicity instantiating a definition for something for which we 4521 // were previously asked to suppress instantiations. That's fine. 4522 return false; 4523 4524 case TSK_ExplicitInstantiationDefinition: 4525 // C++0x [temp.spec]p5: 4526 // For a given template and a given set of template-arguments, 4527 // - an explicit instantiation definition shall appear at most once 4528 // in a program, 4529 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4530 << PrevDecl; 4531 Diag(PrevPointOfInstantiation, 4532 diag::note_previous_explicit_instantiation); 4533 HasNoEffect = true; 4534 return false; 4535 } 4536 break; 4537 } 4538 4539 assert(false && "Missing specialization/instantiation case?"); 4540 4541 return false; 4542} 4543 4544/// \brief Perform semantic analysis for the given dependent function 4545/// template specialization. The only possible way to get a dependent 4546/// function template specialization is with a friend declaration, 4547/// like so: 4548/// 4549/// template <class T> void foo(T); 4550/// template <class T> class A { 4551/// friend void foo<>(T); 4552/// }; 4553/// 4554/// There really isn't any useful analysis we can do here, so we 4555/// just store the information. 4556bool 4557Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4558 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4559 LookupResult &Previous) { 4560 // Remove anything from Previous that isn't a function template in 4561 // the correct context. 4562 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4563 LookupResult::Filter F = Previous.makeFilter(); 4564 while (F.hasNext()) { 4565 NamedDecl *D = F.next()->getUnderlyingDecl(); 4566 if (!isa<FunctionTemplateDecl>(D) || 4567 !FDLookupContext->InEnclosingNamespaceSetOf( 4568 D->getDeclContext()->getRedeclContext())) 4569 F.erase(); 4570 } 4571 F.done(); 4572 4573 // Should this be diagnosed here? 4574 if (Previous.empty()) return true; 4575 4576 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4577 ExplicitTemplateArgs); 4578 return false; 4579} 4580 4581/// \brief Perform semantic analysis for the given function template 4582/// specialization. 4583/// 4584/// This routine performs all of the semantic analysis required for an 4585/// explicit function template specialization. On successful completion, 4586/// the function declaration \p FD will become a function template 4587/// specialization. 4588/// 4589/// \param FD the function declaration, which will be updated to become a 4590/// function template specialization. 4591/// 4592/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4593/// if any. Note that this may be valid info even when 0 arguments are 4594/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4595/// as it anyway contains info on the angle brackets locations. 4596/// 4597/// \param PrevDecl the set of declarations that may be specialized by 4598/// this function specialization. 4599bool 4600Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4601 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4602 LookupResult &Previous) { 4603 // The set of function template specializations that could match this 4604 // explicit function template specialization. 4605 UnresolvedSet<8> Candidates; 4606 4607 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4608 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4609 I != E; ++I) { 4610 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4611 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4612 // Only consider templates found within the same semantic lookup scope as 4613 // FD. 4614 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4615 Ovl->getDeclContext()->getRedeclContext())) 4616 continue; 4617 4618 // C++ [temp.expl.spec]p11: 4619 // A trailing template-argument can be left unspecified in the 4620 // template-id naming an explicit function template specialization 4621 // provided it can be deduced from the function argument type. 4622 // Perform template argument deduction to determine whether we may be 4623 // specializing this template. 4624 // FIXME: It is somewhat wasteful to build 4625 TemplateDeductionInfo Info(Context, FD->getLocation()); 4626 FunctionDecl *Specialization = 0; 4627 if (TemplateDeductionResult TDK 4628 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4629 FD->getType(), 4630 Specialization, 4631 Info)) { 4632 // FIXME: Template argument deduction failed; record why it failed, so 4633 // that we can provide nifty diagnostics. 4634 (void)TDK; 4635 continue; 4636 } 4637 4638 // Record this candidate. 4639 Candidates.addDecl(Specialization, I.getAccess()); 4640 } 4641 } 4642 4643 // Find the most specialized function template. 4644 UnresolvedSetIterator Result 4645 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4646 TPOC_Other, FD->getLocation(), 4647 PDiag(diag::err_function_template_spec_no_match) 4648 << FD->getDeclName(), 4649 PDiag(diag::err_function_template_spec_ambiguous) 4650 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4651 PDiag(diag::note_function_template_spec_matched)); 4652 if (Result == Candidates.end()) 4653 return true; 4654 4655 // Ignore access information; it doesn't figure into redeclaration checking. 4656 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4657 Specialization->setLocation(FD->getLocation()); 4658 4659 // FIXME: Check if the prior specialization has a point of instantiation. 4660 // If so, we have run afoul of . 4661 4662 // If this is a friend declaration, then we're not really declaring 4663 // an explicit specialization. 4664 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4665 4666 // Check the scope of this explicit specialization. 4667 if (!isFriend && 4668 CheckTemplateSpecializationScope(*this, 4669 Specialization->getPrimaryTemplate(), 4670 Specialization, FD->getLocation(), 4671 false)) 4672 return true; 4673 4674 // C++ [temp.expl.spec]p6: 4675 // If a template, a member template or the member of a class template is 4676 // explicitly specialized then that specialization shall be declared 4677 // before the first use of that specialization that would cause an implicit 4678 // instantiation to take place, in every translation unit in which such a 4679 // use occurs; no diagnostic is required. 4680 FunctionTemplateSpecializationInfo *SpecInfo 4681 = Specialization->getTemplateSpecializationInfo(); 4682 assert(SpecInfo && "Function template specialization info missing?"); 4683 4684 bool HasNoEffect = false; 4685 if (!isFriend && 4686 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4687 TSK_ExplicitSpecialization, 4688 Specialization, 4689 SpecInfo->getTemplateSpecializationKind(), 4690 SpecInfo->getPointOfInstantiation(), 4691 HasNoEffect)) 4692 return true; 4693 4694 // Mark the prior declaration as an explicit specialization, so that later 4695 // clients know that this is an explicit specialization. 4696 if (!isFriend) { 4697 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4698 MarkUnusedFileScopedDecl(Specialization); 4699 } 4700 4701 // Turn the given function declaration into a function template 4702 // specialization, with the template arguments from the previous 4703 // specialization. 4704 // Take copies of (semantic and syntactic) template argument lists. 4705 const TemplateArgumentList* TemplArgs = new (Context) 4706 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4707 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4708 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4709 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4710 TemplArgs, /*InsertPos=*/0, 4711 SpecInfo->getTemplateSpecializationKind(), 4712 TemplArgsAsWritten); 4713 4714 // The "previous declaration" for this function template specialization is 4715 // the prior function template specialization. 4716 Previous.clear(); 4717 Previous.addDecl(Specialization); 4718 return false; 4719} 4720 4721/// \brief Perform semantic analysis for the given non-template member 4722/// specialization. 4723/// 4724/// This routine performs all of the semantic analysis required for an 4725/// explicit member function specialization. On successful completion, 4726/// the function declaration \p FD will become a member function 4727/// specialization. 4728/// 4729/// \param Member the member declaration, which will be updated to become a 4730/// specialization. 4731/// 4732/// \param Previous the set of declarations, one of which may be specialized 4733/// by this function specialization; the set will be modified to contain the 4734/// redeclared member. 4735bool 4736Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4737 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4738 4739 // Try to find the member we are instantiating. 4740 NamedDecl *Instantiation = 0; 4741 NamedDecl *InstantiatedFrom = 0; 4742 MemberSpecializationInfo *MSInfo = 0; 4743 4744 if (Previous.empty()) { 4745 // Nowhere to look anyway. 4746 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4747 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4748 I != E; ++I) { 4749 NamedDecl *D = (*I)->getUnderlyingDecl(); 4750 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4751 if (Context.hasSameType(Function->getType(), Method->getType())) { 4752 Instantiation = Method; 4753 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4754 MSInfo = Method->getMemberSpecializationInfo(); 4755 break; 4756 } 4757 } 4758 } 4759 } else if (isa<VarDecl>(Member)) { 4760 VarDecl *PrevVar; 4761 if (Previous.isSingleResult() && 4762 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4763 if (PrevVar->isStaticDataMember()) { 4764 Instantiation = PrevVar; 4765 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4766 MSInfo = PrevVar->getMemberSpecializationInfo(); 4767 } 4768 } else if (isa<RecordDecl>(Member)) { 4769 CXXRecordDecl *PrevRecord; 4770 if (Previous.isSingleResult() && 4771 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4772 Instantiation = PrevRecord; 4773 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4774 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4775 } 4776 } 4777 4778 if (!Instantiation) { 4779 // There is no previous declaration that matches. Since member 4780 // specializations are always out-of-line, the caller will complain about 4781 // this mismatch later. 4782 return false; 4783 } 4784 4785 // If this is a friend, just bail out here before we start turning 4786 // things into explicit specializations. 4787 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4788 // Preserve instantiation information. 4789 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4790 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4791 cast<CXXMethodDecl>(InstantiatedFrom), 4792 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4793 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4794 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4795 cast<CXXRecordDecl>(InstantiatedFrom), 4796 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4797 } 4798 4799 Previous.clear(); 4800 Previous.addDecl(Instantiation); 4801 return false; 4802 } 4803 4804 // Make sure that this is a specialization of a member. 4805 if (!InstantiatedFrom) { 4806 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4807 << Member; 4808 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4809 return true; 4810 } 4811 4812 // C++ [temp.expl.spec]p6: 4813 // If a template, a member template or the member of a class template is 4814 // explicitly specialized then that spe- cialization shall be declared 4815 // before the first use of that specialization that would cause an implicit 4816 // instantiation to take place, in every translation unit in which such a 4817 // use occurs; no diagnostic is required. 4818 assert(MSInfo && "Member specialization info missing?"); 4819 4820 bool HasNoEffect = false; 4821 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4822 TSK_ExplicitSpecialization, 4823 Instantiation, 4824 MSInfo->getTemplateSpecializationKind(), 4825 MSInfo->getPointOfInstantiation(), 4826 HasNoEffect)) 4827 return true; 4828 4829 // Check the scope of this explicit specialization. 4830 if (CheckTemplateSpecializationScope(*this, 4831 InstantiatedFrom, 4832 Instantiation, Member->getLocation(), 4833 false)) 4834 return true; 4835 4836 // Note that this is an explicit instantiation of a member. 4837 // the original declaration to note that it is an explicit specialization 4838 // (if it was previously an implicit instantiation). This latter step 4839 // makes bookkeeping easier. 4840 if (isa<FunctionDecl>(Member)) { 4841 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4842 if (InstantiationFunction->getTemplateSpecializationKind() == 4843 TSK_ImplicitInstantiation) { 4844 InstantiationFunction->setTemplateSpecializationKind( 4845 TSK_ExplicitSpecialization); 4846 InstantiationFunction->setLocation(Member->getLocation()); 4847 } 4848 4849 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4850 cast<CXXMethodDecl>(InstantiatedFrom), 4851 TSK_ExplicitSpecialization); 4852 MarkUnusedFileScopedDecl(InstantiationFunction); 4853 } else if (isa<VarDecl>(Member)) { 4854 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4855 if (InstantiationVar->getTemplateSpecializationKind() == 4856 TSK_ImplicitInstantiation) { 4857 InstantiationVar->setTemplateSpecializationKind( 4858 TSK_ExplicitSpecialization); 4859 InstantiationVar->setLocation(Member->getLocation()); 4860 } 4861 4862 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4863 cast<VarDecl>(InstantiatedFrom), 4864 TSK_ExplicitSpecialization); 4865 MarkUnusedFileScopedDecl(InstantiationVar); 4866 } else { 4867 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4868 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4869 if (InstantiationClass->getTemplateSpecializationKind() == 4870 TSK_ImplicitInstantiation) { 4871 InstantiationClass->setTemplateSpecializationKind( 4872 TSK_ExplicitSpecialization); 4873 InstantiationClass->setLocation(Member->getLocation()); 4874 } 4875 4876 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4877 cast<CXXRecordDecl>(InstantiatedFrom), 4878 TSK_ExplicitSpecialization); 4879 } 4880 4881 // Save the caller the trouble of having to figure out which declaration 4882 // this specialization matches. 4883 Previous.clear(); 4884 Previous.addDecl(Instantiation); 4885 return false; 4886} 4887 4888/// \brief Check the scope of an explicit instantiation. 4889/// 4890/// \returns true if a serious error occurs, false otherwise. 4891static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4892 SourceLocation InstLoc, 4893 bool WasQualifiedName) { 4894 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 4895 DeclContext *CurContext = S.CurContext->getRedeclContext(); 4896 4897 if (CurContext->isRecord()) { 4898 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 4899 << D; 4900 return true; 4901 } 4902 4903 // C++0x [temp.explicit]p2: 4904 // An explicit instantiation shall appear in an enclosing namespace of its 4905 // template. 4906 // 4907 // This is DR275, which we do not retroactively apply to C++98/03. 4908 if (S.getLangOptions().CPlusPlus0x && 4909 !CurContext->Encloses(OrigContext)) { 4910 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 4911 S.Diag(InstLoc, 4912 S.getLangOptions().CPlusPlus0x? 4913 diag::err_explicit_instantiation_out_of_scope 4914 : diag::warn_explicit_instantiation_out_of_scope_0x) 4915 << D << NS; 4916 else 4917 S.Diag(InstLoc, 4918 S.getLangOptions().CPlusPlus0x? 4919 diag::err_explicit_instantiation_must_be_global 4920 : diag::warn_explicit_instantiation_out_of_scope_0x) 4921 << D; 4922 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4923 return false; 4924 } 4925 4926 // C++0x [temp.explicit]p2: 4927 // If the name declared in the explicit instantiation is an unqualified 4928 // name, the explicit instantiation shall appear in the namespace where 4929 // its template is declared or, if that namespace is inline (7.3.1), any 4930 // namespace from its enclosing namespace set. 4931 if (WasQualifiedName) 4932 return false; 4933 4934 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 4935 return false; 4936 4937 S.Diag(InstLoc, 4938 S.getLangOptions().CPlusPlus0x? 4939 diag::err_explicit_instantiation_unqualified_wrong_namespace 4940 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4941 << D << OrigContext; 4942 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4943 return false; 4944} 4945 4946/// \brief Determine whether the given scope specifier has a template-id in it. 4947static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4948 if (!SS.isSet()) 4949 return false; 4950 4951 // C++0x [temp.explicit]p2: 4952 // If the explicit instantiation is for a member function, a member class 4953 // or a static data member of a class template specialization, the name of 4954 // the class template specialization in the qualified-id for the member 4955 // name shall be a simple-template-id. 4956 // 4957 // C++98 has the same restriction, just worded differently. 4958 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4959 NNS; NNS = NNS->getPrefix()) 4960 if (Type *T = NNS->getAsType()) 4961 if (isa<TemplateSpecializationType>(T)) 4962 return true; 4963 4964 return false; 4965} 4966 4967// Explicit instantiation of a class template specialization 4968DeclResult 4969Sema::ActOnExplicitInstantiation(Scope *S, 4970 SourceLocation ExternLoc, 4971 SourceLocation TemplateLoc, 4972 unsigned TagSpec, 4973 SourceLocation KWLoc, 4974 const CXXScopeSpec &SS, 4975 TemplateTy TemplateD, 4976 SourceLocation TemplateNameLoc, 4977 SourceLocation LAngleLoc, 4978 ASTTemplateArgsPtr TemplateArgsIn, 4979 SourceLocation RAngleLoc, 4980 AttributeList *Attr) { 4981 // Find the class template we're specializing 4982 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4983 ClassTemplateDecl *ClassTemplate 4984 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4985 4986 // Check that the specialization uses the same tag kind as the 4987 // original template. 4988 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4989 assert(Kind != TTK_Enum && 4990 "Invalid enum tag in class template explicit instantiation!"); 4991 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4992 Kind, KWLoc, 4993 *ClassTemplate->getIdentifier())) { 4994 Diag(KWLoc, diag::err_use_with_wrong_tag) 4995 << ClassTemplate 4996 << FixItHint::CreateReplacement(KWLoc, 4997 ClassTemplate->getTemplatedDecl()->getKindName()); 4998 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4999 diag::note_previous_use); 5000 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5001 } 5002 5003 // C++0x [temp.explicit]p2: 5004 // There are two forms of explicit instantiation: an explicit instantiation 5005 // definition and an explicit instantiation declaration. An explicit 5006 // instantiation declaration begins with the extern keyword. [...] 5007 TemplateSpecializationKind TSK 5008 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5009 : TSK_ExplicitInstantiationDeclaration; 5010 5011 // Translate the parser's template argument list in our AST format. 5012 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5013 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5014 5015 // Check that the template argument list is well-formed for this 5016 // template. 5017 llvm::SmallVector<TemplateArgument, 4> Converted; 5018 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5019 TemplateArgs, false, Converted)) 5020 return true; 5021 5022 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5023 "Converted template argument list is too short!"); 5024 5025 // Find the class template specialization declaration that 5026 // corresponds to these arguments. 5027 void *InsertPos = 0; 5028 ClassTemplateSpecializationDecl *PrevDecl 5029 = ClassTemplate->findSpecialization(Converted.data(), 5030 Converted.size(), InsertPos); 5031 5032 TemplateSpecializationKind PrevDecl_TSK 5033 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5034 5035 // C++0x [temp.explicit]p2: 5036 // [...] An explicit instantiation shall appear in an enclosing 5037 // namespace of its template. [...] 5038 // 5039 // This is C++ DR 275. 5040 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5041 SS.isSet())) 5042 return true; 5043 5044 ClassTemplateSpecializationDecl *Specialization = 0; 5045 5046 bool ReusedDecl = false; 5047 bool HasNoEffect = false; 5048 if (PrevDecl) { 5049 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5050 PrevDecl, PrevDecl_TSK, 5051 PrevDecl->getPointOfInstantiation(), 5052 HasNoEffect)) 5053 return PrevDecl; 5054 5055 // Even though HasNoEffect == true means that this explicit instantiation 5056 // has no effect on semantics, we go on to put its syntax in the AST. 5057 5058 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5059 PrevDecl_TSK == TSK_Undeclared) { 5060 // Since the only prior class template specialization with these 5061 // arguments was referenced but not declared, reuse that 5062 // declaration node as our own, updating the source location 5063 // for the template name to reflect our new declaration. 5064 // (Other source locations will be updated later.) 5065 Specialization = PrevDecl; 5066 Specialization->setLocation(TemplateNameLoc); 5067 PrevDecl = 0; 5068 ReusedDecl = true; 5069 } 5070 } 5071 5072 if (!Specialization) { 5073 // Create a new class template specialization declaration node for 5074 // this explicit specialization. 5075 Specialization 5076 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5077 ClassTemplate->getDeclContext(), 5078 TemplateNameLoc, 5079 ClassTemplate, 5080 Converted.data(), 5081 Converted.size(), 5082 PrevDecl); 5083 SetNestedNameSpecifier(Specialization, SS); 5084 5085 if (!HasNoEffect && !PrevDecl) { 5086 // Insert the new specialization. 5087 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5088 } 5089 } 5090 5091 // Build the fully-sugared type for this explicit instantiation as 5092 // the user wrote in the explicit instantiation itself. This means 5093 // that we'll pretty-print the type retrieved from the 5094 // specialization's declaration the way that the user actually wrote 5095 // the explicit instantiation, rather than formatting the name based 5096 // on the "canonical" representation used to store the template 5097 // arguments in the specialization. 5098 TypeSourceInfo *WrittenTy 5099 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5100 TemplateArgs, 5101 Context.getTypeDeclType(Specialization)); 5102 Specialization->setTypeAsWritten(WrittenTy); 5103 TemplateArgsIn.release(); 5104 5105 // Set source locations for keywords. 5106 Specialization->setExternLoc(ExternLoc); 5107 Specialization->setTemplateKeywordLoc(TemplateLoc); 5108 5109 // Add the explicit instantiation into its lexical context. However, 5110 // since explicit instantiations are never found by name lookup, we 5111 // just put it into the declaration context directly. 5112 Specialization->setLexicalDeclContext(CurContext); 5113 CurContext->addDecl(Specialization); 5114 5115 // Syntax is now OK, so return if it has no other effect on semantics. 5116 if (HasNoEffect) { 5117 // Set the template specialization kind. 5118 Specialization->setTemplateSpecializationKind(TSK); 5119 return Specialization; 5120 } 5121 5122 // C++ [temp.explicit]p3: 5123 // A definition of a class template or class member template 5124 // shall be in scope at the point of the explicit instantiation of 5125 // the class template or class member template. 5126 // 5127 // This check comes when we actually try to perform the 5128 // instantiation. 5129 ClassTemplateSpecializationDecl *Def 5130 = cast_or_null<ClassTemplateSpecializationDecl>( 5131 Specialization->getDefinition()); 5132 if (!Def) 5133 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5134 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5135 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5136 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5137 } 5138 5139 // Instantiate the members of this class template specialization. 5140 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5141 Specialization->getDefinition()); 5142 if (Def) { 5143 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5144 5145 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5146 // TSK_ExplicitInstantiationDefinition 5147 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5148 TSK == TSK_ExplicitInstantiationDefinition) 5149 Def->setTemplateSpecializationKind(TSK); 5150 5151 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5152 } 5153 5154 // Set the template specialization kind. 5155 Specialization->setTemplateSpecializationKind(TSK); 5156 return Specialization; 5157} 5158 5159// Explicit instantiation of a member class of a class template. 5160DeclResult 5161Sema::ActOnExplicitInstantiation(Scope *S, 5162 SourceLocation ExternLoc, 5163 SourceLocation TemplateLoc, 5164 unsigned TagSpec, 5165 SourceLocation KWLoc, 5166 CXXScopeSpec &SS, 5167 IdentifierInfo *Name, 5168 SourceLocation NameLoc, 5169 AttributeList *Attr) { 5170 5171 bool Owned = false; 5172 bool IsDependent = false; 5173 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5174 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5175 MultiTemplateParamsArg(*this, 0, 0), 5176 Owned, IsDependent, false, false, 5177 TypeResult()); 5178 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5179 5180 if (!TagD) 5181 return true; 5182 5183 TagDecl *Tag = cast<TagDecl>(TagD); 5184 if (Tag->isEnum()) { 5185 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5186 << Context.getTypeDeclType(Tag); 5187 return true; 5188 } 5189 5190 if (Tag->isInvalidDecl()) 5191 return true; 5192 5193 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5194 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5195 if (!Pattern) { 5196 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5197 << Context.getTypeDeclType(Record); 5198 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5199 return true; 5200 } 5201 5202 // C++0x [temp.explicit]p2: 5203 // If the explicit instantiation is for a class or member class, the 5204 // elaborated-type-specifier in the declaration shall include a 5205 // simple-template-id. 5206 // 5207 // C++98 has the same restriction, just worded differently. 5208 if (!ScopeSpecifierHasTemplateId(SS)) 5209 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5210 << Record << SS.getRange(); 5211 5212 // C++0x [temp.explicit]p2: 5213 // There are two forms of explicit instantiation: an explicit instantiation 5214 // definition and an explicit instantiation declaration. An explicit 5215 // instantiation declaration begins with the extern keyword. [...] 5216 TemplateSpecializationKind TSK 5217 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5218 : TSK_ExplicitInstantiationDeclaration; 5219 5220 // C++0x [temp.explicit]p2: 5221 // [...] An explicit instantiation shall appear in an enclosing 5222 // namespace of its template. [...] 5223 // 5224 // This is C++ DR 275. 5225 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5226 5227 // Verify that it is okay to explicitly instantiate here. 5228 CXXRecordDecl *PrevDecl 5229 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5230 if (!PrevDecl && Record->getDefinition()) 5231 PrevDecl = Record; 5232 if (PrevDecl) { 5233 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5234 bool HasNoEffect = false; 5235 assert(MSInfo && "No member specialization information?"); 5236 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5237 PrevDecl, 5238 MSInfo->getTemplateSpecializationKind(), 5239 MSInfo->getPointOfInstantiation(), 5240 HasNoEffect)) 5241 return true; 5242 if (HasNoEffect) 5243 return TagD; 5244 } 5245 5246 CXXRecordDecl *RecordDef 5247 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5248 if (!RecordDef) { 5249 // C++ [temp.explicit]p3: 5250 // A definition of a member class of a class template shall be in scope 5251 // at the point of an explicit instantiation of the member class. 5252 CXXRecordDecl *Def 5253 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5254 if (!Def) { 5255 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5256 << 0 << Record->getDeclName() << Record->getDeclContext(); 5257 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5258 << Pattern; 5259 return true; 5260 } else { 5261 if (InstantiateClass(NameLoc, Record, Def, 5262 getTemplateInstantiationArgs(Record), 5263 TSK)) 5264 return true; 5265 5266 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5267 if (!RecordDef) 5268 return true; 5269 } 5270 } 5271 5272 // Instantiate all of the members of the class. 5273 InstantiateClassMembers(NameLoc, RecordDef, 5274 getTemplateInstantiationArgs(Record), TSK); 5275 5276 if (TSK == TSK_ExplicitInstantiationDefinition) 5277 MarkVTableUsed(NameLoc, RecordDef, true); 5278 5279 // FIXME: We don't have any representation for explicit instantiations of 5280 // member classes. Such a representation is not needed for compilation, but it 5281 // should be available for clients that want to see all of the declarations in 5282 // the source code. 5283 return TagD; 5284} 5285 5286DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5287 SourceLocation ExternLoc, 5288 SourceLocation TemplateLoc, 5289 Declarator &D) { 5290 // Explicit instantiations always require a name. 5291 // TODO: check if/when DNInfo should replace Name. 5292 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5293 DeclarationName Name = NameInfo.getName(); 5294 if (!Name) { 5295 if (!D.isInvalidType()) 5296 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5297 diag::err_explicit_instantiation_requires_name) 5298 << D.getDeclSpec().getSourceRange() 5299 << D.getSourceRange(); 5300 5301 return true; 5302 } 5303 5304 // The scope passed in may not be a decl scope. Zip up the scope tree until 5305 // we find one that is. 5306 while ((S->getFlags() & Scope::DeclScope) == 0 || 5307 (S->getFlags() & Scope::TemplateParamScope) != 0) 5308 S = S->getParent(); 5309 5310 // Determine the type of the declaration. 5311 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5312 QualType R = T->getType(); 5313 if (R.isNull()) 5314 return true; 5315 5316 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5317 // Cannot explicitly instantiate a typedef. 5318 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5319 << Name; 5320 return true; 5321 } 5322 5323 // C++0x [temp.explicit]p1: 5324 // [...] An explicit instantiation of a function template shall not use the 5325 // inline or constexpr specifiers. 5326 // Presumably, this also applies to member functions of class templates as 5327 // well. 5328 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5329 Diag(D.getDeclSpec().getInlineSpecLoc(), 5330 diag::err_explicit_instantiation_inline) 5331 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5332 5333 // FIXME: check for constexpr specifier. 5334 5335 // C++0x [temp.explicit]p2: 5336 // There are two forms of explicit instantiation: an explicit instantiation 5337 // definition and an explicit instantiation declaration. An explicit 5338 // instantiation declaration begins with the extern keyword. [...] 5339 TemplateSpecializationKind TSK 5340 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5341 : TSK_ExplicitInstantiationDeclaration; 5342 5343 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5344 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5345 5346 if (!R->isFunctionType()) { 5347 // C++ [temp.explicit]p1: 5348 // A [...] static data member of a class template can be explicitly 5349 // instantiated from the member definition associated with its class 5350 // template. 5351 if (Previous.isAmbiguous()) 5352 return true; 5353 5354 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5355 if (!Prev || !Prev->isStaticDataMember()) { 5356 // We expect to see a data data member here. 5357 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5358 << Name; 5359 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5360 P != PEnd; ++P) 5361 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5362 return true; 5363 } 5364 5365 if (!Prev->getInstantiatedFromStaticDataMember()) { 5366 // FIXME: Check for explicit specialization? 5367 Diag(D.getIdentifierLoc(), 5368 diag::err_explicit_instantiation_data_member_not_instantiated) 5369 << Prev; 5370 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5371 // FIXME: Can we provide a note showing where this was declared? 5372 return true; 5373 } 5374 5375 // C++0x [temp.explicit]p2: 5376 // If the explicit instantiation is for a member function, a member class 5377 // or a static data member of a class template specialization, the name of 5378 // the class template specialization in the qualified-id for the member 5379 // name shall be a simple-template-id. 5380 // 5381 // C++98 has the same restriction, just worded differently. 5382 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5383 Diag(D.getIdentifierLoc(), 5384 diag::ext_explicit_instantiation_without_qualified_id) 5385 << Prev << D.getCXXScopeSpec().getRange(); 5386 5387 // Check the scope of this explicit instantiation. 5388 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5389 5390 // Verify that it is okay to explicitly instantiate here. 5391 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5392 assert(MSInfo && "Missing static data member specialization info?"); 5393 bool HasNoEffect = false; 5394 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5395 MSInfo->getTemplateSpecializationKind(), 5396 MSInfo->getPointOfInstantiation(), 5397 HasNoEffect)) 5398 return true; 5399 if (HasNoEffect) 5400 return (Decl*) 0; 5401 5402 // Instantiate static data member. 5403 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5404 if (TSK == TSK_ExplicitInstantiationDefinition) 5405 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5406 5407 // FIXME: Create an ExplicitInstantiation node? 5408 return (Decl*) 0; 5409 } 5410 5411 // If the declarator is a template-id, translate the parser's template 5412 // argument list into our AST format. 5413 bool HasExplicitTemplateArgs = false; 5414 TemplateArgumentListInfo TemplateArgs; 5415 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5416 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5417 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5418 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5419 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5420 TemplateId->getTemplateArgs(), 5421 TemplateId->NumArgs); 5422 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5423 HasExplicitTemplateArgs = true; 5424 TemplateArgsPtr.release(); 5425 } 5426 5427 // C++ [temp.explicit]p1: 5428 // A [...] function [...] can be explicitly instantiated from its template. 5429 // A member function [...] of a class template can be explicitly 5430 // instantiated from the member definition associated with its class 5431 // template. 5432 UnresolvedSet<8> Matches; 5433 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5434 P != PEnd; ++P) { 5435 NamedDecl *Prev = *P; 5436 if (!HasExplicitTemplateArgs) { 5437 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5438 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5439 Matches.clear(); 5440 5441 Matches.addDecl(Method, P.getAccess()); 5442 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5443 break; 5444 } 5445 } 5446 } 5447 5448 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5449 if (!FunTmpl) 5450 continue; 5451 5452 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5453 FunctionDecl *Specialization = 0; 5454 if (TemplateDeductionResult TDK 5455 = DeduceTemplateArguments(FunTmpl, 5456 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5457 R, Specialization, Info)) { 5458 // FIXME: Keep track of almost-matches? 5459 (void)TDK; 5460 continue; 5461 } 5462 5463 Matches.addDecl(Specialization, P.getAccess()); 5464 } 5465 5466 // Find the most specialized function template specialization. 5467 UnresolvedSetIterator Result 5468 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5469 D.getIdentifierLoc(), 5470 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5471 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5472 PDiag(diag::note_explicit_instantiation_candidate)); 5473 5474 if (Result == Matches.end()) 5475 return true; 5476 5477 // Ignore access control bits, we don't need them for redeclaration checking. 5478 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5479 5480 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5481 Diag(D.getIdentifierLoc(), 5482 diag::err_explicit_instantiation_member_function_not_instantiated) 5483 << Specialization 5484 << (Specialization->getTemplateSpecializationKind() == 5485 TSK_ExplicitSpecialization); 5486 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5487 return true; 5488 } 5489 5490 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5491 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5492 PrevDecl = Specialization; 5493 5494 if (PrevDecl) { 5495 bool HasNoEffect = false; 5496 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5497 PrevDecl, 5498 PrevDecl->getTemplateSpecializationKind(), 5499 PrevDecl->getPointOfInstantiation(), 5500 HasNoEffect)) 5501 return true; 5502 5503 // FIXME: We may still want to build some representation of this 5504 // explicit specialization. 5505 if (HasNoEffect) 5506 return (Decl*) 0; 5507 } 5508 5509 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5510 5511 if (TSK == TSK_ExplicitInstantiationDefinition) 5512 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5513 5514 // C++0x [temp.explicit]p2: 5515 // If the explicit instantiation is for a member function, a member class 5516 // or a static data member of a class template specialization, the name of 5517 // the class template specialization in the qualified-id for the member 5518 // name shall be a simple-template-id. 5519 // 5520 // C++98 has the same restriction, just worded differently. 5521 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5522 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5523 D.getCXXScopeSpec().isSet() && 5524 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5525 Diag(D.getIdentifierLoc(), 5526 diag::ext_explicit_instantiation_without_qualified_id) 5527 << Specialization << D.getCXXScopeSpec().getRange(); 5528 5529 CheckExplicitInstantiationScope(*this, 5530 FunTmpl? (NamedDecl *)FunTmpl 5531 : Specialization->getInstantiatedFromMemberFunction(), 5532 D.getIdentifierLoc(), 5533 D.getCXXScopeSpec().isSet()); 5534 5535 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5536 return (Decl*) 0; 5537} 5538 5539TypeResult 5540Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5541 const CXXScopeSpec &SS, IdentifierInfo *Name, 5542 SourceLocation TagLoc, SourceLocation NameLoc) { 5543 // This has to hold, because SS is expected to be defined. 5544 assert(Name && "Expected a name in a dependent tag"); 5545 5546 NestedNameSpecifier *NNS 5547 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5548 if (!NNS) 5549 return true; 5550 5551 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5552 5553 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5554 Diag(NameLoc, diag::err_dependent_tag_decl) 5555 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5556 return true; 5557 } 5558 5559 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5560 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5561} 5562 5563TypeResult 5564Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5565 const CXXScopeSpec &SS, const IdentifierInfo &II, 5566 SourceLocation IdLoc) { 5567 NestedNameSpecifier *NNS 5568 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5569 if (!NNS) 5570 return true; 5571 5572 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5573 !getLangOptions().CPlusPlus0x) 5574 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5575 << FixItHint::CreateRemoval(TypenameLoc); 5576 5577 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5578 TypenameLoc, SS.getRange(), IdLoc); 5579 if (T.isNull()) 5580 return true; 5581 5582 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5583 if (isa<DependentNameType>(T)) { 5584 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5585 TL.setKeywordLoc(TypenameLoc); 5586 TL.setQualifierRange(SS.getRange()); 5587 TL.setNameLoc(IdLoc); 5588 } else { 5589 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5590 TL.setKeywordLoc(TypenameLoc); 5591 TL.setQualifierRange(SS.getRange()); 5592 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5593 } 5594 5595 return CreateParsedType(T, TSI); 5596} 5597 5598TypeResult 5599Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5600 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5601 ParsedType Ty) { 5602 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5603 !getLangOptions().CPlusPlus0x) 5604 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5605 << FixItHint::CreateRemoval(TypenameLoc); 5606 5607 TypeSourceInfo *InnerTSI = 0; 5608 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5609 5610 assert(isa<TemplateSpecializationType>(T) && 5611 "Expected a template specialization type"); 5612 5613 if (computeDeclContext(SS, false)) { 5614 // If we can compute a declaration context, then the "typename" 5615 // keyword was superfluous. Just build an ElaboratedType to keep 5616 // track of the nested-name-specifier. 5617 5618 // Push the inner type, preserving its source locations if possible. 5619 TypeLocBuilder Builder; 5620 if (InnerTSI) 5621 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5622 else 5623 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5624 5625 /* Note: NNS already embedded in template specialization type T. */ 5626 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5627 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5628 TL.setKeywordLoc(TypenameLoc); 5629 TL.setQualifierRange(SS.getRange()); 5630 5631 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5632 return CreateParsedType(T, TSI); 5633 } 5634 5635 // TODO: it's really silly that we make a template specialization 5636 // type earlier only to drop it again here. 5637 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5638 DependentTemplateName *DTN = 5639 TST->getTemplateName().getAsDependentTemplateName(); 5640 assert(DTN && "dependent template has non-dependent name?"); 5641 assert(DTN->getQualifier() 5642 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5643 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5644 DTN->getQualifier(), 5645 DTN->getIdentifier(), 5646 TST->getNumArgs(), 5647 TST->getArgs()); 5648 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5649 DependentTemplateSpecializationTypeLoc TL = 5650 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5651 if (InnerTSI) { 5652 TemplateSpecializationTypeLoc TSTL = 5653 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5654 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5655 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5656 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5657 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5658 } else { 5659 TL.initializeLocal(SourceLocation()); 5660 } 5661 TL.setKeywordLoc(TypenameLoc); 5662 TL.setQualifierRange(SS.getRange()); 5663 return CreateParsedType(T, TSI); 5664} 5665 5666/// \brief Build the type that describes a C++ typename specifier, 5667/// e.g., "typename T::type". 5668QualType 5669Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5670 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5671 SourceLocation KeywordLoc, SourceRange NNSRange, 5672 SourceLocation IILoc) { 5673 CXXScopeSpec SS; 5674 SS.setScopeRep(NNS); 5675 SS.setRange(NNSRange); 5676 5677 DeclContext *Ctx = computeDeclContext(SS); 5678 if (!Ctx) { 5679 // If the nested-name-specifier is dependent and couldn't be 5680 // resolved to a type, build a typename type. 5681 assert(NNS->isDependent()); 5682 return Context.getDependentNameType(Keyword, NNS, &II); 5683 } 5684 5685 // If the nested-name-specifier refers to the current instantiation, 5686 // the "typename" keyword itself is superfluous. In C++03, the 5687 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5688 // allows such extraneous "typename" keywords, and we retroactively 5689 // apply this DR to C++03 code with only a warning. In any case we continue. 5690 5691 if (RequireCompleteDeclContext(SS, Ctx)) 5692 return QualType(); 5693 5694 DeclarationName Name(&II); 5695 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5696 LookupQualifiedName(Result, Ctx); 5697 unsigned DiagID = 0; 5698 Decl *Referenced = 0; 5699 switch (Result.getResultKind()) { 5700 case LookupResult::NotFound: 5701 DiagID = diag::err_typename_nested_not_found; 5702 break; 5703 5704 case LookupResult::FoundUnresolvedValue: { 5705 // We found a using declaration that is a value. Most likely, the using 5706 // declaration itself is meant to have the 'typename' keyword. 5707 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5708 IILoc); 5709 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 5710 << Name << Ctx << FullRange; 5711 if (UnresolvedUsingValueDecl *Using 5712 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 5713 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 5714 Diag(Loc, diag::note_using_value_decl_missing_typename) 5715 << FixItHint::CreateInsertion(Loc, "typename "); 5716 } 5717 } 5718 // Fall through to create a dependent typename type, from which we can recover 5719 // better. 5720 5721 case LookupResult::NotFoundInCurrentInstantiation: 5722 // Okay, it's a member of an unknown instantiation. 5723 return Context.getDependentNameType(Keyword, NNS, &II); 5724 5725 case LookupResult::Found: 5726 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5727 // We found a type. Build an ElaboratedType, since the 5728 // typename-specifier was just sugar. 5729 return Context.getElaboratedType(ETK_Typename, NNS, 5730 Context.getTypeDeclType(Type)); 5731 } 5732 5733 DiagID = diag::err_typename_nested_not_type; 5734 Referenced = Result.getFoundDecl(); 5735 break; 5736 5737 5738 llvm_unreachable("unresolved using decl in non-dependent context"); 5739 return QualType(); 5740 5741 case LookupResult::FoundOverloaded: 5742 DiagID = diag::err_typename_nested_not_type; 5743 Referenced = *Result.begin(); 5744 break; 5745 5746 case LookupResult::Ambiguous: 5747 return QualType(); 5748 } 5749 5750 // If we get here, it's because name lookup did not find a 5751 // type. Emit an appropriate diagnostic and return an error. 5752 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5753 IILoc); 5754 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5755 if (Referenced) 5756 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5757 << Name; 5758 return QualType(); 5759} 5760 5761namespace { 5762 // See Sema::RebuildTypeInCurrentInstantiation 5763 class CurrentInstantiationRebuilder 5764 : public TreeTransform<CurrentInstantiationRebuilder> { 5765 SourceLocation Loc; 5766 DeclarationName Entity; 5767 5768 public: 5769 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5770 5771 CurrentInstantiationRebuilder(Sema &SemaRef, 5772 SourceLocation Loc, 5773 DeclarationName Entity) 5774 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5775 Loc(Loc), Entity(Entity) { } 5776 5777 /// \brief Determine whether the given type \p T has already been 5778 /// transformed. 5779 /// 5780 /// For the purposes of type reconstruction, a type has already been 5781 /// transformed if it is NULL or if it is not dependent. 5782 bool AlreadyTransformed(QualType T) { 5783 return T.isNull() || !T->isDependentType(); 5784 } 5785 5786 /// \brief Returns the location of the entity whose type is being 5787 /// rebuilt. 5788 SourceLocation getBaseLocation() { return Loc; } 5789 5790 /// \brief Returns the name of the entity whose type is being rebuilt. 5791 DeclarationName getBaseEntity() { return Entity; } 5792 5793 /// \brief Sets the "base" location and entity when that 5794 /// information is known based on another transformation. 5795 void setBase(SourceLocation Loc, DeclarationName Entity) { 5796 this->Loc = Loc; 5797 this->Entity = Entity; 5798 } 5799 }; 5800} 5801 5802/// \brief Rebuilds a type within the context of the current instantiation. 5803/// 5804/// The type \p T is part of the type of an out-of-line member definition of 5805/// a class template (or class template partial specialization) that was parsed 5806/// and constructed before we entered the scope of the class template (or 5807/// partial specialization thereof). This routine will rebuild that type now 5808/// that we have entered the declarator's scope, which may produce different 5809/// canonical types, e.g., 5810/// 5811/// \code 5812/// template<typename T> 5813/// struct X { 5814/// typedef T* pointer; 5815/// pointer data(); 5816/// }; 5817/// 5818/// template<typename T> 5819/// typename X<T>::pointer X<T>::data() { ... } 5820/// \endcode 5821/// 5822/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5823/// since we do not know that we can look into X<T> when we parsed the type. 5824/// This function will rebuild the type, performing the lookup of "pointer" 5825/// in X<T> and returning an ElaboratedType whose canonical type is the same 5826/// as the canonical type of T*, allowing the return types of the out-of-line 5827/// definition and the declaration to match. 5828TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5829 SourceLocation Loc, 5830 DeclarationName Name) { 5831 if (!T || !T->getType()->isDependentType()) 5832 return T; 5833 5834 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5835 return Rebuilder.TransformType(T); 5836} 5837 5838ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 5839 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 5840 DeclarationName()); 5841 return Rebuilder.TransformExpr(E); 5842} 5843 5844bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5845 if (SS.isInvalid()) return true; 5846 5847 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5848 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5849 DeclarationName()); 5850 NestedNameSpecifier *Rebuilt = 5851 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5852 if (!Rebuilt) return true; 5853 5854 SS.setScopeRep(Rebuilt); 5855 return false; 5856} 5857 5858/// \brief Produces a formatted string that describes the binding of 5859/// template parameters to template arguments. 5860std::string 5861Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5862 const TemplateArgumentList &Args) { 5863 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 5864} 5865 5866std::string 5867Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5868 const TemplateArgument *Args, 5869 unsigned NumArgs) { 5870 std::string Result; 5871 5872 if (!Params || Params->size() == 0 || NumArgs == 0) 5873 return Result; 5874 5875 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5876 if (I >= NumArgs) 5877 break; 5878 5879 if (I == 0) 5880 Result += "[with "; 5881 else 5882 Result += ", "; 5883 5884 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5885 Result += Id->getName(); 5886 } else { 5887 Result += '$'; 5888 Result += llvm::utostr(I); 5889 } 5890 5891 Result += " = "; 5892 5893 switch (Args[I].getKind()) { 5894 case TemplateArgument::Null: 5895 Result += "<no value>"; 5896 break; 5897 5898 case TemplateArgument::Type: { 5899 std::string TypeStr; 5900 Args[I].getAsType().getAsStringInternal(TypeStr, 5901 Context.PrintingPolicy); 5902 Result += TypeStr; 5903 break; 5904 } 5905 5906 case TemplateArgument::Declaration: { 5907 bool Unnamed = true; 5908 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5909 if (ND->getDeclName()) { 5910 Unnamed = false; 5911 Result += ND->getNameAsString(); 5912 } 5913 } 5914 5915 if (Unnamed) { 5916 Result += "<anonymous>"; 5917 } 5918 break; 5919 } 5920 5921 case TemplateArgument::Template: { 5922 std::string Str; 5923 llvm::raw_string_ostream OS(Str); 5924 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5925 Result += OS.str(); 5926 break; 5927 } 5928 5929 case TemplateArgument::Integral: { 5930 Result += Args[I].getAsIntegral()->toString(10); 5931 break; 5932 } 5933 5934 case TemplateArgument::Expression: { 5935 // FIXME: This is non-optimal, since we're regurgitating the 5936 // expression we were given. 5937 std::string Str; 5938 { 5939 llvm::raw_string_ostream OS(Str); 5940 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5941 Context.PrintingPolicy); 5942 } 5943 Result += Str; 5944 break; 5945 } 5946 5947 case TemplateArgument::Pack: 5948 // FIXME: Format template argument packs 5949 Result += "<template argument pack>"; 5950 break; 5951 } 5952 } 5953 5954 Result += ']'; 5955 return Result; 5956} 5957