SemaTemplate.cpp revision a481edb1b11c956a46cb42cd0dc4dd9851c10801
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
63  if (!Ovl)
64    return 0;
65
66  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
67                                              FEnd = Ovl->function_end();
68       F != FEnd; ++F) {
69    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
70      // We've found a function template. Determine whether there are
71      // any other function templates we need to bundle together in an
72      // OverloadedFunctionDecl
73      for (++F; F != FEnd; ++F) {
74        if (isa<FunctionTemplateDecl>(*F))
75          break;
76      }
77
78      if (F != FEnd) {
79        // Build an overloaded function decl containing only the
80        // function templates in Ovl.
81        OverloadedFunctionDecl *OvlTemplate
82          = OverloadedFunctionDecl::Create(Context,
83                                           Ovl->getDeclContext(),
84                                           Ovl->getDeclName());
85        OvlTemplate->addOverload(FuncTmpl);
86        OvlTemplate->addOverload(*F);
87        for (++F; F != FEnd; ++F) {
88          if (isa<FunctionTemplateDecl>(*F))
89            OvlTemplate->addOverload(*F);
90        }
91
92        return OvlTemplate;
93      }
94
95      return FuncTmpl;
96    }
97  }
98
99  return 0;
100}
101
102TemplateNameKind Sema::isTemplateName(Scope *S,
103                                      const CXXScopeSpec &SS,
104                                      UnqualifiedId &Name,
105                                      TypeTy *ObjectTypePtr,
106                                      bool EnteringContext,
107                                      TemplateTy &TemplateResult) {
108  DeclarationName TName;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  default:
121    return TNK_Non_template;
122  }
123
124  // Determine where to perform name lookup
125  DeclContext *LookupCtx = 0;
126  bool isDependent = false;
127  if (ObjectTypePtr) {
128    // This nested-name-specifier occurs in a member access expression, e.g.,
129    // x->B::f, and we are looking into the type of the object.
130    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
131    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
132    LookupCtx = computeDeclContext(ObjectType);
133    isDependent = ObjectType->isDependentType();
134    assert((isDependent || !ObjectType->isIncompleteType()) &&
135           "Caller should have completed object type");
136  } else if (SS.isSet()) {
137    // This nested-name-specifier occurs after another nested-name-specifier,
138    // so long into the context associated with the prior nested-name-specifier.
139    LookupCtx = computeDeclContext(SS, EnteringContext);
140    isDependent = isDependentScopeSpecifier(SS);
141
142    // The declaration context must be complete.
143    if (LookupCtx && RequireCompleteDeclContext(SS))
144      return TNK_Non_template;
145  }
146
147  LookupResult Found(*this, TName, SourceLocation(), LookupOrdinaryName);
148  bool ObjectTypeSearchedInScope = false;
149  if (LookupCtx) {
150    // Perform "qualified" name lookup into the declaration context we
151    // computed, which is either the type of the base of a member access
152    // expression or the declaration context associated with a prior
153    // nested-name-specifier.
154    LookupQualifiedName(Found, LookupCtx);
155
156    if (ObjectTypePtr && Found.empty()) {
157      // C++ [basic.lookup.classref]p1:
158      //   In a class member access expression (5.2.5), if the . or -> token is
159      //   immediately followed by an identifier followed by a <, the
160      //   identifier must be looked up to determine whether the < is the
161      //   beginning of a template argument list (14.2) or a less-than operator.
162      //   The identifier is first looked up in the class of the object
163      //   expression. If the identifier is not found, it is then looked up in
164      //   the context of the entire postfix-expression and shall name a class
165      //   or function template.
166      //
167      // FIXME: When we're instantiating a template, do we actually have to
168      // look in the scope of the template? Seems fishy...
169      LookupName(Found, S);
170      ObjectTypeSearchedInScope = true;
171    }
172  } else if (isDependent) {
173    // We cannot look into a dependent object type or
174    return TNK_Non_template;
175  } else {
176    // Perform unqualified name lookup in the current scope.
177    LookupName(Found, S);
178  }
179
180  // FIXME: Cope with ambiguous name-lookup results.
181  assert(!Found.isAmbiguous() &&
182         "Cannot handle template name-lookup ambiguities");
183
184  NamedDecl *Template
185    = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context));
186  if (!Template)
187    return TNK_Non_template;
188
189  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
190    // C++ [basic.lookup.classref]p1:
191    //   [...] If the lookup in the class of the object expression finds a
192    //   template, the name is also looked up in the context of the entire
193    //   postfix-expression and [...]
194    //
195    LookupResult FoundOuter(*this, TName, SourceLocation(), LookupOrdinaryName);
196    LookupName(FoundOuter, S);
197    // FIXME: Handle ambiguities in this lookup better
198    NamedDecl *OuterTemplate
199      = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context));
200
201    if (!OuterTemplate) {
202      //   - if the name is not found, the name found in the class of the
203      //     object expression is used, otherwise
204    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
205      //   - if the name is found in the context of the entire
206      //     postfix-expression and does not name a class template, the name
207      //     found in the class of the object expression is used, otherwise
208    } else {
209      //   - if the name found is a class template, it must refer to the same
210      //     entity as the one found in the class of the object expression,
211      //     otherwise the program is ill-formed.
212      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
213        Diag(Name.getSourceRange().getBegin(),
214             diag::err_nested_name_member_ref_lookup_ambiguous)
215          << TName
216          << Name.getSourceRange();
217        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
218          << QualType::getFromOpaquePtr(ObjectTypePtr);
219        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
220
221        // Recover by taking the template that we found in the object
222        // expression's type.
223      }
224    }
225  }
226
227  if (SS.isSet() && !SS.isInvalid()) {
228    NestedNameSpecifier *Qualifier
229      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
230    if (OverloadedFunctionDecl *Ovl
231          = dyn_cast<OverloadedFunctionDecl>(Template))
232      TemplateResult
233        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
234                                                            Ovl));
235    else
236      TemplateResult
237        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
238                                                 cast<TemplateDecl>(Template)));
239  } else if (OverloadedFunctionDecl *Ovl
240               = dyn_cast<OverloadedFunctionDecl>(Template)) {
241    TemplateResult = TemplateTy::make(TemplateName(Ovl));
242  } else {
243    TemplateResult = TemplateTy::make(
244                                  TemplateName(cast<TemplateDecl>(Template)));
245  }
246
247  if (isa<ClassTemplateDecl>(Template) ||
248      isa<TemplateTemplateParmDecl>(Template))
249    return TNK_Type_template;
250
251  assert((isa<FunctionTemplateDecl>(Template) ||
252          isa<OverloadedFunctionDecl>(Template)) &&
253         "Unhandled template kind in Sema::isTemplateName");
254  return TNK_Function_template;
255}
256
257/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
258/// that the template parameter 'PrevDecl' is being shadowed by a new
259/// declaration at location Loc. Returns true to indicate that this is
260/// an error, and false otherwise.
261bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
262  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
263
264  // Microsoft Visual C++ permits template parameters to be shadowed.
265  if (getLangOptions().Microsoft)
266    return false;
267
268  // C++ [temp.local]p4:
269  //   A template-parameter shall not be redeclared within its
270  //   scope (including nested scopes).
271  Diag(Loc, diag::err_template_param_shadow)
272    << cast<NamedDecl>(PrevDecl)->getDeclName();
273  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
274  return true;
275}
276
277/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
278/// the parameter D to reference the templated declaration and return a pointer
279/// to the template declaration. Otherwise, do nothing to D and return null.
280TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
281  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
282    D = DeclPtrTy::make(Temp->getTemplatedDecl());
283    return Temp;
284  }
285  return 0;
286}
287
288static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
289                                            const ParsedTemplateArgument &Arg) {
290
291  switch (Arg.getKind()) {
292  case ParsedTemplateArgument::Type: {
293    DeclaratorInfo *DI;
294    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
295    if (!DI)
296      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
297    return TemplateArgumentLoc(TemplateArgument(T), DI);
298  }
299
300  case ParsedTemplateArgument::NonType: {
301    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
302    return TemplateArgumentLoc(TemplateArgument(E), E);
303  }
304
305  case ParsedTemplateArgument::Template: {
306    TemplateName Template
307      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
308    return TemplateArgumentLoc(TemplateArgument(Template),
309                               Arg.getScopeSpec().getRange(),
310                               Arg.getLocation());
311  }
312  }
313
314  llvm::llvm_unreachable("Unhandled parsed template argument");
315  return TemplateArgumentLoc();
316}
317
318/// \brief Translates template arguments as provided by the parser
319/// into template arguments used by semantic analysis.
320void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
321                     llvm::SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
322 TemplateArgs.reserve(TemplateArgsIn.size());
323
324 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
325   TemplateArgs.push_back(translateTemplateArgument(*this, TemplateArgsIn[I]));
326}
327
328/// ActOnTypeParameter - Called when a C++ template type parameter
329/// (e.g., "typename T") has been parsed. Typename specifies whether
330/// the keyword "typename" was used to declare the type parameter
331/// (otherwise, "class" was used), and KeyLoc is the location of the
332/// "class" or "typename" keyword. ParamName is the name of the
333/// parameter (NULL indicates an unnamed template parameter) and
334/// ParamName is the location of the parameter name (if any).
335/// If the type parameter has a default argument, it will be added
336/// later via ActOnTypeParameterDefault.
337Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
338                                         SourceLocation EllipsisLoc,
339                                         SourceLocation KeyLoc,
340                                         IdentifierInfo *ParamName,
341                                         SourceLocation ParamNameLoc,
342                                         unsigned Depth, unsigned Position) {
343  assert(S->isTemplateParamScope() &&
344         "Template type parameter not in template parameter scope!");
345  bool Invalid = false;
346
347  if (ParamName) {
348    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
349    if (PrevDecl && PrevDecl->isTemplateParameter())
350      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
351                                                           PrevDecl);
352  }
353
354  SourceLocation Loc = ParamNameLoc;
355  if (!ParamName)
356    Loc = KeyLoc;
357
358  TemplateTypeParmDecl *Param
359    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
360                                   Depth, Position, ParamName, Typename,
361                                   Ellipsis);
362  if (Invalid)
363    Param->setInvalidDecl();
364
365  if (ParamName) {
366    // Add the template parameter into the current scope.
367    S->AddDecl(DeclPtrTy::make(Param));
368    IdResolver.AddDecl(Param);
369  }
370
371  return DeclPtrTy::make(Param);
372}
373
374/// ActOnTypeParameterDefault - Adds a default argument (the type
375/// Default) to the given template type parameter (TypeParam).
376void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
377                                     SourceLocation EqualLoc,
378                                     SourceLocation DefaultLoc,
379                                     TypeTy *DefaultT) {
380  TemplateTypeParmDecl *Parm
381    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
382
383  DeclaratorInfo *DefaultDInfo;
384  GetTypeFromParser(DefaultT, &DefaultDInfo);
385
386  assert(DefaultDInfo && "expected source information for type");
387
388  // C++0x [temp.param]p9:
389  // A default template-argument may be specified for any kind of
390  // template-parameter that is not a template parameter pack.
391  if (Parm->isParameterPack()) {
392    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
393    return;
394  }
395
396  // C++ [temp.param]p14:
397  //   A template-parameter shall not be used in its own default argument.
398  // FIXME: Implement this check! Needs a recursive walk over the types.
399
400  // Check the template argument itself.
401  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
402    Parm->setInvalidDecl();
403    return;
404  }
405
406  Parm->setDefaultArgument(DefaultDInfo, false);
407}
408
409/// \brief Check that the type of a non-type template parameter is
410/// well-formed.
411///
412/// \returns the (possibly-promoted) parameter type if valid;
413/// otherwise, produces a diagnostic and returns a NULL type.
414QualType
415Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
416  // C++ [temp.param]p4:
417  //
418  // A non-type template-parameter shall have one of the following
419  // (optionally cv-qualified) types:
420  //
421  //       -- integral or enumeration type,
422  if (T->isIntegralType() || T->isEnumeralType() ||
423      //   -- pointer to object or pointer to function,
424      (T->isPointerType() &&
425       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
426        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
427      //   -- reference to object or reference to function,
428      T->isReferenceType() ||
429      //   -- pointer to member.
430      T->isMemberPointerType() ||
431      // If T is a dependent type, we can't do the check now, so we
432      // assume that it is well-formed.
433      T->isDependentType())
434    return T;
435  // C++ [temp.param]p8:
436  //
437  //   A non-type template-parameter of type "array of T" or
438  //   "function returning T" is adjusted to be of type "pointer to
439  //   T" or "pointer to function returning T", respectively.
440  else if (T->isArrayType())
441    // FIXME: Keep the type prior to promotion?
442    return Context.getArrayDecayedType(T);
443  else if (T->isFunctionType())
444    // FIXME: Keep the type prior to promotion?
445    return Context.getPointerType(T);
446
447  Diag(Loc, diag::err_template_nontype_parm_bad_type)
448    << T;
449
450  return QualType();
451}
452
453/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
454/// template parameter (e.g., "int Size" in "template<int Size>
455/// class Array") has been parsed. S is the current scope and D is
456/// the parsed declarator.
457Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
458                                                    unsigned Depth,
459                                                    unsigned Position) {
460  DeclaratorInfo *DInfo = 0;
461  QualType T = GetTypeForDeclarator(D, S, &DInfo);
462
463  assert(S->isTemplateParamScope() &&
464         "Non-type template parameter not in template parameter scope!");
465  bool Invalid = false;
466
467  IdentifierInfo *ParamName = D.getIdentifier();
468  if (ParamName) {
469    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
470    if (PrevDecl && PrevDecl->isTemplateParameter())
471      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
472                                                           PrevDecl);
473  }
474
475  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
476  if (T.isNull()) {
477    T = Context.IntTy; // Recover with an 'int' type.
478    Invalid = true;
479  }
480
481  NonTypeTemplateParmDecl *Param
482    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
483                                      Depth, Position, ParamName, T, DInfo);
484  if (Invalid)
485    Param->setInvalidDecl();
486
487  if (D.getIdentifier()) {
488    // Add the template parameter into the current scope.
489    S->AddDecl(DeclPtrTy::make(Param));
490    IdResolver.AddDecl(Param);
491  }
492  return DeclPtrTy::make(Param);
493}
494
495/// \brief Adds a default argument to the given non-type template
496/// parameter.
497void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
498                                                SourceLocation EqualLoc,
499                                                ExprArg DefaultE) {
500  NonTypeTemplateParmDecl *TemplateParm
501    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
502  Expr *Default = static_cast<Expr *>(DefaultE.get());
503
504  // C++ [temp.param]p14:
505  //   A template-parameter shall not be used in its own default argument.
506  // FIXME: Implement this check! Needs a recursive walk over the types.
507
508  // Check the well-formedness of the default template argument.
509  TemplateArgument Converted;
510  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
511                            Converted)) {
512    TemplateParm->setInvalidDecl();
513    return;
514  }
515
516  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
517}
518
519
520/// ActOnTemplateTemplateParameter - Called when a C++ template template
521/// parameter (e.g. T in template <template <typename> class T> class array)
522/// has been parsed. S is the current scope.
523Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
524                                                     SourceLocation TmpLoc,
525                                                     TemplateParamsTy *Params,
526                                                     IdentifierInfo *Name,
527                                                     SourceLocation NameLoc,
528                                                     unsigned Depth,
529                                                     unsigned Position) {
530  assert(S->isTemplateParamScope() &&
531         "Template template parameter not in template parameter scope!");
532
533  // Construct the parameter object.
534  TemplateTemplateParmDecl *Param =
535    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
536                                     Position, Name,
537                                     (TemplateParameterList*)Params);
538
539  // Make sure the parameter is valid.
540  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
541  // do anything yet. However, if the template parameter list or (eventual)
542  // default value is ever invalidated, that will propagate here.
543  bool Invalid = false;
544  if (Invalid) {
545    Param->setInvalidDecl();
546  }
547
548  // If the tt-param has a name, then link the identifier into the scope
549  // and lookup mechanisms.
550  if (Name) {
551    S->AddDecl(DeclPtrTy::make(Param));
552    IdResolver.AddDecl(Param);
553  }
554
555  return DeclPtrTy::make(Param);
556}
557
558/// \brief Adds a default argument to the given template template
559/// parameter.
560void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
561                                                 SourceLocation EqualLoc,
562                                        const ParsedTemplateArgument &Default) {
563  TemplateTemplateParmDecl *TemplateParm
564    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
565
566  // C++ [temp.param]p14:
567  //   A template-parameter shall not be used in its own default argument.
568  // FIXME: Implement this check! Needs a recursive walk over the types.
569
570  // Check only that we have a template template argument. We don't want to
571  // try to check well-formedness now, because our template template parameter
572  // might have dependent types in its template parameters, which we wouldn't
573  // be able to match now.
574  //
575  // If none of the template template parameter's template arguments mention
576  // other template parameters, we could actually perform more checking here.
577  // However, it isn't worth doing.
578  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
579  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
580    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
581      << DefaultArg.getSourceRange();
582    return;
583  }
584
585  TemplateParm->setDefaultArgument(DefaultArg);
586}
587
588/// ActOnTemplateParameterList - Builds a TemplateParameterList that
589/// contains the template parameters in Params/NumParams.
590Sema::TemplateParamsTy *
591Sema::ActOnTemplateParameterList(unsigned Depth,
592                                 SourceLocation ExportLoc,
593                                 SourceLocation TemplateLoc,
594                                 SourceLocation LAngleLoc,
595                                 DeclPtrTy *Params, unsigned NumParams,
596                                 SourceLocation RAngleLoc) {
597  if (ExportLoc.isValid())
598    Diag(ExportLoc, diag::note_template_export_unsupported);
599
600  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
601                                       (NamedDecl**)Params, NumParams,
602                                       RAngleLoc);
603}
604
605Sema::DeclResult
606Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
607                         SourceLocation KWLoc, const CXXScopeSpec &SS,
608                         IdentifierInfo *Name, SourceLocation NameLoc,
609                         AttributeList *Attr,
610                         TemplateParameterList *TemplateParams,
611                         AccessSpecifier AS) {
612  assert(TemplateParams && TemplateParams->size() > 0 &&
613         "No template parameters");
614  assert(TUK != TUK_Reference && "Can only declare or define class templates");
615  bool Invalid = false;
616
617  // Check that we can declare a template here.
618  if (CheckTemplateDeclScope(S, TemplateParams))
619    return true;
620
621  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
622  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
623
624  // There is no such thing as an unnamed class template.
625  if (!Name) {
626    Diag(KWLoc, diag::err_template_unnamed_class);
627    return true;
628  }
629
630  // Find any previous declaration with this name.
631  DeclContext *SemanticContext;
632  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
633                        ForRedeclaration);
634  if (SS.isNotEmpty() && !SS.isInvalid()) {
635    if (RequireCompleteDeclContext(SS))
636      return true;
637
638    SemanticContext = computeDeclContext(SS, true);
639    if (!SemanticContext) {
640      // FIXME: Produce a reasonable diagnostic here
641      return true;
642    }
643
644    LookupQualifiedName(Previous, SemanticContext);
645  } else {
646    SemanticContext = CurContext;
647    LookupName(Previous, S);
648  }
649
650  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
651  NamedDecl *PrevDecl = 0;
652  if (Previous.begin() != Previous.end())
653    PrevDecl = *Previous.begin();
654
655  if (PrevDecl && TUK == TUK_Friend) {
656    // C++ [namespace.memdef]p3:
657    //   [...] When looking for a prior declaration of a class or a function
658    //   declared as a friend, and when the name of the friend class or
659    //   function is neither a qualified name nor a template-id, scopes outside
660    //   the innermost enclosing namespace scope are not considered.
661    DeclContext *OutermostContext = CurContext;
662    while (!OutermostContext->isFileContext())
663      OutermostContext = OutermostContext->getLookupParent();
664
665    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
666        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
667      SemanticContext = PrevDecl->getDeclContext();
668    } else {
669      // Declarations in outer scopes don't matter. However, the outermost
670      // context we computed is the semantic context for our new
671      // declaration.
672      PrevDecl = 0;
673      SemanticContext = OutermostContext;
674    }
675
676    if (CurContext->isDependentContext()) {
677      // If this is a dependent context, we don't want to link the friend
678      // class template to the template in scope, because that would perform
679      // checking of the template parameter lists that can't be performed
680      // until the outer context is instantiated.
681      PrevDecl = 0;
682    }
683  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
684    PrevDecl = 0;
685
686  // If there is a previous declaration with the same name, check
687  // whether this is a valid redeclaration.
688  ClassTemplateDecl *PrevClassTemplate
689    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
690
691  // We may have found the injected-class-name of a class template,
692  // class template partial specialization, or class template specialization.
693  // In these cases, grab the template that is being defined or specialized.
694  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
695      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
696    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
697    PrevClassTemplate
698      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
699    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
700      PrevClassTemplate
701        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
702            ->getSpecializedTemplate();
703    }
704  }
705
706  if (PrevClassTemplate) {
707    // Ensure that the template parameter lists are compatible.
708    if (!TemplateParameterListsAreEqual(TemplateParams,
709                                   PrevClassTemplate->getTemplateParameters(),
710                                        /*Complain=*/true,
711                                        TPL_TemplateMatch))
712      return true;
713
714    // C++ [temp.class]p4:
715    //   In a redeclaration, partial specialization, explicit
716    //   specialization or explicit instantiation of a class template,
717    //   the class-key shall agree in kind with the original class
718    //   template declaration (7.1.5.3).
719    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
720    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
721      Diag(KWLoc, diag::err_use_with_wrong_tag)
722        << Name
723        << CodeModificationHint::CreateReplacement(KWLoc,
724                            PrevRecordDecl->getKindName());
725      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
726      Kind = PrevRecordDecl->getTagKind();
727    }
728
729    // Check for redefinition of this class template.
730    if (TUK == TUK_Definition) {
731      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
732        Diag(NameLoc, diag::err_redefinition) << Name;
733        Diag(Def->getLocation(), diag::note_previous_definition);
734        // FIXME: Would it make sense to try to "forget" the previous
735        // definition, as part of error recovery?
736        return true;
737      }
738    }
739  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
740    // Maybe we will complain about the shadowed template parameter.
741    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
742    // Just pretend that we didn't see the previous declaration.
743    PrevDecl = 0;
744  } else if (PrevDecl) {
745    // C++ [temp]p5:
746    //   A class template shall not have the same name as any other
747    //   template, class, function, object, enumeration, enumerator,
748    //   namespace, or type in the same scope (3.3), except as specified
749    //   in (14.5.4).
750    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
751    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
752    return true;
753  }
754
755  // Check the template parameter list of this declaration, possibly
756  // merging in the template parameter list from the previous class
757  // template declaration.
758  if (CheckTemplateParameterList(TemplateParams,
759            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
760    Invalid = true;
761
762  // FIXME: If we had a scope specifier, we better have a previous template
763  // declaration!
764
765  CXXRecordDecl *NewClass =
766    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
767                          PrevClassTemplate?
768                            PrevClassTemplate->getTemplatedDecl() : 0,
769                          /*DelayTypeCreation=*/true);
770
771  ClassTemplateDecl *NewTemplate
772    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
773                                DeclarationName(Name), TemplateParams,
774                                NewClass, PrevClassTemplate);
775  NewClass->setDescribedClassTemplate(NewTemplate);
776
777  // Build the type for the class template declaration now.
778  QualType T =
779    Context.getTypeDeclType(NewClass,
780                            PrevClassTemplate?
781                              PrevClassTemplate->getTemplatedDecl() : 0);
782  assert(T->isDependentType() && "Class template type is not dependent?");
783  (void)T;
784
785  // If we are providing an explicit specialization of a member that is a
786  // class template, make a note of that.
787  if (PrevClassTemplate &&
788      PrevClassTemplate->getInstantiatedFromMemberTemplate())
789    PrevClassTemplate->setMemberSpecialization();
790
791  // Set the access specifier.
792  if (!Invalid && TUK != TUK_Friend)
793    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
794
795  // Set the lexical context of these templates
796  NewClass->setLexicalDeclContext(CurContext);
797  NewTemplate->setLexicalDeclContext(CurContext);
798
799  if (TUK == TUK_Definition)
800    NewClass->startDefinition();
801
802  if (Attr)
803    ProcessDeclAttributeList(S, NewClass, Attr);
804
805  if (TUK != TUK_Friend)
806    PushOnScopeChains(NewTemplate, S);
807  else {
808    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
809      NewTemplate->setAccess(PrevClassTemplate->getAccess());
810      NewClass->setAccess(PrevClassTemplate->getAccess());
811    }
812
813    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
814                                       PrevClassTemplate != NULL);
815
816    // Friend templates are visible in fairly strange ways.
817    if (!CurContext->isDependentContext()) {
818      DeclContext *DC = SemanticContext->getLookupContext();
819      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
820      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
821        PushOnScopeChains(NewTemplate, EnclosingScope,
822                          /* AddToContext = */ false);
823    }
824
825    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
826                                            NewClass->getLocation(),
827                                            NewTemplate,
828                                    /*FIXME:*/NewClass->getLocation());
829    Friend->setAccess(AS_public);
830    CurContext->addDecl(Friend);
831  }
832
833  if (Invalid) {
834    NewTemplate->setInvalidDecl();
835    NewClass->setInvalidDecl();
836  }
837  return DeclPtrTy::make(NewTemplate);
838}
839
840/// \brief Checks the validity of a template parameter list, possibly
841/// considering the template parameter list from a previous
842/// declaration.
843///
844/// If an "old" template parameter list is provided, it must be
845/// equivalent (per TemplateParameterListsAreEqual) to the "new"
846/// template parameter list.
847///
848/// \param NewParams Template parameter list for a new template
849/// declaration. This template parameter list will be updated with any
850/// default arguments that are carried through from the previous
851/// template parameter list.
852///
853/// \param OldParams If provided, template parameter list from a
854/// previous declaration of the same template. Default template
855/// arguments will be merged from the old template parameter list to
856/// the new template parameter list.
857///
858/// \returns true if an error occurred, false otherwise.
859bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
860                                      TemplateParameterList *OldParams) {
861  bool Invalid = false;
862
863  // C++ [temp.param]p10:
864  //   The set of default template-arguments available for use with a
865  //   template declaration or definition is obtained by merging the
866  //   default arguments from the definition (if in scope) and all
867  //   declarations in scope in the same way default function
868  //   arguments are (8.3.6).
869  bool SawDefaultArgument = false;
870  SourceLocation PreviousDefaultArgLoc;
871
872  bool SawParameterPack = false;
873  SourceLocation ParameterPackLoc;
874
875  // Dummy initialization to avoid warnings.
876  TemplateParameterList::iterator OldParam = NewParams->end();
877  if (OldParams)
878    OldParam = OldParams->begin();
879
880  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
881                                    NewParamEnd = NewParams->end();
882       NewParam != NewParamEnd; ++NewParam) {
883    // Variables used to diagnose redundant default arguments
884    bool RedundantDefaultArg = false;
885    SourceLocation OldDefaultLoc;
886    SourceLocation NewDefaultLoc;
887
888    // Variables used to diagnose missing default arguments
889    bool MissingDefaultArg = false;
890
891    // C++0x [temp.param]p11:
892    // If a template parameter of a class template is a template parameter pack,
893    // it must be the last template parameter.
894    if (SawParameterPack) {
895      Diag(ParameterPackLoc,
896           diag::err_template_param_pack_must_be_last_template_parameter);
897      Invalid = true;
898    }
899
900    // Merge default arguments for template type parameters.
901    if (TemplateTypeParmDecl *NewTypeParm
902          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
903      TemplateTypeParmDecl *OldTypeParm
904          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
905
906      if (NewTypeParm->isParameterPack()) {
907        assert(!NewTypeParm->hasDefaultArgument() &&
908               "Parameter packs can't have a default argument!");
909        SawParameterPack = true;
910        ParameterPackLoc = NewTypeParm->getLocation();
911      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
912                 NewTypeParm->hasDefaultArgument()) {
913        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
914        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
915        SawDefaultArgument = true;
916        RedundantDefaultArg = true;
917        PreviousDefaultArgLoc = NewDefaultLoc;
918      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
919        // Merge the default argument from the old declaration to the
920        // new declaration.
921        SawDefaultArgument = true;
922        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
923                                        true);
924        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
925      } else if (NewTypeParm->hasDefaultArgument()) {
926        SawDefaultArgument = true;
927        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
928      } else if (SawDefaultArgument)
929        MissingDefaultArg = true;
930    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
931               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
932      // Merge default arguments for non-type template parameters
933      NonTypeTemplateParmDecl *OldNonTypeParm
934        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
935      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
936          NewNonTypeParm->hasDefaultArgument()) {
937        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
938        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
939        SawDefaultArgument = true;
940        RedundantDefaultArg = true;
941        PreviousDefaultArgLoc = NewDefaultLoc;
942      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
943        // Merge the default argument from the old declaration to the
944        // new declaration.
945        SawDefaultArgument = true;
946        // FIXME: We need to create a new kind of "default argument"
947        // expression that points to a previous template template
948        // parameter.
949        NewNonTypeParm->setDefaultArgument(
950                                        OldNonTypeParm->getDefaultArgument());
951        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
952      } else if (NewNonTypeParm->hasDefaultArgument()) {
953        SawDefaultArgument = true;
954        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
955      } else if (SawDefaultArgument)
956        MissingDefaultArg = true;
957    } else {
958    // Merge default arguments for template template parameters
959      TemplateTemplateParmDecl *NewTemplateParm
960        = cast<TemplateTemplateParmDecl>(*NewParam);
961      TemplateTemplateParmDecl *OldTemplateParm
962        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
963      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
964          NewTemplateParm->hasDefaultArgument()) {
965        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
966        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
967        SawDefaultArgument = true;
968        RedundantDefaultArg = true;
969        PreviousDefaultArgLoc = NewDefaultLoc;
970      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
971        // Merge the default argument from the old declaration to the
972        // new declaration.
973        SawDefaultArgument = true;
974        // FIXME: We need to create a new kind of "default argument" expression
975        // that points to a previous template template parameter.
976        NewTemplateParm->setDefaultArgument(
977                                        OldTemplateParm->getDefaultArgument());
978        PreviousDefaultArgLoc
979          = OldTemplateParm->getDefaultArgument().getLocation();
980      } else if (NewTemplateParm->hasDefaultArgument()) {
981        SawDefaultArgument = true;
982        PreviousDefaultArgLoc
983          = NewTemplateParm->getDefaultArgument().getLocation();
984      } else if (SawDefaultArgument)
985        MissingDefaultArg = true;
986    }
987
988    if (RedundantDefaultArg) {
989      // C++ [temp.param]p12:
990      //   A template-parameter shall not be given default arguments
991      //   by two different declarations in the same scope.
992      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
993      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
994      Invalid = true;
995    } else if (MissingDefaultArg) {
996      // C++ [temp.param]p11:
997      //   If a template-parameter has a default template-argument,
998      //   all subsequent template-parameters shall have a default
999      //   template-argument supplied.
1000      Diag((*NewParam)->getLocation(),
1001           diag::err_template_param_default_arg_missing);
1002      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1003      Invalid = true;
1004    }
1005
1006    // If we have an old template parameter list that we're merging
1007    // in, move on to the next parameter.
1008    if (OldParams)
1009      ++OldParam;
1010  }
1011
1012  return Invalid;
1013}
1014
1015/// \brief Match the given template parameter lists to the given scope
1016/// specifier, returning the template parameter list that applies to the
1017/// name.
1018///
1019/// \param DeclStartLoc the start of the declaration that has a scope
1020/// specifier or a template parameter list.
1021///
1022/// \param SS the scope specifier that will be matched to the given template
1023/// parameter lists. This scope specifier precedes a qualified name that is
1024/// being declared.
1025///
1026/// \param ParamLists the template parameter lists, from the outermost to the
1027/// innermost template parameter lists.
1028///
1029/// \param NumParamLists the number of template parameter lists in ParamLists.
1030///
1031/// \param IsExplicitSpecialization will be set true if the entity being
1032/// declared is an explicit specialization, false otherwise.
1033///
1034/// \returns the template parameter list, if any, that corresponds to the
1035/// name that is preceded by the scope specifier @p SS. This template
1036/// parameter list may be have template parameters (if we're declaring a
1037/// template) or may have no template parameters (if we're declaring a
1038/// template specialization), or may be NULL (if we were's declaring isn't
1039/// itself a template).
1040TemplateParameterList *
1041Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1042                                              const CXXScopeSpec &SS,
1043                                          TemplateParameterList **ParamLists,
1044                                              unsigned NumParamLists,
1045                                              bool &IsExplicitSpecialization) {
1046  IsExplicitSpecialization = false;
1047
1048  // Find the template-ids that occur within the nested-name-specifier. These
1049  // template-ids will match up with the template parameter lists.
1050  llvm::SmallVector<const TemplateSpecializationType *, 4>
1051    TemplateIdsInSpecifier;
1052  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1053       NNS; NNS = NNS->getPrefix()) {
1054    if (const TemplateSpecializationType *SpecType
1055          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1056      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1057      if (!Template)
1058        continue; // FIXME: should this be an error? probably...
1059
1060      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1061        ClassTemplateSpecializationDecl *SpecDecl
1062          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1063        // If the nested name specifier refers to an explicit specialization,
1064        // we don't need a template<> header.
1065        // FIXME: revisit this approach once we cope with specializations
1066        // properly.
1067        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
1068          continue;
1069      }
1070
1071      TemplateIdsInSpecifier.push_back(SpecType);
1072    }
1073  }
1074
1075  // Reverse the list of template-ids in the scope specifier, so that we can
1076  // more easily match up the template-ids and the template parameter lists.
1077  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1078
1079  SourceLocation FirstTemplateLoc = DeclStartLoc;
1080  if (NumParamLists)
1081    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1082
1083  // Match the template-ids found in the specifier to the template parameter
1084  // lists.
1085  unsigned Idx = 0;
1086  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1087       Idx != NumTemplateIds; ++Idx) {
1088    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1089    bool DependentTemplateId = TemplateId->isDependentType();
1090    if (Idx >= NumParamLists) {
1091      // We have a template-id without a corresponding template parameter
1092      // list.
1093      if (DependentTemplateId) {
1094        // FIXME: the location information here isn't great.
1095        Diag(SS.getRange().getBegin(),
1096             diag::err_template_spec_needs_template_parameters)
1097          << TemplateId
1098          << SS.getRange();
1099      } else {
1100        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1101          << SS.getRange()
1102          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1103                                                   "template<> ");
1104        IsExplicitSpecialization = true;
1105      }
1106      return 0;
1107    }
1108
1109    // Check the template parameter list against its corresponding template-id.
1110    if (DependentTemplateId) {
1111      TemplateDecl *Template
1112        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1113
1114      if (ClassTemplateDecl *ClassTemplate
1115            = dyn_cast<ClassTemplateDecl>(Template)) {
1116        TemplateParameterList *ExpectedTemplateParams = 0;
1117        // Is this template-id naming the primary template?
1118        if (Context.hasSameType(TemplateId,
1119                             ClassTemplate->getInjectedClassNameType(Context)))
1120          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1121        // ... or a partial specialization?
1122        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1123                   = ClassTemplate->findPartialSpecialization(TemplateId))
1124          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1125
1126        if (ExpectedTemplateParams)
1127          TemplateParameterListsAreEqual(ParamLists[Idx],
1128                                         ExpectedTemplateParams,
1129                                         true, TPL_TemplateMatch);
1130      }
1131    } else if (ParamLists[Idx]->size() > 0)
1132      Diag(ParamLists[Idx]->getTemplateLoc(),
1133           diag::err_template_param_list_matches_nontemplate)
1134        << TemplateId
1135        << ParamLists[Idx]->getSourceRange();
1136    else
1137      IsExplicitSpecialization = true;
1138  }
1139
1140  // If there were at least as many template-ids as there were template
1141  // parameter lists, then there are no template parameter lists remaining for
1142  // the declaration itself.
1143  if (Idx >= NumParamLists)
1144    return 0;
1145
1146  // If there were too many template parameter lists, complain about that now.
1147  if (Idx != NumParamLists - 1) {
1148    while (Idx < NumParamLists - 1) {
1149      Diag(ParamLists[Idx]->getTemplateLoc(),
1150           diag::err_template_spec_extra_headers)
1151        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1152                       ParamLists[Idx]->getRAngleLoc());
1153      ++Idx;
1154    }
1155  }
1156
1157  // Return the last template parameter list, which corresponds to the
1158  // entity being declared.
1159  return ParamLists[NumParamLists - 1];
1160}
1161
1162QualType Sema::CheckTemplateIdType(TemplateName Name,
1163                                   SourceLocation TemplateLoc,
1164                                   SourceLocation LAngleLoc,
1165                                   const TemplateArgumentLoc *TemplateArgs,
1166                                   unsigned NumTemplateArgs,
1167                                   SourceLocation RAngleLoc) {
1168  TemplateDecl *Template = Name.getAsTemplateDecl();
1169  if (!Template) {
1170    // The template name does not resolve to a template, so we just
1171    // build a dependent template-id type.
1172    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1173                                                 NumTemplateArgs);
1174  }
1175
1176  // Check that the template argument list is well-formed for this
1177  // template.
1178  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1179                                        NumTemplateArgs);
1180  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1181                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1182                                false, Converted))
1183    return QualType();
1184
1185  assert((Converted.structuredSize() ==
1186            Template->getTemplateParameters()->size()) &&
1187         "Converted template argument list is too short!");
1188
1189  QualType CanonType;
1190
1191  if (Name.isDependent() ||
1192      TemplateSpecializationType::anyDependentTemplateArguments(
1193                                                      TemplateArgs,
1194                                                      NumTemplateArgs)) {
1195    // This class template specialization is a dependent
1196    // type. Therefore, its canonical type is another class template
1197    // specialization type that contains all of the converted
1198    // arguments in canonical form. This ensures that, e.g., A<T> and
1199    // A<T, T> have identical types when A is declared as:
1200    //
1201    //   template<typename T, typename U = T> struct A;
1202    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1203    CanonType = Context.getTemplateSpecializationType(CanonName,
1204                                                   Converted.getFlatArguments(),
1205                                                   Converted.flatSize());
1206
1207    // FIXME: CanonType is not actually the canonical type, and unfortunately
1208    // it is a TemplateSpecializationType that we will never use again.
1209    // In the future, we need to teach getTemplateSpecializationType to only
1210    // build the canonical type and return that to us.
1211    CanonType = Context.getCanonicalType(CanonType);
1212  } else if (ClassTemplateDecl *ClassTemplate
1213               = dyn_cast<ClassTemplateDecl>(Template)) {
1214    // Find the class template specialization declaration that
1215    // corresponds to these arguments.
1216    llvm::FoldingSetNodeID ID;
1217    ClassTemplateSpecializationDecl::Profile(ID,
1218                                             Converted.getFlatArguments(),
1219                                             Converted.flatSize(),
1220                                             Context);
1221    void *InsertPos = 0;
1222    ClassTemplateSpecializationDecl *Decl
1223      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1224    if (!Decl) {
1225      // This is the first time we have referenced this class template
1226      // specialization. Create the canonical declaration and add it to
1227      // the set of specializations.
1228      Decl = ClassTemplateSpecializationDecl::Create(Context,
1229                                    ClassTemplate->getDeclContext(),
1230                                    ClassTemplate->getLocation(),
1231                                    ClassTemplate,
1232                                    Converted, 0);
1233      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1234      Decl->setLexicalDeclContext(CurContext);
1235    }
1236
1237    CanonType = Context.getTypeDeclType(Decl);
1238  }
1239
1240  // Build the fully-sugared type for this class template
1241  // specialization, which refers back to the class template
1242  // specialization we created or found.
1243  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1244                                               NumTemplateArgs, CanonType);
1245}
1246
1247Action::TypeResult
1248Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1249                          SourceLocation LAngleLoc,
1250                          ASTTemplateArgsPtr TemplateArgsIn,
1251                          SourceLocation RAngleLoc) {
1252  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1253
1254  // Translate the parser's template argument list in our AST format.
1255  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1256  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1257
1258  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1259                                        TemplateArgs.data(),
1260                                        TemplateArgs.size(),
1261                                        RAngleLoc);
1262  TemplateArgsIn.release();
1263
1264  if (Result.isNull())
1265    return true;
1266
1267  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1268  TemplateSpecializationTypeLoc TL
1269    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1270  TL.setTemplateNameLoc(TemplateLoc);
1271  TL.setLAngleLoc(LAngleLoc);
1272  TL.setRAngleLoc(RAngleLoc);
1273  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1274    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1275
1276  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1277}
1278
1279Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1280                                              TagUseKind TUK,
1281                                              DeclSpec::TST TagSpec,
1282                                              SourceLocation TagLoc) {
1283  if (TypeResult.isInvalid())
1284    return Sema::TypeResult();
1285
1286  // FIXME: preserve source info, ideally without copying the DI.
1287  DeclaratorInfo *DI;
1288  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1289
1290  // Verify the tag specifier.
1291  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1292
1293  if (const RecordType *RT = Type->getAs<RecordType>()) {
1294    RecordDecl *D = RT->getDecl();
1295
1296    IdentifierInfo *Id = D->getIdentifier();
1297    assert(Id && "templated class must have an identifier");
1298
1299    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1300      Diag(TagLoc, diag::err_use_with_wrong_tag)
1301        << Type
1302        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1303                                                   D->getKindName());
1304      Diag(D->getLocation(), diag::note_previous_use);
1305    }
1306  }
1307
1308  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1309
1310  return ElabType.getAsOpaquePtr();
1311}
1312
1313Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier,
1314                                                 SourceRange QualifierRange,
1315                                                 TemplateName Template,
1316                                                 SourceLocation TemplateNameLoc,
1317                                                 SourceLocation LAngleLoc,
1318                                        const TemplateArgumentLoc *TemplateArgs,
1319                                                 unsigned NumTemplateArgs,
1320                                                 SourceLocation RAngleLoc) {
1321  // FIXME: Can we do any checking at this point? I guess we could check the
1322  // template arguments that we have against the template name, if the template
1323  // name refers to a single template. That's not a terribly common case,
1324  // though.
1325
1326  // Cope with an implicit member access in a C++ non-static member function.
1327  NamedDecl *D = Template.getAsTemplateDecl();
1328  if (!D)
1329    D = Template.getAsOverloadedFunctionDecl();
1330
1331  CXXScopeSpec SS;
1332  SS.setRange(QualifierRange);
1333  SS.setScopeRep(Qualifier);
1334  QualType ThisType, MemberType;
1335  if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc,
1336                                     ThisType, MemberType)) {
1337    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
1338    return Owned(MemberExpr::Create(Context, This, true,
1339                                    Qualifier, QualifierRange,
1340                                    D, TemplateNameLoc, true,
1341                                    LAngleLoc, TemplateArgs,
1342                                    NumTemplateArgs, RAngleLoc,
1343                                    Context.OverloadTy));
1344  }
1345
1346  return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy,
1347                                         Qualifier, QualifierRange,
1348                                         Template, TemplateNameLoc, LAngleLoc,
1349                                         TemplateArgs,
1350                                         NumTemplateArgs, RAngleLoc));
1351}
1352
1353Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS,
1354                                                 TemplateTy TemplateD,
1355                                                 SourceLocation TemplateNameLoc,
1356                                                 SourceLocation LAngleLoc,
1357                                              ASTTemplateArgsPtr TemplateArgsIn,
1358                                                 SourceLocation RAngleLoc) {
1359  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1360
1361  // Translate the parser's template argument list in our AST format.
1362  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1363  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1364  TemplateArgsIn.release();
1365
1366  return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(),
1367                             SS.getRange(),
1368                             Template, TemplateNameLoc, LAngleLoc,
1369                             TemplateArgs.data(), TemplateArgs.size(),
1370                             RAngleLoc);
1371}
1372
1373/// \brief Form a dependent template name.
1374///
1375/// This action forms a dependent template name given the template
1376/// name and its (presumably dependent) scope specifier. For
1377/// example, given "MetaFun::template apply", the scope specifier \p
1378/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1379/// of the "template" keyword, and "apply" is the \p Name.
1380Sema::TemplateTy
1381Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1382                                 const CXXScopeSpec &SS,
1383                                 UnqualifiedId &Name,
1384                                 TypeTy *ObjectType,
1385                                 bool EnteringContext) {
1386  if ((ObjectType &&
1387       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1388      (SS.isSet() && computeDeclContext(SS, EnteringContext))) {
1389    // C++0x [temp.names]p5:
1390    //   If a name prefixed by the keyword template is not the name of
1391    //   a template, the program is ill-formed. [Note: the keyword
1392    //   template may not be applied to non-template members of class
1393    //   templates. -end note ] [ Note: as is the case with the
1394    //   typename prefix, the template prefix is allowed in cases
1395    //   where it is not strictly necessary; i.e., when the
1396    //   nested-name-specifier or the expression on the left of the ->
1397    //   or . is not dependent on a template-parameter, or the use
1398    //   does not appear in the scope of a template. -end note]
1399    //
1400    // Note: C++03 was more strict here, because it banned the use of
1401    // the "template" keyword prior to a template-name that was not a
1402    // dependent name. C++ DR468 relaxed this requirement (the
1403    // "template" keyword is now permitted). We follow the C++0x
1404    // rules, even in C++03 mode, retroactively applying the DR.
1405    TemplateTy Template;
1406    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1407                                          EnteringContext, Template);
1408    if (TNK == TNK_Non_template) {
1409      Diag(Name.getSourceRange().getBegin(),
1410           diag::err_template_kw_refers_to_non_template)
1411        << GetNameFromUnqualifiedId(Name)
1412        << Name.getSourceRange();
1413      return TemplateTy();
1414    }
1415
1416    return Template;
1417  }
1418
1419  NestedNameSpecifier *Qualifier
1420    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1421
1422  switch (Name.getKind()) {
1423  case UnqualifiedId::IK_Identifier:
1424    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1425                                                             Name.Identifier));
1426
1427  case UnqualifiedId::IK_OperatorFunctionId:
1428    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1429                                             Name.OperatorFunctionId.Operator));
1430
1431  default:
1432    break;
1433  }
1434
1435  Diag(Name.getSourceRange().getBegin(),
1436       diag::err_template_kw_refers_to_non_template)
1437    << GetNameFromUnqualifiedId(Name)
1438    << Name.getSourceRange();
1439  return TemplateTy();
1440}
1441
1442bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1443                                     const TemplateArgumentLoc &AL,
1444                                     TemplateArgumentListBuilder &Converted) {
1445  const TemplateArgument &Arg = AL.getArgument();
1446
1447  // Check template type parameter.
1448  if (Arg.getKind() != TemplateArgument::Type) {
1449    // C++ [temp.arg.type]p1:
1450    //   A template-argument for a template-parameter which is a
1451    //   type shall be a type-id.
1452
1453    // We have a template type parameter but the template argument
1454    // is not a type.
1455    SourceRange SR = AL.getSourceRange();
1456    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1457    Diag(Param->getLocation(), diag::note_template_param_here);
1458
1459    return true;
1460  }
1461
1462  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1463    return true;
1464
1465  // Add the converted template type argument.
1466  Converted.Append(
1467                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1468  return false;
1469}
1470
1471/// \brief Substitute template arguments into the default template argument for
1472/// the given template type parameter.
1473///
1474/// \param SemaRef the semantic analysis object for which we are performing
1475/// the substitution.
1476///
1477/// \param Template the template that we are synthesizing template arguments
1478/// for.
1479///
1480/// \param TemplateLoc the location of the template name that started the
1481/// template-id we are checking.
1482///
1483/// \param RAngleLoc the location of the right angle bracket ('>') that
1484/// terminates the template-id.
1485///
1486/// \param Param the template template parameter whose default we are
1487/// substituting into.
1488///
1489/// \param Converted the list of template arguments provided for template
1490/// parameters that precede \p Param in the template parameter list.
1491///
1492/// \returns the substituted template argument, or NULL if an error occurred.
1493static DeclaratorInfo *
1494SubstDefaultTemplateArgument(Sema &SemaRef,
1495                             TemplateDecl *Template,
1496                             SourceLocation TemplateLoc,
1497                             SourceLocation RAngleLoc,
1498                             TemplateTypeParmDecl *Param,
1499                             TemplateArgumentListBuilder &Converted) {
1500  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
1501
1502  // If the argument type is dependent, instantiate it now based
1503  // on the previously-computed template arguments.
1504  if (ArgType->getType()->isDependentType()) {
1505    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1506                                      /*TakeArgs=*/false);
1507
1508    MultiLevelTemplateArgumentList AllTemplateArgs
1509      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1510
1511    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1512                                     Template, Converted.getFlatArguments(),
1513                                     Converted.flatSize(),
1514                                     SourceRange(TemplateLoc, RAngleLoc));
1515
1516    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1517                                Param->getDefaultArgumentLoc(),
1518                                Param->getDeclName());
1519  }
1520
1521  return ArgType;
1522}
1523
1524/// \brief Substitute template arguments into the default template argument for
1525/// the given non-type template parameter.
1526///
1527/// \param SemaRef the semantic analysis object for which we are performing
1528/// the substitution.
1529///
1530/// \param Template the template that we are synthesizing template arguments
1531/// for.
1532///
1533/// \param TemplateLoc the location of the template name that started the
1534/// template-id we are checking.
1535///
1536/// \param RAngleLoc the location of the right angle bracket ('>') that
1537/// terminates the template-id.
1538///
1539/// \param Param the non-type template parameter whose default we are
1540/// substituting into.
1541///
1542/// \param Converted the list of template arguments provided for template
1543/// parameters that precede \p Param in the template parameter list.
1544///
1545/// \returns the substituted template argument, or NULL if an error occurred.
1546static Sema::OwningExprResult
1547SubstDefaultTemplateArgument(Sema &SemaRef,
1548                             TemplateDecl *Template,
1549                             SourceLocation TemplateLoc,
1550                             SourceLocation RAngleLoc,
1551                             NonTypeTemplateParmDecl *Param,
1552                             TemplateArgumentListBuilder &Converted) {
1553  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1554                                    /*TakeArgs=*/false);
1555
1556  MultiLevelTemplateArgumentList AllTemplateArgs
1557    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1558
1559  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1560                                   Template, Converted.getFlatArguments(),
1561                                   Converted.flatSize(),
1562                                   SourceRange(TemplateLoc, RAngleLoc));
1563
1564  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1565}
1566
1567/// \brief Substitute template arguments into the default template argument for
1568/// the given template template parameter.
1569///
1570/// \param SemaRef the semantic analysis object for which we are performing
1571/// the substitution.
1572///
1573/// \param Template the template that we are synthesizing template arguments
1574/// for.
1575///
1576/// \param TemplateLoc the location of the template name that started the
1577/// template-id we are checking.
1578///
1579/// \param RAngleLoc the location of the right angle bracket ('>') that
1580/// terminates the template-id.
1581///
1582/// \param Param the template template parameter whose default we are
1583/// substituting into.
1584///
1585/// \param Converted the list of template arguments provided for template
1586/// parameters that precede \p Param in the template parameter list.
1587///
1588/// \returns the substituted template argument, or NULL if an error occurred.
1589static TemplateName
1590SubstDefaultTemplateArgument(Sema &SemaRef,
1591                             TemplateDecl *Template,
1592                             SourceLocation TemplateLoc,
1593                             SourceLocation RAngleLoc,
1594                             TemplateTemplateParmDecl *Param,
1595                             TemplateArgumentListBuilder &Converted) {
1596  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1597                                    /*TakeArgs=*/false);
1598
1599  MultiLevelTemplateArgumentList AllTemplateArgs
1600    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1601
1602  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1603                                   Template, Converted.getFlatArguments(),
1604                                   Converted.flatSize(),
1605                                   SourceRange(TemplateLoc, RAngleLoc));
1606
1607  return SemaRef.SubstTemplateName(
1608                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1609                              Param->getDefaultArgument().getTemplateNameLoc(),
1610                                   AllTemplateArgs);
1611}
1612
1613/// \brief Check that the given template argument corresponds to the given
1614/// template parameter.
1615bool Sema::CheckTemplateArgument(NamedDecl *Param,
1616                                 const TemplateArgumentLoc &Arg,
1617                                 TemplateDecl *Template,
1618                                 SourceLocation TemplateLoc,
1619                                 SourceLocation RAngleLoc,
1620                                 TemplateArgumentListBuilder &Converted) {
1621  // Check template type parameters.
1622  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1623    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1624
1625  // Check non-type template parameters.
1626  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1627    // Do substitution on the type of the non-type template parameter
1628    // with the template arguments we've seen thus far.
1629    QualType NTTPType = NTTP->getType();
1630    if (NTTPType->isDependentType()) {
1631      // Do substitution on the type of the non-type template parameter.
1632      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1633                                 NTTP, Converted.getFlatArguments(),
1634                                 Converted.flatSize(),
1635                                 SourceRange(TemplateLoc, RAngleLoc));
1636
1637      TemplateArgumentList TemplateArgs(Context, Converted,
1638                                        /*TakeArgs=*/false);
1639      NTTPType = SubstType(NTTPType,
1640                           MultiLevelTemplateArgumentList(TemplateArgs),
1641                           NTTP->getLocation(),
1642                           NTTP->getDeclName());
1643      // If that worked, check the non-type template parameter type
1644      // for validity.
1645      if (!NTTPType.isNull())
1646        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1647                                                     NTTP->getLocation());
1648      if (NTTPType.isNull())
1649        return true;
1650    }
1651
1652    switch (Arg.getArgument().getKind()) {
1653    case TemplateArgument::Null:
1654      assert(false && "Should never see a NULL template argument here");
1655      return true;
1656
1657    case TemplateArgument::Expression: {
1658      Expr *E = Arg.getArgument().getAsExpr();
1659      TemplateArgument Result;
1660      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1661        return true;
1662
1663      Converted.Append(Result);
1664      break;
1665    }
1666
1667    case TemplateArgument::Declaration:
1668    case TemplateArgument::Integral:
1669      // We've already checked this template argument, so just copy
1670      // it to the list of converted arguments.
1671      Converted.Append(Arg.getArgument());
1672      break;
1673
1674    case TemplateArgument::Template:
1675      // We were given a template template argument. It may not be ill-formed;
1676      // see below.
1677      if (DependentTemplateName *DTN
1678            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1679        // We have a template argument such as \c T::template X, which we
1680        // parsed as a template template argument. However, since we now
1681        // know that we need a non-type template argument, convert this
1682        // template name into an expression.
1683        Expr *E = new (Context) DependentScopeDeclRefExpr(DTN->getIdentifier(),
1684                                                      Context.DependentTy,
1685                                                      Arg.getTemplateNameLoc(),
1686                                               Arg.getTemplateQualifierRange(),
1687                                                      DTN->getQualifier(),
1688                                                  /*isAddressOfOperand=*/false);
1689
1690        TemplateArgument Result;
1691        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1692          return true;
1693
1694        Converted.Append(Result);
1695        break;
1696      }
1697
1698      // We have a template argument that actually does refer to a class
1699      // template, template alias, or template template parameter, and
1700      // therefore cannot be a non-type template argument.
1701      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1702        << Arg.getSourceRange();
1703
1704      Diag(Param->getLocation(), diag::note_template_param_here);
1705      return true;
1706
1707    case TemplateArgument::Type: {
1708      // We have a non-type template parameter but the template
1709      // argument is a type.
1710
1711      // C++ [temp.arg]p2:
1712      //   In a template-argument, an ambiguity between a type-id and
1713      //   an expression is resolved to a type-id, regardless of the
1714      //   form of the corresponding template-parameter.
1715      //
1716      // We warn specifically about this case, since it can be rather
1717      // confusing for users.
1718      QualType T = Arg.getArgument().getAsType();
1719      SourceRange SR = Arg.getSourceRange();
1720      if (T->isFunctionType())
1721        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1722      else
1723        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1724      Diag(Param->getLocation(), diag::note_template_param_here);
1725      return true;
1726    }
1727
1728    case TemplateArgument::Pack:
1729      llvm::llvm_unreachable("Caller must expand template argument packs");
1730      break;
1731    }
1732
1733    return false;
1734  }
1735
1736
1737  // Check template template parameters.
1738  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
1739
1740  // Substitute into the template parameter list of the template
1741  // template parameter, since previously-supplied template arguments
1742  // may appear within the template template parameter.
1743  {
1744    // Set up a template instantiation context.
1745    LocalInstantiationScope Scope(*this);
1746    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1747                               TempParm, Converted.getFlatArguments(),
1748                               Converted.flatSize(),
1749                               SourceRange(TemplateLoc, RAngleLoc));
1750
1751    TemplateArgumentList TemplateArgs(Context, Converted,
1752                                      /*TakeArgs=*/false);
1753    TempParm = cast_or_null<TemplateTemplateParmDecl>(
1754                      SubstDecl(TempParm, CurContext,
1755                                MultiLevelTemplateArgumentList(TemplateArgs)));
1756    if (!TempParm)
1757      return true;
1758
1759    // FIXME: TempParam is leaked.
1760  }
1761
1762  switch (Arg.getArgument().getKind()) {
1763  case TemplateArgument::Null:
1764    assert(false && "Should never see a NULL template argument here");
1765    return true;
1766
1767  case TemplateArgument::Template:
1768    if (CheckTemplateArgument(TempParm, Arg))
1769      return true;
1770
1771    Converted.Append(Arg.getArgument());
1772    break;
1773
1774  case TemplateArgument::Expression:
1775  case TemplateArgument::Type:
1776    // We have a template template parameter but the template
1777    // argument does not refer to a template.
1778    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1779    return true;
1780
1781  case TemplateArgument::Declaration:
1782    llvm::llvm_unreachable(
1783                       "Declaration argument with template template parameter");
1784    break;
1785  case TemplateArgument::Integral:
1786    llvm::llvm_unreachable(
1787                          "Integral argument with template template parameter");
1788    break;
1789
1790  case TemplateArgument::Pack:
1791    llvm::llvm_unreachable("Caller must expand template argument packs");
1792    break;
1793  }
1794
1795  return false;
1796}
1797
1798/// \brief Check that the given template argument list is well-formed
1799/// for specializing the given template.
1800bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1801                                     SourceLocation TemplateLoc,
1802                                     SourceLocation LAngleLoc,
1803                                     const TemplateArgumentLoc *TemplateArgs,
1804                                     unsigned NumTemplateArgs,
1805                                     SourceLocation RAngleLoc,
1806                                     bool PartialTemplateArgs,
1807                                     TemplateArgumentListBuilder &Converted) {
1808  TemplateParameterList *Params = Template->getTemplateParameters();
1809  unsigned NumParams = Params->size();
1810  unsigned NumArgs = NumTemplateArgs;
1811  bool Invalid = false;
1812
1813  bool HasParameterPack =
1814    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1815
1816  if ((NumArgs > NumParams && !HasParameterPack) ||
1817      (NumArgs < Params->getMinRequiredArguments() &&
1818       !PartialTemplateArgs)) {
1819    // FIXME: point at either the first arg beyond what we can handle,
1820    // or the '>', depending on whether we have too many or too few
1821    // arguments.
1822    SourceRange Range;
1823    if (NumArgs > NumParams)
1824      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1825    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1826      << (NumArgs > NumParams)
1827      << (isa<ClassTemplateDecl>(Template)? 0 :
1828          isa<FunctionTemplateDecl>(Template)? 1 :
1829          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1830      << Template << Range;
1831    Diag(Template->getLocation(), diag::note_template_decl_here)
1832      << Params->getSourceRange();
1833    Invalid = true;
1834  }
1835
1836  // C++ [temp.arg]p1:
1837  //   [...] The type and form of each template-argument specified in
1838  //   a template-id shall match the type and form specified for the
1839  //   corresponding parameter declared by the template in its
1840  //   template-parameter-list.
1841  unsigned ArgIdx = 0;
1842  for (TemplateParameterList::iterator Param = Params->begin(),
1843                                       ParamEnd = Params->end();
1844       Param != ParamEnd; ++Param, ++ArgIdx) {
1845    if (ArgIdx > NumArgs && PartialTemplateArgs)
1846      break;
1847
1848    // If we have a template parameter pack, check every remaining template
1849    // argument against that template parameter pack.
1850    if ((*Param)->isTemplateParameterPack()) {
1851      Converted.BeginPack();
1852      for (; ArgIdx < NumArgs; ++ArgIdx) {
1853        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
1854                                  TemplateLoc, RAngleLoc, Converted)) {
1855          Invalid = true;
1856          break;
1857        }
1858      }
1859      Converted.EndPack();
1860      continue;
1861    }
1862
1863    if (ArgIdx < NumArgs) {
1864      // Check the template argument we were given.
1865      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
1866                                TemplateLoc, RAngleLoc, Converted))
1867        return true;
1868
1869      continue;
1870    }
1871
1872    // We have a default template argument that we will use.
1873    TemplateArgumentLoc Arg;
1874
1875    // Retrieve the default template argument from the template
1876    // parameter. For each kind of template parameter, we substitute the
1877    // template arguments provided thus far and any "outer" template arguments
1878    // (when the template parameter was part of a nested template) into
1879    // the default argument.
1880    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1881      if (!TTP->hasDefaultArgument()) {
1882        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1883        break;
1884      }
1885
1886      DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this,
1887                                                             Template,
1888                                                             TemplateLoc,
1889                                                             RAngleLoc,
1890                                                             TTP,
1891                                                             Converted);
1892      if (!ArgType)
1893        return true;
1894
1895      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
1896                                ArgType);
1897    } else if (NonTypeTemplateParmDecl *NTTP
1898                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1899      if (!NTTP->hasDefaultArgument()) {
1900        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1901        break;
1902      }
1903
1904      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
1905                                                              TemplateLoc,
1906                                                              RAngleLoc,
1907                                                              NTTP,
1908                                                              Converted);
1909      if (E.isInvalid())
1910        return true;
1911
1912      Expr *Ex = E.takeAs<Expr>();
1913      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
1914    } else {
1915      TemplateTemplateParmDecl *TempParm
1916        = cast<TemplateTemplateParmDecl>(*Param);
1917
1918      if (!TempParm->hasDefaultArgument()) {
1919        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1920        break;
1921      }
1922
1923      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
1924                                                       TemplateLoc,
1925                                                       RAngleLoc,
1926                                                       TempParm,
1927                                                       Converted);
1928      if (Name.isNull())
1929        return true;
1930
1931      Arg = TemplateArgumentLoc(TemplateArgument(Name),
1932                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
1933                  TempParm->getDefaultArgument().getTemplateNameLoc());
1934    }
1935
1936    // Introduce an instantiation record that describes where we are using
1937    // the default template argument.
1938    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
1939                                        Converted.getFlatArguments(),
1940                                        Converted.flatSize(),
1941                                        SourceRange(TemplateLoc, RAngleLoc));
1942
1943    // Check the default template argument.
1944    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
1945                              RAngleLoc, Converted))
1946      return true;
1947  }
1948
1949  return Invalid;
1950}
1951
1952/// \brief Check a template argument against its corresponding
1953/// template type parameter.
1954///
1955/// This routine implements the semantics of C++ [temp.arg.type]. It
1956/// returns true if an error occurred, and false otherwise.
1957bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1958                                 DeclaratorInfo *ArgInfo) {
1959  assert(ArgInfo && "invalid DeclaratorInfo");
1960  QualType Arg = ArgInfo->getType();
1961
1962  // C++ [temp.arg.type]p2:
1963  //   A local type, a type with no linkage, an unnamed type or a type
1964  //   compounded from any of these types shall not be used as a
1965  //   template-argument for a template type-parameter.
1966  //
1967  // FIXME: Perform the recursive and no-linkage type checks.
1968  const TagType *Tag = 0;
1969  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1970    Tag = EnumT;
1971  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1972    Tag = RecordT;
1973  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
1974    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1975    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
1976      << QualType(Tag, 0) << SR;
1977  } else if (Tag && !Tag->getDecl()->getDeclName() &&
1978           !Tag->getDecl()->getTypedefForAnonDecl()) {
1979    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1980    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
1981    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1982    return true;
1983  }
1984
1985  return false;
1986}
1987
1988/// \brief Checks whether the given template argument is the address
1989/// of an object or function according to C++ [temp.arg.nontype]p1.
1990bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1991                                                          NamedDecl *&Entity) {
1992  bool Invalid = false;
1993
1994  // See through any implicit casts we added to fix the type.
1995  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1996    Arg = Cast->getSubExpr();
1997
1998  // C++0x allows nullptr, and there's no further checking to be done for that.
1999  if (Arg->getType()->isNullPtrType())
2000    return false;
2001
2002  // C++ [temp.arg.nontype]p1:
2003  //
2004  //   A template-argument for a non-type, non-template
2005  //   template-parameter shall be one of: [...]
2006  //
2007  //     -- the address of an object or function with external
2008  //        linkage, including function templates and function
2009  //        template-ids but excluding non-static class members,
2010  //        expressed as & id-expression where the & is optional if
2011  //        the name refers to a function or array, or if the
2012  //        corresponding template-parameter is a reference; or
2013  DeclRefExpr *DRE = 0;
2014
2015  // Ignore (and complain about) any excess parentheses.
2016  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2017    if (!Invalid) {
2018      Diag(Arg->getSourceRange().getBegin(),
2019           diag::err_template_arg_extra_parens)
2020        << Arg->getSourceRange();
2021      Invalid = true;
2022    }
2023
2024    Arg = Parens->getSubExpr();
2025  }
2026
2027  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2028    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2029      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2030  } else
2031    DRE = dyn_cast<DeclRefExpr>(Arg);
2032
2033  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2034    return Diag(Arg->getSourceRange().getBegin(),
2035                diag::err_template_arg_not_object_or_func_form)
2036      << Arg->getSourceRange();
2037
2038  // Cannot refer to non-static data members
2039  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2040    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2041      << Field << Arg->getSourceRange();
2042
2043  // Cannot refer to non-static member functions
2044  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2045    if (!Method->isStatic())
2046      return Diag(Arg->getSourceRange().getBegin(),
2047                  diag::err_template_arg_method)
2048        << Method << Arg->getSourceRange();
2049
2050  // Functions must have external linkage.
2051  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2052    if (Func->getStorageClass() == FunctionDecl::Static) {
2053      Diag(Arg->getSourceRange().getBegin(),
2054           diag::err_template_arg_function_not_extern)
2055        << Func << Arg->getSourceRange();
2056      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2057        << true;
2058      return true;
2059    }
2060
2061    // Okay: we've named a function with external linkage.
2062    Entity = Func;
2063    return Invalid;
2064  }
2065
2066  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2067    if (!Var->hasGlobalStorage()) {
2068      Diag(Arg->getSourceRange().getBegin(),
2069           diag::err_template_arg_object_not_extern)
2070        << Var << Arg->getSourceRange();
2071      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2072        << true;
2073      return true;
2074    }
2075
2076    // Okay: we've named an object with external linkage
2077    Entity = Var;
2078    return Invalid;
2079  }
2080
2081  // We found something else, but we don't know specifically what it is.
2082  Diag(Arg->getSourceRange().getBegin(),
2083       diag::err_template_arg_not_object_or_func)
2084      << Arg->getSourceRange();
2085  Diag(DRE->getDecl()->getLocation(),
2086       diag::note_template_arg_refers_here);
2087  return true;
2088}
2089
2090/// \brief Checks whether the given template argument is a pointer to
2091/// member constant according to C++ [temp.arg.nontype]p1.
2092bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2093                                                TemplateArgument &Converted) {
2094  bool Invalid = false;
2095
2096  // See through any implicit casts we added to fix the type.
2097  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2098    Arg = Cast->getSubExpr();
2099
2100  // C++0x allows nullptr, and there's no further checking to be done for that.
2101  if (Arg->getType()->isNullPtrType())
2102    return false;
2103
2104  // C++ [temp.arg.nontype]p1:
2105  //
2106  //   A template-argument for a non-type, non-template
2107  //   template-parameter shall be one of: [...]
2108  //
2109  //     -- a pointer to member expressed as described in 5.3.1.
2110  DeclRefExpr *DRE = 0;
2111
2112  // Ignore (and complain about) any excess parentheses.
2113  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2114    if (!Invalid) {
2115      Diag(Arg->getSourceRange().getBegin(),
2116           diag::err_template_arg_extra_parens)
2117        << Arg->getSourceRange();
2118      Invalid = true;
2119    }
2120
2121    Arg = Parens->getSubExpr();
2122  }
2123
2124  // A pointer-to-member constant written &Class::member.
2125  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2126    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2127      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2128      if (DRE && !DRE->getQualifier())
2129        DRE = 0;
2130    }
2131  }
2132  // A constant of pointer-to-member type.
2133  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2134    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2135      if (VD->getType()->isMemberPointerType()) {
2136        if (isa<NonTypeTemplateParmDecl>(VD) ||
2137            (isa<VarDecl>(VD) &&
2138             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2139          if (Arg->isTypeDependent() || Arg->isValueDependent())
2140            Converted = TemplateArgument(Arg->Retain());
2141          else
2142            Converted = TemplateArgument(VD->getCanonicalDecl());
2143          return Invalid;
2144        }
2145      }
2146    }
2147
2148    DRE = 0;
2149  }
2150
2151  if (!DRE)
2152    return Diag(Arg->getSourceRange().getBegin(),
2153                diag::err_template_arg_not_pointer_to_member_form)
2154      << Arg->getSourceRange();
2155
2156  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2157    assert((isa<FieldDecl>(DRE->getDecl()) ||
2158            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2159           "Only non-static member pointers can make it here");
2160
2161    // Okay: this is the address of a non-static member, and therefore
2162    // a member pointer constant.
2163    if (Arg->isTypeDependent() || Arg->isValueDependent())
2164      Converted = TemplateArgument(Arg->Retain());
2165    else
2166      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2167    return Invalid;
2168  }
2169
2170  // We found something else, but we don't know specifically what it is.
2171  Diag(Arg->getSourceRange().getBegin(),
2172       diag::err_template_arg_not_pointer_to_member_form)
2173      << Arg->getSourceRange();
2174  Diag(DRE->getDecl()->getLocation(),
2175       diag::note_template_arg_refers_here);
2176  return true;
2177}
2178
2179/// \brief Check a template argument against its corresponding
2180/// non-type template parameter.
2181///
2182/// This routine implements the semantics of C++ [temp.arg.nontype].
2183/// It returns true if an error occurred, and false otherwise. \p
2184/// InstantiatedParamType is the type of the non-type template
2185/// parameter after it has been instantiated.
2186///
2187/// If no error was detected, Converted receives the converted template argument.
2188bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2189                                 QualType InstantiatedParamType, Expr *&Arg,
2190                                 TemplateArgument &Converted) {
2191  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2192
2193  // If either the parameter has a dependent type or the argument is
2194  // type-dependent, there's nothing we can check now.
2195  // FIXME: Add template argument to Converted!
2196  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2197    // FIXME: Produce a cloned, canonical expression?
2198    Converted = TemplateArgument(Arg);
2199    return false;
2200  }
2201
2202  // C++ [temp.arg.nontype]p5:
2203  //   The following conversions are performed on each expression used
2204  //   as a non-type template-argument. If a non-type
2205  //   template-argument cannot be converted to the type of the
2206  //   corresponding template-parameter then the program is
2207  //   ill-formed.
2208  //
2209  //     -- for a non-type template-parameter of integral or
2210  //        enumeration type, integral promotions (4.5) and integral
2211  //        conversions (4.7) are applied.
2212  QualType ParamType = InstantiatedParamType;
2213  QualType ArgType = Arg->getType();
2214  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2215    // C++ [temp.arg.nontype]p1:
2216    //   A template-argument for a non-type, non-template
2217    //   template-parameter shall be one of:
2218    //
2219    //     -- an integral constant-expression of integral or enumeration
2220    //        type; or
2221    //     -- the name of a non-type template-parameter; or
2222    SourceLocation NonConstantLoc;
2223    llvm::APSInt Value;
2224    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2225      Diag(Arg->getSourceRange().getBegin(),
2226           diag::err_template_arg_not_integral_or_enumeral)
2227        << ArgType << Arg->getSourceRange();
2228      Diag(Param->getLocation(), diag::note_template_param_here);
2229      return true;
2230    } else if (!Arg->isValueDependent() &&
2231               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2232      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2233        << ArgType << Arg->getSourceRange();
2234      return true;
2235    }
2236
2237    // FIXME: We need some way to more easily get the unqualified form
2238    // of the types without going all the way to the
2239    // canonical type.
2240    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2241      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2242    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2243      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2244
2245    // Try to convert the argument to the parameter's type.
2246    if (Context.hasSameType(ParamType, ArgType)) {
2247      // Okay: no conversion necessary
2248    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2249               !ParamType->isEnumeralType()) {
2250      // This is an integral promotion or conversion.
2251      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2252    } else {
2253      // We can't perform this conversion.
2254      Diag(Arg->getSourceRange().getBegin(),
2255           diag::err_template_arg_not_convertible)
2256        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2257      Diag(Param->getLocation(), diag::note_template_param_here);
2258      return true;
2259    }
2260
2261    QualType IntegerType = Context.getCanonicalType(ParamType);
2262    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2263      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2264
2265    if (!Arg->isValueDependent()) {
2266      // Check that an unsigned parameter does not receive a negative
2267      // value.
2268      if (IntegerType->isUnsignedIntegerType()
2269          && (Value.isSigned() && Value.isNegative())) {
2270        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2271          << Value.toString(10) << Param->getType()
2272          << Arg->getSourceRange();
2273        Diag(Param->getLocation(), diag::note_template_param_here);
2274        return true;
2275      }
2276
2277      // Check that we don't overflow the template parameter type.
2278      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2279      if (Value.getActiveBits() > AllowedBits) {
2280        Diag(Arg->getSourceRange().getBegin(),
2281             diag::err_template_arg_too_large)
2282          << Value.toString(10) << Param->getType()
2283          << Arg->getSourceRange();
2284        Diag(Param->getLocation(), diag::note_template_param_here);
2285        return true;
2286      }
2287
2288      if (Value.getBitWidth() != AllowedBits)
2289        Value.extOrTrunc(AllowedBits);
2290      Value.setIsSigned(IntegerType->isSignedIntegerType());
2291    }
2292
2293    // Add the value of this argument to the list of converted
2294    // arguments. We use the bitwidth and signedness of the template
2295    // parameter.
2296    if (Arg->isValueDependent()) {
2297      // The argument is value-dependent. Create a new
2298      // TemplateArgument with the converted expression.
2299      Converted = TemplateArgument(Arg);
2300      return false;
2301    }
2302
2303    Converted = TemplateArgument(Value,
2304                                 ParamType->isEnumeralType() ? ParamType
2305                                                             : IntegerType);
2306    return false;
2307  }
2308
2309  // Handle pointer-to-function, reference-to-function, and
2310  // pointer-to-member-function all in (roughly) the same way.
2311  if (// -- For a non-type template-parameter of type pointer to
2312      //    function, only the function-to-pointer conversion (4.3) is
2313      //    applied. If the template-argument represents a set of
2314      //    overloaded functions (or a pointer to such), the matching
2315      //    function is selected from the set (13.4).
2316      // In C++0x, any std::nullptr_t value can be converted.
2317      (ParamType->isPointerType() &&
2318       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2319      // -- For a non-type template-parameter of type reference to
2320      //    function, no conversions apply. If the template-argument
2321      //    represents a set of overloaded functions, the matching
2322      //    function is selected from the set (13.4).
2323      (ParamType->isReferenceType() &&
2324       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2325      // -- For a non-type template-parameter of type pointer to
2326      //    member function, no conversions apply. If the
2327      //    template-argument represents a set of overloaded member
2328      //    functions, the matching member function is selected from
2329      //    the set (13.4).
2330      // Again, C++0x allows a std::nullptr_t value.
2331      (ParamType->isMemberPointerType() &&
2332       ParamType->getAs<MemberPointerType>()->getPointeeType()
2333         ->isFunctionType())) {
2334    if (Context.hasSameUnqualifiedType(ArgType,
2335                                       ParamType.getNonReferenceType())) {
2336      // We don't have to do anything: the types already match.
2337    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2338                 ParamType->isMemberPointerType())) {
2339      ArgType = ParamType;
2340      if (ParamType->isMemberPointerType())
2341        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2342      else
2343        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2344    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2345      ArgType = Context.getPointerType(ArgType);
2346      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2347    } else if (FunctionDecl *Fn
2348                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2349      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2350        return true;
2351
2352      Arg = FixOverloadedFunctionReference(Arg, Fn);
2353      ArgType = Arg->getType();
2354      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2355        ArgType = Context.getPointerType(Arg->getType());
2356        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2357      }
2358    }
2359
2360    if (!Context.hasSameUnqualifiedType(ArgType,
2361                                        ParamType.getNonReferenceType())) {
2362      // We can't perform this conversion.
2363      Diag(Arg->getSourceRange().getBegin(),
2364           diag::err_template_arg_not_convertible)
2365        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2366      Diag(Param->getLocation(), diag::note_template_param_here);
2367      return true;
2368    }
2369
2370    if (ParamType->isMemberPointerType())
2371      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2372
2373    NamedDecl *Entity = 0;
2374    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2375      return true;
2376
2377    if (Entity)
2378      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2379    Converted = TemplateArgument(Entity);
2380    return false;
2381  }
2382
2383  if (ParamType->isPointerType()) {
2384    //   -- for a non-type template-parameter of type pointer to
2385    //      object, qualification conversions (4.4) and the
2386    //      array-to-pointer conversion (4.2) are applied.
2387    // C++0x also allows a value of std::nullptr_t.
2388    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2389           "Only object pointers allowed here");
2390
2391    if (ArgType->isNullPtrType()) {
2392      ArgType = ParamType;
2393      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2394    } else if (ArgType->isArrayType()) {
2395      ArgType = Context.getArrayDecayedType(ArgType);
2396      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2397    }
2398
2399    if (IsQualificationConversion(ArgType, ParamType)) {
2400      ArgType = ParamType;
2401      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2402    }
2403
2404    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2405      // We can't perform this conversion.
2406      Diag(Arg->getSourceRange().getBegin(),
2407           diag::err_template_arg_not_convertible)
2408        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2409      Diag(Param->getLocation(), diag::note_template_param_here);
2410      return true;
2411    }
2412
2413    NamedDecl *Entity = 0;
2414    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2415      return true;
2416
2417    if (Entity)
2418      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2419    Converted = TemplateArgument(Entity);
2420    return false;
2421  }
2422
2423  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2424    //   -- For a non-type template-parameter of type reference to
2425    //      object, no conversions apply. The type referred to by the
2426    //      reference may be more cv-qualified than the (otherwise
2427    //      identical) type of the template-argument. The
2428    //      template-parameter is bound directly to the
2429    //      template-argument, which must be an lvalue.
2430    assert(ParamRefType->getPointeeType()->isObjectType() &&
2431           "Only object references allowed here");
2432
2433    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2434      Diag(Arg->getSourceRange().getBegin(),
2435           diag::err_template_arg_no_ref_bind)
2436        << InstantiatedParamType << Arg->getType()
2437        << Arg->getSourceRange();
2438      Diag(Param->getLocation(), diag::note_template_param_here);
2439      return true;
2440    }
2441
2442    unsigned ParamQuals
2443      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2444    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2445
2446    if ((ParamQuals | ArgQuals) != ParamQuals) {
2447      Diag(Arg->getSourceRange().getBegin(),
2448           diag::err_template_arg_ref_bind_ignores_quals)
2449        << InstantiatedParamType << Arg->getType()
2450        << Arg->getSourceRange();
2451      Diag(Param->getLocation(), diag::note_template_param_here);
2452      return true;
2453    }
2454
2455    NamedDecl *Entity = 0;
2456    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2457      return true;
2458
2459    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2460    Converted = TemplateArgument(Entity);
2461    return false;
2462  }
2463
2464  //     -- For a non-type template-parameter of type pointer to data
2465  //        member, qualification conversions (4.4) are applied.
2466  // C++0x allows std::nullptr_t values.
2467  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2468
2469  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2470    // Types match exactly: nothing more to do here.
2471  } else if (ArgType->isNullPtrType()) {
2472    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2473  } else if (IsQualificationConversion(ArgType, ParamType)) {
2474    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2475  } else {
2476    // We can't perform this conversion.
2477    Diag(Arg->getSourceRange().getBegin(),
2478         diag::err_template_arg_not_convertible)
2479      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2480    Diag(Param->getLocation(), diag::note_template_param_here);
2481    return true;
2482  }
2483
2484  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2485}
2486
2487/// \brief Check a template argument against its corresponding
2488/// template template parameter.
2489///
2490/// This routine implements the semantics of C++ [temp.arg.template].
2491/// It returns true if an error occurred, and false otherwise.
2492bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2493                                 const TemplateArgumentLoc &Arg) {
2494  TemplateName Name = Arg.getArgument().getAsTemplate();
2495  TemplateDecl *Template = Name.getAsTemplateDecl();
2496  if (!Template) {
2497    // Any dependent template name is fine.
2498    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2499    return false;
2500  }
2501
2502  // C++ [temp.arg.template]p1:
2503  //   A template-argument for a template template-parameter shall be
2504  //   the name of a class template, expressed as id-expression. Only
2505  //   primary class templates are considered when matching the
2506  //   template template argument with the corresponding parameter;
2507  //   partial specializations are not considered even if their
2508  //   parameter lists match that of the template template parameter.
2509  //
2510  // Note that we also allow template template parameters here, which
2511  // will happen when we are dealing with, e.g., class template
2512  // partial specializations.
2513  if (!isa<ClassTemplateDecl>(Template) &&
2514      !isa<TemplateTemplateParmDecl>(Template)) {
2515    assert(isa<FunctionTemplateDecl>(Template) &&
2516           "Only function templates are possible here");
2517    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2518    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2519      << Template;
2520  }
2521
2522  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2523                                         Param->getTemplateParameters(),
2524                                         true,
2525                                         TPL_TemplateTemplateArgumentMatch,
2526                                         Arg.getLocation());
2527}
2528
2529/// \brief Determine whether the given template parameter lists are
2530/// equivalent.
2531///
2532/// \param New  The new template parameter list, typically written in the
2533/// source code as part of a new template declaration.
2534///
2535/// \param Old  The old template parameter list, typically found via
2536/// name lookup of the template declared with this template parameter
2537/// list.
2538///
2539/// \param Complain  If true, this routine will produce a diagnostic if
2540/// the template parameter lists are not equivalent.
2541///
2542/// \param Kind describes how we are to match the template parameter lists.
2543///
2544/// \param TemplateArgLoc If this source location is valid, then we
2545/// are actually checking the template parameter list of a template
2546/// argument (New) against the template parameter list of its
2547/// corresponding template template parameter (Old). We produce
2548/// slightly different diagnostics in this scenario.
2549///
2550/// \returns True if the template parameter lists are equal, false
2551/// otherwise.
2552bool
2553Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2554                                     TemplateParameterList *Old,
2555                                     bool Complain,
2556                                     TemplateParameterListEqualKind Kind,
2557                                     SourceLocation TemplateArgLoc) {
2558  if (Old->size() != New->size()) {
2559    if (Complain) {
2560      unsigned NextDiag = diag::err_template_param_list_different_arity;
2561      if (TemplateArgLoc.isValid()) {
2562        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2563        NextDiag = diag::note_template_param_list_different_arity;
2564      }
2565      Diag(New->getTemplateLoc(), NextDiag)
2566          << (New->size() > Old->size())
2567          << (Kind != TPL_TemplateMatch)
2568          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2569      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2570        << (Kind != TPL_TemplateMatch)
2571        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2572    }
2573
2574    return false;
2575  }
2576
2577  for (TemplateParameterList::iterator OldParm = Old->begin(),
2578         OldParmEnd = Old->end(), NewParm = New->begin();
2579       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2580    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2581      if (Complain) {
2582        unsigned NextDiag = diag::err_template_param_different_kind;
2583        if (TemplateArgLoc.isValid()) {
2584          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2585          NextDiag = diag::note_template_param_different_kind;
2586        }
2587        Diag((*NewParm)->getLocation(), NextDiag)
2588          << (Kind != TPL_TemplateMatch);
2589        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2590          << (Kind != TPL_TemplateMatch);
2591      }
2592      return false;
2593    }
2594
2595    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2596      // Okay; all template type parameters are equivalent (since we
2597      // know we're at the same index).
2598    } else if (NonTypeTemplateParmDecl *OldNTTP
2599                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2600      // The types of non-type template parameters must agree.
2601      NonTypeTemplateParmDecl *NewNTTP
2602        = cast<NonTypeTemplateParmDecl>(*NewParm);
2603
2604      // If we are matching a template template argument to a template
2605      // template parameter and one of the non-type template parameter types
2606      // is dependent, then we must wait until template instantiation time
2607      // to actually compare the arguments.
2608      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2609          (OldNTTP->getType()->isDependentType() ||
2610           NewNTTP->getType()->isDependentType()))
2611        continue;
2612
2613      if (Context.getCanonicalType(OldNTTP->getType()) !=
2614            Context.getCanonicalType(NewNTTP->getType())) {
2615        if (Complain) {
2616          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2617          if (TemplateArgLoc.isValid()) {
2618            Diag(TemplateArgLoc,
2619                 diag::err_template_arg_template_params_mismatch);
2620            NextDiag = diag::note_template_nontype_parm_different_type;
2621          }
2622          Diag(NewNTTP->getLocation(), NextDiag)
2623            << NewNTTP->getType()
2624            << (Kind != TPL_TemplateMatch);
2625          Diag(OldNTTP->getLocation(),
2626               diag::note_template_nontype_parm_prev_declaration)
2627            << OldNTTP->getType();
2628        }
2629        return false;
2630      }
2631    } else {
2632      // The template parameter lists of template template
2633      // parameters must agree.
2634      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2635             "Only template template parameters handled here");
2636      TemplateTemplateParmDecl *OldTTP
2637        = cast<TemplateTemplateParmDecl>(*OldParm);
2638      TemplateTemplateParmDecl *NewTTP
2639        = cast<TemplateTemplateParmDecl>(*NewParm);
2640      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2641                                          OldTTP->getTemplateParameters(),
2642                                          Complain,
2643              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2644                                          TemplateArgLoc))
2645        return false;
2646    }
2647  }
2648
2649  return true;
2650}
2651
2652/// \brief Check whether a template can be declared within this scope.
2653///
2654/// If the template declaration is valid in this scope, returns
2655/// false. Otherwise, issues a diagnostic and returns true.
2656bool
2657Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2658  // Find the nearest enclosing declaration scope.
2659  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2660         (S->getFlags() & Scope::TemplateParamScope) != 0)
2661    S = S->getParent();
2662
2663  // C++ [temp]p2:
2664  //   A template-declaration can appear only as a namespace scope or
2665  //   class scope declaration.
2666  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2667  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2668      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2669    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2670             << TemplateParams->getSourceRange();
2671
2672  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2673    Ctx = Ctx->getParent();
2674
2675  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2676    return false;
2677
2678  return Diag(TemplateParams->getTemplateLoc(),
2679              diag::err_template_outside_namespace_or_class_scope)
2680    << TemplateParams->getSourceRange();
2681}
2682
2683/// \brief Determine what kind of template specialization the given declaration
2684/// is.
2685static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2686  if (!D)
2687    return TSK_Undeclared;
2688
2689  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2690    return Record->getTemplateSpecializationKind();
2691  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2692    return Function->getTemplateSpecializationKind();
2693  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2694    return Var->getTemplateSpecializationKind();
2695
2696  return TSK_Undeclared;
2697}
2698
2699/// \brief Check whether a specialization is well-formed in the current
2700/// context.
2701///
2702/// This routine determines whether a template specialization can be declared
2703/// in the current context (C++ [temp.expl.spec]p2).
2704///
2705/// \param S the semantic analysis object for which this check is being
2706/// performed.
2707///
2708/// \param Specialized the entity being specialized or instantiated, which
2709/// may be a kind of template (class template, function template, etc.) or
2710/// a member of a class template (member function, static data member,
2711/// member class).
2712///
2713/// \param PrevDecl the previous declaration of this entity, if any.
2714///
2715/// \param Loc the location of the explicit specialization or instantiation of
2716/// this entity.
2717///
2718/// \param IsPartialSpecialization whether this is a partial specialization of
2719/// a class template.
2720///
2721/// \returns true if there was an error that we cannot recover from, false
2722/// otherwise.
2723static bool CheckTemplateSpecializationScope(Sema &S,
2724                                             NamedDecl *Specialized,
2725                                             NamedDecl *PrevDecl,
2726                                             SourceLocation Loc,
2727                                             bool IsPartialSpecialization) {
2728  // Keep these "kind" numbers in sync with the %select statements in the
2729  // various diagnostics emitted by this routine.
2730  int EntityKind = 0;
2731  bool isTemplateSpecialization = false;
2732  if (isa<ClassTemplateDecl>(Specialized)) {
2733    EntityKind = IsPartialSpecialization? 1 : 0;
2734    isTemplateSpecialization = true;
2735  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2736    EntityKind = 2;
2737    isTemplateSpecialization = true;
2738  } else if (isa<CXXMethodDecl>(Specialized))
2739    EntityKind = 3;
2740  else if (isa<VarDecl>(Specialized))
2741    EntityKind = 4;
2742  else if (isa<RecordDecl>(Specialized))
2743    EntityKind = 5;
2744  else {
2745    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2746    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2747    return true;
2748  }
2749
2750  // C++ [temp.expl.spec]p2:
2751  //   An explicit specialization shall be declared in the namespace
2752  //   of which the template is a member, or, for member templates, in
2753  //   the namespace of which the enclosing class or enclosing class
2754  //   template is a member. An explicit specialization of a member
2755  //   function, member class or static data member of a class
2756  //   template shall be declared in the namespace of which the class
2757  //   template is a member. Such a declaration may also be a
2758  //   definition. If the declaration is not a definition, the
2759  //   specialization may be defined later in the name- space in which
2760  //   the explicit specialization was declared, or in a namespace
2761  //   that encloses the one in which the explicit specialization was
2762  //   declared.
2763  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2764    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2765      << Specialized;
2766    return true;
2767  }
2768
2769  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2770    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2771      << Specialized;
2772    return true;
2773  }
2774
2775  // C++ [temp.class.spec]p6:
2776  //   A class template partial specialization may be declared or redeclared
2777  //   in any namespace scope in which its definition may be defined (14.5.1
2778  //   and 14.5.2).
2779  bool ComplainedAboutScope = false;
2780  DeclContext *SpecializedContext
2781    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2782  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2783  if ((!PrevDecl ||
2784       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2785       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2786    // There is no prior declaration of this entity, so this
2787    // specialization must be in the same context as the template
2788    // itself.
2789    if (!DC->Equals(SpecializedContext)) {
2790      if (isa<TranslationUnitDecl>(SpecializedContext))
2791        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2792        << EntityKind << Specialized;
2793      else if (isa<NamespaceDecl>(SpecializedContext))
2794        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2795        << EntityKind << Specialized
2796        << cast<NamedDecl>(SpecializedContext);
2797
2798      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2799      ComplainedAboutScope = true;
2800    }
2801  }
2802
2803  // Make sure that this redeclaration (or definition) occurs in an enclosing
2804  // namespace.
2805  // Note that HandleDeclarator() performs this check for explicit
2806  // specializations of function templates, static data members, and member
2807  // functions, so we skip the check here for those kinds of entities.
2808  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2809  // Should we refactor that check, so that it occurs later?
2810  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2811      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2812        isa<FunctionDecl>(Specialized))) {
2813    if (isa<TranslationUnitDecl>(SpecializedContext))
2814      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2815        << EntityKind << Specialized;
2816    else if (isa<NamespaceDecl>(SpecializedContext))
2817      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2818        << EntityKind << Specialized
2819        << cast<NamedDecl>(SpecializedContext);
2820
2821    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2822  }
2823
2824  // FIXME: check for specialization-after-instantiation errors and such.
2825
2826  return false;
2827}
2828
2829/// \brief Check the non-type template arguments of a class template
2830/// partial specialization according to C++ [temp.class.spec]p9.
2831///
2832/// \param TemplateParams the template parameters of the primary class
2833/// template.
2834///
2835/// \param TemplateArg the template arguments of the class template
2836/// partial specialization.
2837///
2838/// \param MirrorsPrimaryTemplate will be set true if the class
2839/// template partial specialization arguments are identical to the
2840/// implicit template arguments of the primary template. This is not
2841/// necessarily an error (C++0x), and it is left to the caller to diagnose
2842/// this condition when it is an error.
2843///
2844/// \returns true if there was an error, false otherwise.
2845bool Sema::CheckClassTemplatePartialSpecializationArgs(
2846                                        TemplateParameterList *TemplateParams,
2847                             const TemplateArgumentListBuilder &TemplateArgs,
2848                                        bool &MirrorsPrimaryTemplate) {
2849  // FIXME: the interface to this function will have to change to
2850  // accommodate variadic templates.
2851  MirrorsPrimaryTemplate = true;
2852
2853  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2854
2855  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2856    // Determine whether the template argument list of the partial
2857    // specialization is identical to the implicit argument list of
2858    // the primary template. The caller may need to diagnostic this as
2859    // an error per C++ [temp.class.spec]p9b3.
2860    if (MirrorsPrimaryTemplate) {
2861      if (TemplateTypeParmDecl *TTP
2862            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2863        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2864              Context.getCanonicalType(ArgList[I].getAsType()))
2865          MirrorsPrimaryTemplate = false;
2866      } else if (TemplateTemplateParmDecl *TTP
2867                   = dyn_cast<TemplateTemplateParmDecl>(
2868                                                 TemplateParams->getParam(I))) {
2869        TemplateName Name = ArgList[I].getAsTemplate();
2870        TemplateTemplateParmDecl *ArgDecl
2871          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
2872        if (!ArgDecl ||
2873            ArgDecl->getIndex() != TTP->getIndex() ||
2874            ArgDecl->getDepth() != TTP->getDepth())
2875          MirrorsPrimaryTemplate = false;
2876      }
2877    }
2878
2879    NonTypeTemplateParmDecl *Param
2880      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2881    if (!Param) {
2882      continue;
2883    }
2884
2885    Expr *ArgExpr = ArgList[I].getAsExpr();
2886    if (!ArgExpr) {
2887      MirrorsPrimaryTemplate = false;
2888      continue;
2889    }
2890
2891    // C++ [temp.class.spec]p8:
2892    //   A non-type argument is non-specialized if it is the name of a
2893    //   non-type parameter. All other non-type arguments are
2894    //   specialized.
2895    //
2896    // Below, we check the two conditions that only apply to
2897    // specialized non-type arguments, so skip any non-specialized
2898    // arguments.
2899    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2900      if (NonTypeTemplateParmDecl *NTTP
2901            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2902        if (MirrorsPrimaryTemplate &&
2903            (Param->getIndex() != NTTP->getIndex() ||
2904             Param->getDepth() != NTTP->getDepth()))
2905          MirrorsPrimaryTemplate = false;
2906
2907        continue;
2908      }
2909
2910    // C++ [temp.class.spec]p9:
2911    //   Within the argument list of a class template partial
2912    //   specialization, the following restrictions apply:
2913    //     -- A partially specialized non-type argument expression
2914    //        shall not involve a template parameter of the partial
2915    //        specialization except when the argument expression is a
2916    //        simple identifier.
2917    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2918      Diag(ArgExpr->getLocStart(),
2919           diag::err_dependent_non_type_arg_in_partial_spec)
2920        << ArgExpr->getSourceRange();
2921      return true;
2922    }
2923
2924    //     -- The type of a template parameter corresponding to a
2925    //        specialized non-type argument shall not be dependent on a
2926    //        parameter of the specialization.
2927    if (Param->getType()->isDependentType()) {
2928      Diag(ArgExpr->getLocStart(),
2929           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2930        << Param->getType()
2931        << ArgExpr->getSourceRange();
2932      Diag(Param->getLocation(), diag::note_template_param_here);
2933      return true;
2934    }
2935
2936    MirrorsPrimaryTemplate = false;
2937  }
2938
2939  return false;
2940}
2941
2942Sema::DeclResult
2943Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2944                                       TagUseKind TUK,
2945                                       SourceLocation KWLoc,
2946                                       const CXXScopeSpec &SS,
2947                                       TemplateTy TemplateD,
2948                                       SourceLocation TemplateNameLoc,
2949                                       SourceLocation LAngleLoc,
2950                                       ASTTemplateArgsPtr TemplateArgsIn,
2951                                       SourceLocation RAngleLoc,
2952                                       AttributeList *Attr,
2953                               MultiTemplateParamsArg TemplateParameterLists) {
2954  assert(TUK != TUK_Reference && "References are not specializations");
2955
2956  // Find the class template we're specializing
2957  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2958  ClassTemplateDecl *ClassTemplate
2959    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
2960
2961  if (!ClassTemplate) {
2962    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
2963      << (Name.getAsTemplateDecl() &&
2964          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
2965    return true;
2966  }
2967
2968  bool isExplicitSpecialization = false;
2969  bool isPartialSpecialization = false;
2970
2971  // Check the validity of the template headers that introduce this
2972  // template.
2973  // FIXME: We probably shouldn't complain about these headers for
2974  // friend declarations.
2975  TemplateParameterList *TemplateParams
2976    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2977                        (TemplateParameterList**)TemplateParameterLists.get(),
2978                                              TemplateParameterLists.size(),
2979                                              isExplicitSpecialization);
2980  if (TemplateParams && TemplateParams->size() > 0) {
2981    isPartialSpecialization = true;
2982
2983    // C++ [temp.class.spec]p10:
2984    //   The template parameter list of a specialization shall not
2985    //   contain default template argument values.
2986    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2987      Decl *Param = TemplateParams->getParam(I);
2988      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2989        if (TTP->hasDefaultArgument()) {
2990          Diag(TTP->getDefaultArgumentLoc(),
2991               diag::err_default_arg_in_partial_spec);
2992          TTP->removeDefaultArgument();
2993        }
2994      } else if (NonTypeTemplateParmDecl *NTTP
2995                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2996        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2997          Diag(NTTP->getDefaultArgumentLoc(),
2998               diag::err_default_arg_in_partial_spec)
2999            << DefArg->getSourceRange();
3000          NTTP->setDefaultArgument(0);
3001          DefArg->Destroy(Context);
3002        }
3003      } else {
3004        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3005        if (TTP->hasDefaultArgument()) {
3006          Diag(TTP->getDefaultArgument().getLocation(),
3007               diag::err_default_arg_in_partial_spec)
3008            << TTP->getDefaultArgument().getSourceRange();
3009          TTP->setDefaultArgument(TemplateArgumentLoc());
3010        }
3011      }
3012    }
3013  } else if (TemplateParams) {
3014    if (TUK == TUK_Friend)
3015      Diag(KWLoc, diag::err_template_spec_friend)
3016        << CodeModificationHint::CreateRemoval(
3017                                SourceRange(TemplateParams->getTemplateLoc(),
3018                                            TemplateParams->getRAngleLoc()))
3019        << SourceRange(LAngleLoc, RAngleLoc);
3020    else
3021      isExplicitSpecialization = true;
3022  } else if (TUK != TUK_Friend) {
3023    Diag(KWLoc, diag::err_template_spec_needs_header)
3024      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3025    isExplicitSpecialization = true;
3026  }
3027
3028  // Check that the specialization uses the same tag kind as the
3029  // original template.
3030  TagDecl::TagKind Kind;
3031  switch (TagSpec) {
3032  default: assert(0 && "Unknown tag type!");
3033  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3034  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3035  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3036  }
3037  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3038                                    Kind, KWLoc,
3039                                    *ClassTemplate->getIdentifier())) {
3040    Diag(KWLoc, diag::err_use_with_wrong_tag)
3041      << ClassTemplate
3042      << CodeModificationHint::CreateReplacement(KWLoc,
3043                            ClassTemplate->getTemplatedDecl()->getKindName());
3044    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3045         diag::note_previous_use);
3046    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3047  }
3048
3049  // Translate the parser's template argument list in our AST format.
3050  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3051  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3052
3053  // Check that the template argument list is well-formed for this
3054  // template.
3055  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3056                                        TemplateArgs.size());
3057  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3058                                TemplateArgs.data(), TemplateArgs.size(),
3059                                RAngleLoc, false, Converted))
3060    return true;
3061
3062  assert((Converted.structuredSize() ==
3063            ClassTemplate->getTemplateParameters()->size()) &&
3064         "Converted template argument list is too short!");
3065
3066  // Find the class template (partial) specialization declaration that
3067  // corresponds to these arguments.
3068  llvm::FoldingSetNodeID ID;
3069  if (isPartialSpecialization) {
3070    bool MirrorsPrimaryTemplate;
3071    if (CheckClassTemplatePartialSpecializationArgs(
3072                                         ClassTemplate->getTemplateParameters(),
3073                                         Converted, MirrorsPrimaryTemplate))
3074      return true;
3075
3076    if (MirrorsPrimaryTemplate) {
3077      // C++ [temp.class.spec]p9b3:
3078      //
3079      //   -- The argument list of the specialization shall not be identical
3080      //      to the implicit argument list of the primary template.
3081      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3082        << (TUK == TUK_Definition)
3083        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3084                                                           RAngleLoc));
3085      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3086                                ClassTemplate->getIdentifier(),
3087                                TemplateNameLoc,
3088                                Attr,
3089                                TemplateParams,
3090                                AS_none);
3091    }
3092
3093    // FIXME: Diagnose friend partial specializations
3094
3095    // FIXME: Template parameter list matters, too
3096    ClassTemplatePartialSpecializationDecl::Profile(ID,
3097                                                   Converted.getFlatArguments(),
3098                                                   Converted.flatSize(),
3099                                                    Context);
3100  } else
3101    ClassTemplateSpecializationDecl::Profile(ID,
3102                                             Converted.getFlatArguments(),
3103                                             Converted.flatSize(),
3104                                             Context);
3105  void *InsertPos = 0;
3106  ClassTemplateSpecializationDecl *PrevDecl = 0;
3107
3108  if (isPartialSpecialization)
3109    PrevDecl
3110      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3111                                                                    InsertPos);
3112  else
3113    PrevDecl
3114      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3115
3116  ClassTemplateSpecializationDecl *Specialization = 0;
3117
3118  // Check whether we can declare a class template specialization in
3119  // the current scope.
3120  if (TUK != TUK_Friend &&
3121      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3122                                       TemplateNameLoc,
3123                                       isPartialSpecialization))
3124    return true;
3125
3126  // The canonical type
3127  QualType CanonType;
3128  if (PrevDecl &&
3129      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3130       TUK == TUK_Friend)) {
3131    // Since the only prior class template specialization with these
3132    // arguments was referenced but not declared, or we're only
3133    // referencing this specialization as a friend, reuse that
3134    // declaration node as our own, updating its source location to
3135    // reflect our new declaration.
3136    Specialization = PrevDecl;
3137    Specialization->setLocation(TemplateNameLoc);
3138    PrevDecl = 0;
3139    CanonType = Context.getTypeDeclType(Specialization);
3140  } else if (isPartialSpecialization) {
3141    // Build the canonical type that describes the converted template
3142    // arguments of the class template partial specialization.
3143    CanonType = Context.getTemplateSpecializationType(
3144                                                  TemplateName(ClassTemplate),
3145                                                  Converted.getFlatArguments(),
3146                                                  Converted.flatSize());
3147
3148    // Create a new class template partial specialization declaration node.
3149    ClassTemplatePartialSpecializationDecl *PrevPartial
3150      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3151    ClassTemplatePartialSpecializationDecl *Partial
3152      = ClassTemplatePartialSpecializationDecl::Create(Context,
3153                                             ClassTemplate->getDeclContext(),
3154                                                       TemplateNameLoc,
3155                                                       TemplateParams,
3156                                                       ClassTemplate,
3157                                                       Converted,
3158                                                       TemplateArgs.data(),
3159                                                       TemplateArgs.size(),
3160                                                       PrevPartial);
3161
3162    if (PrevPartial) {
3163      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3164      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3165    } else {
3166      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3167    }
3168    Specialization = Partial;
3169
3170    // If we are providing an explicit specialization of a member class
3171    // template specialization, make a note of that.
3172    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3173      PrevPartial->setMemberSpecialization();
3174
3175    // Check that all of the template parameters of the class template
3176    // partial specialization are deducible from the template
3177    // arguments. If not, this class template partial specialization
3178    // will never be used.
3179    llvm::SmallVector<bool, 8> DeducibleParams;
3180    DeducibleParams.resize(TemplateParams->size());
3181    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3182                               TemplateParams->getDepth(),
3183                               DeducibleParams);
3184    unsigned NumNonDeducible = 0;
3185    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3186      if (!DeducibleParams[I])
3187        ++NumNonDeducible;
3188
3189    if (NumNonDeducible) {
3190      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3191        << (NumNonDeducible > 1)
3192        << SourceRange(TemplateNameLoc, RAngleLoc);
3193      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3194        if (!DeducibleParams[I]) {
3195          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3196          if (Param->getDeclName())
3197            Diag(Param->getLocation(),
3198                 diag::note_partial_spec_unused_parameter)
3199              << Param->getDeclName();
3200          else
3201            Diag(Param->getLocation(),
3202                 diag::note_partial_spec_unused_parameter)
3203              << std::string("<anonymous>");
3204        }
3205      }
3206    }
3207  } else {
3208    // Create a new class template specialization declaration node for
3209    // this explicit specialization or friend declaration.
3210    Specialization
3211      = ClassTemplateSpecializationDecl::Create(Context,
3212                                             ClassTemplate->getDeclContext(),
3213                                                TemplateNameLoc,
3214                                                ClassTemplate,
3215                                                Converted,
3216                                                PrevDecl);
3217
3218    if (PrevDecl) {
3219      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3220      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3221    } else {
3222      ClassTemplate->getSpecializations().InsertNode(Specialization,
3223                                                     InsertPos);
3224    }
3225
3226    CanonType = Context.getTypeDeclType(Specialization);
3227  }
3228
3229  // C++ [temp.expl.spec]p6:
3230  //   If a template, a member template or the member of a class template is
3231  //   explicitly specialized then that specialization shall be declared
3232  //   before the first use of that specialization that would cause an implicit
3233  //   instantiation to take place, in every translation unit in which such a
3234  //   use occurs; no diagnostic is required.
3235  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3236    SourceRange Range(TemplateNameLoc, RAngleLoc);
3237    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3238      << Context.getTypeDeclType(Specialization) << Range;
3239
3240    Diag(PrevDecl->getPointOfInstantiation(),
3241         diag::note_instantiation_required_here)
3242      << (PrevDecl->getTemplateSpecializationKind()
3243                                                != TSK_ImplicitInstantiation);
3244    return true;
3245  }
3246
3247  // If this is not a friend, note that this is an explicit specialization.
3248  if (TUK != TUK_Friend)
3249    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3250
3251  // Check that this isn't a redefinition of this specialization.
3252  if (TUK == TUK_Definition) {
3253    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3254      SourceRange Range(TemplateNameLoc, RAngleLoc);
3255      Diag(TemplateNameLoc, diag::err_redefinition)
3256        << Context.getTypeDeclType(Specialization) << Range;
3257      Diag(Def->getLocation(), diag::note_previous_definition);
3258      Specialization->setInvalidDecl();
3259      return true;
3260    }
3261  }
3262
3263  // Build the fully-sugared type for this class template
3264  // specialization as the user wrote in the specialization
3265  // itself. This means that we'll pretty-print the type retrieved
3266  // from the specialization's declaration the way that the user
3267  // actually wrote the specialization, rather than formatting the
3268  // name based on the "canonical" representation used to store the
3269  // template arguments in the specialization.
3270  QualType WrittenTy
3271    = Context.getTemplateSpecializationType(Name,
3272                                            TemplateArgs.data(),
3273                                            TemplateArgs.size(),
3274                                            CanonType);
3275  if (TUK != TUK_Friend)
3276    Specialization->setTypeAsWritten(WrittenTy);
3277  TemplateArgsIn.release();
3278
3279  // C++ [temp.expl.spec]p9:
3280  //   A template explicit specialization is in the scope of the
3281  //   namespace in which the template was defined.
3282  //
3283  // We actually implement this paragraph where we set the semantic
3284  // context (in the creation of the ClassTemplateSpecializationDecl),
3285  // but we also maintain the lexical context where the actual
3286  // definition occurs.
3287  Specialization->setLexicalDeclContext(CurContext);
3288
3289  // We may be starting the definition of this specialization.
3290  if (TUK == TUK_Definition)
3291    Specialization->startDefinition();
3292
3293  if (TUK == TUK_Friend) {
3294    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3295                                            TemplateNameLoc,
3296                                            WrittenTy.getTypePtr(),
3297                                            /*FIXME:*/KWLoc);
3298    Friend->setAccess(AS_public);
3299    CurContext->addDecl(Friend);
3300  } else {
3301    // Add the specialization into its lexical context, so that it can
3302    // be seen when iterating through the list of declarations in that
3303    // context. However, specializations are not found by name lookup.
3304    CurContext->addDecl(Specialization);
3305  }
3306  return DeclPtrTy::make(Specialization);
3307}
3308
3309Sema::DeclPtrTy
3310Sema::ActOnTemplateDeclarator(Scope *S,
3311                              MultiTemplateParamsArg TemplateParameterLists,
3312                              Declarator &D) {
3313  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3314}
3315
3316Sema::DeclPtrTy
3317Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3318                               MultiTemplateParamsArg TemplateParameterLists,
3319                                      Declarator &D) {
3320  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3321  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3322         "Not a function declarator!");
3323  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3324
3325  if (FTI.hasPrototype) {
3326    // FIXME: Diagnose arguments without names in C.
3327  }
3328
3329  Scope *ParentScope = FnBodyScope->getParent();
3330
3331  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3332                                  move(TemplateParameterLists),
3333                                  /*IsFunctionDefinition=*/true);
3334  if (FunctionTemplateDecl *FunctionTemplate
3335        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3336    return ActOnStartOfFunctionDef(FnBodyScope,
3337                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3338  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3339    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3340  return DeclPtrTy();
3341}
3342
3343/// \brief Diagnose cases where we have an explicit template specialization
3344/// before/after an explicit template instantiation, producing diagnostics
3345/// for those cases where they are required and determining whether the
3346/// new specialization/instantiation will have any effect.
3347///
3348/// \param NewLoc the location of the new explicit specialization or
3349/// instantiation.
3350///
3351/// \param NewTSK the kind of the new explicit specialization or instantiation.
3352///
3353/// \param PrevDecl the previous declaration of the entity.
3354///
3355/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3356///
3357/// \param PrevPointOfInstantiation if valid, indicates where the previus
3358/// declaration was instantiated (either implicitly or explicitly).
3359///
3360/// \param SuppressNew will be set to true to indicate that the new
3361/// specialization or instantiation has no effect and should be ignored.
3362///
3363/// \returns true if there was an error that should prevent the introduction of
3364/// the new declaration into the AST, false otherwise.
3365bool
3366Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3367                                             TemplateSpecializationKind NewTSK,
3368                                             NamedDecl *PrevDecl,
3369                                             TemplateSpecializationKind PrevTSK,
3370                                        SourceLocation PrevPointOfInstantiation,
3371                                             bool &SuppressNew) {
3372  SuppressNew = false;
3373
3374  switch (NewTSK) {
3375  case TSK_Undeclared:
3376  case TSK_ImplicitInstantiation:
3377    assert(false && "Don't check implicit instantiations here");
3378    return false;
3379
3380  case TSK_ExplicitSpecialization:
3381    switch (PrevTSK) {
3382    case TSK_Undeclared:
3383    case TSK_ExplicitSpecialization:
3384      // Okay, we're just specializing something that is either already
3385      // explicitly specialized or has merely been mentioned without any
3386      // instantiation.
3387      return false;
3388
3389    case TSK_ImplicitInstantiation:
3390      if (PrevPointOfInstantiation.isInvalid()) {
3391        // The declaration itself has not actually been instantiated, so it is
3392        // still okay to specialize it.
3393        return false;
3394      }
3395      // Fall through
3396
3397    case TSK_ExplicitInstantiationDeclaration:
3398    case TSK_ExplicitInstantiationDefinition:
3399      assert((PrevTSK == TSK_ImplicitInstantiation ||
3400              PrevPointOfInstantiation.isValid()) &&
3401             "Explicit instantiation without point of instantiation?");
3402
3403      // C++ [temp.expl.spec]p6:
3404      //   If a template, a member template or the member of a class template
3405      //   is explicitly specialized then that specialization shall be declared
3406      //   before the first use of that specialization that would cause an
3407      //   implicit instantiation to take place, in every translation unit in
3408      //   which such a use occurs; no diagnostic is required.
3409      Diag(NewLoc, diag::err_specialization_after_instantiation)
3410        << PrevDecl;
3411      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3412        << (PrevTSK != TSK_ImplicitInstantiation);
3413
3414      return true;
3415    }
3416    break;
3417
3418  case TSK_ExplicitInstantiationDeclaration:
3419    switch (PrevTSK) {
3420    case TSK_ExplicitInstantiationDeclaration:
3421      // This explicit instantiation declaration is redundant (that's okay).
3422      SuppressNew = true;
3423      return false;
3424
3425    case TSK_Undeclared:
3426    case TSK_ImplicitInstantiation:
3427      // We're explicitly instantiating something that may have already been
3428      // implicitly instantiated; that's fine.
3429      return false;
3430
3431    case TSK_ExplicitSpecialization:
3432      // C++0x [temp.explicit]p4:
3433      //   For a given set of template parameters, if an explicit instantiation
3434      //   of a template appears after a declaration of an explicit
3435      //   specialization for that template, the explicit instantiation has no
3436      //   effect.
3437      return false;
3438
3439    case TSK_ExplicitInstantiationDefinition:
3440      // C++0x [temp.explicit]p10:
3441      //   If an entity is the subject of both an explicit instantiation
3442      //   declaration and an explicit instantiation definition in the same
3443      //   translation unit, the definition shall follow the declaration.
3444      Diag(NewLoc,
3445           diag::err_explicit_instantiation_declaration_after_definition);
3446      Diag(PrevPointOfInstantiation,
3447           diag::note_explicit_instantiation_definition_here);
3448      assert(PrevPointOfInstantiation.isValid() &&
3449             "Explicit instantiation without point of instantiation?");
3450      SuppressNew = true;
3451      return false;
3452    }
3453    break;
3454
3455  case TSK_ExplicitInstantiationDefinition:
3456    switch (PrevTSK) {
3457    case TSK_Undeclared:
3458    case TSK_ImplicitInstantiation:
3459      // We're explicitly instantiating something that may have already been
3460      // implicitly instantiated; that's fine.
3461      return false;
3462
3463    case TSK_ExplicitSpecialization:
3464      // C++ DR 259, C++0x [temp.explicit]p4:
3465      //   For a given set of template parameters, if an explicit
3466      //   instantiation of a template appears after a declaration of
3467      //   an explicit specialization for that template, the explicit
3468      //   instantiation has no effect.
3469      //
3470      // In C++98/03 mode, we only give an extension warning here, because it
3471      // is not not harmful to try to explicitly instantiate something that
3472      // has been explicitly specialized.
3473      if (!getLangOptions().CPlusPlus0x) {
3474        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3475          << PrevDecl;
3476        Diag(PrevDecl->getLocation(),
3477             diag::note_previous_template_specialization);
3478      }
3479      SuppressNew = true;
3480      return false;
3481
3482    case TSK_ExplicitInstantiationDeclaration:
3483      // We're explicity instantiating a definition for something for which we
3484      // were previously asked to suppress instantiations. That's fine.
3485      return false;
3486
3487    case TSK_ExplicitInstantiationDefinition:
3488      // C++0x [temp.spec]p5:
3489      //   For a given template and a given set of template-arguments,
3490      //     - an explicit instantiation definition shall appear at most once
3491      //       in a program,
3492      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3493        << PrevDecl;
3494      Diag(PrevPointOfInstantiation,
3495           diag::note_previous_explicit_instantiation);
3496      SuppressNew = true;
3497      return false;
3498    }
3499    break;
3500  }
3501
3502  assert(false && "Missing specialization/instantiation case?");
3503
3504  return false;
3505}
3506
3507/// \brief Perform semantic analysis for the given function template
3508/// specialization.
3509///
3510/// This routine performs all of the semantic analysis required for an
3511/// explicit function template specialization. On successful completion,
3512/// the function declaration \p FD will become a function template
3513/// specialization.
3514///
3515/// \param FD the function declaration, which will be updated to become a
3516/// function template specialization.
3517///
3518/// \param HasExplicitTemplateArgs whether any template arguments were
3519/// explicitly provided.
3520///
3521/// \param LAngleLoc the location of the left angle bracket ('<'), if
3522/// template arguments were explicitly provided.
3523///
3524/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3525/// if any.
3526///
3527/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3528/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3529/// true as in, e.g., \c void sort<>(char*, char*);
3530///
3531/// \param RAngleLoc the location of the right angle bracket ('>'), if
3532/// template arguments were explicitly provided.
3533///
3534/// \param PrevDecl the set of declarations that
3535bool
3536Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3537                                          bool HasExplicitTemplateArgs,
3538                                          SourceLocation LAngleLoc,
3539                           const TemplateArgumentLoc *ExplicitTemplateArgs,
3540                                          unsigned NumExplicitTemplateArgs,
3541                                          SourceLocation RAngleLoc,
3542                                          LookupResult &Previous) {
3543  // The set of function template specializations that could match this
3544  // explicit function template specialization.
3545  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3546  CandidateSet Candidates;
3547
3548  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3549  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3550         I != E; ++I) {
3551    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3552    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3553      // Only consider templates found within the same semantic lookup scope as
3554      // FD.
3555      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3556        continue;
3557
3558      // C++ [temp.expl.spec]p11:
3559      //   A trailing template-argument can be left unspecified in the
3560      //   template-id naming an explicit function template specialization
3561      //   provided it can be deduced from the function argument type.
3562      // Perform template argument deduction to determine whether we may be
3563      // specializing this template.
3564      // FIXME: It is somewhat wasteful to build
3565      TemplateDeductionInfo Info(Context);
3566      FunctionDecl *Specialization = 0;
3567      if (TemplateDeductionResult TDK
3568            = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3569                                      ExplicitTemplateArgs,
3570                                      NumExplicitTemplateArgs,
3571                                      FD->getType(),
3572                                      Specialization,
3573                                      Info)) {
3574        // FIXME: Template argument deduction failed; record why it failed, so
3575        // that we can provide nifty diagnostics.
3576        (void)TDK;
3577        continue;
3578      }
3579
3580      // Record this candidate.
3581      Candidates.push_back(Specialization);
3582    }
3583  }
3584
3585  // Find the most specialized function template.
3586  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3587                                                    Candidates.size(),
3588                                                    TPOC_Other,
3589                                                    FD->getLocation(),
3590                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3591                    << FD->getDeclName(),
3592                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3593                    << FD->getDeclName() << HasExplicitTemplateArgs,
3594                  PartialDiagnostic(diag::note_function_template_spec_matched));
3595  if (!Specialization)
3596    return true;
3597
3598  // FIXME: Check if the prior specialization has a point of instantiation.
3599  // If so, we have run afoul of .
3600
3601  // Check the scope of this explicit specialization.
3602  if (CheckTemplateSpecializationScope(*this,
3603                                       Specialization->getPrimaryTemplate(),
3604                                       Specialization, FD->getLocation(),
3605                                       false))
3606    return true;
3607
3608  // C++ [temp.expl.spec]p6:
3609  //   If a template, a member template or the member of a class template is
3610  //   explicitly specialized then that specialization shall be declared
3611  //   before the first use of that specialization that would cause an implicit
3612  //   instantiation to take place, in every translation unit in which such a
3613  //   use occurs; no diagnostic is required.
3614  FunctionTemplateSpecializationInfo *SpecInfo
3615    = Specialization->getTemplateSpecializationInfo();
3616  assert(SpecInfo && "Function template specialization info missing?");
3617  if (SpecInfo->getPointOfInstantiation().isValid()) {
3618    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3619      << FD;
3620    Diag(SpecInfo->getPointOfInstantiation(),
3621         diag::note_instantiation_required_here)
3622      << (Specialization->getTemplateSpecializationKind()
3623                                                != TSK_ImplicitInstantiation);
3624    return true;
3625  }
3626
3627  // Mark the prior declaration as an explicit specialization, so that later
3628  // clients know that this is an explicit specialization.
3629  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3630
3631  // Turn the given function declaration into a function template
3632  // specialization, with the template arguments from the previous
3633  // specialization.
3634  FD->setFunctionTemplateSpecialization(Context,
3635                                        Specialization->getPrimaryTemplate(),
3636                         new (Context) TemplateArgumentList(
3637                             *Specialization->getTemplateSpecializationArgs()),
3638                                        /*InsertPos=*/0,
3639                                        TSK_ExplicitSpecialization);
3640
3641  // The "previous declaration" for this function template specialization is
3642  // the prior function template specialization.
3643  Previous.clear();
3644  Previous.addDecl(Specialization);
3645  return false;
3646}
3647
3648/// \brief Perform semantic analysis for the given non-template member
3649/// specialization.
3650///
3651/// This routine performs all of the semantic analysis required for an
3652/// explicit member function specialization. On successful completion,
3653/// the function declaration \p FD will become a member function
3654/// specialization.
3655///
3656/// \param Member the member declaration, which will be updated to become a
3657/// specialization.
3658///
3659/// \param Previous the set of declarations, one of which may be specialized
3660/// by this function specialization;  the set will be modified to contain the
3661/// redeclared member.
3662bool
3663Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3664  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3665
3666  // Try to find the member we are instantiating.
3667  NamedDecl *Instantiation = 0;
3668  NamedDecl *InstantiatedFrom = 0;
3669  MemberSpecializationInfo *MSInfo = 0;
3670
3671  if (Previous.empty()) {
3672    // Nowhere to look anyway.
3673  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3674    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3675           I != E; ++I) {
3676      NamedDecl *D = (*I)->getUnderlyingDecl();
3677      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3678        if (Context.hasSameType(Function->getType(), Method->getType())) {
3679          Instantiation = Method;
3680          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3681          MSInfo = Method->getMemberSpecializationInfo();
3682          break;
3683        }
3684      }
3685    }
3686  } else if (isa<VarDecl>(Member)) {
3687    VarDecl *PrevVar;
3688    if (Previous.isSingleResult() &&
3689        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
3690      if (PrevVar->isStaticDataMember()) {
3691        Instantiation = PrevVar;
3692        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3693        MSInfo = PrevVar->getMemberSpecializationInfo();
3694      }
3695  } else if (isa<RecordDecl>(Member)) {
3696    CXXRecordDecl *PrevRecord;
3697    if (Previous.isSingleResult() &&
3698        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
3699      Instantiation = PrevRecord;
3700      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3701      MSInfo = PrevRecord->getMemberSpecializationInfo();
3702    }
3703  }
3704
3705  if (!Instantiation) {
3706    // There is no previous declaration that matches. Since member
3707    // specializations are always out-of-line, the caller will complain about
3708    // this mismatch later.
3709    return false;
3710  }
3711
3712  // Make sure that this is a specialization of a member.
3713  if (!InstantiatedFrom) {
3714    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3715      << Member;
3716    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3717    return true;
3718  }
3719
3720  // C++ [temp.expl.spec]p6:
3721  //   If a template, a member template or the member of a class template is
3722  //   explicitly specialized then that spe- cialization shall be declared
3723  //   before the first use of that specialization that would cause an implicit
3724  //   instantiation to take place, in every translation unit in which such a
3725  //   use occurs; no diagnostic is required.
3726  assert(MSInfo && "Member specialization info missing?");
3727  if (MSInfo->getPointOfInstantiation().isValid()) {
3728    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3729      << Member;
3730    Diag(MSInfo->getPointOfInstantiation(),
3731         diag::note_instantiation_required_here)
3732      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3733    return true;
3734  }
3735
3736  // Check the scope of this explicit specialization.
3737  if (CheckTemplateSpecializationScope(*this,
3738                                       InstantiatedFrom,
3739                                       Instantiation, Member->getLocation(),
3740                                       false))
3741    return true;
3742
3743  // Note that this is an explicit instantiation of a member.
3744  // the original declaration to note that it is an explicit specialization
3745  // (if it was previously an implicit instantiation). This latter step
3746  // makes bookkeeping easier.
3747  if (isa<FunctionDecl>(Member)) {
3748    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3749    if (InstantiationFunction->getTemplateSpecializationKind() ==
3750          TSK_ImplicitInstantiation) {
3751      InstantiationFunction->setTemplateSpecializationKind(
3752                                                  TSK_ExplicitSpecialization);
3753      InstantiationFunction->setLocation(Member->getLocation());
3754    }
3755
3756    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3757                                        cast<CXXMethodDecl>(InstantiatedFrom),
3758                                                  TSK_ExplicitSpecialization);
3759  } else if (isa<VarDecl>(Member)) {
3760    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3761    if (InstantiationVar->getTemplateSpecializationKind() ==
3762          TSK_ImplicitInstantiation) {
3763      InstantiationVar->setTemplateSpecializationKind(
3764                                                  TSK_ExplicitSpecialization);
3765      InstantiationVar->setLocation(Member->getLocation());
3766    }
3767
3768    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3769                                                cast<VarDecl>(InstantiatedFrom),
3770                                                TSK_ExplicitSpecialization);
3771  } else {
3772    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3773    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3774    if (InstantiationClass->getTemplateSpecializationKind() ==
3775          TSK_ImplicitInstantiation) {
3776      InstantiationClass->setTemplateSpecializationKind(
3777                                                   TSK_ExplicitSpecialization);
3778      InstantiationClass->setLocation(Member->getLocation());
3779    }
3780
3781    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3782                                        cast<CXXRecordDecl>(InstantiatedFrom),
3783                                                   TSK_ExplicitSpecialization);
3784  }
3785
3786  // Save the caller the trouble of having to figure out which declaration
3787  // this specialization matches.
3788  Previous.clear();
3789  Previous.addDecl(Instantiation);
3790  return false;
3791}
3792
3793/// \brief Check the scope of an explicit instantiation.
3794static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3795                                            SourceLocation InstLoc,
3796                                            bool WasQualifiedName) {
3797  DeclContext *ExpectedContext
3798    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3799  DeclContext *CurContext = S.CurContext->getLookupContext();
3800
3801  // C++0x [temp.explicit]p2:
3802  //   An explicit instantiation shall appear in an enclosing namespace of its
3803  //   template.
3804  //
3805  // This is DR275, which we do not retroactively apply to C++98/03.
3806  if (S.getLangOptions().CPlusPlus0x &&
3807      !CurContext->Encloses(ExpectedContext)) {
3808    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3809      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3810        << D << NS;
3811    else
3812      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3813        << D;
3814    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3815    return;
3816  }
3817
3818  // C++0x [temp.explicit]p2:
3819  //   If the name declared in the explicit instantiation is an unqualified
3820  //   name, the explicit instantiation shall appear in the namespace where
3821  //   its template is declared or, if that namespace is inline (7.3.1), any
3822  //   namespace from its enclosing namespace set.
3823  if (WasQualifiedName)
3824    return;
3825
3826  if (CurContext->Equals(ExpectedContext))
3827    return;
3828
3829  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3830    << D << ExpectedContext;
3831  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3832}
3833
3834/// \brief Determine whether the given scope specifier has a template-id in it.
3835static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
3836  if (!SS.isSet())
3837    return false;
3838
3839  // C++0x [temp.explicit]p2:
3840  //   If the explicit instantiation is for a member function, a member class
3841  //   or a static data member of a class template specialization, the name of
3842  //   the class template specialization in the qualified-id for the member
3843  //   name shall be a simple-template-id.
3844  //
3845  // C++98 has the same restriction, just worded differently.
3846  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
3847       NNS; NNS = NNS->getPrefix())
3848    if (Type *T = NNS->getAsType())
3849      if (isa<TemplateSpecializationType>(T))
3850        return true;
3851
3852  return false;
3853}
3854
3855// Explicit instantiation of a class template specialization
3856// FIXME: Implement extern template semantics
3857Sema::DeclResult
3858Sema::ActOnExplicitInstantiation(Scope *S,
3859                                 SourceLocation ExternLoc,
3860                                 SourceLocation TemplateLoc,
3861                                 unsigned TagSpec,
3862                                 SourceLocation KWLoc,
3863                                 const CXXScopeSpec &SS,
3864                                 TemplateTy TemplateD,
3865                                 SourceLocation TemplateNameLoc,
3866                                 SourceLocation LAngleLoc,
3867                                 ASTTemplateArgsPtr TemplateArgsIn,
3868                                 SourceLocation RAngleLoc,
3869                                 AttributeList *Attr) {
3870  // Find the class template we're specializing
3871  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3872  ClassTemplateDecl *ClassTemplate
3873    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3874
3875  // Check that the specialization uses the same tag kind as the
3876  // original template.
3877  TagDecl::TagKind Kind;
3878  switch (TagSpec) {
3879  default: assert(0 && "Unknown tag type!");
3880  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3881  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3882  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3883  }
3884  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3885                                    Kind, KWLoc,
3886                                    *ClassTemplate->getIdentifier())) {
3887    Diag(KWLoc, diag::err_use_with_wrong_tag)
3888      << ClassTemplate
3889      << CodeModificationHint::CreateReplacement(KWLoc,
3890                            ClassTemplate->getTemplatedDecl()->getKindName());
3891    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3892         diag::note_previous_use);
3893    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3894  }
3895
3896  // C++0x [temp.explicit]p2:
3897  //   There are two forms of explicit instantiation: an explicit instantiation
3898  //   definition and an explicit instantiation declaration. An explicit
3899  //   instantiation declaration begins with the extern keyword. [...]
3900  TemplateSpecializationKind TSK
3901    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3902                           : TSK_ExplicitInstantiationDeclaration;
3903
3904  // Translate the parser's template argument list in our AST format.
3905  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3906  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3907
3908  // Check that the template argument list is well-formed for this
3909  // template.
3910  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3911                                        TemplateArgs.size());
3912  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3913                                TemplateArgs.data(), TemplateArgs.size(),
3914                                RAngleLoc, false, Converted))
3915    return true;
3916
3917  assert((Converted.structuredSize() ==
3918            ClassTemplate->getTemplateParameters()->size()) &&
3919         "Converted template argument list is too short!");
3920
3921  // Find the class template specialization declaration that
3922  // corresponds to these arguments.
3923  llvm::FoldingSetNodeID ID;
3924  ClassTemplateSpecializationDecl::Profile(ID,
3925                                           Converted.getFlatArguments(),
3926                                           Converted.flatSize(),
3927                                           Context);
3928  void *InsertPos = 0;
3929  ClassTemplateSpecializationDecl *PrevDecl
3930    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3931
3932  // C++0x [temp.explicit]p2:
3933  //   [...] An explicit instantiation shall appear in an enclosing
3934  //   namespace of its template. [...]
3935  //
3936  // This is C++ DR 275.
3937  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
3938                                  SS.isSet());
3939
3940  ClassTemplateSpecializationDecl *Specialization = 0;
3941
3942  if (PrevDecl) {
3943    bool SuppressNew = false;
3944    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
3945                                               PrevDecl,
3946                                              PrevDecl->getSpecializationKind(),
3947                                            PrevDecl->getPointOfInstantiation(),
3948                                               SuppressNew))
3949      return DeclPtrTy::make(PrevDecl);
3950
3951    if (SuppressNew)
3952      return DeclPtrTy::make(PrevDecl);
3953
3954    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3955        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3956      // Since the only prior class template specialization with these
3957      // arguments was referenced but not declared, reuse that
3958      // declaration node as our own, updating its source location to
3959      // reflect our new declaration.
3960      Specialization = PrevDecl;
3961      Specialization->setLocation(TemplateNameLoc);
3962      PrevDecl = 0;
3963    }
3964  }
3965
3966  if (!Specialization) {
3967    // Create a new class template specialization declaration node for
3968    // this explicit specialization.
3969    Specialization
3970      = ClassTemplateSpecializationDecl::Create(Context,
3971                                             ClassTemplate->getDeclContext(),
3972                                                TemplateNameLoc,
3973                                                ClassTemplate,
3974                                                Converted, PrevDecl);
3975
3976    if (PrevDecl) {
3977      // Remove the previous declaration from the folding set, since we want
3978      // to introduce a new declaration.
3979      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3980      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3981    }
3982
3983    // Insert the new specialization.
3984    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3985  }
3986
3987  // Build the fully-sugared type for this explicit instantiation as
3988  // the user wrote in the explicit instantiation itself. This means
3989  // that we'll pretty-print the type retrieved from the
3990  // specialization's declaration the way that the user actually wrote
3991  // the explicit instantiation, rather than formatting the name based
3992  // on the "canonical" representation used to store the template
3993  // arguments in the specialization.
3994  QualType WrittenTy
3995    = Context.getTemplateSpecializationType(Name,
3996                                            TemplateArgs.data(),
3997                                            TemplateArgs.size(),
3998                                  Context.getTypeDeclType(Specialization));
3999  Specialization->setTypeAsWritten(WrittenTy);
4000  TemplateArgsIn.release();
4001
4002  // Add the explicit instantiation into its lexical context. However,
4003  // since explicit instantiations are never found by name lookup, we
4004  // just put it into the declaration context directly.
4005  Specialization->setLexicalDeclContext(CurContext);
4006  CurContext->addDecl(Specialization);
4007
4008  // C++ [temp.explicit]p3:
4009  //   A definition of a class template or class member template
4010  //   shall be in scope at the point of the explicit instantiation of
4011  //   the class template or class member template.
4012  //
4013  // This check comes when we actually try to perform the
4014  // instantiation.
4015  ClassTemplateSpecializationDecl *Def
4016    = cast_or_null<ClassTemplateSpecializationDecl>(
4017                                        Specialization->getDefinition(Context));
4018  if (!Def)
4019    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4020
4021  // Instantiate the members of this class template specialization.
4022  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4023                                       Specialization->getDefinition(Context));
4024  if (Def)
4025    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4026
4027  return DeclPtrTy::make(Specialization);
4028}
4029
4030// Explicit instantiation of a member class of a class template.
4031Sema::DeclResult
4032Sema::ActOnExplicitInstantiation(Scope *S,
4033                                 SourceLocation ExternLoc,
4034                                 SourceLocation TemplateLoc,
4035                                 unsigned TagSpec,
4036                                 SourceLocation KWLoc,
4037                                 const CXXScopeSpec &SS,
4038                                 IdentifierInfo *Name,
4039                                 SourceLocation NameLoc,
4040                                 AttributeList *Attr) {
4041
4042  bool Owned = false;
4043  bool IsDependent = false;
4044  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4045                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4046                            MultiTemplateParamsArg(*this, 0, 0),
4047                            Owned, IsDependent);
4048  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4049
4050  if (!TagD)
4051    return true;
4052
4053  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4054  if (Tag->isEnum()) {
4055    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4056      << Context.getTypeDeclType(Tag);
4057    return true;
4058  }
4059
4060  if (Tag->isInvalidDecl())
4061    return true;
4062
4063  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4064  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4065  if (!Pattern) {
4066    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4067      << Context.getTypeDeclType(Record);
4068    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4069    return true;
4070  }
4071
4072  // C++0x [temp.explicit]p2:
4073  //   If the explicit instantiation is for a class or member class, the
4074  //   elaborated-type-specifier in the declaration shall include a
4075  //   simple-template-id.
4076  //
4077  // C++98 has the same restriction, just worded differently.
4078  if (!ScopeSpecifierHasTemplateId(SS))
4079    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4080      << Record << SS.getRange();
4081
4082  // C++0x [temp.explicit]p2:
4083  //   There are two forms of explicit instantiation: an explicit instantiation
4084  //   definition and an explicit instantiation declaration. An explicit
4085  //   instantiation declaration begins with the extern keyword. [...]
4086  TemplateSpecializationKind TSK
4087    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4088                           : TSK_ExplicitInstantiationDeclaration;
4089
4090  // C++0x [temp.explicit]p2:
4091  //   [...] An explicit instantiation shall appear in an enclosing
4092  //   namespace of its template. [...]
4093  //
4094  // This is C++ DR 275.
4095  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4096
4097  // Verify that it is okay to explicitly instantiate here.
4098  CXXRecordDecl *PrevDecl
4099    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4100  if (!PrevDecl && Record->getDefinition(Context))
4101    PrevDecl = Record;
4102  if (PrevDecl) {
4103    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4104    bool SuppressNew = false;
4105    assert(MSInfo && "No member specialization information?");
4106    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4107                                               PrevDecl,
4108                                        MSInfo->getTemplateSpecializationKind(),
4109                                             MSInfo->getPointOfInstantiation(),
4110                                               SuppressNew))
4111      return true;
4112    if (SuppressNew)
4113      return TagD;
4114  }
4115
4116  CXXRecordDecl *RecordDef
4117    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4118  if (!RecordDef) {
4119    // C++ [temp.explicit]p3:
4120    //   A definition of a member class of a class template shall be in scope
4121    //   at the point of an explicit instantiation of the member class.
4122    CXXRecordDecl *Def
4123      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4124    if (!Def) {
4125      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4126        << 0 << Record->getDeclName() << Record->getDeclContext();
4127      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4128        << Pattern;
4129      return true;
4130    } else {
4131      if (InstantiateClass(NameLoc, Record, Def,
4132                           getTemplateInstantiationArgs(Record),
4133                           TSK))
4134        return true;
4135
4136      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4137      if (!RecordDef)
4138        return true;
4139    }
4140  }
4141
4142  // Instantiate all of the members of the class.
4143  InstantiateClassMembers(NameLoc, RecordDef,
4144                          getTemplateInstantiationArgs(Record), TSK);
4145
4146  // FIXME: We don't have any representation for explicit instantiations of
4147  // member classes. Such a representation is not needed for compilation, but it
4148  // should be available for clients that want to see all of the declarations in
4149  // the source code.
4150  return TagD;
4151}
4152
4153Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4154                                                  SourceLocation ExternLoc,
4155                                                  SourceLocation TemplateLoc,
4156                                                  Declarator &D) {
4157  // Explicit instantiations always require a name.
4158  DeclarationName Name = GetNameForDeclarator(D);
4159  if (!Name) {
4160    if (!D.isInvalidType())
4161      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4162           diag::err_explicit_instantiation_requires_name)
4163        << D.getDeclSpec().getSourceRange()
4164        << D.getSourceRange();
4165
4166    return true;
4167  }
4168
4169  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4170  // we find one that is.
4171  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4172         (S->getFlags() & Scope::TemplateParamScope) != 0)
4173    S = S->getParent();
4174
4175  // Determine the type of the declaration.
4176  QualType R = GetTypeForDeclarator(D, S, 0);
4177  if (R.isNull())
4178    return true;
4179
4180  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4181    // Cannot explicitly instantiate a typedef.
4182    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4183      << Name;
4184    return true;
4185  }
4186
4187  // C++0x [temp.explicit]p1:
4188  //   [...] An explicit instantiation of a function template shall not use the
4189  //   inline or constexpr specifiers.
4190  // Presumably, this also applies to member functions of class templates as
4191  // well.
4192  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4193    Diag(D.getDeclSpec().getInlineSpecLoc(),
4194         diag::err_explicit_instantiation_inline)
4195      << CodeModificationHint::CreateRemoval(
4196                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
4197
4198  // FIXME: check for constexpr specifier.
4199
4200  // C++0x [temp.explicit]p2:
4201  //   There are two forms of explicit instantiation: an explicit instantiation
4202  //   definition and an explicit instantiation declaration. An explicit
4203  //   instantiation declaration begins with the extern keyword. [...]
4204  TemplateSpecializationKind TSK
4205    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4206                           : TSK_ExplicitInstantiationDeclaration;
4207
4208  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4209  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4210
4211  if (!R->isFunctionType()) {
4212    // C++ [temp.explicit]p1:
4213    //   A [...] static data member of a class template can be explicitly
4214    //   instantiated from the member definition associated with its class
4215    //   template.
4216    if (Previous.isAmbiguous())
4217      return true;
4218
4219    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
4220        Previous.getAsSingleDecl(Context));
4221    if (!Prev || !Prev->isStaticDataMember()) {
4222      // We expect to see a data data member here.
4223      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4224        << Name;
4225      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4226           P != PEnd; ++P)
4227        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4228      return true;
4229    }
4230
4231    if (!Prev->getInstantiatedFromStaticDataMember()) {
4232      // FIXME: Check for explicit specialization?
4233      Diag(D.getIdentifierLoc(),
4234           diag::err_explicit_instantiation_data_member_not_instantiated)
4235        << Prev;
4236      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4237      // FIXME: Can we provide a note showing where this was declared?
4238      return true;
4239    }
4240
4241    // C++0x [temp.explicit]p2:
4242    //   If the explicit instantiation is for a member function, a member class
4243    //   or a static data member of a class template specialization, the name of
4244    //   the class template specialization in the qualified-id for the member
4245    //   name shall be a simple-template-id.
4246    //
4247    // C++98 has the same restriction, just worded differently.
4248    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4249      Diag(D.getIdentifierLoc(),
4250           diag::err_explicit_instantiation_without_qualified_id)
4251        << Prev << D.getCXXScopeSpec().getRange();
4252
4253    // Check the scope of this explicit instantiation.
4254    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4255
4256    // Verify that it is okay to explicitly instantiate here.
4257    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4258    assert(MSInfo && "Missing static data member specialization info?");
4259    bool SuppressNew = false;
4260    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4261                                        MSInfo->getTemplateSpecializationKind(),
4262                                              MSInfo->getPointOfInstantiation(),
4263                                               SuppressNew))
4264      return true;
4265    if (SuppressNew)
4266      return DeclPtrTy();
4267
4268    // Instantiate static data member.
4269    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4270    if (TSK == TSK_ExplicitInstantiationDefinition)
4271      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4272                                            /*DefinitionRequired=*/true);
4273
4274    // FIXME: Create an ExplicitInstantiation node?
4275    return DeclPtrTy();
4276  }
4277
4278  // If the declarator is a template-id, translate the parser's template
4279  // argument list into our AST format.
4280  bool HasExplicitTemplateArgs = false;
4281  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
4282  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4283    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4284    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4285                                       TemplateId->getTemplateArgs(),
4286                                       TemplateId->NumArgs);
4287    translateTemplateArguments(TemplateArgsPtr,
4288                               TemplateArgs);
4289    HasExplicitTemplateArgs = true;
4290    TemplateArgsPtr.release();
4291  }
4292
4293  // C++ [temp.explicit]p1:
4294  //   A [...] function [...] can be explicitly instantiated from its template.
4295  //   A member function [...] of a class template can be explicitly
4296  //  instantiated from the member definition associated with its class
4297  //  template.
4298  llvm::SmallVector<FunctionDecl *, 8> Matches;
4299  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4300       P != PEnd; ++P) {
4301    NamedDecl *Prev = *P;
4302    if (!HasExplicitTemplateArgs) {
4303      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4304        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4305          Matches.clear();
4306          Matches.push_back(Method);
4307          break;
4308        }
4309      }
4310    }
4311
4312    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4313    if (!FunTmpl)
4314      continue;
4315
4316    TemplateDeductionInfo Info(Context);
4317    FunctionDecl *Specialization = 0;
4318    if (TemplateDeductionResult TDK
4319          = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
4320                                    TemplateArgs.data(), TemplateArgs.size(),
4321                                    R, Specialization, Info)) {
4322      // FIXME: Keep track of almost-matches?
4323      (void)TDK;
4324      continue;
4325    }
4326
4327    Matches.push_back(Specialization);
4328  }
4329
4330  // Find the most specialized function template specialization.
4331  FunctionDecl *Specialization
4332    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4333                         D.getIdentifierLoc(),
4334          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4335          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4336                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4337
4338  if (!Specialization)
4339    return true;
4340
4341  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4342    Diag(D.getIdentifierLoc(),
4343         diag::err_explicit_instantiation_member_function_not_instantiated)
4344      << Specialization
4345      << (Specialization->getTemplateSpecializationKind() ==
4346          TSK_ExplicitSpecialization);
4347    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4348    return true;
4349  }
4350
4351  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4352  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4353    PrevDecl = Specialization;
4354
4355  if (PrevDecl) {
4356    bool SuppressNew = false;
4357    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4358                                               PrevDecl,
4359                                     PrevDecl->getTemplateSpecializationKind(),
4360                                          PrevDecl->getPointOfInstantiation(),
4361                                               SuppressNew))
4362      return true;
4363
4364    // FIXME: We may still want to build some representation of this
4365    // explicit specialization.
4366    if (SuppressNew)
4367      return DeclPtrTy();
4368  }
4369
4370  if (TSK == TSK_ExplicitInstantiationDefinition)
4371    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4372                                  false, /*DefinitionRequired=*/true);
4373
4374  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4375
4376  // C++0x [temp.explicit]p2:
4377  //   If the explicit instantiation is for a member function, a member class
4378  //   or a static data member of a class template specialization, the name of
4379  //   the class template specialization in the qualified-id for the member
4380  //   name shall be a simple-template-id.
4381  //
4382  // C++98 has the same restriction, just worded differently.
4383  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4384  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4385      D.getCXXScopeSpec().isSet() &&
4386      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4387    Diag(D.getIdentifierLoc(),
4388         diag::err_explicit_instantiation_without_qualified_id)
4389    << Specialization << D.getCXXScopeSpec().getRange();
4390
4391  CheckExplicitInstantiationScope(*this,
4392                   FunTmpl? (NamedDecl *)FunTmpl
4393                          : Specialization->getInstantiatedFromMemberFunction(),
4394                                  D.getIdentifierLoc(),
4395                                  D.getCXXScopeSpec().isSet());
4396
4397  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4398  return DeclPtrTy();
4399}
4400
4401Sema::TypeResult
4402Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4403                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4404                        SourceLocation TagLoc, SourceLocation NameLoc) {
4405  // This has to hold, because SS is expected to be defined.
4406  assert(Name && "Expected a name in a dependent tag");
4407
4408  NestedNameSpecifier *NNS
4409    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4410  if (!NNS)
4411    return true;
4412
4413  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4414  if (T.isNull())
4415    return true;
4416
4417  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4418  QualType ElabType = Context.getElaboratedType(T, TagKind);
4419
4420  return ElabType.getAsOpaquePtr();
4421}
4422
4423Sema::TypeResult
4424Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4425                        const IdentifierInfo &II, SourceLocation IdLoc) {
4426  NestedNameSpecifier *NNS
4427    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4428  if (!NNS)
4429    return true;
4430
4431  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4432  if (T.isNull())
4433    return true;
4434  return T.getAsOpaquePtr();
4435}
4436
4437Sema::TypeResult
4438Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4439                        SourceLocation TemplateLoc, TypeTy *Ty) {
4440  QualType T = GetTypeFromParser(Ty);
4441  NestedNameSpecifier *NNS
4442    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4443  const TemplateSpecializationType *TemplateId
4444    = T->getAs<TemplateSpecializationType>();
4445  assert(TemplateId && "Expected a template specialization type");
4446
4447  if (computeDeclContext(SS, false)) {
4448    // If we can compute a declaration context, then the "typename"
4449    // keyword was superfluous. Just build a QualifiedNameType to keep
4450    // track of the nested-name-specifier.
4451
4452    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4453    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4454  }
4455
4456  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4457}
4458
4459/// \brief Build the type that describes a C++ typename specifier,
4460/// e.g., "typename T::type".
4461QualType
4462Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4463                        SourceRange Range) {
4464  CXXRecordDecl *CurrentInstantiation = 0;
4465  if (NNS->isDependent()) {
4466    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4467
4468    // If the nested-name-specifier does not refer to the current
4469    // instantiation, then build a typename type.
4470    if (!CurrentInstantiation)
4471      return Context.getTypenameType(NNS, &II);
4472
4473    // The nested-name-specifier refers to the current instantiation, so the
4474    // "typename" keyword itself is superfluous. In C++03, the program is
4475    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4476    // extraneous "typename" keywords, and we retroactively apply this DR to
4477    // C++03 code.
4478  }
4479
4480  DeclContext *Ctx = 0;
4481
4482  if (CurrentInstantiation)
4483    Ctx = CurrentInstantiation;
4484  else {
4485    CXXScopeSpec SS;
4486    SS.setScopeRep(NNS);
4487    SS.setRange(Range);
4488    if (RequireCompleteDeclContext(SS))
4489      return QualType();
4490
4491    Ctx = computeDeclContext(SS);
4492  }
4493  assert(Ctx && "No declaration context?");
4494
4495  DeclarationName Name(&II);
4496  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4497  LookupQualifiedName(Result, Ctx);
4498  unsigned DiagID = 0;
4499  Decl *Referenced = 0;
4500  switch (Result.getResultKind()) {
4501  case LookupResult::NotFound:
4502    DiagID = diag::err_typename_nested_not_found;
4503    break;
4504
4505  case LookupResult::Found:
4506    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4507      // We found a type. Build a QualifiedNameType, since the
4508      // typename-specifier was just sugar. FIXME: Tell
4509      // QualifiedNameType that it has a "typename" prefix.
4510      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4511    }
4512
4513    DiagID = diag::err_typename_nested_not_type;
4514    Referenced = Result.getFoundDecl();
4515    break;
4516
4517  case LookupResult::FoundUnresolvedValue:
4518    llvm::llvm_unreachable("unresolved using decl in non-dependent context");
4519    return QualType();
4520
4521  case LookupResult::FoundOverloaded:
4522    DiagID = diag::err_typename_nested_not_type;
4523    Referenced = *Result.begin();
4524    break;
4525
4526  case LookupResult::Ambiguous:
4527    return QualType();
4528  }
4529
4530  // If we get here, it's because name lookup did not find a
4531  // type. Emit an appropriate diagnostic and return an error.
4532  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4533  if (Referenced)
4534    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4535      << Name;
4536  return QualType();
4537}
4538
4539namespace {
4540  // See Sema::RebuildTypeInCurrentInstantiation
4541  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4542    : public TreeTransform<CurrentInstantiationRebuilder> {
4543    SourceLocation Loc;
4544    DeclarationName Entity;
4545
4546  public:
4547    CurrentInstantiationRebuilder(Sema &SemaRef,
4548                                  SourceLocation Loc,
4549                                  DeclarationName Entity)
4550    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4551      Loc(Loc), Entity(Entity) { }
4552
4553    /// \brief Determine whether the given type \p T has already been
4554    /// transformed.
4555    ///
4556    /// For the purposes of type reconstruction, a type has already been
4557    /// transformed if it is NULL or if it is not dependent.
4558    bool AlreadyTransformed(QualType T) {
4559      return T.isNull() || !T->isDependentType();
4560    }
4561
4562    /// \brief Returns the location of the entity whose type is being
4563    /// rebuilt.
4564    SourceLocation getBaseLocation() { return Loc; }
4565
4566    /// \brief Returns the name of the entity whose type is being rebuilt.
4567    DeclarationName getBaseEntity() { return Entity; }
4568
4569    /// \brief Sets the "base" location and entity when that
4570    /// information is known based on another transformation.
4571    void setBase(SourceLocation Loc, DeclarationName Entity) {
4572      this->Loc = Loc;
4573      this->Entity = Entity;
4574    }
4575
4576    /// \brief Transforms an expression by returning the expression itself
4577    /// (an identity function).
4578    ///
4579    /// FIXME: This is completely unsafe; we will need to actually clone the
4580    /// expressions.
4581    Sema::OwningExprResult TransformExpr(Expr *E) {
4582      return getSema().Owned(E);
4583    }
4584
4585    /// \brief Transforms a typename type by determining whether the type now
4586    /// refers to a member of the current instantiation, and then
4587    /// type-checking and building a QualifiedNameType (when possible).
4588    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4589  };
4590}
4591
4592QualType
4593CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4594                                                     TypenameTypeLoc TL) {
4595  TypenameType *T = TL.getTypePtr();
4596
4597  NestedNameSpecifier *NNS
4598    = TransformNestedNameSpecifier(T->getQualifier(),
4599                              /*FIXME:*/SourceRange(getBaseLocation()));
4600  if (!NNS)
4601    return QualType();
4602
4603  // If the nested-name-specifier did not change, and we cannot compute the
4604  // context corresponding to the nested-name-specifier, then this
4605  // typename type will not change; exit early.
4606  CXXScopeSpec SS;
4607  SS.setRange(SourceRange(getBaseLocation()));
4608  SS.setScopeRep(NNS);
4609
4610  QualType Result;
4611  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4612    Result = QualType(T, 0);
4613
4614  // Rebuild the typename type, which will probably turn into a
4615  // QualifiedNameType.
4616  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4617    QualType NewTemplateId
4618      = TransformType(QualType(TemplateId, 0));
4619    if (NewTemplateId.isNull())
4620      return QualType();
4621
4622    if (NNS == T->getQualifier() &&
4623        NewTemplateId == QualType(TemplateId, 0))
4624      Result = QualType(T, 0);
4625    else
4626      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4627  } else
4628    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4629                                              SourceRange(TL.getNameLoc()));
4630
4631  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4632  NewTL.setNameLoc(TL.getNameLoc());
4633  return Result;
4634}
4635
4636/// \brief Rebuilds a type within the context of the current instantiation.
4637///
4638/// The type \p T is part of the type of an out-of-line member definition of
4639/// a class template (or class template partial specialization) that was parsed
4640/// and constructed before we entered the scope of the class template (or
4641/// partial specialization thereof). This routine will rebuild that type now
4642/// that we have entered the declarator's scope, which may produce different
4643/// canonical types, e.g.,
4644///
4645/// \code
4646/// template<typename T>
4647/// struct X {
4648///   typedef T* pointer;
4649///   pointer data();
4650/// };
4651///
4652/// template<typename T>
4653/// typename X<T>::pointer X<T>::data() { ... }
4654/// \endcode
4655///
4656/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4657/// since we do not know that we can look into X<T> when we parsed the type.
4658/// This function will rebuild the type, performing the lookup of "pointer"
4659/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4660/// as the canonical type of T*, allowing the return types of the out-of-line
4661/// definition and the declaration to match.
4662QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4663                                                 DeclarationName Name) {
4664  if (T.isNull() || !T->isDependentType())
4665    return T;
4666
4667  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4668  return Rebuilder.TransformType(T);
4669}
4670
4671/// \brief Produces a formatted string that describes the binding of
4672/// template parameters to template arguments.
4673std::string
4674Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4675                                      const TemplateArgumentList &Args) {
4676  // FIXME: For variadic templates, we'll need to get the structured list.
4677  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4678                                         Args.flat_size());
4679}
4680
4681std::string
4682Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4683                                      const TemplateArgument *Args,
4684                                      unsigned NumArgs) {
4685  std::string Result;
4686
4687  if (!Params || Params->size() == 0 || NumArgs == 0)
4688    return Result;
4689
4690  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4691    if (I >= NumArgs)
4692      break;
4693
4694    if (I == 0)
4695      Result += "[with ";
4696    else
4697      Result += ", ";
4698
4699    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4700      Result += Id->getName();
4701    } else {
4702      Result += '$';
4703      Result += llvm::utostr(I);
4704    }
4705
4706    Result += " = ";
4707
4708    switch (Args[I].getKind()) {
4709      case TemplateArgument::Null:
4710        Result += "<no value>";
4711        break;
4712
4713      case TemplateArgument::Type: {
4714        std::string TypeStr;
4715        Args[I].getAsType().getAsStringInternal(TypeStr,
4716                                                Context.PrintingPolicy);
4717        Result += TypeStr;
4718        break;
4719      }
4720
4721      case TemplateArgument::Declaration: {
4722        bool Unnamed = true;
4723        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4724          if (ND->getDeclName()) {
4725            Unnamed = false;
4726            Result += ND->getNameAsString();
4727          }
4728        }
4729
4730        if (Unnamed) {
4731          Result += "<anonymous>";
4732        }
4733        break;
4734      }
4735
4736      case TemplateArgument::Template: {
4737        std::string Str;
4738        llvm::raw_string_ostream OS(Str);
4739        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
4740        Result += OS.str();
4741        break;
4742      }
4743
4744      case TemplateArgument::Integral: {
4745        Result += Args[I].getAsIntegral()->toString(10);
4746        break;
4747      }
4748
4749      case TemplateArgument::Expression: {
4750        assert(false && "No expressions in deduced template arguments!");
4751        Result += "<expression>";
4752        break;
4753      }
4754
4755      case TemplateArgument::Pack:
4756        // FIXME: Format template argument packs
4757        Result += "<template argument pack>";
4758        break;
4759    }
4760  }
4761
4762  Result += ']';
4763  return Result;
4764}
4765