SemaTemplate.cpp revision a3a835149ed4b183e3b009a1f94a6123779d696b
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    }
69
70    // FIXME: What follows is a gross hack.
71    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
72      if (FD->getType()->isDependentType()) {
73        TemplateResult = TemplateTy::make(FD);
74        return TNK_Function_template;
75      }
76    } else if (OverloadedFunctionDecl *Ovl
77                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
78      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
79                                                  FEnd = Ovl->function_end();
80           F != FEnd; ++F) {
81        if ((*F)->getType()->isDependentType()) {
82          TemplateResult = TemplateTy::make(Ovl);
83          return TNK_Function_template;
84        }
85      }
86    }
87
88    if (TNK != TNK_Non_template) {
89      if (SS && SS->isSet() && !SS->isInvalid()) {
90        NestedNameSpecifier *Qualifier
91          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
92        TemplateResult
93          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
94                                                              false,
95                                                              Template));
96      } else
97        TemplateResult = TemplateTy::make(TemplateName(Template));
98    }
99  }
100  return TNK;
101}
102
103/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
104/// that the template parameter 'PrevDecl' is being shadowed by a new
105/// declaration at location Loc. Returns true to indicate that this is
106/// an error, and false otherwise.
107bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
108  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
109
110  // Microsoft Visual C++ permits template parameters to be shadowed.
111  if (getLangOptions().Microsoft)
112    return false;
113
114  // C++ [temp.local]p4:
115  //   A template-parameter shall not be redeclared within its
116  //   scope (including nested scopes).
117  Diag(Loc, diag::err_template_param_shadow)
118    << cast<NamedDecl>(PrevDecl)->getDeclName();
119  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
120  return true;
121}
122
123/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
124/// the parameter D to reference the templated declaration and return a pointer
125/// to the template declaration. Otherwise, do nothing to D and return null.
126TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
127  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
128    D = DeclPtrTy::make(Temp->getTemplatedDecl());
129    return Temp;
130  }
131  return 0;
132}
133
134/// ActOnTypeParameter - Called when a C++ template type parameter
135/// (e.g., "typename T") has been parsed. Typename specifies whether
136/// the keyword "typename" was used to declare the type parameter
137/// (otherwise, "class" was used), and KeyLoc is the location of the
138/// "class" or "typename" keyword. ParamName is the name of the
139/// parameter (NULL indicates an unnamed template parameter) and
140/// ParamName is the location of the parameter name (if any).
141/// If the type parameter has a default argument, it will be added
142/// later via ActOnTypeParameterDefault.
143Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
144                                         SourceLocation KeyLoc,
145                                         IdentifierInfo *ParamName,
146                                         SourceLocation ParamNameLoc,
147                                         unsigned Depth, unsigned Position) {
148  assert(S->isTemplateParamScope() &&
149	 "Template type parameter not in template parameter scope!");
150  bool Invalid = false;
151
152  if (ParamName) {
153    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
154    if (PrevDecl && PrevDecl->isTemplateParameter())
155      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
156							   PrevDecl);
157  }
158
159  SourceLocation Loc = ParamNameLoc;
160  if (!ParamName)
161    Loc = KeyLoc;
162
163  TemplateTypeParmDecl *Param
164    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
165                                   Depth, Position, ParamName, Typename);
166  if (Invalid)
167    Param->setInvalidDecl();
168
169  if (ParamName) {
170    // Add the template parameter into the current scope.
171    S->AddDecl(DeclPtrTy::make(Param));
172    IdResolver.AddDecl(Param);
173  }
174
175  return DeclPtrTy::make(Param);
176}
177
178/// ActOnTypeParameterDefault - Adds a default argument (the type
179/// Default) to the given template type parameter (TypeParam).
180void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
181                                     SourceLocation EqualLoc,
182                                     SourceLocation DefaultLoc,
183                                     TypeTy *DefaultT) {
184  TemplateTypeParmDecl *Parm
185    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
186  QualType Default = QualType::getFromOpaquePtr(DefaultT);
187
188  // C++ [temp.param]p14:
189  //   A template-parameter shall not be used in its own default argument.
190  // FIXME: Implement this check! Needs a recursive walk over the types.
191
192  // Check the template argument itself.
193  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
194    Parm->setInvalidDecl();
195    return;
196  }
197
198  Parm->setDefaultArgument(Default, DefaultLoc, false);
199}
200
201/// \brief Check that the type of a non-type template parameter is
202/// well-formed.
203///
204/// \returns the (possibly-promoted) parameter type if valid;
205/// otherwise, produces a diagnostic and returns a NULL type.
206QualType
207Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
208  // C++ [temp.param]p4:
209  //
210  // A non-type template-parameter shall have one of the following
211  // (optionally cv-qualified) types:
212  //
213  //       -- integral or enumeration type,
214  if (T->isIntegralType() || T->isEnumeralType() ||
215      //   -- pointer to object or pointer to function,
216      (T->isPointerType() &&
217       (T->getAsPointerType()->getPointeeType()->isObjectType() ||
218        T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
219      //   -- reference to object or reference to function,
220      T->isReferenceType() ||
221      //   -- pointer to member.
222      T->isMemberPointerType() ||
223      // If T is a dependent type, we can't do the check now, so we
224      // assume that it is well-formed.
225      T->isDependentType())
226    return T;
227  // C++ [temp.param]p8:
228  //
229  //   A non-type template-parameter of type "array of T" or
230  //   "function returning T" is adjusted to be of type "pointer to
231  //   T" or "pointer to function returning T", respectively.
232  else if (T->isArrayType())
233    // FIXME: Keep the type prior to promotion?
234    return Context.getArrayDecayedType(T);
235  else if (T->isFunctionType())
236    // FIXME: Keep the type prior to promotion?
237    return Context.getPointerType(T);
238
239  Diag(Loc, diag::err_template_nontype_parm_bad_type)
240    << T;
241
242  return QualType();
243}
244
245/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
246/// template parameter (e.g., "int Size" in "template<int Size>
247/// class Array") has been parsed. S is the current scope and D is
248/// the parsed declarator.
249Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
250                                                    unsigned Depth,
251                                                    unsigned Position) {
252  QualType T = GetTypeForDeclarator(D, S);
253
254  assert(S->isTemplateParamScope() &&
255         "Non-type template parameter not in template parameter scope!");
256  bool Invalid = false;
257
258  IdentifierInfo *ParamName = D.getIdentifier();
259  if (ParamName) {
260    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
261    if (PrevDecl && PrevDecl->isTemplateParameter())
262      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
263                                                           PrevDecl);
264  }
265
266  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
267  if (T.isNull()) {
268    T = Context.IntTy; // Recover with an 'int' type.
269    Invalid = true;
270  }
271
272  NonTypeTemplateParmDecl *Param
273    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
274                                      Depth, Position, ParamName, T);
275  if (Invalid)
276    Param->setInvalidDecl();
277
278  if (D.getIdentifier()) {
279    // Add the template parameter into the current scope.
280    S->AddDecl(DeclPtrTy::make(Param));
281    IdResolver.AddDecl(Param);
282  }
283  return DeclPtrTy::make(Param);
284}
285
286/// \brief Adds a default argument to the given non-type template
287/// parameter.
288void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
289                                                SourceLocation EqualLoc,
290                                                ExprArg DefaultE) {
291  NonTypeTemplateParmDecl *TemplateParm
292    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
293  Expr *Default = static_cast<Expr *>(DefaultE.get());
294
295  // C++ [temp.param]p14:
296  //   A template-parameter shall not be used in its own default argument.
297  // FIXME: Implement this check! Needs a recursive walk over the types.
298
299  // Check the well-formedness of the default template argument.
300  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default)) {
301    TemplateParm->setInvalidDecl();
302    return;
303  }
304
305  TemplateParm->setDefaultArgument(static_cast<Expr *>(DefaultE.release()));
306}
307
308
309/// ActOnTemplateTemplateParameter - Called when a C++ template template
310/// parameter (e.g. T in template <template <typename> class T> class array)
311/// has been parsed. S is the current scope.
312Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
313                                                     SourceLocation TmpLoc,
314                                                     TemplateParamsTy *Params,
315                                                     IdentifierInfo *Name,
316                                                     SourceLocation NameLoc,
317                                                     unsigned Depth,
318                                                     unsigned Position)
319{
320  assert(S->isTemplateParamScope() &&
321         "Template template parameter not in template parameter scope!");
322
323  // Construct the parameter object.
324  TemplateTemplateParmDecl *Param =
325    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
326                                     Position, Name,
327                                     (TemplateParameterList*)Params);
328
329  // Make sure the parameter is valid.
330  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
331  // do anything yet. However, if the template parameter list or (eventual)
332  // default value is ever invalidated, that will propagate here.
333  bool Invalid = false;
334  if (Invalid) {
335    Param->setInvalidDecl();
336  }
337
338  // If the tt-param has a name, then link the identifier into the scope
339  // and lookup mechanisms.
340  if (Name) {
341    S->AddDecl(DeclPtrTy::make(Param));
342    IdResolver.AddDecl(Param);
343  }
344
345  return DeclPtrTy::make(Param);
346}
347
348/// \brief Adds a default argument to the given template template
349/// parameter.
350void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
351                                                 SourceLocation EqualLoc,
352                                                 ExprArg DefaultE) {
353  TemplateTemplateParmDecl *TemplateParm
354    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
355
356  // Since a template-template parameter's default argument is an
357  // id-expression, it must be a DeclRefExpr.
358  DeclRefExpr *Default
359    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
360
361  // C++ [temp.param]p14:
362  //   A template-parameter shall not be used in its own default argument.
363  // FIXME: Implement this check! Needs a recursive walk over the types.
364
365  // Check the well-formedness of the template argument.
366  if (!isa<TemplateDecl>(Default->getDecl())) {
367    Diag(Default->getSourceRange().getBegin(),
368         diag::err_template_arg_must_be_template)
369      << Default->getSourceRange();
370    TemplateParm->setInvalidDecl();
371    return;
372  }
373  if (CheckTemplateArgument(TemplateParm, Default)) {
374    TemplateParm->setInvalidDecl();
375    return;
376  }
377
378  DefaultE.release();
379  TemplateParm->setDefaultArgument(Default);
380}
381
382/// ActOnTemplateParameterList - Builds a TemplateParameterList that
383/// contains the template parameters in Params/NumParams.
384Sema::TemplateParamsTy *
385Sema::ActOnTemplateParameterList(unsigned Depth,
386                                 SourceLocation ExportLoc,
387                                 SourceLocation TemplateLoc,
388                                 SourceLocation LAngleLoc,
389                                 DeclPtrTy *Params, unsigned NumParams,
390                                 SourceLocation RAngleLoc) {
391  if (ExportLoc.isValid())
392    Diag(ExportLoc, diag::note_template_export_unsupported);
393
394  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
395                                       (Decl**)Params, NumParams, RAngleLoc);
396}
397
398Sema::DeclResult
399Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
400                         SourceLocation KWLoc, const CXXScopeSpec &SS,
401                         IdentifierInfo *Name, SourceLocation NameLoc,
402                         AttributeList *Attr,
403                         MultiTemplateParamsArg TemplateParameterLists,
404                         AccessSpecifier AS) {
405  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
406  assert(TK != TK_Reference && "Can only declare or define class templates");
407  bool Invalid = false;
408
409  // Check that we can declare a template here.
410  if (CheckTemplateDeclScope(S, TemplateParameterLists))
411    return true;
412
413  TagDecl::TagKind Kind;
414  switch (TagSpec) {
415  default: assert(0 && "Unknown tag type!");
416  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
417  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
418  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
419  }
420
421  // There is no such thing as an unnamed class template.
422  if (!Name) {
423    Diag(KWLoc, diag::err_template_unnamed_class);
424    return true;
425  }
426
427  // Find any previous declaration with this name.
428  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
429                                           true);
430  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
431  NamedDecl *PrevDecl = 0;
432  if (Previous.begin() != Previous.end())
433    PrevDecl = *Previous.begin();
434
435  DeclContext *SemanticContext = CurContext;
436  if (SS.isNotEmpty() && !SS.isInvalid()) {
437    SemanticContext = computeDeclContext(SS);
438
439    // FIXME: need to match up several levels of template parameter
440    // lists here.
441  }
442
443  // FIXME: member templates!
444  TemplateParameterList *TemplateParams
445    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
446
447  // If there is a previous declaration with the same name, check
448  // whether this is a valid redeclaration.
449  ClassTemplateDecl *PrevClassTemplate
450    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
451  if (PrevClassTemplate) {
452    // Ensure that the template parameter lists are compatible.
453    if (!TemplateParameterListsAreEqual(TemplateParams,
454                                   PrevClassTemplate->getTemplateParameters(),
455                                        /*Complain=*/true))
456      return true;
457
458    // C++ [temp.class]p4:
459    //   In a redeclaration, partial specialization, explicit
460    //   specialization or explicit instantiation of a class template,
461    //   the class-key shall agree in kind with the original class
462    //   template declaration (7.1.5.3).
463    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
464    if (PrevRecordDecl->getTagKind() != Kind) {
465      Diag(KWLoc, diag::err_use_with_wrong_tag)
466        << Name
467        << CodeModificationHint::CreateReplacement(KWLoc,
468                            PrevRecordDecl->getKindName());
469      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
470      Kind = PrevRecordDecl->getTagKind();
471    }
472
473    // Check for redefinition of this class template.
474    if (TK == TK_Definition) {
475      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
476        Diag(NameLoc, diag::err_redefinition) << Name;
477        Diag(Def->getLocation(), diag::note_previous_definition);
478        // FIXME: Would it make sense to try to "forget" the previous
479        // definition, as part of error recovery?
480        return true;
481      }
482    }
483  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
484    // Maybe we will complain about the shadowed template parameter.
485    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
486    // Just pretend that we didn't see the previous declaration.
487    PrevDecl = 0;
488  } else if (PrevDecl) {
489    // C++ [temp]p5:
490    //   A class template shall not have the same name as any other
491    //   template, class, function, object, enumeration, enumerator,
492    //   namespace, or type in the same scope (3.3), except as specified
493    //   in (14.5.4).
494    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
495    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
496    return true;
497  }
498
499  // Check the template parameter list of this declaration, possibly
500  // merging in the template parameter list from the previous class
501  // template declaration.
502  if (CheckTemplateParameterList(TemplateParams,
503            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
504    Invalid = true;
505
506  // If we had a scope specifier, we better have a previous template
507  // declaration!
508
509  CXXRecordDecl *NewClass =
510    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
511                          PrevClassTemplate?
512                            PrevClassTemplate->getTemplatedDecl() : 0);
513
514  ClassTemplateDecl *NewTemplate
515    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
516                                DeclarationName(Name), TemplateParams,
517                                NewClass, PrevClassTemplate);
518  NewClass->setDescribedClassTemplate(NewTemplate);
519
520  // Set the access specifier.
521  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
522
523  // Set the lexical context of these templates
524  NewClass->setLexicalDeclContext(CurContext);
525  NewTemplate->setLexicalDeclContext(CurContext);
526
527  if (TK == TK_Definition)
528    NewClass->startDefinition();
529
530  if (Attr)
531    ProcessDeclAttributeList(NewClass, Attr);
532
533  PushOnScopeChains(NewTemplate, S);
534
535  if (Invalid) {
536    NewTemplate->setInvalidDecl();
537    NewClass->setInvalidDecl();
538  }
539  return DeclPtrTy::make(NewTemplate);
540}
541
542/// \brief Checks the validity of a template parameter list, possibly
543/// considering the template parameter list from a previous
544/// declaration.
545///
546/// If an "old" template parameter list is provided, it must be
547/// equivalent (per TemplateParameterListsAreEqual) to the "new"
548/// template parameter list.
549///
550/// \param NewParams Template parameter list for a new template
551/// declaration. This template parameter list will be updated with any
552/// default arguments that are carried through from the previous
553/// template parameter list.
554///
555/// \param OldParams If provided, template parameter list from a
556/// previous declaration of the same template. Default template
557/// arguments will be merged from the old template parameter list to
558/// the new template parameter list.
559///
560/// \returns true if an error occurred, false otherwise.
561bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
562                                      TemplateParameterList *OldParams) {
563  bool Invalid = false;
564
565  // C++ [temp.param]p10:
566  //   The set of default template-arguments available for use with a
567  //   template declaration or definition is obtained by merging the
568  //   default arguments from the definition (if in scope) and all
569  //   declarations in scope in the same way default function
570  //   arguments are (8.3.6).
571  bool SawDefaultArgument = false;
572  SourceLocation PreviousDefaultArgLoc;
573
574  // Dummy initialization to avoid warnings.
575  TemplateParameterList::iterator OldParam = NewParams->end();
576  if (OldParams)
577    OldParam = OldParams->begin();
578
579  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
580                                    NewParamEnd = NewParams->end();
581       NewParam != NewParamEnd; ++NewParam) {
582    // Variables used to diagnose redundant default arguments
583    bool RedundantDefaultArg = false;
584    SourceLocation OldDefaultLoc;
585    SourceLocation NewDefaultLoc;
586
587    // Variables used to diagnose missing default arguments
588    bool MissingDefaultArg = false;
589
590    // Merge default arguments for template type parameters.
591    if (TemplateTypeParmDecl *NewTypeParm
592          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
593      TemplateTypeParmDecl *OldTypeParm
594          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
595
596      if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
597          NewTypeParm->hasDefaultArgument()) {
598        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
599        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
600        SawDefaultArgument = true;
601        RedundantDefaultArg = true;
602        PreviousDefaultArgLoc = NewDefaultLoc;
603      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
604        // Merge the default argument from the old declaration to the
605        // new declaration.
606        SawDefaultArgument = true;
607        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
608                                        OldTypeParm->getDefaultArgumentLoc(),
609                                        true);
610        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
611      } else if (NewTypeParm->hasDefaultArgument()) {
612        SawDefaultArgument = true;
613        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
614      } else if (SawDefaultArgument)
615        MissingDefaultArg = true;
616    }
617    // Merge default arguments for non-type template parameters
618    else if (NonTypeTemplateParmDecl *NewNonTypeParm
619               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
620      NonTypeTemplateParmDecl *OldNonTypeParm
621        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
622      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
623          NewNonTypeParm->hasDefaultArgument()) {
624        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
625        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
626        SawDefaultArgument = true;
627        RedundantDefaultArg = true;
628        PreviousDefaultArgLoc = NewDefaultLoc;
629      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
630        // Merge the default argument from the old declaration to the
631        // new declaration.
632        SawDefaultArgument = true;
633        // FIXME: We need to create a new kind of "default argument"
634        // expression that points to a previous template template
635        // parameter.
636        NewNonTypeParm->setDefaultArgument(
637                                        OldNonTypeParm->getDefaultArgument());
638        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
639      } else if (NewNonTypeParm->hasDefaultArgument()) {
640        SawDefaultArgument = true;
641        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
642      } else if (SawDefaultArgument)
643        MissingDefaultArg = true;
644    }
645    // Merge default arguments for template template parameters
646    else {
647      TemplateTemplateParmDecl *NewTemplateParm
648        = cast<TemplateTemplateParmDecl>(*NewParam);
649      TemplateTemplateParmDecl *OldTemplateParm
650        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
651      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
652          NewTemplateParm->hasDefaultArgument()) {
653        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
654        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
655        SawDefaultArgument = true;
656        RedundantDefaultArg = true;
657        PreviousDefaultArgLoc = NewDefaultLoc;
658      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
659        // Merge the default argument from the old declaration to the
660        // new declaration.
661        SawDefaultArgument = true;
662        // FIXME: We need to create a new kind of "default argument"
663        // expression that points to a previous template template
664        // parameter.
665        NewTemplateParm->setDefaultArgument(
666                                        OldTemplateParm->getDefaultArgument());
667        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
668      } else if (NewTemplateParm->hasDefaultArgument()) {
669        SawDefaultArgument = true;
670        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
671      } else if (SawDefaultArgument)
672        MissingDefaultArg = true;
673    }
674
675    if (RedundantDefaultArg) {
676      // C++ [temp.param]p12:
677      //   A template-parameter shall not be given default arguments
678      //   by two different declarations in the same scope.
679      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
680      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
681      Invalid = true;
682    } else if (MissingDefaultArg) {
683      // C++ [temp.param]p11:
684      //   If a template-parameter has a default template-argument,
685      //   all subsequent template-parameters shall have a default
686      //   template-argument supplied.
687      Diag((*NewParam)->getLocation(),
688           diag::err_template_param_default_arg_missing);
689      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
690      Invalid = true;
691    }
692
693    // If we have an old template parameter list that we're merging
694    // in, move on to the next parameter.
695    if (OldParams)
696      ++OldParam;
697  }
698
699  return Invalid;
700}
701
702/// \brief Translates template arguments as provided by the parser
703/// into template arguments used by semantic analysis.
704static void
705translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
706                           SourceLocation *TemplateArgLocs,
707                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
708  TemplateArgs.reserve(TemplateArgsIn.size());
709
710  void **Args = TemplateArgsIn.getArgs();
711  bool *ArgIsType = TemplateArgsIn.getArgIsType();
712  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
713    TemplateArgs.push_back(
714      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
715                                       QualType::getFromOpaquePtr(Args[Arg]))
716                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
717  }
718}
719
720/// \brief Build a canonical version of a template argument list.
721///
722/// This function builds a canonical version of the given template
723/// argument list, where each of the template arguments has been
724/// converted into its canonical form. This routine is typically used
725/// to canonicalize a template argument list when the template name
726/// itself is dependent. When the template name refers to an actual
727/// template declaration, Sema::CheckTemplateArgumentList should be
728/// used to check and canonicalize the template arguments.
729///
730/// \param TemplateArgs The incoming template arguments.
731///
732/// \param NumTemplateArgs The number of template arguments in \p
733/// TemplateArgs.
734///
735/// \param Canonical A vector to be filled with the canonical versions
736/// of the template arguments.
737///
738/// \param Context The ASTContext in which the template arguments live.
739static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
740                                          unsigned NumTemplateArgs,
741                            llvm::SmallVectorImpl<TemplateArgument> &Canonical,
742                                          ASTContext &Context) {
743  Canonical.reserve(NumTemplateArgs);
744  for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
745    switch (TemplateArgs[Idx].getKind()) {
746    case TemplateArgument::Expression:
747      // FIXME: Build canonical expression (!)
748      Canonical.push_back(TemplateArgs[Idx]);
749      break;
750
751    case TemplateArgument::Declaration:
752      Canonical.push_back(TemplateArgument(SourceLocation(),
753                                           TemplateArgs[Idx].getAsDecl()));
754      break;
755
756    case TemplateArgument::Integral:
757      Canonical.push_back(TemplateArgument(SourceLocation(),
758                                           *TemplateArgs[Idx].getAsIntegral(),
759                                        TemplateArgs[Idx].getIntegralType()));
760
761    case TemplateArgument::Type: {
762      QualType CanonType
763        = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
764      Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
765    }
766    }
767  }
768}
769
770QualType Sema::CheckTemplateIdType(TemplateName Name,
771                                   SourceLocation TemplateLoc,
772                                   SourceLocation LAngleLoc,
773                                   const TemplateArgument *TemplateArgs,
774                                   unsigned NumTemplateArgs,
775                                   SourceLocation RAngleLoc) {
776  TemplateDecl *Template = Name.getAsTemplateDecl();
777  if (!Template) {
778    // The template name does not resolve to a template, so we just
779    // build a dependent template-id type.
780
781    // Canonicalize the template arguments to build the canonical
782    // template-id type.
783    llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
784    CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
785                                  CanonicalTemplateArgs, Context);
786
787    // FIXME: Get the canonical template-name
788    QualType CanonType
789      = Context.getTemplateSpecializationType(Name, &CanonicalTemplateArgs[0],
790                                              CanonicalTemplateArgs.size());
791
792    // Build the dependent template-id type.
793    return Context.getTemplateSpecializationType(Name, TemplateArgs,
794                                                 NumTemplateArgs, CanonType);
795  }
796
797  // Check that the template argument list is well-formed for this
798  // template.
799  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
800  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
801                                TemplateArgs, NumTemplateArgs, RAngleLoc,
802                                ConvertedTemplateArgs))
803    return QualType();
804
805  assert((ConvertedTemplateArgs.size() ==
806            Template->getTemplateParameters()->size()) &&
807         "Converted template argument list is too short!");
808
809  QualType CanonType;
810
811  if (TemplateSpecializationType::anyDependentTemplateArguments(
812                                                      TemplateArgs,
813                                                      NumTemplateArgs)) {
814    // This class template specialization is a dependent
815    // type. Therefore, its canonical type is another class template
816    // specialization type that contains all of the converted
817    // arguments in canonical form. This ensures that, e.g., A<T> and
818    // A<T, T> have identical types when A is declared as:
819    //
820    //   template<typename T, typename U = T> struct A;
821
822    CanonType = Context.getTemplateSpecializationType(Name,
823                                                    &ConvertedTemplateArgs[0],
824                                                ConvertedTemplateArgs.size());
825  } else if (ClassTemplateDecl *ClassTemplate
826               = dyn_cast<ClassTemplateDecl>(Template)) {
827    // Find the class template specialization declaration that
828    // corresponds to these arguments.
829    llvm::FoldingSetNodeID ID;
830    ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
831                                             ConvertedTemplateArgs.size());
832    void *InsertPos = 0;
833    ClassTemplateSpecializationDecl *Decl
834      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
835    if (!Decl) {
836      // This is the first time we have referenced this class template
837      // specialization. Create the canonical declaration and add it to
838      // the set of specializations.
839      Decl = ClassTemplateSpecializationDecl::Create(Context,
840                                           ClassTemplate->getDeclContext(),
841                                                     TemplateLoc,
842                                                     ClassTemplate,
843                                                     &ConvertedTemplateArgs[0],
844                                                  ConvertedTemplateArgs.size(),
845                                                     0);
846      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
847      Decl->setLexicalDeclContext(CurContext);
848    }
849
850    CanonType = Context.getTypeDeclType(Decl);
851  }
852
853  // Build the fully-sugared type for this class template
854  // specialization, which refers back to the class template
855  // specialization we created or found.
856  return Context.getTemplateSpecializationType(Name, TemplateArgs,
857                                               NumTemplateArgs, CanonType);
858}
859
860Action::TypeResult
861Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
862                          SourceLocation LAngleLoc,
863                          ASTTemplateArgsPtr TemplateArgsIn,
864                          SourceLocation *TemplateArgLocs,
865                          SourceLocation RAngleLoc) {
866  TemplateName Template = TemplateD.getAsVal<TemplateName>();
867
868  // Translate the parser's template argument list in our AST format.
869  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
870  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
871
872  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
873                                        &TemplateArgs[0], TemplateArgs.size(),
874                                        RAngleLoc);
875  TemplateArgsIn.release();
876
877  if (Result.isNull())
878    return true;
879
880  return Result.getAsOpaquePtr();
881}
882
883/// \brief Form a dependent template name.
884///
885/// This action forms a dependent template name given the template
886/// name and its (presumably dependent) scope specifier. For
887/// example, given "MetaFun::template apply", the scope specifier \p
888/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
889/// of the "template" keyword, and "apply" is the \p Name.
890Sema::TemplateTy
891Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
892                                 const IdentifierInfo &Name,
893                                 SourceLocation NameLoc,
894                                 const CXXScopeSpec &SS) {
895  if (!SS.isSet() || SS.isInvalid())
896    return TemplateTy();
897
898  NestedNameSpecifier *Qualifier
899    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
900
901  // FIXME: member of the current instantiation
902
903  if (!Qualifier->isDependent()) {
904    // C++0x [temp.names]p5:
905    //   If a name prefixed by the keyword template is not the name of
906    //   a template, the program is ill-formed. [Note: the keyword
907    //   template may not be applied to non-template members of class
908    //   templates. -end note ] [ Note: as is the case with the
909    //   typename prefix, the template prefix is allowed in cases
910    //   where it is not strictly necessary; i.e., when the
911    //   nested-name-specifier or the expression on the left of the ->
912    //   or . is not dependent on a template-parameter, or the use
913    //   does not appear in the scope of a template. -end note]
914    //
915    // Note: C++03 was more strict here, because it banned the use of
916    // the "template" keyword prior to a template-name that was not a
917    // dependent name. C++ DR468 relaxed this requirement (the
918    // "template" keyword is now permitted). We follow the C++0x
919    // rules, even in C++03 mode, retroactively applying the DR.
920    TemplateTy Template;
921    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
922    if (TNK == TNK_Non_template) {
923      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
924        << &Name;
925      return TemplateTy();
926    }
927
928    return Template;
929  }
930
931  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
932}
933
934/// \brief Check that the given template argument list is well-formed
935/// for specializing the given template.
936bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
937                                     SourceLocation TemplateLoc,
938                                     SourceLocation LAngleLoc,
939                                     const TemplateArgument *TemplateArgs,
940                                     unsigned NumTemplateArgs,
941                                     SourceLocation RAngleLoc,
942                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
943  TemplateParameterList *Params = Template->getTemplateParameters();
944  unsigned NumParams = Params->size();
945  unsigned NumArgs = NumTemplateArgs;
946  bool Invalid = false;
947
948  if (NumArgs > NumParams ||
949      NumArgs < Params->getMinRequiredArguments()) {
950    // FIXME: point at either the first arg beyond what we can handle,
951    // or the '>', depending on whether we have too many or too few
952    // arguments.
953    SourceRange Range;
954    if (NumArgs > NumParams)
955      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
956    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
957      << (NumArgs > NumParams)
958      << (isa<ClassTemplateDecl>(Template)? 0 :
959          isa<FunctionTemplateDecl>(Template)? 1 :
960          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
961      << Template << Range;
962    Diag(Template->getLocation(), diag::note_template_decl_here)
963      << Params->getSourceRange();
964    Invalid = true;
965  }
966
967  // C++ [temp.arg]p1:
968  //   [...] The type and form of each template-argument specified in
969  //   a template-id shall match the type and form specified for the
970  //   corresponding parameter declared by the template in its
971  //   template-parameter-list.
972  unsigned ArgIdx = 0;
973  for (TemplateParameterList::iterator Param = Params->begin(),
974                                       ParamEnd = Params->end();
975       Param != ParamEnd; ++Param, ++ArgIdx) {
976    // Decode the template argument
977    TemplateArgument Arg;
978    if (ArgIdx >= NumArgs) {
979      // Retrieve the default template argument from the template
980      // parameter.
981      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
982        if (!TTP->hasDefaultArgument())
983          break;
984
985        QualType ArgType = TTP->getDefaultArgument();
986
987        // If the argument type is dependent, instantiate it now based
988        // on the previously-computed template arguments.
989        if (ArgType->isDependentType()) {
990          InstantiatingTemplate Inst(*this, TemplateLoc,
991                                     Template, &Converted[0],
992                                     Converted.size(),
993                                     SourceRange(TemplateLoc, RAngleLoc));
994          ArgType = InstantiateType(ArgType, &Converted[0], Converted.size(),
995                                    TTP->getDefaultArgumentLoc(),
996                                    TTP->getDeclName());
997        }
998
999        if (ArgType.isNull())
1000          return true;
1001
1002        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1003      } else if (NonTypeTemplateParmDecl *NTTP
1004                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1005        if (!NTTP->hasDefaultArgument())
1006          break;
1007
1008        // FIXME: Instantiate default argument
1009        Arg = TemplateArgument(NTTP->getDefaultArgument());
1010      } else {
1011        TemplateTemplateParmDecl *TempParm
1012          = cast<TemplateTemplateParmDecl>(*Param);
1013
1014        if (!TempParm->hasDefaultArgument())
1015          break;
1016
1017        // FIXME: Instantiate default argument
1018        Arg = TemplateArgument(TempParm->getDefaultArgument());
1019      }
1020    } else {
1021      // Retrieve the template argument produced by the user.
1022      Arg = TemplateArgs[ArgIdx];
1023    }
1024
1025
1026    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1027      // Check template type parameters.
1028      if (Arg.getKind() == TemplateArgument::Type) {
1029        if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
1030          Invalid = true;
1031
1032        // Add the converted template type argument.
1033        Converted.push_back(
1034                 TemplateArgument(Arg.getLocation(),
1035                                  Context.getCanonicalType(Arg.getAsType())));
1036        continue;
1037      }
1038
1039      // C++ [temp.arg.type]p1:
1040      //   A template-argument for a template-parameter which is a
1041      //   type shall be a type-id.
1042
1043      // We have a template type parameter but the template argument
1044      // is not a type.
1045      Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1046      Diag((*Param)->getLocation(), diag::note_template_param_here);
1047      Invalid = true;
1048    } else if (NonTypeTemplateParmDecl *NTTP
1049                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1050      // Check non-type template parameters.
1051
1052      // Instantiate the type of the non-type template parameter with
1053      // the template arguments we've seen thus far.
1054      QualType NTTPType = NTTP->getType();
1055      if (NTTPType->isDependentType()) {
1056        // Instantiate the type of the non-type template parameter.
1057        InstantiatingTemplate Inst(*this, TemplateLoc,
1058                                   Template, &Converted[0],
1059                                   Converted.size(),
1060                                   SourceRange(TemplateLoc, RAngleLoc));
1061
1062        NTTPType = InstantiateType(NTTPType,
1063                                   &Converted[0], Converted.size(),
1064                                   NTTP->getLocation(),
1065                                   NTTP->getDeclName());
1066        // If that worked, check the non-type template parameter type
1067        // for validity.
1068        if (!NTTPType.isNull())
1069          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1070                                                       NTTP->getLocation());
1071
1072        if (NTTPType.isNull()) {
1073          Invalid = true;
1074          break;
1075        }
1076      }
1077
1078      switch (Arg.getKind()) {
1079      case TemplateArgument::Expression: {
1080        Expr *E = Arg.getAsExpr();
1081        if (CheckTemplateArgument(NTTP, NTTPType, E, &Converted))
1082          Invalid = true;
1083        break;
1084      }
1085
1086      case TemplateArgument::Declaration:
1087      case TemplateArgument::Integral:
1088        // We've already checked this template argument, so just copy
1089        // it to the list of converted arguments.
1090        Converted.push_back(Arg);
1091        break;
1092
1093      case TemplateArgument::Type:
1094        // We have a non-type template parameter but the template
1095        // argument is a type.
1096
1097        // C++ [temp.arg]p2:
1098        //   In a template-argument, an ambiguity between a type-id and
1099        //   an expression is resolved to a type-id, regardless of the
1100        //   form of the corresponding template-parameter.
1101        //
1102        // We warn specifically about this case, since it can be rather
1103        // confusing for users.
1104        if (Arg.getAsType()->isFunctionType())
1105          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1106            << Arg.getAsType();
1107        else
1108          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1109        Diag((*Param)->getLocation(), diag::note_template_param_here);
1110        Invalid = true;
1111      }
1112    } else {
1113      // Check template template parameters.
1114      TemplateTemplateParmDecl *TempParm
1115        = cast<TemplateTemplateParmDecl>(*Param);
1116
1117      switch (Arg.getKind()) {
1118      case TemplateArgument::Expression: {
1119        Expr *ArgExpr = Arg.getAsExpr();
1120        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1121            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1122          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1123            Invalid = true;
1124
1125          // Add the converted template argument.
1126          // FIXME: Need the "canonical" template declaration!
1127          Converted.push_back(
1128                    TemplateArgument(Arg.getLocation(),
1129                                     cast<DeclRefExpr>(ArgExpr)->getDecl()));
1130          continue;
1131        }
1132      }
1133        // fall through
1134
1135      case TemplateArgument::Type: {
1136        // We have a template template parameter but the template
1137        // argument does not refer to a template.
1138        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1139        Invalid = true;
1140        break;
1141      }
1142
1143      case TemplateArgument::Declaration:
1144        // We've already checked this template argument, so just copy
1145        // it to the list of converted arguments.
1146        Converted.push_back(Arg);
1147        break;
1148
1149      case TemplateArgument::Integral:
1150        assert(false && "Integral argument with template template parameter");
1151        break;
1152      }
1153    }
1154  }
1155
1156  return Invalid;
1157}
1158
1159/// \brief Check a template argument against its corresponding
1160/// template type parameter.
1161///
1162/// This routine implements the semantics of C++ [temp.arg.type]. It
1163/// returns true if an error occurred, and false otherwise.
1164bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1165                                 QualType Arg, SourceLocation ArgLoc) {
1166  // C++ [temp.arg.type]p2:
1167  //   A local type, a type with no linkage, an unnamed type or a type
1168  //   compounded from any of these types shall not be used as a
1169  //   template-argument for a template type-parameter.
1170  //
1171  // FIXME: Perform the recursive and no-linkage type checks.
1172  const TagType *Tag = 0;
1173  if (const EnumType *EnumT = Arg->getAsEnumType())
1174    Tag = EnumT;
1175  else if (const RecordType *RecordT = Arg->getAsRecordType())
1176    Tag = RecordT;
1177  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1178    return Diag(ArgLoc, diag::err_template_arg_local_type)
1179      << QualType(Tag, 0);
1180  else if (Tag && !Tag->getDecl()->getDeclName() &&
1181           !Tag->getDecl()->getTypedefForAnonDecl()) {
1182    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1183    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1184    return true;
1185  }
1186
1187  return false;
1188}
1189
1190/// \brief Checks whether the given template argument is the address
1191/// of an object or function according to C++ [temp.arg.nontype]p1.
1192bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1193                                                          NamedDecl *&Entity) {
1194  bool Invalid = false;
1195
1196  // See through any implicit casts we added to fix the type.
1197  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1198    Arg = Cast->getSubExpr();
1199
1200  // C++ [temp.arg.nontype]p1:
1201  //
1202  //   A template-argument for a non-type, non-template
1203  //   template-parameter shall be one of: [...]
1204  //
1205  //     -- the address of an object or function with external
1206  //        linkage, including function templates and function
1207  //        template-ids but excluding non-static class members,
1208  //        expressed as & id-expression where the & is optional if
1209  //        the name refers to a function or array, or if the
1210  //        corresponding template-parameter is a reference; or
1211  DeclRefExpr *DRE = 0;
1212
1213  // Ignore (and complain about) any excess parentheses.
1214  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1215    if (!Invalid) {
1216      Diag(Arg->getSourceRange().getBegin(),
1217           diag::err_template_arg_extra_parens)
1218        << Arg->getSourceRange();
1219      Invalid = true;
1220    }
1221
1222    Arg = Parens->getSubExpr();
1223  }
1224
1225  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1226    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1227      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1228  } else
1229    DRE = dyn_cast<DeclRefExpr>(Arg);
1230
1231  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1232    return Diag(Arg->getSourceRange().getBegin(),
1233                diag::err_template_arg_not_object_or_func_form)
1234      << Arg->getSourceRange();
1235
1236  // Cannot refer to non-static data members
1237  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1238    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1239      << Field << Arg->getSourceRange();
1240
1241  // Cannot refer to non-static member functions
1242  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1243    if (!Method->isStatic())
1244      return Diag(Arg->getSourceRange().getBegin(),
1245                  diag::err_template_arg_method)
1246        << Method << Arg->getSourceRange();
1247
1248  // Functions must have external linkage.
1249  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1250    if (Func->getStorageClass() == FunctionDecl::Static) {
1251      Diag(Arg->getSourceRange().getBegin(),
1252           diag::err_template_arg_function_not_extern)
1253        << Func << Arg->getSourceRange();
1254      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1255        << true;
1256      return true;
1257    }
1258
1259    // Okay: we've named a function with external linkage.
1260    Entity = Func;
1261    return Invalid;
1262  }
1263
1264  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1265    if (!Var->hasGlobalStorage()) {
1266      Diag(Arg->getSourceRange().getBegin(),
1267           diag::err_template_arg_object_not_extern)
1268        << Var << Arg->getSourceRange();
1269      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1270        << true;
1271      return true;
1272    }
1273
1274    // Okay: we've named an object with external linkage
1275    Entity = Var;
1276    return Invalid;
1277  }
1278
1279  // We found something else, but we don't know specifically what it is.
1280  Diag(Arg->getSourceRange().getBegin(),
1281       diag::err_template_arg_not_object_or_func)
1282      << Arg->getSourceRange();
1283  Diag(DRE->getDecl()->getLocation(),
1284       diag::note_template_arg_refers_here);
1285  return true;
1286}
1287
1288/// \brief Checks whether the given template argument is a pointer to
1289/// member constant according to C++ [temp.arg.nontype]p1.
1290bool
1291Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1292  bool Invalid = false;
1293
1294  // See through any implicit casts we added to fix the type.
1295  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1296    Arg = Cast->getSubExpr();
1297
1298  // C++ [temp.arg.nontype]p1:
1299  //
1300  //   A template-argument for a non-type, non-template
1301  //   template-parameter shall be one of: [...]
1302  //
1303  //     -- a pointer to member expressed as described in 5.3.1.
1304  QualifiedDeclRefExpr *DRE = 0;
1305
1306  // Ignore (and complain about) any excess parentheses.
1307  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1308    if (!Invalid) {
1309      Diag(Arg->getSourceRange().getBegin(),
1310           diag::err_template_arg_extra_parens)
1311        << Arg->getSourceRange();
1312      Invalid = true;
1313    }
1314
1315    Arg = Parens->getSubExpr();
1316  }
1317
1318  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1319    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1320      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1321
1322  if (!DRE)
1323    return Diag(Arg->getSourceRange().getBegin(),
1324                diag::err_template_arg_not_pointer_to_member_form)
1325      << Arg->getSourceRange();
1326
1327  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1328    assert((isa<FieldDecl>(DRE->getDecl()) ||
1329            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1330           "Only non-static member pointers can make it here");
1331
1332    // Okay: this is the address of a non-static member, and therefore
1333    // a member pointer constant.
1334    Member = DRE->getDecl();
1335    return Invalid;
1336  }
1337
1338  // We found something else, but we don't know specifically what it is.
1339  Diag(Arg->getSourceRange().getBegin(),
1340       diag::err_template_arg_not_pointer_to_member_form)
1341      << Arg->getSourceRange();
1342  Diag(DRE->getDecl()->getLocation(),
1343       diag::note_template_arg_refers_here);
1344  return true;
1345}
1346
1347/// \brief Check a template argument against its corresponding
1348/// non-type template parameter.
1349///
1350/// This routine implements the semantics of C++ [temp.arg.nontype].
1351/// It returns true if an error occurred, and false otherwise. \p
1352/// InstantiatedParamType is the type of the non-type template
1353/// parameter after it has been instantiated.
1354///
1355/// If Converted is non-NULL and no errors occur, the value
1356/// of this argument will be added to the end of the Converted vector.
1357bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1358                                 QualType InstantiatedParamType, Expr *&Arg,
1359                         llvm::SmallVectorImpl<TemplateArgument> *Converted) {
1360  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1361
1362  // If either the parameter has a dependent type or the argument is
1363  // type-dependent, there's nothing we can check now.
1364  // FIXME: Add template argument to Converted!
1365  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1366    // FIXME: Produce a cloned, canonical expression?
1367    Converted->push_back(TemplateArgument(Arg));
1368    return false;
1369  }
1370
1371  // C++ [temp.arg.nontype]p5:
1372  //   The following conversions are performed on each expression used
1373  //   as a non-type template-argument. If a non-type
1374  //   template-argument cannot be converted to the type of the
1375  //   corresponding template-parameter then the program is
1376  //   ill-formed.
1377  //
1378  //     -- for a non-type template-parameter of integral or
1379  //        enumeration type, integral promotions (4.5) and integral
1380  //        conversions (4.7) are applied.
1381  QualType ParamType = InstantiatedParamType;
1382  QualType ArgType = Arg->getType();
1383  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1384    // C++ [temp.arg.nontype]p1:
1385    //   A template-argument for a non-type, non-template
1386    //   template-parameter shall be one of:
1387    //
1388    //     -- an integral constant-expression of integral or enumeration
1389    //        type; or
1390    //     -- the name of a non-type template-parameter; or
1391    SourceLocation NonConstantLoc;
1392    llvm::APSInt Value;
1393    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1394      Diag(Arg->getSourceRange().getBegin(),
1395           diag::err_template_arg_not_integral_or_enumeral)
1396        << ArgType << Arg->getSourceRange();
1397      Diag(Param->getLocation(), diag::note_template_param_here);
1398      return true;
1399    } else if (!Arg->isValueDependent() &&
1400               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1401      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1402        << ArgType << Arg->getSourceRange();
1403      return true;
1404    }
1405
1406    // FIXME: We need some way to more easily get the unqualified form
1407    // of the types without going all the way to the
1408    // canonical type.
1409    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1410      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1411    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1412      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1413
1414    // Try to convert the argument to the parameter's type.
1415    if (ParamType == ArgType) {
1416      // Okay: no conversion necessary
1417    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1418               !ParamType->isEnumeralType()) {
1419      // This is an integral promotion or conversion.
1420      ImpCastExprToType(Arg, ParamType);
1421    } else {
1422      // We can't perform this conversion.
1423      Diag(Arg->getSourceRange().getBegin(),
1424           diag::err_template_arg_not_convertible)
1425        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1426      Diag(Param->getLocation(), diag::note_template_param_here);
1427      return true;
1428    }
1429
1430    QualType IntegerType = Context.getCanonicalType(ParamType);
1431    if (const EnumType *Enum = IntegerType->getAsEnumType())
1432      IntegerType = Enum->getDecl()->getIntegerType();
1433
1434    if (!Arg->isValueDependent()) {
1435      // Check that an unsigned parameter does not receive a negative
1436      // value.
1437      if (IntegerType->isUnsignedIntegerType()
1438          && (Value.isSigned() && Value.isNegative())) {
1439        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1440          << Value.toString(10) << Param->getType()
1441          << Arg->getSourceRange();
1442        Diag(Param->getLocation(), diag::note_template_param_here);
1443        return true;
1444      }
1445
1446      // Check that we don't overflow the template parameter type.
1447      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1448      if (Value.getActiveBits() > AllowedBits) {
1449        Diag(Arg->getSourceRange().getBegin(),
1450             diag::err_template_arg_too_large)
1451          << Value.toString(10) << Param->getType()
1452          << Arg->getSourceRange();
1453        Diag(Param->getLocation(), diag::note_template_param_here);
1454        return true;
1455      }
1456
1457      if (Value.getBitWidth() != AllowedBits)
1458        Value.extOrTrunc(AllowedBits);
1459      Value.setIsSigned(IntegerType->isSignedIntegerType());
1460    }
1461
1462    if (Converted) {
1463      // Add the value of this argument to the list of converted
1464      // arguments. We use the bitwidth and signedness of the template
1465      // parameter.
1466      if (Arg->isValueDependent()) {
1467        // The argument is value-dependent. Create a new
1468        // TemplateArgument with the converted expression.
1469        Converted->push_back(TemplateArgument(Arg));
1470        return false;
1471      }
1472
1473      Converted->push_back(TemplateArgument(StartLoc, Value,
1474                                   Context.getCanonicalType(IntegerType)));
1475    }
1476
1477    return false;
1478  }
1479
1480  // Handle pointer-to-function, reference-to-function, and
1481  // pointer-to-member-function all in (roughly) the same way.
1482  if (// -- For a non-type template-parameter of type pointer to
1483      //    function, only the function-to-pointer conversion (4.3) is
1484      //    applied. If the template-argument represents a set of
1485      //    overloaded functions (or a pointer to such), the matching
1486      //    function is selected from the set (13.4).
1487      (ParamType->isPointerType() &&
1488       ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
1489      // -- For a non-type template-parameter of type reference to
1490      //    function, no conversions apply. If the template-argument
1491      //    represents a set of overloaded functions, the matching
1492      //    function is selected from the set (13.4).
1493      (ParamType->isReferenceType() &&
1494       ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
1495      // -- For a non-type template-parameter of type pointer to
1496      //    member function, no conversions apply. If the
1497      //    template-argument represents a set of overloaded member
1498      //    functions, the matching member function is selected from
1499      //    the set (13.4).
1500      (ParamType->isMemberPointerType() &&
1501       ParamType->getAsMemberPointerType()->getPointeeType()
1502         ->isFunctionType())) {
1503    if (Context.hasSameUnqualifiedType(ArgType,
1504                                       ParamType.getNonReferenceType())) {
1505      // We don't have to do anything: the types already match.
1506    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1507      ArgType = Context.getPointerType(ArgType);
1508      ImpCastExprToType(Arg, ArgType);
1509    } else if (FunctionDecl *Fn
1510                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1511      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1512        return true;
1513
1514      FixOverloadedFunctionReference(Arg, Fn);
1515      ArgType = Arg->getType();
1516      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1517        ArgType = Context.getPointerType(Arg->getType());
1518        ImpCastExprToType(Arg, ArgType);
1519      }
1520    }
1521
1522    if (!Context.hasSameUnqualifiedType(ArgType,
1523                                        ParamType.getNonReferenceType())) {
1524      // We can't perform this conversion.
1525      Diag(Arg->getSourceRange().getBegin(),
1526           diag::err_template_arg_not_convertible)
1527        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1528      Diag(Param->getLocation(), diag::note_template_param_here);
1529      return true;
1530    }
1531
1532    if (ParamType->isMemberPointerType()) {
1533      NamedDecl *Member = 0;
1534      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1535        return true;
1536
1537      if (Converted)
1538        Converted->push_back(TemplateArgument(StartLoc, Member));
1539
1540      return false;
1541    }
1542
1543    NamedDecl *Entity = 0;
1544    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1545      return true;
1546
1547    if (Converted)
1548      Converted->push_back(TemplateArgument(StartLoc, Entity));
1549    return false;
1550  }
1551
1552  if (ParamType->isPointerType()) {
1553    //   -- for a non-type template-parameter of type pointer to
1554    //      object, qualification conversions (4.4) and the
1555    //      array-to-pointer conversion (4.2) are applied.
1556    assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
1557           "Only object pointers allowed here");
1558
1559    if (ArgType->isArrayType()) {
1560      ArgType = Context.getArrayDecayedType(ArgType);
1561      ImpCastExprToType(Arg, ArgType);
1562    }
1563
1564    if (IsQualificationConversion(ArgType, ParamType)) {
1565      ArgType = ParamType;
1566      ImpCastExprToType(Arg, ParamType);
1567    }
1568
1569    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1570      // We can't perform this conversion.
1571      Diag(Arg->getSourceRange().getBegin(),
1572           diag::err_template_arg_not_convertible)
1573        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1574      Diag(Param->getLocation(), diag::note_template_param_here);
1575      return true;
1576    }
1577
1578    NamedDecl *Entity = 0;
1579    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1580      return true;
1581
1582    if (Converted)
1583      Converted->push_back(TemplateArgument(StartLoc, Entity));
1584
1585    return false;
1586  }
1587
1588  if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
1589    //   -- For a non-type template-parameter of type reference to
1590    //      object, no conversions apply. The type referred to by the
1591    //      reference may be more cv-qualified than the (otherwise
1592    //      identical) type of the template-argument. The
1593    //      template-parameter is bound directly to the
1594    //      template-argument, which must be an lvalue.
1595    assert(ParamRefType->getPointeeType()->isObjectType() &&
1596           "Only object references allowed here");
1597
1598    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1599      Diag(Arg->getSourceRange().getBegin(),
1600           diag::err_template_arg_no_ref_bind)
1601        << InstantiatedParamType << Arg->getType()
1602        << Arg->getSourceRange();
1603      Diag(Param->getLocation(), diag::note_template_param_here);
1604      return true;
1605    }
1606
1607    unsigned ParamQuals
1608      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1609    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1610
1611    if ((ParamQuals | ArgQuals) != ParamQuals) {
1612      Diag(Arg->getSourceRange().getBegin(),
1613           diag::err_template_arg_ref_bind_ignores_quals)
1614        << InstantiatedParamType << Arg->getType()
1615        << Arg->getSourceRange();
1616      Diag(Param->getLocation(), diag::note_template_param_here);
1617      return true;
1618    }
1619
1620    NamedDecl *Entity = 0;
1621    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1622      return true;
1623
1624    if (Converted)
1625      Converted->push_back(TemplateArgument(StartLoc, Entity));
1626
1627    return false;
1628  }
1629
1630  //     -- For a non-type template-parameter of type pointer to data
1631  //        member, qualification conversions (4.4) are applied.
1632  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1633
1634  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1635    // Types match exactly: nothing more to do here.
1636  } else if (IsQualificationConversion(ArgType, ParamType)) {
1637    ImpCastExprToType(Arg, ParamType);
1638  } else {
1639    // We can't perform this conversion.
1640    Diag(Arg->getSourceRange().getBegin(),
1641         diag::err_template_arg_not_convertible)
1642      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1643    Diag(Param->getLocation(), diag::note_template_param_here);
1644    return true;
1645  }
1646
1647  NamedDecl *Member = 0;
1648  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1649    return true;
1650
1651  if (Converted)
1652    Converted->push_back(TemplateArgument(StartLoc, Member));
1653
1654  return false;
1655}
1656
1657/// \brief Check a template argument against its corresponding
1658/// template template parameter.
1659///
1660/// This routine implements the semantics of C++ [temp.arg.template].
1661/// It returns true if an error occurred, and false otherwise.
1662bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1663                                 DeclRefExpr *Arg) {
1664  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1665  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1666
1667  // C++ [temp.arg.template]p1:
1668  //   A template-argument for a template template-parameter shall be
1669  //   the name of a class template, expressed as id-expression. Only
1670  //   primary class templates are considered when matching the
1671  //   template template argument with the corresponding parameter;
1672  //   partial specializations are not considered even if their
1673  //   parameter lists match that of the template template parameter.
1674  if (!isa<ClassTemplateDecl>(Template)) {
1675    assert(isa<FunctionTemplateDecl>(Template) &&
1676           "Only function templates are possible here");
1677    Diag(Arg->getSourceRange().getBegin(),
1678         diag::note_template_arg_refers_here_func)
1679      << Template;
1680  }
1681
1682  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1683                                         Param->getTemplateParameters(),
1684                                         true, true,
1685                                         Arg->getSourceRange().getBegin());
1686}
1687
1688/// \brief Determine whether the given template parameter lists are
1689/// equivalent.
1690///
1691/// \param New  The new template parameter list, typically written in the
1692/// source code as part of a new template declaration.
1693///
1694/// \param Old  The old template parameter list, typically found via
1695/// name lookup of the template declared with this template parameter
1696/// list.
1697///
1698/// \param Complain  If true, this routine will produce a diagnostic if
1699/// the template parameter lists are not equivalent.
1700///
1701/// \param IsTemplateTemplateParm  If true, this routine is being
1702/// called to compare the template parameter lists of a template
1703/// template parameter.
1704///
1705/// \param TemplateArgLoc If this source location is valid, then we
1706/// are actually checking the template parameter list of a template
1707/// argument (New) against the template parameter list of its
1708/// corresponding template template parameter (Old). We produce
1709/// slightly different diagnostics in this scenario.
1710///
1711/// \returns True if the template parameter lists are equal, false
1712/// otherwise.
1713bool
1714Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
1715                                     TemplateParameterList *Old,
1716                                     bool Complain,
1717                                     bool IsTemplateTemplateParm,
1718                                     SourceLocation TemplateArgLoc) {
1719  if (Old->size() != New->size()) {
1720    if (Complain) {
1721      unsigned NextDiag = diag::err_template_param_list_different_arity;
1722      if (TemplateArgLoc.isValid()) {
1723        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1724        NextDiag = diag::note_template_param_list_different_arity;
1725      }
1726      Diag(New->getTemplateLoc(), NextDiag)
1727          << (New->size() > Old->size())
1728          << IsTemplateTemplateParm
1729          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
1730      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
1731        << IsTemplateTemplateParm
1732        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
1733    }
1734
1735    return false;
1736  }
1737
1738  for (TemplateParameterList::iterator OldParm = Old->begin(),
1739         OldParmEnd = Old->end(), NewParm = New->begin();
1740       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
1741    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
1742      unsigned NextDiag = diag::err_template_param_different_kind;
1743      if (TemplateArgLoc.isValid()) {
1744        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1745        NextDiag = diag::note_template_param_different_kind;
1746      }
1747      Diag((*NewParm)->getLocation(), NextDiag)
1748        << IsTemplateTemplateParm;
1749      Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
1750        << IsTemplateTemplateParm;
1751      return false;
1752    }
1753
1754    if (isa<TemplateTypeParmDecl>(*OldParm)) {
1755      // Okay; all template type parameters are equivalent (since we
1756      // know we're at the same index).
1757#if 0
1758      // FIXME: Enable this code in debug mode *after* we properly go
1759      // through and "instantiate" the template parameter lists of
1760      // template template parameters. It's only after this
1761      // instantiation that (1) any dependent types within the
1762      // template parameter list of the template template parameter
1763      // can be checked, and (2) the template type parameter depths
1764      // will match up.
1765      QualType OldParmType
1766        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
1767      QualType NewParmType
1768        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
1769      assert(Context.getCanonicalType(OldParmType) ==
1770             Context.getCanonicalType(NewParmType) &&
1771             "type parameter mismatch?");
1772#endif
1773    } else if (NonTypeTemplateParmDecl *OldNTTP
1774                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
1775      // The types of non-type template parameters must agree.
1776      NonTypeTemplateParmDecl *NewNTTP
1777        = cast<NonTypeTemplateParmDecl>(*NewParm);
1778      if (Context.getCanonicalType(OldNTTP->getType()) !=
1779            Context.getCanonicalType(NewNTTP->getType())) {
1780        if (Complain) {
1781          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
1782          if (TemplateArgLoc.isValid()) {
1783            Diag(TemplateArgLoc,
1784                 diag::err_template_arg_template_params_mismatch);
1785            NextDiag = diag::note_template_nontype_parm_different_type;
1786          }
1787          Diag(NewNTTP->getLocation(), NextDiag)
1788            << NewNTTP->getType()
1789            << IsTemplateTemplateParm;
1790          Diag(OldNTTP->getLocation(),
1791               diag::note_template_nontype_parm_prev_declaration)
1792            << OldNTTP->getType();
1793        }
1794        return false;
1795      }
1796    } else {
1797      // The template parameter lists of template template
1798      // parameters must agree.
1799      // FIXME: Could we perform a faster "type" comparison here?
1800      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
1801             "Only template template parameters handled here");
1802      TemplateTemplateParmDecl *OldTTP
1803        = cast<TemplateTemplateParmDecl>(*OldParm);
1804      TemplateTemplateParmDecl *NewTTP
1805        = cast<TemplateTemplateParmDecl>(*NewParm);
1806      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
1807                                          OldTTP->getTemplateParameters(),
1808                                          Complain,
1809                                          /*IsTemplateTemplateParm=*/true,
1810                                          TemplateArgLoc))
1811        return false;
1812    }
1813  }
1814
1815  return true;
1816}
1817
1818/// \brief Check whether a template can be declared within this scope.
1819///
1820/// If the template declaration is valid in this scope, returns
1821/// false. Otherwise, issues a diagnostic and returns true.
1822bool
1823Sema::CheckTemplateDeclScope(Scope *S,
1824                             MultiTemplateParamsArg &TemplateParameterLists) {
1825  assert(TemplateParameterLists.size() > 0 && "Not a template");
1826
1827  // Find the nearest enclosing declaration scope.
1828  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1829         (S->getFlags() & Scope::TemplateParamScope) != 0)
1830    S = S->getParent();
1831
1832  TemplateParameterList *TemplateParams =
1833    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
1834  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
1835  SourceRange TemplateRange
1836    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
1837
1838  // C++ [temp]p2:
1839  //   A template-declaration can appear only as a namespace scope or
1840  //   class scope declaration.
1841  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1842  while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
1843    if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
1844      return Diag(TemplateLoc, diag::err_template_linkage)
1845        << TemplateRange;
1846
1847    Ctx = Ctx->getParent();
1848  }
1849
1850  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
1851    return false;
1852
1853  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
1854    << TemplateRange;
1855}
1856
1857/// \brief Check whether a class template specialization in the
1858/// current context is well-formed.
1859///
1860/// This routine determines whether a class template specialization
1861/// can be declared in the current context (C++ [temp.expl.spec]p2)
1862/// and emits appropriate diagnostics if there was an error. It
1863/// returns true if there was an error that we cannot recover from,
1864/// and false otherwise.
1865bool
1866Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
1867                                   ClassTemplateSpecializationDecl *PrevDecl,
1868                                            SourceLocation TemplateNameLoc,
1869                                            SourceRange ScopeSpecifierRange) {
1870  // C++ [temp.expl.spec]p2:
1871  //   An explicit specialization shall be declared in the namespace
1872  //   of which the template is a member, or, for member templates, in
1873  //   the namespace of which the enclosing class or enclosing class
1874  //   template is a member. An explicit specialization of a member
1875  //   function, member class or static data member of a class
1876  //   template shall be declared in the namespace of which the class
1877  //   template is a member. Such a declaration may also be a
1878  //   definition. If the declaration is not a definition, the
1879  //   specialization may be defined later in the name- space in which
1880  //   the explicit specialization was declared, or in a namespace
1881  //   that encloses the one in which the explicit specialization was
1882  //   declared.
1883  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1884    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
1885      << ClassTemplate;
1886    return true;
1887  }
1888
1889  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
1890  DeclContext *TemplateContext
1891    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
1892  if (!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) {
1893    // There is no prior declaration of this entity, so this
1894    // specialization must be in the same context as the template
1895    // itself.
1896    if (DC != TemplateContext) {
1897      if (isa<TranslationUnitDecl>(TemplateContext))
1898        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
1899          << ClassTemplate << ScopeSpecifierRange;
1900      else if (isa<NamespaceDecl>(TemplateContext))
1901        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
1902          << ClassTemplate << cast<NamedDecl>(TemplateContext)
1903          << ScopeSpecifierRange;
1904
1905      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1906    }
1907
1908    return false;
1909  }
1910
1911  // We have a previous declaration of this entity. Make sure that
1912  // this redeclaration (or definition) occurs in an enclosing namespace.
1913  if (!CurContext->Encloses(TemplateContext)) {
1914    if (isa<TranslationUnitDecl>(TemplateContext))
1915      Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
1916        << ClassTemplate << ScopeSpecifierRange;
1917    else if (isa<NamespaceDecl>(TemplateContext))
1918      Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
1919        << ClassTemplate << cast<NamedDecl>(TemplateContext)
1920        << ScopeSpecifierRange;
1921
1922    Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1923  }
1924
1925  return false;
1926}
1927
1928Sema::DeclResult
1929Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
1930                                       SourceLocation KWLoc,
1931                                       const CXXScopeSpec &SS,
1932                                       TemplateTy TemplateD,
1933                                       SourceLocation TemplateNameLoc,
1934                                       SourceLocation LAngleLoc,
1935                                       ASTTemplateArgsPtr TemplateArgsIn,
1936                                       SourceLocation *TemplateArgLocs,
1937                                       SourceLocation RAngleLoc,
1938                                       AttributeList *Attr,
1939                               MultiTemplateParamsArg TemplateParameterLists) {
1940  // Find the class template we're specializing
1941  TemplateName Name = TemplateD.getAsVal<TemplateName>();
1942  ClassTemplateDecl *ClassTemplate
1943    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
1944
1945  // Check the validity of the template headers that introduce this
1946  // template.
1947  // FIXME: Once we have member templates, we'll need to check
1948  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
1949  // template<> headers.
1950  if (TemplateParameterLists.size() == 0)
1951    Diag(KWLoc, diag::err_template_spec_needs_header)
1952      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
1953  else {
1954    TemplateParameterList *TemplateParams
1955      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
1956    if (TemplateParameterLists.size() > 1) {
1957      Diag(TemplateParams->getTemplateLoc(),
1958           diag::err_template_spec_extra_headers);
1959      return true;
1960    }
1961
1962    if (TemplateParams->size() > 0) {
1963      // FIXME: No support for class template partial specialization.
1964      Diag(TemplateParams->getTemplateLoc(), diag::unsup_template_partial_spec);
1965      return true;
1966    }
1967  }
1968
1969  // Check that the specialization uses the same tag kind as the
1970  // original template.
1971  TagDecl::TagKind Kind;
1972  switch (TagSpec) {
1973  default: assert(0 && "Unknown tag type!");
1974  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1975  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1976  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1977  }
1978  if (ClassTemplate->getTemplatedDecl()->getTagKind() != Kind) {
1979    Diag(KWLoc, diag::err_use_with_wrong_tag)
1980      << ClassTemplate
1981      << CodeModificationHint::CreateReplacement(KWLoc,
1982                            ClassTemplate->getTemplatedDecl()->getKindName());
1983    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
1984         diag::note_previous_use);
1985    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
1986  }
1987
1988  // Translate the parser's template argument list in our AST format.
1989  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1990  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1991
1992  // Check that the template argument list is well-formed for this
1993  // template.
1994  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
1995  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
1996                                &TemplateArgs[0], TemplateArgs.size(),
1997                                RAngleLoc, ConvertedTemplateArgs))
1998    return true;
1999
2000  assert((ConvertedTemplateArgs.size() ==
2001            ClassTemplate->getTemplateParameters()->size()) &&
2002         "Converted template argument list is too short!");
2003
2004  // Find the class template specialization declaration that
2005  // corresponds to these arguments.
2006  llvm::FoldingSetNodeID ID;
2007  ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2008                                           ConvertedTemplateArgs.size());
2009  void *InsertPos = 0;
2010  ClassTemplateSpecializationDecl *PrevDecl
2011    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2012
2013  ClassTemplateSpecializationDecl *Specialization = 0;
2014
2015  // Check whether we can declare a class template specialization in
2016  // the current scope.
2017  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2018                                            TemplateNameLoc,
2019                                            SS.getRange()))
2020    return true;
2021
2022  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2023    // Since the only prior class template specialization with these
2024    // arguments was referenced but not declared, reuse that
2025    // declaration node as our own, updating its source location to
2026    // reflect our new declaration.
2027    Specialization = PrevDecl;
2028    Specialization->setLocation(TemplateNameLoc);
2029    PrevDecl = 0;
2030  } else {
2031    // Create a new class template specialization declaration node for
2032    // this explicit specialization.
2033    Specialization
2034      = ClassTemplateSpecializationDecl::Create(Context,
2035                                             ClassTemplate->getDeclContext(),
2036                                                TemplateNameLoc,
2037                                                ClassTemplate,
2038                                                &ConvertedTemplateArgs[0],
2039                                                ConvertedTemplateArgs.size(),
2040                                                PrevDecl);
2041
2042    if (PrevDecl) {
2043      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2044      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2045    } else {
2046      ClassTemplate->getSpecializations().InsertNode(Specialization,
2047                                                     InsertPos);
2048    }
2049  }
2050
2051  // Note that this is an explicit specialization.
2052  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2053
2054  // Check that this isn't a redefinition of this specialization.
2055  if (TK == TK_Definition) {
2056    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2057      // FIXME: Should also handle explicit specialization after
2058      // implicit instantiation with a special diagnostic.
2059      SourceRange Range(TemplateNameLoc, RAngleLoc);
2060      Diag(TemplateNameLoc, diag::err_redefinition)
2061        << Specialization << Range;
2062      Diag(Def->getLocation(), diag::note_previous_definition);
2063      Specialization->setInvalidDecl();
2064      return true;
2065    }
2066  }
2067
2068  // Build the fully-sugared type for this class template
2069  // specialization as the user wrote in the specialization
2070  // itself. This means that we'll pretty-print the type retrieved
2071  // from the specialization's declaration the way that the user
2072  // actually wrote the specialization, rather than formatting the
2073  // name based on the "canonical" representation used to store the
2074  // template arguments in the specialization.
2075  QualType WrittenTy
2076    = Context.getTemplateSpecializationType(Name,
2077                                            &TemplateArgs[0],
2078                                            TemplateArgs.size(),
2079                                  Context.getTypeDeclType(Specialization));
2080  Specialization->setTypeAsWritten(WrittenTy);
2081  TemplateArgsIn.release();
2082
2083  // C++ [temp.expl.spec]p9:
2084  //   A template explicit specialization is in the scope of the
2085  //   namespace in which the template was defined.
2086  //
2087  // We actually implement this paragraph where we set the semantic
2088  // context (in the creation of the ClassTemplateSpecializationDecl),
2089  // but we also maintain the lexical context where the actual
2090  // definition occurs.
2091  Specialization->setLexicalDeclContext(CurContext);
2092
2093  // We may be starting the definition of this specialization.
2094  if (TK == TK_Definition)
2095    Specialization->startDefinition();
2096
2097  // Add the specialization into its lexical context, so that it can
2098  // be seen when iterating through the list of declarations in that
2099  // context. However, specializations are not found by name lookup.
2100  CurContext->addDecl(Specialization);
2101  return DeclPtrTy::make(Specialization);
2102}
2103
2104Sema::TypeResult
2105Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2106                        const IdentifierInfo &II, SourceLocation IdLoc) {
2107  NestedNameSpecifier *NNS
2108    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2109  if (!NNS)
2110    return true;
2111
2112  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2113  if (T.isNull())
2114    return true;
2115  return T.getAsOpaquePtr();
2116}
2117
2118Sema::TypeResult
2119Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2120                        SourceLocation TemplateLoc, TypeTy *Ty) {
2121  QualType T = QualType::getFromOpaquePtr(Ty);
2122  NestedNameSpecifier *NNS
2123    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2124  const TemplateSpecializationType *TemplateId
2125    = T->getAsTemplateSpecializationType();
2126  assert(TemplateId && "Expected a template specialization type");
2127
2128  if (NNS->isDependent())
2129    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2130
2131  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2132}
2133
2134/// \brief Build the type that describes a C++ typename specifier,
2135/// e.g., "typename T::type".
2136QualType
2137Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2138                        SourceRange Range) {
2139  if (NNS->isDependent()) // FIXME: member of the current instantiation!
2140    return Context.getTypenameType(NNS, &II);
2141
2142  CXXScopeSpec SS;
2143  SS.setScopeRep(NNS);
2144  SS.setRange(Range);
2145  if (RequireCompleteDeclContext(SS))
2146    return QualType();
2147
2148  DeclContext *Ctx = computeDeclContext(SS);
2149  assert(Ctx && "No declaration context?");
2150
2151  DeclarationName Name(&II);
2152  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
2153                                            false);
2154  unsigned DiagID = 0;
2155  Decl *Referenced = 0;
2156  switch (Result.getKind()) {
2157  case LookupResult::NotFound:
2158    if (Ctx->isTranslationUnit())
2159      DiagID = diag::err_typename_nested_not_found_global;
2160    else
2161      DiagID = diag::err_typename_nested_not_found;
2162    break;
2163
2164  case LookupResult::Found:
2165    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
2166      // We found a type. Build a QualifiedNameType, since the
2167      // typename-specifier was just sugar. FIXME: Tell
2168      // QualifiedNameType that it has a "typename" prefix.
2169      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
2170    }
2171
2172    DiagID = diag::err_typename_nested_not_type;
2173    Referenced = Result.getAsDecl();
2174    break;
2175
2176  case LookupResult::FoundOverloaded:
2177    DiagID = diag::err_typename_nested_not_type;
2178    Referenced = *Result.begin();
2179    break;
2180
2181  case LookupResult::AmbiguousBaseSubobjectTypes:
2182  case LookupResult::AmbiguousBaseSubobjects:
2183  case LookupResult::AmbiguousReference:
2184    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
2185    return QualType();
2186  }
2187
2188  // If we get here, it's because name lookup did not find a
2189  // type. Emit an appropriate diagnostic and return an error.
2190  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
2191    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
2192  else
2193    Diag(Range.getEnd(), DiagID) << Range << Name;
2194  if (Referenced)
2195    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
2196      << Name;
2197  return QualType();
2198}
2199