SemaTemplate.cpp revision a9e29aa4b1e5042a763240899d8b8cf1267c3ec5
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Basic/LangOptions.h" 20#include "clang/Basic/PartialDiagnostic.h" 21#include "llvm/Support/Compiler.h" 22#include "llvm/ADT/StringExtras.h" 23using namespace clang; 24 25/// \brief Determine whether the declaration found is acceptable as the name 26/// of a template and, if so, return that template declaration. Otherwise, 27/// returns NULL. 28static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 29 if (!D) 30 return 0; 31 32 if (isa<TemplateDecl>(D)) 33 return D; 34 35 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 36 // C++ [temp.local]p1: 37 // Like normal (non-template) classes, class templates have an 38 // injected-class-name (Clause 9). The injected-class-name 39 // can be used with or without a template-argument-list. When 40 // it is used without a template-argument-list, it is 41 // equivalent to the injected-class-name followed by the 42 // template-parameters of the class template enclosed in 43 // <>. When it is used with a template-argument-list, it 44 // refers to the specified class template specialization, 45 // which could be the current specialization or another 46 // specialization. 47 if (Record->isInjectedClassName()) { 48 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 49 if (Record->getDescribedClassTemplate()) 50 return Record->getDescribedClassTemplate(); 51 52 if (ClassTemplateSpecializationDecl *Spec 53 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 54 return Spec->getSpecializedTemplate(); 55 } 56 57 return 0; 58 } 59 60 OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D); 61 if (!Ovl) 62 return 0; 63 64 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 65 FEnd = Ovl->function_end(); 66 F != FEnd; ++F) { 67 if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) { 68 // We've found a function template. Determine whether there are 69 // any other function templates we need to bundle together in an 70 // OverloadedFunctionDecl 71 for (++F; F != FEnd; ++F) { 72 if (isa<FunctionTemplateDecl>(*F)) 73 break; 74 } 75 76 if (F != FEnd) { 77 // Build an overloaded function decl containing only the 78 // function templates in Ovl. 79 OverloadedFunctionDecl *OvlTemplate 80 = OverloadedFunctionDecl::Create(Context, 81 Ovl->getDeclContext(), 82 Ovl->getDeclName()); 83 OvlTemplate->addOverload(FuncTmpl); 84 OvlTemplate->addOverload(*F); 85 for (++F; F != FEnd; ++F) { 86 if (isa<FunctionTemplateDecl>(*F)) 87 OvlTemplate->addOverload(*F); 88 } 89 90 return OvlTemplate; 91 } 92 93 return FuncTmpl; 94 } 95 } 96 97 return 0; 98} 99 100TemplateNameKind Sema::isTemplateName(Scope *S, 101 const IdentifierInfo &II, 102 SourceLocation IdLoc, 103 const CXXScopeSpec *SS, 104 TypeTy *ObjectTypePtr, 105 bool EnteringContext, 106 TemplateTy &TemplateResult) { 107 // Determine where to perform name lookup 108 DeclContext *LookupCtx = 0; 109 bool isDependent = false; 110 if (ObjectTypePtr) { 111 // This nested-name-specifier occurs in a member access expression, e.g., 112 // x->B::f, and we are looking into the type of the object. 113 assert((!SS || !SS->isSet()) && 114 "ObjectType and scope specifier cannot coexist"); 115 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 116 LookupCtx = computeDeclContext(ObjectType); 117 isDependent = ObjectType->isDependentType(); 118 } else if (SS && SS->isSet()) { 119 // This nested-name-specifier occurs after another nested-name-specifier, 120 // so long into the context associated with the prior nested-name-specifier. 121 122 LookupCtx = computeDeclContext(*SS, EnteringContext); 123 isDependent = isDependentScopeSpecifier(*SS); 124 } 125 126 LookupResult Found; 127 bool ObjectTypeSearchedInScope = false; 128 if (LookupCtx) { 129 // Perform "qualified" name lookup into the declaration context we 130 // computed, which is either the type of the base of a member access 131 // expression or the declaration context associated with a prior 132 // nested-name-specifier. 133 134 // The declaration context must be complete. 135 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS)) 136 return TNK_Non_template; 137 138 LookupQualifiedName(Found, LookupCtx, &II, LookupOrdinaryName); 139 140 if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { 141 // C++ [basic.lookup.classref]p1: 142 // In a class member access expression (5.2.5), if the . or -> token is 143 // immediately followed by an identifier followed by a <, the 144 // identifier must be looked up to determine whether the < is the 145 // beginning of a template argument list (14.2) or a less-than operator. 146 // The identifier is first looked up in the class of the object 147 // expression. If the identifier is not found, it is then looked up in 148 // the context of the entire postfix-expression and shall name a class 149 // or function template. 150 // 151 // FIXME: When we're instantiating a template, do we actually have to 152 // look in the scope of the template? Seems fishy... 153 LookupName(Found, S, &II, LookupOrdinaryName); 154 ObjectTypeSearchedInScope = true; 155 } 156 } else if (isDependent) { 157 // We cannot look into a dependent object type or 158 return TNK_Non_template; 159 } else { 160 // Perform unqualified name lookup in the current scope. 161 LookupName(Found, S, &II, LookupOrdinaryName); 162 } 163 164 // FIXME: Cope with ambiguous name-lookup results. 165 assert(!Found.isAmbiguous() && 166 "Cannot handle template name-lookup ambiguities"); 167 168 NamedDecl *Template 169 = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context)); 170 if (!Template) 171 return TNK_Non_template; 172 173 if (ObjectTypePtr && !ObjectTypeSearchedInScope) { 174 // C++ [basic.lookup.classref]p1: 175 // [...] If the lookup in the class of the object expression finds a 176 // template, the name is also looked up in the context of the entire 177 // postfix-expression and [...] 178 // 179 LookupResult FoundOuter; 180 LookupName(FoundOuter, S, &II, LookupOrdinaryName); 181 // FIXME: Handle ambiguities in this lookup better 182 NamedDecl *OuterTemplate 183 = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context)); 184 185 if (!OuterTemplate) { 186 // - if the name is not found, the name found in the class of the 187 // object expression is used, otherwise 188 } else if (!isa<ClassTemplateDecl>(OuterTemplate)) { 189 // - if the name is found in the context of the entire 190 // postfix-expression and does not name a class template, the name 191 // found in the class of the object expression is used, otherwise 192 } else { 193 // - if the name found is a class template, it must refer to the same 194 // entity as the one found in the class of the object expression, 195 // otherwise the program is ill-formed. 196 if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { 197 Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) 198 << &II; 199 Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) 200 << QualType::getFromOpaquePtr(ObjectTypePtr); 201 Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); 202 203 // Recover by taking the template that we found in the object 204 // expression's type. 205 } 206 } 207 } 208 209 if (SS && SS->isSet() && !SS->isInvalid()) { 210 NestedNameSpecifier *Qualifier 211 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 212 if (OverloadedFunctionDecl *Ovl 213 = dyn_cast<OverloadedFunctionDecl>(Template)) 214 TemplateResult 215 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 216 Ovl)); 217 else 218 TemplateResult 219 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 220 cast<TemplateDecl>(Template))); 221 } else if (OverloadedFunctionDecl *Ovl 222 = dyn_cast<OverloadedFunctionDecl>(Template)) { 223 TemplateResult = TemplateTy::make(TemplateName(Ovl)); 224 } else { 225 TemplateResult = TemplateTy::make( 226 TemplateName(cast<TemplateDecl>(Template))); 227 } 228 229 if (isa<ClassTemplateDecl>(Template) || 230 isa<TemplateTemplateParmDecl>(Template)) 231 return TNK_Type_template; 232 233 assert((isa<FunctionTemplateDecl>(Template) || 234 isa<OverloadedFunctionDecl>(Template)) && 235 "Unhandled template kind in Sema::isTemplateName"); 236 return TNK_Function_template; 237} 238 239/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 240/// that the template parameter 'PrevDecl' is being shadowed by a new 241/// declaration at location Loc. Returns true to indicate that this is 242/// an error, and false otherwise. 243bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 244 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 245 246 // Microsoft Visual C++ permits template parameters to be shadowed. 247 if (getLangOptions().Microsoft) 248 return false; 249 250 // C++ [temp.local]p4: 251 // A template-parameter shall not be redeclared within its 252 // scope (including nested scopes). 253 Diag(Loc, diag::err_template_param_shadow) 254 << cast<NamedDecl>(PrevDecl)->getDeclName(); 255 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 256 return true; 257} 258 259/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 260/// the parameter D to reference the templated declaration and return a pointer 261/// to the template declaration. Otherwise, do nothing to D and return null. 262TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 263 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 264 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 265 return Temp; 266 } 267 return 0; 268} 269 270/// ActOnTypeParameter - Called when a C++ template type parameter 271/// (e.g., "typename T") has been parsed. Typename specifies whether 272/// the keyword "typename" was used to declare the type parameter 273/// (otherwise, "class" was used), and KeyLoc is the location of the 274/// "class" or "typename" keyword. ParamName is the name of the 275/// parameter (NULL indicates an unnamed template parameter) and 276/// ParamName is the location of the parameter name (if any). 277/// If the type parameter has a default argument, it will be added 278/// later via ActOnTypeParameterDefault. 279Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 280 SourceLocation EllipsisLoc, 281 SourceLocation KeyLoc, 282 IdentifierInfo *ParamName, 283 SourceLocation ParamNameLoc, 284 unsigned Depth, unsigned Position) { 285 assert(S->isTemplateParamScope() && 286 "Template type parameter not in template parameter scope!"); 287 bool Invalid = false; 288 289 if (ParamName) { 290 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 291 if (PrevDecl && PrevDecl->isTemplateParameter()) 292 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 293 PrevDecl); 294 } 295 296 SourceLocation Loc = ParamNameLoc; 297 if (!ParamName) 298 Loc = KeyLoc; 299 300 TemplateTypeParmDecl *Param 301 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 302 Depth, Position, ParamName, Typename, 303 Ellipsis); 304 if (Invalid) 305 Param->setInvalidDecl(); 306 307 if (ParamName) { 308 // Add the template parameter into the current scope. 309 S->AddDecl(DeclPtrTy::make(Param)); 310 IdResolver.AddDecl(Param); 311 } 312 313 return DeclPtrTy::make(Param); 314} 315 316/// ActOnTypeParameterDefault - Adds a default argument (the type 317/// Default) to the given template type parameter (TypeParam). 318void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 319 SourceLocation EqualLoc, 320 SourceLocation DefaultLoc, 321 TypeTy *DefaultT) { 322 TemplateTypeParmDecl *Parm 323 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 324 // FIXME: Preserve type source info. 325 QualType Default = GetTypeFromParser(DefaultT); 326 327 // C++0x [temp.param]p9: 328 // A default template-argument may be specified for any kind of 329 // template-parameter that is not a template parameter pack. 330 if (Parm->isParameterPack()) { 331 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 332 return; 333 } 334 335 // C++ [temp.param]p14: 336 // A template-parameter shall not be used in its own default argument. 337 // FIXME: Implement this check! Needs a recursive walk over the types. 338 339 // Check the template argument itself. 340 if (CheckTemplateArgument(Parm, Default, DefaultLoc)) { 341 Parm->setInvalidDecl(); 342 return; 343 } 344 345 Parm->setDefaultArgument(Default, DefaultLoc, false); 346} 347 348/// \brief Check that the type of a non-type template parameter is 349/// well-formed. 350/// 351/// \returns the (possibly-promoted) parameter type if valid; 352/// otherwise, produces a diagnostic and returns a NULL type. 353QualType 354Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 355 // C++ [temp.param]p4: 356 // 357 // A non-type template-parameter shall have one of the following 358 // (optionally cv-qualified) types: 359 // 360 // -- integral or enumeration type, 361 if (T->isIntegralType() || T->isEnumeralType() || 362 // -- pointer to object or pointer to function, 363 (T->isPointerType() && 364 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 365 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 366 // -- reference to object or reference to function, 367 T->isReferenceType() || 368 // -- pointer to member. 369 T->isMemberPointerType() || 370 // If T is a dependent type, we can't do the check now, so we 371 // assume that it is well-formed. 372 T->isDependentType()) 373 return T; 374 // C++ [temp.param]p8: 375 // 376 // A non-type template-parameter of type "array of T" or 377 // "function returning T" is adjusted to be of type "pointer to 378 // T" or "pointer to function returning T", respectively. 379 else if (T->isArrayType()) 380 // FIXME: Keep the type prior to promotion? 381 return Context.getArrayDecayedType(T); 382 else if (T->isFunctionType()) 383 // FIXME: Keep the type prior to promotion? 384 return Context.getPointerType(T); 385 386 Diag(Loc, diag::err_template_nontype_parm_bad_type) 387 << T; 388 389 return QualType(); 390} 391 392/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 393/// template parameter (e.g., "int Size" in "template<int Size> 394/// class Array") has been parsed. S is the current scope and D is 395/// the parsed declarator. 396Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 397 unsigned Depth, 398 unsigned Position) { 399 DeclaratorInfo *DInfo = 0; 400 QualType T = GetTypeForDeclarator(D, S, &DInfo); 401 402 assert(S->isTemplateParamScope() && 403 "Non-type template parameter not in template parameter scope!"); 404 bool Invalid = false; 405 406 IdentifierInfo *ParamName = D.getIdentifier(); 407 if (ParamName) { 408 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 409 if (PrevDecl && PrevDecl->isTemplateParameter()) 410 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 411 PrevDecl); 412 } 413 414 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 415 if (T.isNull()) { 416 T = Context.IntTy; // Recover with an 'int' type. 417 Invalid = true; 418 } 419 420 NonTypeTemplateParmDecl *Param 421 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 422 Depth, Position, ParamName, T, DInfo); 423 if (Invalid) 424 Param->setInvalidDecl(); 425 426 if (D.getIdentifier()) { 427 // Add the template parameter into the current scope. 428 S->AddDecl(DeclPtrTy::make(Param)); 429 IdResolver.AddDecl(Param); 430 } 431 return DeclPtrTy::make(Param); 432} 433 434/// \brief Adds a default argument to the given non-type template 435/// parameter. 436void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 437 SourceLocation EqualLoc, 438 ExprArg DefaultE) { 439 NonTypeTemplateParmDecl *TemplateParm 440 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 441 Expr *Default = static_cast<Expr *>(DefaultE.get()); 442 443 // C++ [temp.param]p14: 444 // A template-parameter shall not be used in its own default argument. 445 // FIXME: Implement this check! Needs a recursive walk over the types. 446 447 // Check the well-formedness of the default template argument. 448 TemplateArgument Converted; 449 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 450 Converted)) { 451 TemplateParm->setInvalidDecl(); 452 return; 453 } 454 455 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 456} 457 458 459/// ActOnTemplateTemplateParameter - Called when a C++ template template 460/// parameter (e.g. T in template <template <typename> class T> class array) 461/// has been parsed. S is the current scope. 462Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 463 SourceLocation TmpLoc, 464 TemplateParamsTy *Params, 465 IdentifierInfo *Name, 466 SourceLocation NameLoc, 467 unsigned Depth, 468 unsigned Position) { 469 assert(S->isTemplateParamScope() && 470 "Template template parameter not in template parameter scope!"); 471 472 // Construct the parameter object. 473 TemplateTemplateParmDecl *Param = 474 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 475 Position, Name, 476 (TemplateParameterList*)Params); 477 478 // Make sure the parameter is valid. 479 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 480 // do anything yet. However, if the template parameter list or (eventual) 481 // default value is ever invalidated, that will propagate here. 482 bool Invalid = false; 483 if (Invalid) { 484 Param->setInvalidDecl(); 485 } 486 487 // If the tt-param has a name, then link the identifier into the scope 488 // and lookup mechanisms. 489 if (Name) { 490 S->AddDecl(DeclPtrTy::make(Param)); 491 IdResolver.AddDecl(Param); 492 } 493 494 return DeclPtrTy::make(Param); 495} 496 497/// \brief Adds a default argument to the given template template 498/// parameter. 499void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 500 SourceLocation EqualLoc, 501 ExprArg DefaultE) { 502 TemplateTemplateParmDecl *TemplateParm 503 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 504 505 // Since a template-template parameter's default argument is an 506 // id-expression, it must be a DeclRefExpr. 507 DeclRefExpr *Default 508 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 509 510 // C++ [temp.param]p14: 511 // A template-parameter shall not be used in its own default argument. 512 // FIXME: Implement this check! Needs a recursive walk over the types. 513 514 // Check the well-formedness of the template argument. 515 if (!isa<TemplateDecl>(Default->getDecl())) { 516 Diag(Default->getSourceRange().getBegin(), 517 diag::err_template_arg_must_be_template) 518 << Default->getSourceRange(); 519 TemplateParm->setInvalidDecl(); 520 return; 521 } 522 if (CheckTemplateArgument(TemplateParm, Default)) { 523 TemplateParm->setInvalidDecl(); 524 return; 525 } 526 527 DefaultE.release(); 528 TemplateParm->setDefaultArgument(Default); 529} 530 531/// ActOnTemplateParameterList - Builds a TemplateParameterList that 532/// contains the template parameters in Params/NumParams. 533Sema::TemplateParamsTy * 534Sema::ActOnTemplateParameterList(unsigned Depth, 535 SourceLocation ExportLoc, 536 SourceLocation TemplateLoc, 537 SourceLocation LAngleLoc, 538 DeclPtrTy *Params, unsigned NumParams, 539 SourceLocation RAngleLoc) { 540 if (ExportLoc.isValid()) 541 Diag(ExportLoc, diag::note_template_export_unsupported); 542 543 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 544 (NamedDecl**)Params, NumParams, 545 RAngleLoc); 546} 547 548Sema::DeclResult 549Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 550 SourceLocation KWLoc, const CXXScopeSpec &SS, 551 IdentifierInfo *Name, SourceLocation NameLoc, 552 AttributeList *Attr, 553 TemplateParameterList *TemplateParams, 554 AccessSpecifier AS) { 555 assert(TemplateParams && TemplateParams->size() > 0 && 556 "No template parameters"); 557 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 558 bool Invalid = false; 559 560 // Check that we can declare a template here. 561 if (CheckTemplateDeclScope(S, TemplateParams)) 562 return true; 563 564 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 565 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 566 567 // There is no such thing as an unnamed class template. 568 if (!Name) { 569 Diag(KWLoc, diag::err_template_unnamed_class); 570 return true; 571 } 572 573 // Find any previous declaration with this name. 574 DeclContext *SemanticContext; 575 LookupResult Previous; 576 if (SS.isNotEmpty() && !SS.isInvalid()) { 577 if (RequireCompleteDeclContext(SS)) 578 return true; 579 580 SemanticContext = computeDeclContext(SS, true); 581 if (!SemanticContext) { 582 // FIXME: Produce a reasonable diagnostic here 583 return true; 584 } 585 586 LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName, 587 true); 588 } else { 589 SemanticContext = CurContext; 590 LookupName(Previous, S, Name, LookupOrdinaryName, true); 591 } 592 593 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 594 NamedDecl *PrevDecl = 0; 595 if (Previous.begin() != Previous.end()) 596 PrevDecl = *Previous.begin(); 597 598 if (PrevDecl && TUK == TUK_Friend) { 599 // C++ [namespace.memdef]p3: 600 // [...] When looking for a prior declaration of a class or a function 601 // declared as a friend, and when the name of the friend class or 602 // function is neither a qualified name nor a template-id, scopes outside 603 // the innermost enclosing namespace scope are not considered. 604 DeclContext *OutermostContext = CurContext; 605 while (!OutermostContext->isFileContext()) 606 OutermostContext = OutermostContext->getLookupParent(); 607 608 if (OutermostContext->Equals(PrevDecl->getDeclContext()) || 609 OutermostContext->Encloses(PrevDecl->getDeclContext())) { 610 SemanticContext = PrevDecl->getDeclContext(); 611 } else { 612 // Declarations in outer scopes don't matter. However, the outermost 613 // context we computed is the semntic context for our new 614 // declaration. 615 PrevDecl = 0; 616 SemanticContext = OutermostContext; 617 } 618 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 619 PrevDecl = 0; 620 621 // If there is a previous declaration with the same name, check 622 // whether this is a valid redeclaration. 623 ClassTemplateDecl *PrevClassTemplate 624 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 625 626 // We may have found the injected-class-name of a class template, 627 // class template partial specialization, or class template specialization. 628 // In these cases, grab the template that is being defined or specialized. 629 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 630 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 631 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 632 PrevClassTemplate 633 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 634 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 635 PrevClassTemplate 636 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 637 ->getSpecializedTemplate(); 638 } 639 } 640 641 if (PrevClassTemplate) { 642 // Ensure that the template parameter lists are compatible. 643 if (!TemplateParameterListsAreEqual(TemplateParams, 644 PrevClassTemplate->getTemplateParameters(), 645 /*Complain=*/true)) 646 return true; 647 648 // C++ [temp.class]p4: 649 // In a redeclaration, partial specialization, explicit 650 // specialization or explicit instantiation of a class template, 651 // the class-key shall agree in kind with the original class 652 // template declaration (7.1.5.3). 653 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 654 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 655 Diag(KWLoc, diag::err_use_with_wrong_tag) 656 << Name 657 << CodeModificationHint::CreateReplacement(KWLoc, 658 PrevRecordDecl->getKindName()); 659 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 660 Kind = PrevRecordDecl->getTagKind(); 661 } 662 663 // Check for redefinition of this class template. 664 if (TUK == TUK_Definition) { 665 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 666 Diag(NameLoc, diag::err_redefinition) << Name; 667 Diag(Def->getLocation(), diag::note_previous_definition); 668 // FIXME: Would it make sense to try to "forget" the previous 669 // definition, as part of error recovery? 670 return true; 671 } 672 } 673 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 674 // Maybe we will complain about the shadowed template parameter. 675 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 676 // Just pretend that we didn't see the previous declaration. 677 PrevDecl = 0; 678 } else if (PrevDecl) { 679 // C++ [temp]p5: 680 // A class template shall not have the same name as any other 681 // template, class, function, object, enumeration, enumerator, 682 // namespace, or type in the same scope (3.3), except as specified 683 // in (14.5.4). 684 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 685 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 686 return true; 687 } 688 689 // Check the template parameter list of this declaration, possibly 690 // merging in the template parameter list from the previous class 691 // template declaration. 692 if (CheckTemplateParameterList(TemplateParams, 693 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 694 Invalid = true; 695 696 // FIXME: If we had a scope specifier, we better have a previous template 697 // declaration! 698 699 CXXRecordDecl *NewClass = 700 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 701 PrevClassTemplate? 702 PrevClassTemplate->getTemplatedDecl() : 0, 703 /*DelayTypeCreation=*/true); 704 705 ClassTemplateDecl *NewTemplate 706 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 707 DeclarationName(Name), TemplateParams, 708 NewClass, PrevClassTemplate); 709 NewClass->setDescribedClassTemplate(NewTemplate); 710 711 // Build the type for the class template declaration now. 712 QualType T = 713 Context.getTypeDeclType(NewClass, 714 PrevClassTemplate? 715 PrevClassTemplate->getTemplatedDecl() : 0); 716 assert(T->isDependentType() && "Class template type is not dependent?"); 717 (void)T; 718 719 // If we are providing an explicit specialization of a member that is a 720 // class template, make a note of that. 721 if (PrevClassTemplate && 722 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 723 PrevClassTemplate->setMemberSpecialization(); 724 725 // Set the access specifier. 726 if (!Invalid && TUK != TUK_Friend) 727 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 728 729 // Set the lexical context of these templates 730 NewClass->setLexicalDeclContext(CurContext); 731 NewTemplate->setLexicalDeclContext(CurContext); 732 733 if (TUK == TUK_Definition) 734 NewClass->startDefinition(); 735 736 if (Attr) 737 ProcessDeclAttributeList(S, NewClass, Attr); 738 739 if (TUK != TUK_Friend) 740 PushOnScopeChains(NewTemplate, S); 741 else { 742 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 743 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 744 NewClass->setAccess(PrevClassTemplate->getAccess()); 745 } 746 747 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 748 PrevClassTemplate != NULL); 749 750 // Friend templates are visible in fairly strange ways. 751 if (!CurContext->isDependentContext()) { 752 DeclContext *DC = SemanticContext->getLookupContext(); 753 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 754 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 755 PushOnScopeChains(NewTemplate, EnclosingScope, 756 /* AddToContext = */ false); 757 } 758 759 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 760 NewClass->getLocation(), 761 NewTemplate, 762 /*FIXME:*/NewClass->getLocation()); 763 Friend->setAccess(AS_public); 764 CurContext->addDecl(Friend); 765 } 766 767 if (Invalid) { 768 NewTemplate->setInvalidDecl(); 769 NewClass->setInvalidDecl(); 770 } 771 return DeclPtrTy::make(NewTemplate); 772} 773 774/// \brief Checks the validity of a template parameter list, possibly 775/// considering the template parameter list from a previous 776/// declaration. 777/// 778/// If an "old" template parameter list is provided, it must be 779/// equivalent (per TemplateParameterListsAreEqual) to the "new" 780/// template parameter list. 781/// 782/// \param NewParams Template parameter list for a new template 783/// declaration. This template parameter list will be updated with any 784/// default arguments that are carried through from the previous 785/// template parameter list. 786/// 787/// \param OldParams If provided, template parameter list from a 788/// previous declaration of the same template. Default template 789/// arguments will be merged from the old template parameter list to 790/// the new template parameter list. 791/// 792/// \returns true if an error occurred, false otherwise. 793bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 794 TemplateParameterList *OldParams) { 795 bool Invalid = false; 796 797 // C++ [temp.param]p10: 798 // The set of default template-arguments available for use with a 799 // template declaration or definition is obtained by merging the 800 // default arguments from the definition (if in scope) and all 801 // declarations in scope in the same way default function 802 // arguments are (8.3.6). 803 bool SawDefaultArgument = false; 804 SourceLocation PreviousDefaultArgLoc; 805 806 bool SawParameterPack = false; 807 SourceLocation ParameterPackLoc; 808 809 // Dummy initialization to avoid warnings. 810 TemplateParameterList::iterator OldParam = NewParams->end(); 811 if (OldParams) 812 OldParam = OldParams->begin(); 813 814 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 815 NewParamEnd = NewParams->end(); 816 NewParam != NewParamEnd; ++NewParam) { 817 // Variables used to diagnose redundant default arguments 818 bool RedundantDefaultArg = false; 819 SourceLocation OldDefaultLoc; 820 SourceLocation NewDefaultLoc; 821 822 // Variables used to diagnose missing default arguments 823 bool MissingDefaultArg = false; 824 825 // C++0x [temp.param]p11: 826 // If a template parameter of a class template is a template parameter pack, 827 // it must be the last template parameter. 828 if (SawParameterPack) { 829 Diag(ParameterPackLoc, 830 diag::err_template_param_pack_must_be_last_template_parameter); 831 Invalid = true; 832 } 833 834 // Merge default arguments for template type parameters. 835 if (TemplateTypeParmDecl *NewTypeParm 836 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 837 TemplateTypeParmDecl *OldTypeParm 838 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 839 840 if (NewTypeParm->isParameterPack()) { 841 assert(!NewTypeParm->hasDefaultArgument() && 842 "Parameter packs can't have a default argument!"); 843 SawParameterPack = true; 844 ParameterPackLoc = NewTypeParm->getLocation(); 845 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 846 NewTypeParm->hasDefaultArgument()) { 847 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 848 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 849 SawDefaultArgument = true; 850 RedundantDefaultArg = true; 851 PreviousDefaultArgLoc = NewDefaultLoc; 852 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 853 // Merge the default argument from the old declaration to the 854 // new declaration. 855 SawDefaultArgument = true; 856 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(), 857 OldTypeParm->getDefaultArgumentLoc(), 858 true); 859 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 860 } else if (NewTypeParm->hasDefaultArgument()) { 861 SawDefaultArgument = true; 862 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 863 } else if (SawDefaultArgument) 864 MissingDefaultArg = true; 865 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 866 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 867 // Merge default arguments for non-type template parameters 868 NonTypeTemplateParmDecl *OldNonTypeParm 869 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 870 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 871 NewNonTypeParm->hasDefaultArgument()) { 872 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 873 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 874 SawDefaultArgument = true; 875 RedundantDefaultArg = true; 876 PreviousDefaultArgLoc = NewDefaultLoc; 877 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 878 // Merge the default argument from the old declaration to the 879 // new declaration. 880 SawDefaultArgument = true; 881 // FIXME: We need to create a new kind of "default argument" 882 // expression that points to a previous template template 883 // parameter. 884 NewNonTypeParm->setDefaultArgument( 885 OldNonTypeParm->getDefaultArgument()); 886 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 887 } else if (NewNonTypeParm->hasDefaultArgument()) { 888 SawDefaultArgument = true; 889 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 890 } else if (SawDefaultArgument) 891 MissingDefaultArg = true; 892 } else { 893 // Merge default arguments for template template parameters 894 TemplateTemplateParmDecl *NewTemplateParm 895 = cast<TemplateTemplateParmDecl>(*NewParam); 896 TemplateTemplateParmDecl *OldTemplateParm 897 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 898 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 899 NewTemplateParm->hasDefaultArgument()) { 900 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 901 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 902 SawDefaultArgument = true; 903 RedundantDefaultArg = true; 904 PreviousDefaultArgLoc = NewDefaultLoc; 905 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 906 // Merge the default argument from the old declaration to the 907 // new declaration. 908 SawDefaultArgument = true; 909 // FIXME: We need to create a new kind of "default argument" expression 910 // that points to a previous template template parameter. 911 NewTemplateParm->setDefaultArgument( 912 OldTemplateParm->getDefaultArgument()); 913 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 914 } else if (NewTemplateParm->hasDefaultArgument()) { 915 SawDefaultArgument = true; 916 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 917 } else if (SawDefaultArgument) 918 MissingDefaultArg = true; 919 } 920 921 if (RedundantDefaultArg) { 922 // C++ [temp.param]p12: 923 // A template-parameter shall not be given default arguments 924 // by two different declarations in the same scope. 925 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 926 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 927 Invalid = true; 928 } else if (MissingDefaultArg) { 929 // C++ [temp.param]p11: 930 // If a template-parameter has a default template-argument, 931 // all subsequent template-parameters shall have a default 932 // template-argument supplied. 933 Diag((*NewParam)->getLocation(), 934 diag::err_template_param_default_arg_missing); 935 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 936 Invalid = true; 937 } 938 939 // If we have an old template parameter list that we're merging 940 // in, move on to the next parameter. 941 if (OldParams) 942 ++OldParam; 943 } 944 945 return Invalid; 946} 947 948/// \brief Match the given template parameter lists to the given scope 949/// specifier, returning the template parameter list that applies to the 950/// name. 951/// 952/// \param DeclStartLoc the start of the declaration that has a scope 953/// specifier or a template parameter list. 954/// 955/// \param SS the scope specifier that will be matched to the given template 956/// parameter lists. This scope specifier precedes a qualified name that is 957/// being declared. 958/// 959/// \param ParamLists the template parameter lists, from the outermost to the 960/// innermost template parameter lists. 961/// 962/// \param NumParamLists the number of template parameter lists in ParamLists. 963/// 964/// \param IsExplicitSpecialization will be set true if the entity being 965/// declared is an explicit specialization, false otherwise. 966/// 967/// \returns the template parameter list, if any, that corresponds to the 968/// name that is preceded by the scope specifier @p SS. This template 969/// parameter list may be have template parameters (if we're declaring a 970/// template) or may have no template parameters (if we're declaring a 971/// template specialization), or may be NULL (if we were's declaring isn't 972/// itself a template). 973TemplateParameterList * 974Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 975 const CXXScopeSpec &SS, 976 TemplateParameterList **ParamLists, 977 unsigned NumParamLists, 978 bool &IsExplicitSpecialization) { 979 IsExplicitSpecialization = false; 980 981 // Find the template-ids that occur within the nested-name-specifier. These 982 // template-ids will match up with the template parameter lists. 983 llvm::SmallVector<const TemplateSpecializationType *, 4> 984 TemplateIdsInSpecifier; 985 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 986 NNS; NNS = NNS->getPrefix()) { 987 if (const TemplateSpecializationType *SpecType 988 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 989 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 990 if (!Template) 991 continue; // FIXME: should this be an error? probably... 992 993 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 994 ClassTemplateSpecializationDecl *SpecDecl 995 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 996 // If the nested name specifier refers to an explicit specialization, 997 // we don't need a template<> header. 998 // FIXME: revisit this approach once we cope with specializations 999 // properly. 1000 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 1001 continue; 1002 } 1003 1004 TemplateIdsInSpecifier.push_back(SpecType); 1005 } 1006 } 1007 1008 // Reverse the list of template-ids in the scope specifier, so that we can 1009 // more easily match up the template-ids and the template parameter lists. 1010 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1011 1012 SourceLocation FirstTemplateLoc = DeclStartLoc; 1013 if (NumParamLists) 1014 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1015 1016 // Match the template-ids found in the specifier to the template parameter 1017 // lists. 1018 unsigned Idx = 0; 1019 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1020 Idx != NumTemplateIds; ++Idx) { 1021 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1022 bool DependentTemplateId = TemplateId->isDependentType(); 1023 if (Idx >= NumParamLists) { 1024 // We have a template-id without a corresponding template parameter 1025 // list. 1026 if (DependentTemplateId) { 1027 // FIXME: the location information here isn't great. 1028 Diag(SS.getRange().getBegin(), 1029 diag::err_template_spec_needs_template_parameters) 1030 << TemplateId 1031 << SS.getRange(); 1032 } else { 1033 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1034 << SS.getRange() 1035 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1036 "template<> "); 1037 IsExplicitSpecialization = true; 1038 } 1039 return 0; 1040 } 1041 1042 // Check the template parameter list against its corresponding template-id. 1043 if (DependentTemplateId) { 1044 TemplateDecl *Template 1045 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1046 1047 if (ClassTemplateDecl *ClassTemplate 1048 = dyn_cast<ClassTemplateDecl>(Template)) { 1049 TemplateParameterList *ExpectedTemplateParams = 0; 1050 // Is this template-id naming the primary template? 1051 if (Context.hasSameType(TemplateId, 1052 ClassTemplate->getInjectedClassNameType(Context))) 1053 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1054 // ... or a partial specialization? 1055 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1056 = ClassTemplate->findPartialSpecialization(TemplateId)) 1057 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1058 1059 if (ExpectedTemplateParams) 1060 TemplateParameterListsAreEqual(ParamLists[Idx], 1061 ExpectedTemplateParams, 1062 true); 1063 } 1064 } else if (ParamLists[Idx]->size() > 0) 1065 Diag(ParamLists[Idx]->getTemplateLoc(), 1066 diag::err_template_param_list_matches_nontemplate) 1067 << TemplateId 1068 << ParamLists[Idx]->getSourceRange(); 1069 else 1070 IsExplicitSpecialization = true; 1071 } 1072 1073 // If there were at least as many template-ids as there were template 1074 // parameter lists, then there are no template parameter lists remaining for 1075 // the declaration itself. 1076 if (Idx >= NumParamLists) 1077 return 0; 1078 1079 // If there were too many template parameter lists, complain about that now. 1080 if (Idx != NumParamLists - 1) { 1081 while (Idx < NumParamLists - 1) { 1082 Diag(ParamLists[Idx]->getTemplateLoc(), 1083 diag::err_template_spec_extra_headers) 1084 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1085 ParamLists[Idx]->getRAngleLoc()); 1086 ++Idx; 1087 } 1088 } 1089 1090 // Return the last template parameter list, which corresponds to the 1091 // entity being declared. 1092 return ParamLists[NumParamLists - 1]; 1093} 1094 1095/// \brief Translates template arguments as provided by the parser 1096/// into template arguments used by semantic analysis. 1097void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 1098 SourceLocation *TemplateArgLocs, 1099 llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) { 1100 TemplateArgs.reserve(TemplateArgsIn.size()); 1101 1102 void **Args = TemplateArgsIn.getArgs(); 1103 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 1104 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 1105 TemplateArgs.push_back( 1106 ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg], 1107 //FIXME: Preserve type source info. 1108 Sema::GetTypeFromParser(Args[Arg])) 1109 : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg]))); 1110 } 1111} 1112 1113QualType Sema::CheckTemplateIdType(TemplateName Name, 1114 SourceLocation TemplateLoc, 1115 SourceLocation LAngleLoc, 1116 const TemplateArgument *TemplateArgs, 1117 unsigned NumTemplateArgs, 1118 SourceLocation RAngleLoc) { 1119 TemplateDecl *Template = Name.getAsTemplateDecl(); 1120 if (!Template) { 1121 // The template name does not resolve to a template, so we just 1122 // build a dependent template-id type. 1123 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1124 NumTemplateArgs); 1125 } 1126 1127 // Check that the template argument list is well-formed for this 1128 // template. 1129 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1130 NumTemplateArgs); 1131 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 1132 TemplateArgs, NumTemplateArgs, RAngleLoc, 1133 false, Converted)) 1134 return QualType(); 1135 1136 assert((Converted.structuredSize() == 1137 Template->getTemplateParameters()->size()) && 1138 "Converted template argument list is too short!"); 1139 1140 QualType CanonType; 1141 1142 if (TemplateSpecializationType::anyDependentTemplateArguments( 1143 TemplateArgs, 1144 NumTemplateArgs)) { 1145 // This class template specialization is a dependent 1146 // type. Therefore, its canonical type is another class template 1147 // specialization type that contains all of the converted 1148 // arguments in canonical form. This ensures that, e.g., A<T> and 1149 // A<T, T> have identical types when A is declared as: 1150 // 1151 // template<typename T, typename U = T> struct A; 1152 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1153 CanonType = Context.getTemplateSpecializationType(CanonName, 1154 Converted.getFlatArguments(), 1155 Converted.flatSize()); 1156 1157 // FIXME: CanonType is not actually the canonical type, and unfortunately 1158 // it is a TemplateTypeSpecializationType that we will never use again. 1159 // In the future, we need to teach getTemplateSpecializationType to only 1160 // build the canonical type and return that to us. 1161 CanonType = Context.getCanonicalType(CanonType); 1162 } else if (ClassTemplateDecl *ClassTemplate 1163 = dyn_cast<ClassTemplateDecl>(Template)) { 1164 // Find the class template specialization declaration that 1165 // corresponds to these arguments. 1166 llvm::FoldingSetNodeID ID; 1167 ClassTemplateSpecializationDecl::Profile(ID, 1168 Converted.getFlatArguments(), 1169 Converted.flatSize(), 1170 Context); 1171 void *InsertPos = 0; 1172 ClassTemplateSpecializationDecl *Decl 1173 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1174 if (!Decl) { 1175 // This is the first time we have referenced this class template 1176 // specialization. Create the canonical declaration and add it to 1177 // the set of specializations. 1178 Decl = ClassTemplateSpecializationDecl::Create(Context, 1179 ClassTemplate->getDeclContext(), 1180 ClassTemplate->getLocation(), 1181 ClassTemplate, 1182 Converted, 0); 1183 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1184 Decl->setLexicalDeclContext(CurContext); 1185 } 1186 1187 CanonType = Context.getTypeDeclType(Decl); 1188 } 1189 1190 // Build the fully-sugared type for this class template 1191 // specialization, which refers back to the class template 1192 // specialization we created or found. 1193 //FIXME: Preserve type source info. 1194 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1195 NumTemplateArgs, CanonType); 1196} 1197 1198Action::TypeResult 1199Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1200 SourceLocation LAngleLoc, 1201 ASTTemplateArgsPtr TemplateArgsIn, 1202 SourceLocation *TemplateArgLocs, 1203 SourceLocation RAngleLoc) { 1204 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1205 1206 // Translate the parser's template argument list in our AST format. 1207 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1208 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1209 1210 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1211 TemplateArgs.data(), 1212 TemplateArgs.size(), 1213 RAngleLoc); 1214 TemplateArgsIn.release(); 1215 1216 if (Result.isNull()) 1217 return true; 1218 1219 return Result.getAsOpaquePtr(); 1220} 1221 1222Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1223 TagUseKind TUK, 1224 DeclSpec::TST TagSpec, 1225 SourceLocation TagLoc) { 1226 if (TypeResult.isInvalid()) 1227 return Sema::TypeResult(); 1228 1229 QualType Type = QualType::getFromOpaquePtr(TypeResult.get()); 1230 1231 // Verify the tag specifier. 1232 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1233 1234 if (const RecordType *RT = Type->getAs<RecordType>()) { 1235 RecordDecl *D = RT->getDecl(); 1236 1237 IdentifierInfo *Id = D->getIdentifier(); 1238 assert(Id && "templated class must have an identifier"); 1239 1240 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1241 Diag(TagLoc, diag::err_use_with_wrong_tag) 1242 << Type 1243 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1244 D->getKindName()); 1245 Diag(D->getLocation(), diag::note_previous_use); 1246 } 1247 } 1248 1249 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1250 1251 return ElabType.getAsOpaquePtr(); 1252} 1253 1254Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template, 1255 SourceLocation TemplateNameLoc, 1256 SourceLocation LAngleLoc, 1257 const TemplateArgument *TemplateArgs, 1258 unsigned NumTemplateArgs, 1259 SourceLocation RAngleLoc) { 1260 // FIXME: Can we do any checking at this point? I guess we could check the 1261 // template arguments that we have against the template name, if the template 1262 // name refers to a single template. That's not a terribly common case, 1263 // though. 1264 1265 // Cope with an implicit member access in a C++ non-static member function. 1266 NamedDecl *D = Template.getAsTemplateDecl(); 1267 if (!D) 1268 D = Template.getAsOverloadedFunctionDecl(); 1269 1270 QualType ThisType, MemberType; 1271 if (D && isImplicitMemberReference(/*FIXME:??*/0, D, TemplateNameLoc, 1272 ThisType, MemberType)) { 1273 Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType); 1274 return Owned(MemberExpr::Create(Context, This, true, 1275 /*FIXME:*/0, /*FIXME:*/SourceRange(), 1276 D, TemplateNameLoc, true, 1277 LAngleLoc, TemplateArgs, 1278 NumTemplateArgs, RAngleLoc, 1279 Context.OverloadTy)); 1280 } 1281 1282 return Owned(TemplateIdRefExpr::Create(Context, 1283 /*FIXME: New type?*/Context.OverloadTy, 1284 /*FIXME: Necessary?*/0, 1285 /*FIXME: Necessary?*/SourceRange(), 1286 Template, TemplateNameLoc, LAngleLoc, 1287 TemplateArgs, 1288 NumTemplateArgs, RAngleLoc)); 1289} 1290 1291Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD, 1292 SourceLocation TemplateNameLoc, 1293 SourceLocation LAngleLoc, 1294 ASTTemplateArgsPtr TemplateArgsIn, 1295 SourceLocation *TemplateArgLocs, 1296 SourceLocation RAngleLoc) { 1297 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1298 1299 // Translate the parser's template argument list in our AST format. 1300 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1301 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1302 TemplateArgsIn.release(); 1303 1304 return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc, 1305 TemplateArgs.data(), TemplateArgs.size(), 1306 RAngleLoc); 1307} 1308 1309Sema::OwningExprResult 1310Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base, 1311 SourceLocation OpLoc, 1312 tok::TokenKind OpKind, 1313 const CXXScopeSpec &SS, 1314 TemplateTy TemplateD, 1315 SourceLocation TemplateNameLoc, 1316 SourceLocation LAngleLoc, 1317 ASTTemplateArgsPtr TemplateArgsIn, 1318 SourceLocation *TemplateArgLocs, 1319 SourceLocation RAngleLoc) { 1320 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1321 1322 // FIXME: We're going to end up looking up the template based on its name, 1323 // twice! 1324 DeclarationName Name; 1325 if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl()) 1326 Name = ActualTemplate->getDeclName(); 1327 else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl()) 1328 Name = Ovl->getDeclName(); 1329 else 1330 Name = Template.getAsDependentTemplateName()->getName(); 1331 1332 // Translate the parser's template argument list in our AST format. 1333 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1334 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1335 TemplateArgsIn.release(); 1336 1337 // Do we have the save the actual template name? We might need it... 1338 return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc, 1339 Name, true, LAngleLoc, 1340 TemplateArgs.data(), TemplateArgs.size(), 1341 RAngleLoc, DeclPtrTy(), &SS); 1342} 1343 1344/// \brief Form a dependent template name. 1345/// 1346/// This action forms a dependent template name given the template 1347/// name and its (presumably dependent) scope specifier. For 1348/// example, given "MetaFun::template apply", the scope specifier \p 1349/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1350/// of the "template" keyword, and "apply" is the \p Name. 1351Sema::TemplateTy 1352Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1353 const IdentifierInfo &Name, 1354 SourceLocation NameLoc, 1355 const CXXScopeSpec &SS, 1356 TypeTy *ObjectType) { 1357 if ((ObjectType && 1358 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1359 (SS.isSet() && computeDeclContext(SS, false))) { 1360 // C++0x [temp.names]p5: 1361 // If a name prefixed by the keyword template is not the name of 1362 // a template, the program is ill-formed. [Note: the keyword 1363 // template may not be applied to non-template members of class 1364 // templates. -end note ] [ Note: as is the case with the 1365 // typename prefix, the template prefix is allowed in cases 1366 // where it is not strictly necessary; i.e., when the 1367 // nested-name-specifier or the expression on the left of the -> 1368 // or . is not dependent on a template-parameter, or the use 1369 // does not appear in the scope of a template. -end note] 1370 // 1371 // Note: C++03 was more strict here, because it banned the use of 1372 // the "template" keyword prior to a template-name that was not a 1373 // dependent name. C++ DR468 relaxed this requirement (the 1374 // "template" keyword is now permitted). We follow the C++0x 1375 // rules, even in C++03 mode, retroactively applying the DR. 1376 TemplateTy Template; 1377 TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType, 1378 false, Template); 1379 if (TNK == TNK_Non_template) { 1380 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1381 << &Name; 1382 return TemplateTy(); 1383 } 1384 1385 return Template; 1386 } 1387 1388 NestedNameSpecifier *Qualifier 1389 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1390 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name)); 1391} 1392 1393bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1394 const TemplateArgument &Arg, 1395 TemplateArgumentListBuilder &Converted) { 1396 // Check template type parameter. 1397 if (Arg.getKind() != TemplateArgument::Type) { 1398 // C++ [temp.arg.type]p1: 1399 // A template-argument for a template-parameter which is a 1400 // type shall be a type-id. 1401 1402 // We have a template type parameter but the template argument 1403 // is not a type. 1404 Diag(Arg.getLocation(), diag::err_template_arg_must_be_type); 1405 Diag(Param->getLocation(), diag::note_template_param_here); 1406 1407 return true; 1408 } 1409 1410 if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation())) 1411 return true; 1412 1413 // Add the converted template type argument. 1414 Converted.Append( 1415 TemplateArgument(Arg.getLocation(), 1416 Context.getCanonicalType(Arg.getAsType()))); 1417 return false; 1418} 1419 1420/// \brief Check that the given template argument list is well-formed 1421/// for specializing the given template. 1422bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1423 SourceLocation TemplateLoc, 1424 SourceLocation LAngleLoc, 1425 const TemplateArgument *TemplateArgs, 1426 unsigned NumTemplateArgs, 1427 SourceLocation RAngleLoc, 1428 bool PartialTemplateArgs, 1429 TemplateArgumentListBuilder &Converted) { 1430 TemplateParameterList *Params = Template->getTemplateParameters(); 1431 unsigned NumParams = Params->size(); 1432 unsigned NumArgs = NumTemplateArgs; 1433 bool Invalid = false; 1434 1435 bool HasParameterPack = 1436 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1437 1438 if ((NumArgs > NumParams && !HasParameterPack) || 1439 (NumArgs < Params->getMinRequiredArguments() && 1440 !PartialTemplateArgs)) { 1441 // FIXME: point at either the first arg beyond what we can handle, 1442 // or the '>', depending on whether we have too many or too few 1443 // arguments. 1444 SourceRange Range; 1445 if (NumArgs > NumParams) 1446 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1447 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1448 << (NumArgs > NumParams) 1449 << (isa<ClassTemplateDecl>(Template)? 0 : 1450 isa<FunctionTemplateDecl>(Template)? 1 : 1451 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1452 << Template << Range; 1453 Diag(Template->getLocation(), diag::note_template_decl_here) 1454 << Params->getSourceRange(); 1455 Invalid = true; 1456 } 1457 1458 // C++ [temp.arg]p1: 1459 // [...] The type and form of each template-argument specified in 1460 // a template-id shall match the type and form specified for the 1461 // corresponding parameter declared by the template in its 1462 // template-parameter-list. 1463 unsigned ArgIdx = 0; 1464 for (TemplateParameterList::iterator Param = Params->begin(), 1465 ParamEnd = Params->end(); 1466 Param != ParamEnd; ++Param, ++ArgIdx) { 1467 if (ArgIdx > NumArgs && PartialTemplateArgs) 1468 break; 1469 1470 // Decode the template argument 1471 TemplateArgument Arg; 1472 if (ArgIdx >= NumArgs) { 1473 // Retrieve the default template argument from the template 1474 // parameter. 1475 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1476 if (TTP->isParameterPack()) { 1477 // We have an empty argument pack. 1478 Converted.BeginPack(); 1479 Converted.EndPack(); 1480 break; 1481 } 1482 1483 if (!TTP->hasDefaultArgument()) 1484 break; 1485 1486 QualType ArgType = TTP->getDefaultArgument(); 1487 1488 // If the argument type is dependent, instantiate it now based 1489 // on the previously-computed template arguments. 1490 if (ArgType->isDependentType()) { 1491 InstantiatingTemplate Inst(*this, TemplateLoc, 1492 Template, Converted.getFlatArguments(), 1493 Converted.flatSize(), 1494 SourceRange(TemplateLoc, RAngleLoc)); 1495 1496 TemplateArgumentList TemplateArgs(Context, Converted, 1497 /*TakeArgs=*/false); 1498 ArgType = SubstType(ArgType, 1499 MultiLevelTemplateArgumentList(TemplateArgs), 1500 TTP->getDefaultArgumentLoc(), 1501 TTP->getDeclName()); 1502 } 1503 1504 if (ArgType.isNull()) 1505 return true; 1506 1507 Arg = TemplateArgument(TTP->getLocation(), ArgType); 1508 } else if (NonTypeTemplateParmDecl *NTTP 1509 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1510 if (!NTTP->hasDefaultArgument()) 1511 break; 1512 1513 InstantiatingTemplate Inst(*this, TemplateLoc, 1514 Template, Converted.getFlatArguments(), 1515 Converted.flatSize(), 1516 SourceRange(TemplateLoc, RAngleLoc)); 1517 1518 TemplateArgumentList TemplateArgs(Context, Converted, 1519 /*TakeArgs=*/false); 1520 1521 Sema::OwningExprResult E 1522 = SubstExpr(NTTP->getDefaultArgument(), 1523 MultiLevelTemplateArgumentList(TemplateArgs)); 1524 if (E.isInvalid()) 1525 return true; 1526 1527 Arg = TemplateArgument(E.takeAs<Expr>()); 1528 } else { 1529 TemplateTemplateParmDecl *TempParm 1530 = cast<TemplateTemplateParmDecl>(*Param); 1531 1532 if (!TempParm->hasDefaultArgument()) 1533 break; 1534 1535 // FIXME: Subst default argument 1536 Arg = TemplateArgument(TempParm->getDefaultArgument()); 1537 } 1538 } else { 1539 // Retrieve the template argument produced by the user. 1540 Arg = TemplateArgs[ArgIdx]; 1541 } 1542 1543 1544 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1545 if (TTP->isParameterPack()) { 1546 Converted.BeginPack(); 1547 // Check all the remaining arguments (if any). 1548 for (; ArgIdx < NumArgs; ++ArgIdx) { 1549 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1550 Invalid = true; 1551 } 1552 1553 Converted.EndPack(); 1554 } else { 1555 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1556 Invalid = true; 1557 } 1558 } else if (NonTypeTemplateParmDecl *NTTP 1559 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1560 // Check non-type template parameters. 1561 1562 // Do substitution on the type of the non-type template parameter 1563 // with the template arguments we've seen thus far. 1564 QualType NTTPType = NTTP->getType(); 1565 if (NTTPType->isDependentType()) { 1566 // Do substitution on the type of the non-type template parameter. 1567 InstantiatingTemplate Inst(*this, TemplateLoc, 1568 Template, Converted.getFlatArguments(), 1569 Converted.flatSize(), 1570 SourceRange(TemplateLoc, RAngleLoc)); 1571 1572 TemplateArgumentList TemplateArgs(Context, Converted, 1573 /*TakeArgs=*/false); 1574 NTTPType = SubstType(NTTPType, 1575 MultiLevelTemplateArgumentList(TemplateArgs), 1576 NTTP->getLocation(), 1577 NTTP->getDeclName()); 1578 // If that worked, check the non-type template parameter type 1579 // for validity. 1580 if (!NTTPType.isNull()) 1581 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1582 NTTP->getLocation()); 1583 if (NTTPType.isNull()) { 1584 Invalid = true; 1585 break; 1586 } 1587 } 1588 1589 switch (Arg.getKind()) { 1590 case TemplateArgument::Null: 1591 assert(false && "Should never see a NULL template argument here"); 1592 break; 1593 1594 case TemplateArgument::Expression: { 1595 Expr *E = Arg.getAsExpr(); 1596 TemplateArgument Result; 1597 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1598 Invalid = true; 1599 else 1600 Converted.Append(Result); 1601 break; 1602 } 1603 1604 case TemplateArgument::Declaration: 1605 case TemplateArgument::Integral: 1606 // We've already checked this template argument, so just copy 1607 // it to the list of converted arguments. 1608 Converted.Append(Arg); 1609 break; 1610 1611 case TemplateArgument::Type: 1612 // We have a non-type template parameter but the template 1613 // argument is a type. 1614 1615 // C++ [temp.arg]p2: 1616 // In a template-argument, an ambiguity between a type-id and 1617 // an expression is resolved to a type-id, regardless of the 1618 // form of the corresponding template-parameter. 1619 // 1620 // We warn specifically about this case, since it can be rather 1621 // confusing for users. 1622 if (Arg.getAsType()->isFunctionType()) 1623 Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig) 1624 << Arg.getAsType(); 1625 else 1626 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr); 1627 Diag((*Param)->getLocation(), diag::note_template_param_here); 1628 Invalid = true; 1629 break; 1630 1631 case TemplateArgument::Pack: 1632 assert(0 && "FIXME: Implement!"); 1633 break; 1634 } 1635 } else { 1636 // Check template template parameters. 1637 TemplateTemplateParmDecl *TempParm 1638 = cast<TemplateTemplateParmDecl>(*Param); 1639 1640 switch (Arg.getKind()) { 1641 case TemplateArgument::Null: 1642 assert(false && "Should never see a NULL template argument here"); 1643 break; 1644 1645 case TemplateArgument::Expression: { 1646 Expr *ArgExpr = Arg.getAsExpr(); 1647 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1648 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1649 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1650 Invalid = true; 1651 1652 // Add the converted template argument. 1653 Decl *D 1654 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1655 Converted.Append(TemplateArgument(Arg.getLocation(), D)); 1656 continue; 1657 } 1658 } 1659 // fall through 1660 1661 case TemplateArgument::Type: { 1662 // We have a template template parameter but the template 1663 // argument does not refer to a template. 1664 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1665 Invalid = true; 1666 break; 1667 } 1668 1669 case TemplateArgument::Declaration: 1670 // We've already checked this template argument, so just copy 1671 // it to the list of converted arguments. 1672 Converted.Append(Arg); 1673 break; 1674 1675 case TemplateArgument::Integral: 1676 assert(false && "Integral argument with template template parameter"); 1677 break; 1678 1679 case TemplateArgument::Pack: 1680 assert(0 && "FIXME: Implement!"); 1681 break; 1682 } 1683 } 1684 } 1685 1686 return Invalid; 1687} 1688 1689/// \brief Check a template argument against its corresponding 1690/// template type parameter. 1691/// 1692/// This routine implements the semantics of C++ [temp.arg.type]. It 1693/// returns true if an error occurred, and false otherwise. 1694bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1695 QualType Arg, SourceLocation ArgLoc) { 1696 // C++ [temp.arg.type]p2: 1697 // A local type, a type with no linkage, an unnamed type or a type 1698 // compounded from any of these types shall not be used as a 1699 // template-argument for a template type-parameter. 1700 // 1701 // FIXME: Perform the recursive and no-linkage type checks. 1702 const TagType *Tag = 0; 1703 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 1704 Tag = EnumT; 1705 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1706 Tag = RecordT; 1707 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) 1708 return Diag(ArgLoc, diag::err_template_arg_local_type) 1709 << QualType(Tag, 0); 1710 else if (Tag && !Tag->getDecl()->getDeclName() && 1711 !Tag->getDecl()->getTypedefForAnonDecl()) { 1712 Diag(ArgLoc, diag::err_template_arg_unnamed_type); 1713 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1714 return true; 1715 } 1716 1717 return false; 1718} 1719 1720/// \brief Checks whether the given template argument is the address 1721/// of an object or function according to C++ [temp.arg.nontype]p1. 1722bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1723 NamedDecl *&Entity) { 1724 bool Invalid = false; 1725 1726 // See through any implicit casts we added to fix the type. 1727 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1728 Arg = Cast->getSubExpr(); 1729 1730 // C++0x allows nullptr, and there's no further checking to be done for that. 1731 if (Arg->getType()->isNullPtrType()) 1732 return false; 1733 1734 // C++ [temp.arg.nontype]p1: 1735 // 1736 // A template-argument for a non-type, non-template 1737 // template-parameter shall be one of: [...] 1738 // 1739 // -- the address of an object or function with external 1740 // linkage, including function templates and function 1741 // template-ids but excluding non-static class members, 1742 // expressed as & id-expression where the & is optional if 1743 // the name refers to a function or array, or if the 1744 // corresponding template-parameter is a reference; or 1745 DeclRefExpr *DRE = 0; 1746 1747 // Ignore (and complain about) any excess parentheses. 1748 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1749 if (!Invalid) { 1750 Diag(Arg->getSourceRange().getBegin(), 1751 diag::err_template_arg_extra_parens) 1752 << Arg->getSourceRange(); 1753 Invalid = true; 1754 } 1755 1756 Arg = Parens->getSubExpr(); 1757 } 1758 1759 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1760 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1761 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1762 } else 1763 DRE = dyn_cast<DeclRefExpr>(Arg); 1764 1765 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1766 return Diag(Arg->getSourceRange().getBegin(), 1767 diag::err_template_arg_not_object_or_func_form) 1768 << Arg->getSourceRange(); 1769 1770 // Cannot refer to non-static data members 1771 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1772 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1773 << Field << Arg->getSourceRange(); 1774 1775 // Cannot refer to non-static member functions 1776 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1777 if (!Method->isStatic()) 1778 return Diag(Arg->getSourceRange().getBegin(), 1779 diag::err_template_arg_method) 1780 << Method << Arg->getSourceRange(); 1781 1782 // Functions must have external linkage. 1783 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1784 if (Func->getStorageClass() == FunctionDecl::Static) { 1785 Diag(Arg->getSourceRange().getBegin(), 1786 diag::err_template_arg_function_not_extern) 1787 << Func << Arg->getSourceRange(); 1788 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1789 << true; 1790 return true; 1791 } 1792 1793 // Okay: we've named a function with external linkage. 1794 Entity = Func; 1795 return Invalid; 1796 } 1797 1798 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1799 if (!Var->hasGlobalStorage()) { 1800 Diag(Arg->getSourceRange().getBegin(), 1801 diag::err_template_arg_object_not_extern) 1802 << Var << Arg->getSourceRange(); 1803 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1804 << true; 1805 return true; 1806 } 1807 1808 // Okay: we've named an object with external linkage 1809 Entity = Var; 1810 return Invalid; 1811 } 1812 1813 // We found something else, but we don't know specifically what it is. 1814 Diag(Arg->getSourceRange().getBegin(), 1815 diag::err_template_arg_not_object_or_func) 1816 << Arg->getSourceRange(); 1817 Diag(DRE->getDecl()->getLocation(), 1818 diag::note_template_arg_refers_here); 1819 return true; 1820} 1821 1822/// \brief Checks whether the given template argument is a pointer to 1823/// member constant according to C++ [temp.arg.nontype]p1. 1824bool 1825Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1826 bool Invalid = false; 1827 1828 // See through any implicit casts we added to fix the type. 1829 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1830 Arg = Cast->getSubExpr(); 1831 1832 // C++0x allows nullptr, and there's no further checking to be done for that. 1833 if (Arg->getType()->isNullPtrType()) 1834 return false; 1835 1836 // C++ [temp.arg.nontype]p1: 1837 // 1838 // A template-argument for a non-type, non-template 1839 // template-parameter shall be one of: [...] 1840 // 1841 // -- a pointer to member expressed as described in 5.3.1. 1842 QualifiedDeclRefExpr *DRE = 0; 1843 1844 // Ignore (and complain about) any excess parentheses. 1845 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1846 if (!Invalid) { 1847 Diag(Arg->getSourceRange().getBegin(), 1848 diag::err_template_arg_extra_parens) 1849 << Arg->getSourceRange(); 1850 Invalid = true; 1851 } 1852 1853 Arg = Parens->getSubExpr(); 1854 } 1855 1856 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1857 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1858 DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr()); 1859 1860 if (!DRE) 1861 return Diag(Arg->getSourceRange().getBegin(), 1862 diag::err_template_arg_not_pointer_to_member_form) 1863 << Arg->getSourceRange(); 1864 1865 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1866 assert((isa<FieldDecl>(DRE->getDecl()) || 1867 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1868 "Only non-static member pointers can make it here"); 1869 1870 // Okay: this is the address of a non-static member, and therefore 1871 // a member pointer constant. 1872 Member = DRE->getDecl(); 1873 return Invalid; 1874 } 1875 1876 // We found something else, but we don't know specifically what it is. 1877 Diag(Arg->getSourceRange().getBegin(), 1878 diag::err_template_arg_not_pointer_to_member_form) 1879 << Arg->getSourceRange(); 1880 Diag(DRE->getDecl()->getLocation(), 1881 diag::note_template_arg_refers_here); 1882 return true; 1883} 1884 1885/// \brief Check a template argument against its corresponding 1886/// non-type template parameter. 1887/// 1888/// This routine implements the semantics of C++ [temp.arg.nontype]. 1889/// It returns true if an error occurred, and false otherwise. \p 1890/// InstantiatedParamType is the type of the non-type template 1891/// parameter after it has been instantiated. 1892/// 1893/// If no error was detected, Converted receives the converted template argument. 1894bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1895 QualType InstantiatedParamType, Expr *&Arg, 1896 TemplateArgument &Converted) { 1897 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1898 1899 // If either the parameter has a dependent type or the argument is 1900 // type-dependent, there's nothing we can check now. 1901 // FIXME: Add template argument to Converted! 1902 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1903 // FIXME: Produce a cloned, canonical expression? 1904 Converted = TemplateArgument(Arg); 1905 return false; 1906 } 1907 1908 // C++ [temp.arg.nontype]p5: 1909 // The following conversions are performed on each expression used 1910 // as a non-type template-argument. If a non-type 1911 // template-argument cannot be converted to the type of the 1912 // corresponding template-parameter then the program is 1913 // ill-formed. 1914 // 1915 // -- for a non-type template-parameter of integral or 1916 // enumeration type, integral promotions (4.5) and integral 1917 // conversions (4.7) are applied. 1918 QualType ParamType = InstantiatedParamType; 1919 QualType ArgType = Arg->getType(); 1920 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1921 // C++ [temp.arg.nontype]p1: 1922 // A template-argument for a non-type, non-template 1923 // template-parameter shall be one of: 1924 // 1925 // -- an integral constant-expression of integral or enumeration 1926 // type; or 1927 // -- the name of a non-type template-parameter; or 1928 SourceLocation NonConstantLoc; 1929 llvm::APSInt Value; 1930 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1931 Diag(Arg->getSourceRange().getBegin(), 1932 diag::err_template_arg_not_integral_or_enumeral) 1933 << ArgType << Arg->getSourceRange(); 1934 Diag(Param->getLocation(), diag::note_template_param_here); 1935 return true; 1936 } else if (!Arg->isValueDependent() && 1937 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1938 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1939 << ArgType << Arg->getSourceRange(); 1940 return true; 1941 } 1942 1943 // FIXME: We need some way to more easily get the unqualified form 1944 // of the types without going all the way to the 1945 // canonical type. 1946 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1947 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1948 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1949 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1950 1951 // Try to convert the argument to the parameter's type. 1952 if (ParamType == ArgType) { 1953 // Okay: no conversion necessary 1954 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 1955 !ParamType->isEnumeralType()) { 1956 // This is an integral promotion or conversion. 1957 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 1958 } else { 1959 // We can't perform this conversion. 1960 Diag(Arg->getSourceRange().getBegin(), 1961 diag::err_template_arg_not_convertible) 1962 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1963 Diag(Param->getLocation(), diag::note_template_param_here); 1964 return true; 1965 } 1966 1967 QualType IntegerType = Context.getCanonicalType(ParamType); 1968 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 1969 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 1970 1971 if (!Arg->isValueDependent()) { 1972 // Check that an unsigned parameter does not receive a negative 1973 // value. 1974 if (IntegerType->isUnsignedIntegerType() 1975 && (Value.isSigned() && Value.isNegative())) { 1976 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 1977 << Value.toString(10) << Param->getType() 1978 << Arg->getSourceRange(); 1979 Diag(Param->getLocation(), diag::note_template_param_here); 1980 return true; 1981 } 1982 1983 // Check that we don't overflow the template parameter type. 1984 unsigned AllowedBits = Context.getTypeSize(IntegerType); 1985 if (Value.getActiveBits() > AllowedBits) { 1986 Diag(Arg->getSourceRange().getBegin(), 1987 diag::err_template_arg_too_large) 1988 << Value.toString(10) << Param->getType() 1989 << Arg->getSourceRange(); 1990 Diag(Param->getLocation(), diag::note_template_param_here); 1991 return true; 1992 } 1993 1994 if (Value.getBitWidth() != AllowedBits) 1995 Value.extOrTrunc(AllowedBits); 1996 Value.setIsSigned(IntegerType->isSignedIntegerType()); 1997 } 1998 1999 // Add the value of this argument to the list of converted 2000 // arguments. We use the bitwidth and signedness of the template 2001 // parameter. 2002 if (Arg->isValueDependent()) { 2003 // The argument is value-dependent. Create a new 2004 // TemplateArgument with the converted expression. 2005 Converted = TemplateArgument(Arg); 2006 return false; 2007 } 2008 2009 Converted = TemplateArgument(StartLoc, Value, 2010 ParamType->isEnumeralType() ? ParamType 2011 : IntegerType); 2012 return false; 2013 } 2014 2015 // Handle pointer-to-function, reference-to-function, and 2016 // pointer-to-member-function all in (roughly) the same way. 2017 if (// -- For a non-type template-parameter of type pointer to 2018 // function, only the function-to-pointer conversion (4.3) is 2019 // applied. If the template-argument represents a set of 2020 // overloaded functions (or a pointer to such), the matching 2021 // function is selected from the set (13.4). 2022 // In C++0x, any std::nullptr_t value can be converted. 2023 (ParamType->isPointerType() && 2024 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2025 // -- For a non-type template-parameter of type reference to 2026 // function, no conversions apply. If the template-argument 2027 // represents a set of overloaded functions, the matching 2028 // function is selected from the set (13.4). 2029 (ParamType->isReferenceType() && 2030 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2031 // -- For a non-type template-parameter of type pointer to 2032 // member function, no conversions apply. If the 2033 // template-argument represents a set of overloaded member 2034 // functions, the matching member function is selected from 2035 // the set (13.4). 2036 // Again, C++0x allows a std::nullptr_t value. 2037 (ParamType->isMemberPointerType() && 2038 ParamType->getAs<MemberPointerType>()->getPointeeType() 2039 ->isFunctionType())) { 2040 if (Context.hasSameUnqualifiedType(ArgType, 2041 ParamType.getNonReferenceType())) { 2042 // We don't have to do anything: the types already match. 2043 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2044 ParamType->isMemberPointerType())) { 2045 ArgType = ParamType; 2046 if (ParamType->isMemberPointerType()) 2047 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2048 else 2049 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2050 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2051 ArgType = Context.getPointerType(ArgType); 2052 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2053 } else if (FunctionDecl *Fn 2054 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2055 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2056 return true; 2057 2058 Arg = FixOverloadedFunctionReference(Arg, Fn); 2059 ArgType = Arg->getType(); 2060 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2061 ArgType = Context.getPointerType(Arg->getType()); 2062 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2063 } 2064 } 2065 2066 if (!Context.hasSameUnqualifiedType(ArgType, 2067 ParamType.getNonReferenceType())) { 2068 // We can't perform this conversion. 2069 Diag(Arg->getSourceRange().getBegin(), 2070 diag::err_template_arg_not_convertible) 2071 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2072 Diag(Param->getLocation(), diag::note_template_param_here); 2073 return true; 2074 } 2075 2076 if (ParamType->isMemberPointerType()) { 2077 NamedDecl *Member = 0; 2078 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2079 return true; 2080 2081 if (Member) 2082 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2083 Converted = TemplateArgument(StartLoc, Member); 2084 return false; 2085 } 2086 2087 NamedDecl *Entity = 0; 2088 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2089 return true; 2090 2091 if (Entity) 2092 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2093 Converted = TemplateArgument(StartLoc, Entity); 2094 return false; 2095 } 2096 2097 if (ParamType->isPointerType()) { 2098 // -- for a non-type template-parameter of type pointer to 2099 // object, qualification conversions (4.4) and the 2100 // array-to-pointer conversion (4.2) are applied. 2101 // C++0x also allows a value of std::nullptr_t. 2102 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2103 "Only object pointers allowed here"); 2104 2105 if (ArgType->isNullPtrType()) { 2106 ArgType = ParamType; 2107 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2108 } else if (ArgType->isArrayType()) { 2109 ArgType = Context.getArrayDecayedType(ArgType); 2110 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2111 } 2112 2113 if (IsQualificationConversion(ArgType, ParamType)) { 2114 ArgType = ParamType; 2115 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2116 } 2117 2118 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2119 // We can't perform this conversion. 2120 Diag(Arg->getSourceRange().getBegin(), 2121 diag::err_template_arg_not_convertible) 2122 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2123 Diag(Param->getLocation(), diag::note_template_param_here); 2124 return true; 2125 } 2126 2127 NamedDecl *Entity = 0; 2128 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2129 return true; 2130 2131 if (Entity) 2132 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2133 Converted = TemplateArgument(StartLoc, Entity); 2134 return false; 2135 } 2136 2137 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2138 // -- For a non-type template-parameter of type reference to 2139 // object, no conversions apply. The type referred to by the 2140 // reference may be more cv-qualified than the (otherwise 2141 // identical) type of the template-argument. The 2142 // template-parameter is bound directly to the 2143 // template-argument, which must be an lvalue. 2144 assert(ParamRefType->getPointeeType()->isObjectType() && 2145 "Only object references allowed here"); 2146 2147 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2148 Diag(Arg->getSourceRange().getBegin(), 2149 diag::err_template_arg_no_ref_bind) 2150 << InstantiatedParamType << Arg->getType() 2151 << Arg->getSourceRange(); 2152 Diag(Param->getLocation(), diag::note_template_param_here); 2153 return true; 2154 } 2155 2156 unsigned ParamQuals 2157 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2158 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2159 2160 if ((ParamQuals | ArgQuals) != ParamQuals) { 2161 Diag(Arg->getSourceRange().getBegin(), 2162 diag::err_template_arg_ref_bind_ignores_quals) 2163 << InstantiatedParamType << Arg->getType() 2164 << Arg->getSourceRange(); 2165 Diag(Param->getLocation(), diag::note_template_param_here); 2166 return true; 2167 } 2168 2169 NamedDecl *Entity = 0; 2170 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2171 return true; 2172 2173 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2174 Converted = TemplateArgument(StartLoc, Entity); 2175 return false; 2176 } 2177 2178 // -- For a non-type template-parameter of type pointer to data 2179 // member, qualification conversions (4.4) are applied. 2180 // C++0x allows std::nullptr_t values. 2181 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2182 2183 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2184 // Types match exactly: nothing more to do here. 2185 } else if (ArgType->isNullPtrType()) { 2186 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2187 } else if (IsQualificationConversion(ArgType, ParamType)) { 2188 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2189 } else { 2190 // We can't perform this conversion. 2191 Diag(Arg->getSourceRange().getBegin(), 2192 diag::err_template_arg_not_convertible) 2193 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2194 Diag(Param->getLocation(), diag::note_template_param_here); 2195 return true; 2196 } 2197 2198 NamedDecl *Member = 0; 2199 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2200 return true; 2201 2202 if (Member) 2203 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2204 Converted = TemplateArgument(StartLoc, Member); 2205 return false; 2206} 2207 2208/// \brief Check a template argument against its corresponding 2209/// template template parameter. 2210/// 2211/// This routine implements the semantics of C++ [temp.arg.template]. 2212/// It returns true if an error occurred, and false otherwise. 2213bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2214 DeclRefExpr *Arg) { 2215 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 2216 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 2217 2218 // C++ [temp.arg.template]p1: 2219 // A template-argument for a template template-parameter shall be 2220 // the name of a class template, expressed as id-expression. Only 2221 // primary class templates are considered when matching the 2222 // template template argument with the corresponding parameter; 2223 // partial specializations are not considered even if their 2224 // parameter lists match that of the template template parameter. 2225 // 2226 // Note that we also allow template template parameters here, which 2227 // will happen when we are dealing with, e.g., class template 2228 // partial specializations. 2229 if (!isa<ClassTemplateDecl>(Template) && 2230 !isa<TemplateTemplateParmDecl>(Template)) { 2231 assert(isa<FunctionTemplateDecl>(Template) && 2232 "Only function templates are possible here"); 2233 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 2234 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2235 << Template; 2236 } 2237 2238 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2239 Param->getTemplateParameters(), 2240 true, true, 2241 Arg->getSourceRange().getBegin()); 2242} 2243 2244/// \brief Determine whether the given template parameter lists are 2245/// equivalent. 2246/// 2247/// \param New The new template parameter list, typically written in the 2248/// source code as part of a new template declaration. 2249/// 2250/// \param Old The old template parameter list, typically found via 2251/// name lookup of the template declared with this template parameter 2252/// list. 2253/// 2254/// \param Complain If true, this routine will produce a diagnostic if 2255/// the template parameter lists are not equivalent. 2256/// 2257/// \param IsTemplateTemplateParm If true, this routine is being 2258/// called to compare the template parameter lists of a template 2259/// template parameter. 2260/// 2261/// \param TemplateArgLoc If this source location is valid, then we 2262/// are actually checking the template parameter list of a template 2263/// argument (New) against the template parameter list of its 2264/// corresponding template template parameter (Old). We produce 2265/// slightly different diagnostics in this scenario. 2266/// 2267/// \returns True if the template parameter lists are equal, false 2268/// otherwise. 2269bool 2270Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2271 TemplateParameterList *Old, 2272 bool Complain, 2273 bool IsTemplateTemplateParm, 2274 SourceLocation TemplateArgLoc) { 2275 if (Old->size() != New->size()) { 2276 if (Complain) { 2277 unsigned NextDiag = diag::err_template_param_list_different_arity; 2278 if (TemplateArgLoc.isValid()) { 2279 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2280 NextDiag = diag::note_template_param_list_different_arity; 2281 } 2282 Diag(New->getTemplateLoc(), NextDiag) 2283 << (New->size() > Old->size()) 2284 << IsTemplateTemplateParm 2285 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2286 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2287 << IsTemplateTemplateParm 2288 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2289 } 2290 2291 return false; 2292 } 2293 2294 for (TemplateParameterList::iterator OldParm = Old->begin(), 2295 OldParmEnd = Old->end(), NewParm = New->begin(); 2296 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2297 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2298 if (Complain) { 2299 unsigned NextDiag = diag::err_template_param_different_kind; 2300 if (TemplateArgLoc.isValid()) { 2301 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2302 NextDiag = diag::note_template_param_different_kind; 2303 } 2304 Diag((*NewParm)->getLocation(), NextDiag) 2305 << IsTemplateTemplateParm; 2306 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2307 << IsTemplateTemplateParm; 2308 } 2309 return false; 2310 } 2311 2312 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2313 // Okay; all template type parameters are equivalent (since we 2314 // know we're at the same index). 2315#if 0 2316 // FIXME: Enable this code in debug mode *after* we properly go through 2317 // and "instantiate" the template parameter lists of template template 2318 // parameters. It's only after this instantiation that (1) any dependent 2319 // types within the template parameter list of the template template 2320 // parameter can be checked, and (2) the template type parameter depths 2321 // will match up. 2322 QualType OldParmType 2323 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2324 QualType NewParmType 2325 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2326 assert(Context.getCanonicalType(OldParmType) == 2327 Context.getCanonicalType(NewParmType) && 2328 "type parameter mismatch?"); 2329#endif 2330 } else if (NonTypeTemplateParmDecl *OldNTTP 2331 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2332 // The types of non-type template parameters must agree. 2333 NonTypeTemplateParmDecl *NewNTTP 2334 = cast<NonTypeTemplateParmDecl>(*NewParm); 2335 if (Context.getCanonicalType(OldNTTP->getType()) != 2336 Context.getCanonicalType(NewNTTP->getType())) { 2337 if (Complain) { 2338 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2339 if (TemplateArgLoc.isValid()) { 2340 Diag(TemplateArgLoc, 2341 diag::err_template_arg_template_params_mismatch); 2342 NextDiag = diag::note_template_nontype_parm_different_type; 2343 } 2344 Diag(NewNTTP->getLocation(), NextDiag) 2345 << NewNTTP->getType() 2346 << IsTemplateTemplateParm; 2347 Diag(OldNTTP->getLocation(), 2348 diag::note_template_nontype_parm_prev_declaration) 2349 << OldNTTP->getType(); 2350 } 2351 return false; 2352 } 2353 } else { 2354 // The template parameter lists of template template 2355 // parameters must agree. 2356 // FIXME: Could we perform a faster "type" comparison here? 2357 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2358 "Only template template parameters handled here"); 2359 TemplateTemplateParmDecl *OldTTP 2360 = cast<TemplateTemplateParmDecl>(*OldParm); 2361 TemplateTemplateParmDecl *NewTTP 2362 = cast<TemplateTemplateParmDecl>(*NewParm); 2363 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2364 OldTTP->getTemplateParameters(), 2365 Complain, 2366 /*IsTemplateTemplateParm=*/true, 2367 TemplateArgLoc)) 2368 return false; 2369 } 2370 } 2371 2372 return true; 2373} 2374 2375/// \brief Check whether a template can be declared within this scope. 2376/// 2377/// If the template declaration is valid in this scope, returns 2378/// false. Otherwise, issues a diagnostic and returns true. 2379bool 2380Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2381 // Find the nearest enclosing declaration scope. 2382 while ((S->getFlags() & Scope::DeclScope) == 0 || 2383 (S->getFlags() & Scope::TemplateParamScope) != 0) 2384 S = S->getParent(); 2385 2386 // C++ [temp]p2: 2387 // A template-declaration can appear only as a namespace scope or 2388 // class scope declaration. 2389 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2390 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2391 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2392 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2393 << TemplateParams->getSourceRange(); 2394 2395 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2396 Ctx = Ctx->getParent(); 2397 2398 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2399 return false; 2400 2401 return Diag(TemplateParams->getTemplateLoc(), 2402 diag::err_template_outside_namespace_or_class_scope) 2403 << TemplateParams->getSourceRange(); 2404} 2405 2406/// \brief Determine what kind of template specialization the given declaration 2407/// is. 2408static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2409 if (!D) 2410 return TSK_Undeclared; 2411 2412 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2413 return Record->getTemplateSpecializationKind(); 2414 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2415 return Function->getTemplateSpecializationKind(); 2416 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2417 return Var->getTemplateSpecializationKind(); 2418 2419 return TSK_Undeclared; 2420} 2421 2422/// \brief Check whether a specialization is well-formed in the current 2423/// context. 2424/// 2425/// This routine determines whether a template specialization can be declared 2426/// in the current context (C++ [temp.expl.spec]p2). 2427/// 2428/// \param S the semantic analysis object for which this check is being 2429/// performed. 2430/// 2431/// \param Specialized the entity being specialized or instantiated, which 2432/// may be a kind of template (class template, function template, etc.) or 2433/// a member of a class template (member function, static data member, 2434/// member class). 2435/// 2436/// \param PrevDecl the previous declaration of this entity, if any. 2437/// 2438/// \param Loc the location of the explicit specialization or instantiation of 2439/// this entity. 2440/// 2441/// \param IsPartialSpecialization whether this is a partial specialization of 2442/// a class template. 2443/// 2444/// \returns true if there was an error that we cannot recover from, false 2445/// otherwise. 2446static bool CheckTemplateSpecializationScope(Sema &S, 2447 NamedDecl *Specialized, 2448 NamedDecl *PrevDecl, 2449 SourceLocation Loc, 2450 bool IsPartialSpecialization) { 2451 // Keep these "kind" numbers in sync with the %select statements in the 2452 // various diagnostics emitted by this routine. 2453 int EntityKind = 0; 2454 bool isTemplateSpecialization = false; 2455 if (isa<ClassTemplateDecl>(Specialized)) { 2456 EntityKind = IsPartialSpecialization? 1 : 0; 2457 isTemplateSpecialization = true; 2458 } else if (isa<FunctionTemplateDecl>(Specialized)) { 2459 EntityKind = 2; 2460 isTemplateSpecialization = true; 2461 } else if (isa<CXXMethodDecl>(Specialized)) 2462 EntityKind = 3; 2463 else if (isa<VarDecl>(Specialized)) 2464 EntityKind = 4; 2465 else if (isa<RecordDecl>(Specialized)) 2466 EntityKind = 5; 2467 else { 2468 S.Diag(Loc, diag::err_template_spec_unknown_kind); 2469 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2470 return true; 2471 } 2472 2473 // C++ [temp.expl.spec]p2: 2474 // An explicit specialization shall be declared in the namespace 2475 // of which the template is a member, or, for member templates, in 2476 // the namespace of which the enclosing class or enclosing class 2477 // template is a member. An explicit specialization of a member 2478 // function, member class or static data member of a class 2479 // template shall be declared in the namespace of which the class 2480 // template is a member. Such a declaration may also be a 2481 // definition. If the declaration is not a definition, the 2482 // specialization may be defined later in the name- space in which 2483 // the explicit specialization was declared, or in a namespace 2484 // that encloses the one in which the explicit specialization was 2485 // declared. 2486 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 2487 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 2488 << Specialized; 2489 return true; 2490 } 2491 2492 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 2493 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 2494 << Specialized; 2495 return true; 2496 } 2497 2498 // C++ [temp.class.spec]p6: 2499 // A class template partial specialization may be declared or redeclared 2500 // in any namespace scope in which its definition may be defined (14.5.1 2501 // and 14.5.2). 2502 bool ComplainedAboutScope = false; 2503 DeclContext *SpecializedContext 2504 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 2505 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 2506 if ((!PrevDecl || 2507 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 2508 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 2509 // There is no prior declaration of this entity, so this 2510 // specialization must be in the same context as the template 2511 // itself. 2512 if (!DC->Equals(SpecializedContext)) { 2513 if (isa<TranslationUnitDecl>(SpecializedContext)) 2514 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 2515 << EntityKind << Specialized; 2516 else if (isa<NamespaceDecl>(SpecializedContext)) 2517 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 2518 << EntityKind << Specialized 2519 << cast<NamedDecl>(SpecializedContext); 2520 2521 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2522 ComplainedAboutScope = true; 2523 } 2524 } 2525 2526 // Make sure that this redeclaration (or definition) occurs in an enclosing 2527 // namespace. 2528 // Note that HandleDeclarator() performs this check for explicit 2529 // specializations of function templates, static data members, and member 2530 // functions, so we skip the check here for those kinds of entities. 2531 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 2532 // Should we refactor that check, so that it occurs later? 2533 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 2534 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 2535 isa<FunctionDecl>(Specialized))) { 2536 if (isa<TranslationUnitDecl>(SpecializedContext)) 2537 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 2538 << EntityKind << Specialized; 2539 else if (isa<NamespaceDecl>(SpecializedContext)) 2540 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 2541 << EntityKind << Specialized 2542 << cast<NamedDecl>(SpecializedContext); 2543 2544 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2545 } 2546 2547 // FIXME: check for specialization-after-instantiation errors and such. 2548 2549 return false; 2550} 2551 2552/// \brief Check the non-type template arguments of a class template 2553/// partial specialization according to C++ [temp.class.spec]p9. 2554/// 2555/// \param TemplateParams the template parameters of the primary class 2556/// template. 2557/// 2558/// \param TemplateArg the template arguments of the class template 2559/// partial specialization. 2560/// 2561/// \param MirrorsPrimaryTemplate will be set true if the class 2562/// template partial specialization arguments are identical to the 2563/// implicit template arguments of the primary template. This is not 2564/// necessarily an error (C++0x), and it is left to the caller to diagnose 2565/// this condition when it is an error. 2566/// 2567/// \returns true if there was an error, false otherwise. 2568bool Sema::CheckClassTemplatePartialSpecializationArgs( 2569 TemplateParameterList *TemplateParams, 2570 const TemplateArgumentListBuilder &TemplateArgs, 2571 bool &MirrorsPrimaryTemplate) { 2572 // FIXME: the interface to this function will have to change to 2573 // accommodate variadic templates. 2574 MirrorsPrimaryTemplate = true; 2575 2576 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2577 2578 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2579 // Determine whether the template argument list of the partial 2580 // specialization is identical to the implicit argument list of 2581 // the primary template. The caller may need to diagnostic this as 2582 // an error per C++ [temp.class.spec]p9b3. 2583 if (MirrorsPrimaryTemplate) { 2584 if (TemplateTypeParmDecl *TTP 2585 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2586 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2587 Context.getCanonicalType(ArgList[I].getAsType())) 2588 MirrorsPrimaryTemplate = false; 2589 } else if (TemplateTemplateParmDecl *TTP 2590 = dyn_cast<TemplateTemplateParmDecl>( 2591 TemplateParams->getParam(I))) { 2592 // FIXME: We should settle on either Declaration storage or 2593 // Expression storage for template template parameters. 2594 TemplateTemplateParmDecl *ArgDecl 2595 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2596 ArgList[I].getAsDecl()); 2597 if (!ArgDecl) 2598 if (DeclRefExpr *DRE 2599 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2600 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2601 2602 if (!ArgDecl || 2603 ArgDecl->getIndex() != TTP->getIndex() || 2604 ArgDecl->getDepth() != TTP->getDepth()) 2605 MirrorsPrimaryTemplate = false; 2606 } 2607 } 2608 2609 NonTypeTemplateParmDecl *Param 2610 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2611 if (!Param) { 2612 continue; 2613 } 2614 2615 Expr *ArgExpr = ArgList[I].getAsExpr(); 2616 if (!ArgExpr) { 2617 MirrorsPrimaryTemplate = false; 2618 continue; 2619 } 2620 2621 // C++ [temp.class.spec]p8: 2622 // A non-type argument is non-specialized if it is the name of a 2623 // non-type parameter. All other non-type arguments are 2624 // specialized. 2625 // 2626 // Below, we check the two conditions that only apply to 2627 // specialized non-type arguments, so skip any non-specialized 2628 // arguments. 2629 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2630 if (NonTypeTemplateParmDecl *NTTP 2631 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2632 if (MirrorsPrimaryTemplate && 2633 (Param->getIndex() != NTTP->getIndex() || 2634 Param->getDepth() != NTTP->getDepth())) 2635 MirrorsPrimaryTemplate = false; 2636 2637 continue; 2638 } 2639 2640 // C++ [temp.class.spec]p9: 2641 // Within the argument list of a class template partial 2642 // specialization, the following restrictions apply: 2643 // -- A partially specialized non-type argument expression 2644 // shall not involve a template parameter of the partial 2645 // specialization except when the argument expression is a 2646 // simple identifier. 2647 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2648 Diag(ArgExpr->getLocStart(), 2649 diag::err_dependent_non_type_arg_in_partial_spec) 2650 << ArgExpr->getSourceRange(); 2651 return true; 2652 } 2653 2654 // -- The type of a template parameter corresponding to a 2655 // specialized non-type argument shall not be dependent on a 2656 // parameter of the specialization. 2657 if (Param->getType()->isDependentType()) { 2658 Diag(ArgExpr->getLocStart(), 2659 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2660 << Param->getType() 2661 << ArgExpr->getSourceRange(); 2662 Diag(Param->getLocation(), diag::note_template_param_here); 2663 return true; 2664 } 2665 2666 MirrorsPrimaryTemplate = false; 2667 } 2668 2669 return false; 2670} 2671 2672Sema::DeclResult 2673Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2674 TagUseKind TUK, 2675 SourceLocation KWLoc, 2676 const CXXScopeSpec &SS, 2677 TemplateTy TemplateD, 2678 SourceLocation TemplateNameLoc, 2679 SourceLocation LAngleLoc, 2680 ASTTemplateArgsPtr TemplateArgsIn, 2681 SourceLocation *TemplateArgLocs, 2682 SourceLocation RAngleLoc, 2683 AttributeList *Attr, 2684 MultiTemplateParamsArg TemplateParameterLists) { 2685 assert(TUK != TUK_Reference && "References are not specializations"); 2686 2687 // Find the class template we're specializing 2688 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2689 ClassTemplateDecl *ClassTemplate 2690 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2691 2692 bool isExplicitSpecialization = false; 2693 bool isPartialSpecialization = false; 2694 2695 // Check the validity of the template headers that introduce this 2696 // template. 2697 // FIXME: We probably shouldn't complain about these headers for 2698 // friend declarations. 2699 TemplateParameterList *TemplateParams 2700 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2701 (TemplateParameterList**)TemplateParameterLists.get(), 2702 TemplateParameterLists.size(), 2703 isExplicitSpecialization); 2704 if (TemplateParams && TemplateParams->size() > 0) { 2705 isPartialSpecialization = true; 2706 2707 // C++ [temp.class.spec]p10: 2708 // The template parameter list of a specialization shall not 2709 // contain default template argument values. 2710 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2711 Decl *Param = TemplateParams->getParam(I); 2712 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2713 if (TTP->hasDefaultArgument()) { 2714 Diag(TTP->getDefaultArgumentLoc(), 2715 diag::err_default_arg_in_partial_spec); 2716 TTP->setDefaultArgument(QualType(), SourceLocation(), false); 2717 } 2718 } else if (NonTypeTemplateParmDecl *NTTP 2719 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2720 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2721 Diag(NTTP->getDefaultArgumentLoc(), 2722 diag::err_default_arg_in_partial_spec) 2723 << DefArg->getSourceRange(); 2724 NTTP->setDefaultArgument(0); 2725 DefArg->Destroy(Context); 2726 } 2727 } else { 2728 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2729 if (Expr *DefArg = TTP->getDefaultArgument()) { 2730 Diag(TTP->getDefaultArgumentLoc(), 2731 diag::err_default_arg_in_partial_spec) 2732 << DefArg->getSourceRange(); 2733 TTP->setDefaultArgument(0); 2734 DefArg->Destroy(Context); 2735 } 2736 } 2737 } 2738 } else if (TemplateParams) { 2739 if (TUK == TUK_Friend) 2740 Diag(KWLoc, diag::err_template_spec_friend) 2741 << CodeModificationHint::CreateRemoval( 2742 SourceRange(TemplateParams->getTemplateLoc(), 2743 TemplateParams->getRAngleLoc())) 2744 << SourceRange(LAngleLoc, RAngleLoc); 2745 else 2746 isExplicitSpecialization = true; 2747 } else if (TUK != TUK_Friend) { 2748 Diag(KWLoc, diag::err_template_spec_needs_header) 2749 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2750 isExplicitSpecialization = true; 2751 } 2752 2753 // Check that the specialization uses the same tag kind as the 2754 // original template. 2755 TagDecl::TagKind Kind; 2756 switch (TagSpec) { 2757 default: assert(0 && "Unknown tag type!"); 2758 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2759 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2760 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2761 } 2762 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2763 Kind, KWLoc, 2764 *ClassTemplate->getIdentifier())) { 2765 Diag(KWLoc, diag::err_use_with_wrong_tag) 2766 << ClassTemplate 2767 << CodeModificationHint::CreateReplacement(KWLoc, 2768 ClassTemplate->getTemplatedDecl()->getKindName()); 2769 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2770 diag::note_previous_use); 2771 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2772 } 2773 2774 // Translate the parser's template argument list in our AST format. 2775 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2776 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2777 2778 // Check that the template argument list is well-formed for this 2779 // template. 2780 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2781 TemplateArgs.size()); 2782 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2783 TemplateArgs.data(), TemplateArgs.size(), 2784 RAngleLoc, false, Converted)) 2785 return true; 2786 2787 assert((Converted.structuredSize() == 2788 ClassTemplate->getTemplateParameters()->size()) && 2789 "Converted template argument list is too short!"); 2790 2791 // Find the class template (partial) specialization declaration that 2792 // corresponds to these arguments. 2793 llvm::FoldingSetNodeID ID; 2794 if (isPartialSpecialization) { 2795 bool MirrorsPrimaryTemplate; 2796 if (CheckClassTemplatePartialSpecializationArgs( 2797 ClassTemplate->getTemplateParameters(), 2798 Converted, MirrorsPrimaryTemplate)) 2799 return true; 2800 2801 if (MirrorsPrimaryTemplate) { 2802 // C++ [temp.class.spec]p9b3: 2803 // 2804 // -- The argument list of the specialization shall not be identical 2805 // to the implicit argument list of the primary template. 2806 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2807 << (TUK == TUK_Definition) 2808 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2809 RAngleLoc)); 2810 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 2811 ClassTemplate->getIdentifier(), 2812 TemplateNameLoc, 2813 Attr, 2814 TemplateParams, 2815 AS_none); 2816 } 2817 2818 // FIXME: Diagnose friend partial specializations 2819 2820 // FIXME: Template parameter list matters, too 2821 ClassTemplatePartialSpecializationDecl::Profile(ID, 2822 Converted.getFlatArguments(), 2823 Converted.flatSize(), 2824 Context); 2825 } else 2826 ClassTemplateSpecializationDecl::Profile(ID, 2827 Converted.getFlatArguments(), 2828 Converted.flatSize(), 2829 Context); 2830 void *InsertPos = 0; 2831 ClassTemplateSpecializationDecl *PrevDecl = 0; 2832 2833 if (isPartialSpecialization) 2834 PrevDecl 2835 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2836 InsertPos); 2837 else 2838 PrevDecl 2839 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2840 2841 ClassTemplateSpecializationDecl *Specialization = 0; 2842 2843 // Check whether we can declare a class template specialization in 2844 // the current scope. 2845 if (TUK != TUK_Friend && 2846 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 2847 TemplateNameLoc, 2848 isPartialSpecialization)) 2849 return true; 2850 2851 // The canonical type 2852 QualType CanonType; 2853 if (PrevDecl && 2854 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 2855 TUK == TUK_Friend)) { 2856 // Since the only prior class template specialization with these 2857 // arguments was referenced but not declared, or we're only 2858 // referencing this specialization as a friend, reuse that 2859 // declaration node as our own, updating its source location to 2860 // reflect our new declaration. 2861 Specialization = PrevDecl; 2862 Specialization->setLocation(TemplateNameLoc); 2863 PrevDecl = 0; 2864 CanonType = Context.getTypeDeclType(Specialization); 2865 } else if (isPartialSpecialization) { 2866 // Build the canonical type that describes the converted template 2867 // arguments of the class template partial specialization. 2868 CanonType = Context.getTemplateSpecializationType( 2869 TemplateName(ClassTemplate), 2870 Converted.getFlatArguments(), 2871 Converted.flatSize()); 2872 2873 // Create a new class template partial specialization declaration node. 2874 TemplateParameterList *TemplateParams 2875 = static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2876 ClassTemplatePartialSpecializationDecl *PrevPartial 2877 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2878 ClassTemplatePartialSpecializationDecl *Partial 2879 = ClassTemplatePartialSpecializationDecl::Create(Context, 2880 ClassTemplate->getDeclContext(), 2881 TemplateNameLoc, 2882 TemplateParams, 2883 ClassTemplate, 2884 Converted, 2885 PrevPartial); 2886 2887 if (PrevPartial) { 2888 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2889 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2890 } else { 2891 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2892 } 2893 Specialization = Partial; 2894 2895 // Check that all of the template parameters of the class template 2896 // partial specialization are deducible from the template 2897 // arguments. If not, this class template partial specialization 2898 // will never be used. 2899 llvm::SmallVector<bool, 8> DeducibleParams; 2900 DeducibleParams.resize(TemplateParams->size()); 2901 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 2902 DeducibleParams); 2903 unsigned NumNonDeducible = 0; 2904 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2905 if (!DeducibleParams[I]) 2906 ++NumNonDeducible; 2907 2908 if (NumNonDeducible) { 2909 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2910 << (NumNonDeducible > 1) 2911 << SourceRange(TemplateNameLoc, RAngleLoc); 2912 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2913 if (!DeducibleParams[I]) { 2914 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2915 if (Param->getDeclName()) 2916 Diag(Param->getLocation(), 2917 diag::note_partial_spec_unused_parameter) 2918 << Param->getDeclName(); 2919 else 2920 Diag(Param->getLocation(), 2921 diag::note_partial_spec_unused_parameter) 2922 << std::string("<anonymous>"); 2923 } 2924 } 2925 } 2926 } else { 2927 // Create a new class template specialization declaration node for 2928 // this explicit specialization or friend declaration. 2929 Specialization 2930 = ClassTemplateSpecializationDecl::Create(Context, 2931 ClassTemplate->getDeclContext(), 2932 TemplateNameLoc, 2933 ClassTemplate, 2934 Converted, 2935 PrevDecl); 2936 2937 if (PrevDecl) { 2938 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2939 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2940 } else { 2941 ClassTemplate->getSpecializations().InsertNode(Specialization, 2942 InsertPos); 2943 } 2944 2945 CanonType = Context.getTypeDeclType(Specialization); 2946 } 2947 2948 // C++ [temp.expl.spec]p6: 2949 // If a template, a member template or the member of a class template is 2950 // explicitly specialized then that specialization shall be declared 2951 // before the first use of that specialization that would cause an implicit 2952 // instantiation to take place, in every translation unit in which such a 2953 // use occurs; no diagnostic is required. 2954 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 2955 SourceRange Range(TemplateNameLoc, RAngleLoc); 2956 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 2957 << Context.getTypeDeclType(Specialization) << Range; 2958 2959 Diag(PrevDecl->getPointOfInstantiation(), 2960 diag::note_instantiation_required_here) 2961 << (PrevDecl->getTemplateSpecializationKind() 2962 != TSK_ImplicitInstantiation); 2963 return true; 2964 } 2965 2966 // If this is not a friend, note that this is an explicit specialization. 2967 if (TUK != TUK_Friend) 2968 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2969 2970 // Check that this isn't a redefinition of this specialization. 2971 if (TUK == TUK_Definition) { 2972 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 2973 SourceRange Range(TemplateNameLoc, RAngleLoc); 2974 Diag(TemplateNameLoc, diag::err_redefinition) 2975 << Context.getTypeDeclType(Specialization) << Range; 2976 Diag(Def->getLocation(), diag::note_previous_definition); 2977 Specialization->setInvalidDecl(); 2978 return true; 2979 } 2980 } 2981 2982 // Build the fully-sugared type for this class template 2983 // specialization as the user wrote in the specialization 2984 // itself. This means that we'll pretty-print the type retrieved 2985 // from the specialization's declaration the way that the user 2986 // actually wrote the specialization, rather than formatting the 2987 // name based on the "canonical" representation used to store the 2988 // template arguments in the specialization. 2989 QualType WrittenTy 2990 = Context.getTemplateSpecializationType(Name, 2991 TemplateArgs.data(), 2992 TemplateArgs.size(), 2993 CanonType); 2994 if (TUK != TUK_Friend) 2995 Specialization->setTypeAsWritten(WrittenTy); 2996 TemplateArgsIn.release(); 2997 2998 // C++ [temp.expl.spec]p9: 2999 // A template explicit specialization is in the scope of the 3000 // namespace in which the template was defined. 3001 // 3002 // We actually implement this paragraph where we set the semantic 3003 // context (in the creation of the ClassTemplateSpecializationDecl), 3004 // but we also maintain the lexical context where the actual 3005 // definition occurs. 3006 Specialization->setLexicalDeclContext(CurContext); 3007 3008 // We may be starting the definition of this specialization. 3009 if (TUK == TUK_Definition) 3010 Specialization->startDefinition(); 3011 3012 if (TUK == TUK_Friend) { 3013 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3014 TemplateNameLoc, 3015 WrittenTy.getTypePtr(), 3016 /*FIXME:*/KWLoc); 3017 Friend->setAccess(AS_public); 3018 CurContext->addDecl(Friend); 3019 } else { 3020 // Add the specialization into its lexical context, so that it can 3021 // be seen when iterating through the list of declarations in that 3022 // context. However, specializations are not found by name lookup. 3023 CurContext->addDecl(Specialization); 3024 } 3025 return DeclPtrTy::make(Specialization); 3026} 3027 3028Sema::DeclPtrTy 3029Sema::ActOnTemplateDeclarator(Scope *S, 3030 MultiTemplateParamsArg TemplateParameterLists, 3031 Declarator &D) { 3032 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3033} 3034 3035Sema::DeclPtrTy 3036Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3037 MultiTemplateParamsArg TemplateParameterLists, 3038 Declarator &D) { 3039 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3040 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3041 "Not a function declarator!"); 3042 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3043 3044 if (FTI.hasPrototype) { 3045 // FIXME: Diagnose arguments without names in C. 3046 } 3047 3048 Scope *ParentScope = FnBodyScope->getParent(); 3049 3050 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3051 move(TemplateParameterLists), 3052 /*IsFunctionDefinition=*/true); 3053 if (FunctionTemplateDecl *FunctionTemplate 3054 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3055 return ActOnStartOfFunctionDef(FnBodyScope, 3056 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3057 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3058 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3059 return DeclPtrTy(); 3060} 3061 3062/// \brief Diagnose cases where we have an explicit template specialization 3063/// before/after an explicit template instantiation, producing diagnostics 3064/// for those cases where they are required and determining whether the 3065/// new specialization/instantiation will have any effect. 3066/// 3067/// \param S the semantic analysis object. 3068/// 3069/// \param NewLoc the location of the new explicit specialization or 3070/// instantiation. 3071/// 3072/// \param NewTSK the kind of the new explicit specialization or instantiation. 3073/// 3074/// \param PrevDecl the previous declaration of the entity. 3075/// 3076/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3077/// 3078/// \param PrevPointOfInstantiation if valid, indicates where the previus 3079/// declaration was instantiated (either implicitly or explicitly). 3080/// 3081/// \param SuppressNew will be set to true to indicate that the new 3082/// specialization or instantiation has no effect and should be ignored. 3083/// 3084/// \returns true if there was an error that should prevent the introduction of 3085/// the new declaration into the AST, false otherwise. 3086static bool 3087CheckSpecializationInstantiationRedecl(Sema &S, 3088 SourceLocation NewLoc, 3089 TemplateSpecializationKind NewTSK, 3090 NamedDecl *PrevDecl, 3091 TemplateSpecializationKind PrevTSK, 3092 SourceLocation PrevPointOfInstantiation, 3093 bool &SuppressNew) { 3094 SuppressNew = false; 3095 3096 switch (NewTSK) { 3097 case TSK_Undeclared: 3098 case TSK_ImplicitInstantiation: 3099 assert(false && "Don't check implicit instantiations here"); 3100 return false; 3101 3102 case TSK_ExplicitSpecialization: 3103 switch (PrevTSK) { 3104 case TSK_Undeclared: 3105 case TSK_ExplicitSpecialization: 3106 // Okay, we're just specializing something that is either already 3107 // explicitly specialized or has merely been mentioned without any 3108 // instantiation. 3109 return false; 3110 3111 case TSK_ImplicitInstantiation: 3112 if (PrevPointOfInstantiation.isInvalid()) { 3113 // The declaration itself has not actually been instantiated, so it is 3114 // still okay to specialize it. 3115 return false; 3116 } 3117 // Fall through 3118 3119 case TSK_ExplicitInstantiationDeclaration: 3120 case TSK_ExplicitInstantiationDefinition: 3121 assert((PrevTSK == TSK_ImplicitInstantiation || 3122 PrevPointOfInstantiation.isValid()) && 3123 "Explicit instantiation without point of instantiation?"); 3124 3125 // C++ [temp.expl.spec]p6: 3126 // If a template, a member template or the member of a class template 3127 // is explicitly specialized then that specialization shall be declared 3128 // before the first use of that specialization that would cause an 3129 // implicit instantiation to take place, in every translation unit in 3130 // which such a use occurs; no diagnostic is required. 3131 S.Diag(NewLoc, diag::err_specialization_after_instantiation) 3132 << PrevDecl; 3133 S.Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3134 << (PrevTSK != TSK_ImplicitInstantiation); 3135 3136 return true; 3137 } 3138 break; 3139 3140 case TSK_ExplicitInstantiationDeclaration: 3141 switch (PrevTSK) { 3142 case TSK_ExplicitInstantiationDeclaration: 3143 // This explicit instantiation declaration is redundant (that's okay). 3144 SuppressNew = true; 3145 return false; 3146 3147 case TSK_Undeclared: 3148 case TSK_ImplicitInstantiation: 3149 // We're explicitly instantiating something that may have already been 3150 // implicitly instantiated; that's fine. 3151 return false; 3152 3153 case TSK_ExplicitSpecialization: 3154 // C++0x [temp.explicit]p4: 3155 // For a given set of template parameters, if an explicit instantiation 3156 // of a template appears after a declaration of an explicit 3157 // specialization for that template, the explicit instantiation has no 3158 // effect. 3159 return false; 3160 3161 case TSK_ExplicitInstantiationDefinition: 3162 // C++0x [temp.explicit]p10: 3163 // If an entity is the subject of both an explicit instantiation 3164 // declaration and an explicit instantiation definition in the same 3165 // translation unit, the definition shall follow the declaration. 3166 S.Diag(NewLoc, 3167 diag::err_explicit_instantiation_declaration_after_definition); 3168 S.Diag(PrevPointOfInstantiation, 3169 diag::note_explicit_instantiation_definition_here); 3170 assert(PrevPointOfInstantiation.isValid() && 3171 "Explicit instantiation without point of instantiation?"); 3172 SuppressNew = true; 3173 return false; 3174 } 3175 break; 3176 3177 case TSK_ExplicitInstantiationDefinition: 3178 switch (PrevTSK) { 3179 case TSK_Undeclared: 3180 case TSK_ImplicitInstantiation: 3181 // We're explicitly instantiating something that may have already been 3182 // implicitly instantiated; that's fine. 3183 return false; 3184 3185 case TSK_ExplicitSpecialization: 3186 // C++ DR 259, C++0x [temp.explicit]p4: 3187 // For a given set of template parameters, if an explicit 3188 // instantiation of a template appears after a declaration of 3189 // an explicit specialization for that template, the explicit 3190 // instantiation has no effect. 3191 // 3192 // In C++98/03 mode, we only give an extension warning here, because it 3193 // is not not harmful to try to explicitly instantiate something that 3194 // has been explicitly specialized. 3195 if (!S.getLangOptions().CPlusPlus0x) { 3196 S.Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3197 << PrevDecl; 3198 S.Diag(PrevDecl->getLocation(), 3199 diag::note_previous_template_specialization); 3200 } 3201 SuppressNew = true; 3202 return false; 3203 3204 case TSK_ExplicitInstantiationDeclaration: 3205 // We're explicity instantiating a definition for something for which we 3206 // were previously asked to suppress instantiations. That's fine. 3207 return false; 3208 3209 case TSK_ExplicitInstantiationDefinition: 3210 // C++0x [temp.spec]p5: 3211 // For a given template and a given set of template-arguments, 3212 // - an explicit instantiation definition shall appear at most once 3213 // in a program, 3214 S.Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3215 << PrevDecl; 3216 S.Diag(PrevPointOfInstantiation, 3217 diag::note_previous_explicit_instantiation); 3218 SuppressNew = true; 3219 return false; 3220 } 3221 break; 3222 } 3223 3224 assert(false && "Missing specialization/instantiation case?"); 3225 3226 return false; 3227} 3228 3229/// \brief Perform semantic analysis for the given function template 3230/// specialization. 3231/// 3232/// This routine performs all of the semantic analysis required for an 3233/// explicit function template specialization. On successful completion, 3234/// the function declaration \p FD will become a function template 3235/// specialization. 3236/// 3237/// \param FD the function declaration, which will be updated to become a 3238/// function template specialization. 3239/// 3240/// \param HasExplicitTemplateArgs whether any template arguments were 3241/// explicitly provided. 3242/// 3243/// \param LAngleLoc the location of the left angle bracket ('<'), if 3244/// template arguments were explicitly provided. 3245/// 3246/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3247/// if any. 3248/// 3249/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3250/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3251/// true as in, e.g., \c void sort<>(char*, char*); 3252/// 3253/// \param RAngleLoc the location of the right angle bracket ('>'), if 3254/// template arguments were explicitly provided. 3255/// 3256/// \param PrevDecl the set of declarations that 3257bool 3258Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3259 bool HasExplicitTemplateArgs, 3260 SourceLocation LAngleLoc, 3261 const TemplateArgument *ExplicitTemplateArgs, 3262 unsigned NumExplicitTemplateArgs, 3263 SourceLocation RAngleLoc, 3264 NamedDecl *&PrevDecl) { 3265 // The set of function template specializations that could match this 3266 // explicit function template specialization. 3267 typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet; 3268 CandidateSet Candidates; 3269 3270 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3271 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3272 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) { 3273 // Only consider templates found within the same semantic lookup scope as 3274 // FD. 3275 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3276 continue; 3277 3278 // C++ [temp.expl.spec]p11: 3279 // A trailing template-argument can be left unspecified in the 3280 // template-id naming an explicit function template specialization 3281 // provided it can be deduced from the function argument type. 3282 // Perform template argument deduction to determine whether we may be 3283 // specializing this template. 3284 // FIXME: It is somewhat wasteful to build 3285 TemplateDeductionInfo Info(Context); 3286 FunctionDecl *Specialization = 0; 3287 if (TemplateDeductionResult TDK 3288 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 3289 ExplicitTemplateArgs, 3290 NumExplicitTemplateArgs, 3291 FD->getType(), 3292 Specialization, 3293 Info)) { 3294 // FIXME: Template argument deduction failed; record why it failed, so 3295 // that we can provide nifty diagnostics. 3296 (void)TDK; 3297 continue; 3298 } 3299 3300 // Record this candidate. 3301 Candidates.push_back(Specialization); 3302 } 3303 } 3304 3305 // Find the most specialized function template. 3306 FunctionDecl *Specialization = getMostSpecialized(Candidates.data(), 3307 Candidates.size(), 3308 TPOC_Other, 3309 FD->getLocation(), 3310 PartialDiagnostic(diag::err_function_template_spec_no_match) 3311 << FD->getDeclName(), 3312 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3313 << FD->getDeclName() << HasExplicitTemplateArgs, 3314 PartialDiagnostic(diag::note_function_template_spec_matched)); 3315 if (!Specialization) 3316 return true; 3317 3318 // FIXME: Check if the prior specialization has a point of instantiation. 3319 // If so, we have run afoul of . 3320 3321 // Check the scope of this explicit specialization. 3322 if (CheckTemplateSpecializationScope(*this, 3323 Specialization->getPrimaryTemplate(), 3324 Specialization, FD->getLocation(), 3325 false)) 3326 return true; 3327 3328 // C++ [temp.expl.spec]p6: 3329 // If a template, a member template or the member of a class template is 3330 // explicitly specialized then that spe- cialization shall be declared 3331 // before the first use of that specialization that would cause an implicit 3332 // instantiation to take place, in every translation unit in which such a 3333 // use occurs; no diagnostic is required. 3334 FunctionTemplateSpecializationInfo *SpecInfo 3335 = Specialization->getTemplateSpecializationInfo(); 3336 assert(SpecInfo && "Function template specialization info missing?"); 3337 if (SpecInfo->getPointOfInstantiation().isValid()) { 3338 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3339 << FD; 3340 Diag(SpecInfo->getPointOfInstantiation(), 3341 diag::note_instantiation_required_here) 3342 << (Specialization->getTemplateSpecializationKind() 3343 != TSK_ImplicitInstantiation); 3344 return true; 3345 } 3346 3347 // Mark the prior declaration as an explicit specialization, so that later 3348 // clients know that this is an explicit specialization. 3349 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3350 3351 // Turn the given function declaration into a function template 3352 // specialization, with the template arguments from the previous 3353 // specialization. 3354 FD->setFunctionTemplateSpecialization(Context, 3355 Specialization->getPrimaryTemplate(), 3356 new (Context) TemplateArgumentList( 3357 *Specialization->getTemplateSpecializationArgs()), 3358 /*InsertPos=*/0, 3359 TSK_ExplicitSpecialization); 3360 3361 // The "previous declaration" for this function template specialization is 3362 // the prior function template specialization. 3363 PrevDecl = Specialization; 3364 return false; 3365} 3366 3367/// \brief Perform semantic analysis for the given non-template member 3368/// specialization. 3369/// 3370/// This routine performs all of the semantic analysis required for an 3371/// explicit member function specialization. On successful completion, 3372/// the function declaration \p FD will become a member function 3373/// specialization. 3374/// 3375/// \param Member the member declaration, which will be updated to become a 3376/// specialization. 3377/// 3378/// \param PrevDecl the set of declarations, one of which may be specialized 3379/// by this function specialization. 3380bool 3381Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) { 3382 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3383 3384 // Try to find the member we are instantiating. 3385 NamedDecl *Instantiation = 0; 3386 NamedDecl *InstantiatedFrom = 0; 3387 MemberSpecializationInfo *MSInfo = 0; 3388 3389 if (!PrevDecl) { 3390 // Nowhere to look anyway. 3391 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3392 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3393 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) { 3394 if (Context.hasSameType(Function->getType(), Method->getType())) { 3395 Instantiation = Method; 3396 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3397 MSInfo = Method->getMemberSpecializationInfo(); 3398 break; 3399 } 3400 } 3401 } 3402 } else if (isa<VarDecl>(Member)) { 3403 if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl)) 3404 if (PrevVar->isStaticDataMember()) { 3405 Instantiation = PrevDecl; 3406 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3407 MSInfo = PrevVar->getMemberSpecializationInfo(); 3408 } 3409 } else if (isa<RecordDecl>(Member)) { 3410 if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) { 3411 Instantiation = PrevDecl; 3412 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 3413 MSInfo = PrevRecord->getMemberSpecializationInfo(); 3414 } 3415 } 3416 3417 if (!Instantiation) { 3418 // There is no previous declaration that matches. Since member 3419 // specializations are always out-of-line, the caller will complain about 3420 // this mismatch later. 3421 return false; 3422 } 3423 3424 // Make sure that this is a specialization of a member. 3425 if (!InstantiatedFrom) { 3426 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 3427 << Member; 3428 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 3429 return true; 3430 } 3431 3432 // C++ [temp.expl.spec]p6: 3433 // If a template, a member template or the member of a class template is 3434 // explicitly specialized then that spe- cialization shall be declared 3435 // before the first use of that specialization that would cause an implicit 3436 // instantiation to take place, in every translation unit in which such a 3437 // use occurs; no diagnostic is required. 3438 assert(MSInfo && "Member specialization info missing?"); 3439 if (MSInfo->getPointOfInstantiation().isValid()) { 3440 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 3441 << Member; 3442 Diag(MSInfo->getPointOfInstantiation(), 3443 diag::note_instantiation_required_here) 3444 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 3445 return true; 3446 } 3447 3448 // Check the scope of this explicit specialization. 3449 if (CheckTemplateSpecializationScope(*this, 3450 InstantiatedFrom, 3451 Instantiation, Member->getLocation(), 3452 false)) 3453 return true; 3454 3455 // Note that this is an explicit instantiation of a member. 3456 // the original declaration to note that it is an explicit specialization 3457 // (if it was previously an implicit instantiation). This latter step 3458 // makes bookkeeping easier. 3459 if (isa<FunctionDecl>(Member)) { 3460 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 3461 if (InstantiationFunction->getTemplateSpecializationKind() == 3462 TSK_ImplicitInstantiation) { 3463 InstantiationFunction->setTemplateSpecializationKind( 3464 TSK_ExplicitSpecialization); 3465 InstantiationFunction->setLocation(Member->getLocation()); 3466 } 3467 3468 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 3469 cast<CXXMethodDecl>(InstantiatedFrom), 3470 TSK_ExplicitSpecialization); 3471 } else if (isa<VarDecl>(Member)) { 3472 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 3473 if (InstantiationVar->getTemplateSpecializationKind() == 3474 TSK_ImplicitInstantiation) { 3475 InstantiationVar->setTemplateSpecializationKind( 3476 TSK_ExplicitSpecialization); 3477 InstantiationVar->setLocation(Member->getLocation()); 3478 } 3479 3480 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 3481 cast<VarDecl>(InstantiatedFrom), 3482 TSK_ExplicitSpecialization); 3483 } else { 3484 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 3485 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 3486 if (InstantiationClass->getTemplateSpecializationKind() == 3487 TSK_ImplicitInstantiation) { 3488 InstantiationClass->setTemplateSpecializationKind( 3489 TSK_ExplicitSpecialization); 3490 InstantiationClass->setLocation(Member->getLocation()); 3491 } 3492 3493 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 3494 cast<CXXRecordDecl>(InstantiatedFrom), 3495 TSK_ExplicitSpecialization); 3496 } 3497 3498 // Save the caller the trouble of having to figure out which declaration 3499 // this specialization matches. 3500 PrevDecl = Instantiation; 3501 return false; 3502} 3503 3504/// \brief Check the scope of an explicit instantiation. 3505static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 3506 SourceLocation InstLoc, 3507 bool WasQualifiedName) { 3508 DeclContext *ExpectedContext 3509 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 3510 DeclContext *CurContext = S.CurContext->getLookupContext(); 3511 3512 // C++0x [temp.explicit]p2: 3513 // An explicit instantiation shall appear in an enclosing namespace of its 3514 // template. 3515 // 3516 // This is DR275, which we do not retroactively apply to C++98/03. 3517 if (S.getLangOptions().CPlusPlus0x && 3518 !CurContext->Encloses(ExpectedContext)) { 3519 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 3520 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 3521 << D << NS; 3522 else 3523 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 3524 << D; 3525 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3526 return; 3527 } 3528 3529 // C++0x [temp.explicit]p2: 3530 // If the name declared in the explicit instantiation is an unqualified 3531 // name, the explicit instantiation shall appear in the namespace where 3532 // its template is declared or, if that namespace is inline (7.3.1), any 3533 // namespace from its enclosing namespace set. 3534 if (WasQualifiedName) 3535 return; 3536 3537 if (CurContext->Equals(ExpectedContext)) 3538 return; 3539 3540 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 3541 << D << ExpectedContext; 3542 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3543} 3544 3545/// \brief Determine whether the given scope specifier has a template-id in it. 3546static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 3547 if (!SS.isSet()) 3548 return false; 3549 3550 // C++0x [temp.explicit]p2: 3551 // If the explicit instantiation is for a member function, a member class 3552 // or a static data member of a class template specialization, the name of 3553 // the class template specialization in the qualified-id for the member 3554 // name shall be a simple-template-id. 3555 // 3556 // C++98 has the same restriction, just worded differently. 3557 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 3558 NNS; NNS = NNS->getPrefix()) 3559 if (Type *T = NNS->getAsType()) 3560 if (isa<TemplateSpecializationType>(T)) 3561 return true; 3562 3563 return false; 3564} 3565 3566// Explicit instantiation of a class template specialization 3567// FIXME: Implement extern template semantics 3568Sema::DeclResult 3569Sema::ActOnExplicitInstantiation(Scope *S, 3570 SourceLocation ExternLoc, 3571 SourceLocation TemplateLoc, 3572 unsigned TagSpec, 3573 SourceLocation KWLoc, 3574 const CXXScopeSpec &SS, 3575 TemplateTy TemplateD, 3576 SourceLocation TemplateNameLoc, 3577 SourceLocation LAngleLoc, 3578 ASTTemplateArgsPtr TemplateArgsIn, 3579 SourceLocation *TemplateArgLocs, 3580 SourceLocation RAngleLoc, 3581 AttributeList *Attr) { 3582 // Find the class template we're specializing 3583 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3584 ClassTemplateDecl *ClassTemplate 3585 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3586 3587 // Check that the specialization uses the same tag kind as the 3588 // original template. 3589 TagDecl::TagKind Kind; 3590 switch (TagSpec) { 3591 default: assert(0 && "Unknown tag type!"); 3592 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3593 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3594 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3595 } 3596 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3597 Kind, KWLoc, 3598 *ClassTemplate->getIdentifier())) { 3599 Diag(KWLoc, diag::err_use_with_wrong_tag) 3600 << ClassTemplate 3601 << CodeModificationHint::CreateReplacement(KWLoc, 3602 ClassTemplate->getTemplatedDecl()->getKindName()); 3603 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3604 diag::note_previous_use); 3605 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3606 } 3607 3608 // C++0x [temp.explicit]p2: 3609 // There are two forms of explicit instantiation: an explicit instantiation 3610 // definition and an explicit instantiation declaration. An explicit 3611 // instantiation declaration begins with the extern keyword. [...] 3612 TemplateSpecializationKind TSK 3613 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3614 : TSK_ExplicitInstantiationDeclaration; 3615 3616 // Translate the parser's template argument list in our AST format. 3617 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 3618 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 3619 3620 // Check that the template argument list is well-formed for this 3621 // template. 3622 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3623 TemplateArgs.size()); 3624 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 3625 TemplateArgs.data(), TemplateArgs.size(), 3626 RAngleLoc, false, Converted)) 3627 return true; 3628 3629 assert((Converted.structuredSize() == 3630 ClassTemplate->getTemplateParameters()->size()) && 3631 "Converted template argument list is too short!"); 3632 3633 // Find the class template specialization declaration that 3634 // corresponds to these arguments. 3635 llvm::FoldingSetNodeID ID; 3636 ClassTemplateSpecializationDecl::Profile(ID, 3637 Converted.getFlatArguments(), 3638 Converted.flatSize(), 3639 Context); 3640 void *InsertPos = 0; 3641 ClassTemplateSpecializationDecl *PrevDecl 3642 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3643 3644 // C++0x [temp.explicit]p2: 3645 // [...] An explicit instantiation shall appear in an enclosing 3646 // namespace of its template. [...] 3647 // 3648 // This is C++ DR 275. 3649 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 3650 SS.isSet()); 3651 3652 ClassTemplateSpecializationDecl *Specialization = 0; 3653 3654 if (PrevDecl) { 3655 bool SuppressNew = false; 3656 if (CheckSpecializationInstantiationRedecl(*this, TemplateNameLoc, TSK, 3657 PrevDecl, 3658 PrevDecl->getSpecializationKind(), 3659 PrevDecl->getPointOfInstantiation(), 3660 SuppressNew)) 3661 return DeclPtrTy::make(PrevDecl); 3662 3663 if (SuppressNew) 3664 return DeclPtrTy::make(PrevDecl); 3665 3666 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 3667 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 3668 // Since the only prior class template specialization with these 3669 // arguments was referenced but not declared, reuse that 3670 // declaration node as our own, updating its source location to 3671 // reflect our new declaration. 3672 Specialization = PrevDecl; 3673 Specialization->setLocation(TemplateNameLoc); 3674 PrevDecl = 0; 3675 } 3676 } 3677 3678 if (!Specialization) { 3679 // Create a new class template specialization declaration node for 3680 // this explicit specialization. 3681 Specialization 3682 = ClassTemplateSpecializationDecl::Create(Context, 3683 ClassTemplate->getDeclContext(), 3684 TemplateNameLoc, 3685 ClassTemplate, 3686 Converted, PrevDecl); 3687 3688 if (PrevDecl) { 3689 // Remove the previous declaration from the folding set, since we want 3690 // to introduce a new declaration. 3691 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3692 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3693 } 3694 3695 // Insert the new specialization. 3696 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 3697 } 3698 3699 // Build the fully-sugared type for this explicit instantiation as 3700 // the user wrote in the explicit instantiation itself. This means 3701 // that we'll pretty-print the type retrieved from the 3702 // specialization's declaration the way that the user actually wrote 3703 // the explicit instantiation, rather than formatting the name based 3704 // on the "canonical" representation used to store the template 3705 // arguments in the specialization. 3706 QualType WrittenTy 3707 = Context.getTemplateSpecializationType(Name, 3708 TemplateArgs.data(), 3709 TemplateArgs.size(), 3710 Context.getTypeDeclType(Specialization)); 3711 Specialization->setTypeAsWritten(WrittenTy); 3712 TemplateArgsIn.release(); 3713 3714 // Add the explicit instantiation into its lexical context. However, 3715 // since explicit instantiations are never found by name lookup, we 3716 // just put it into the declaration context directly. 3717 Specialization->setLexicalDeclContext(CurContext); 3718 CurContext->addDecl(Specialization); 3719 3720 Specialization->setPointOfInstantiation(TemplateNameLoc); 3721 3722 // C++ [temp.explicit]p3: 3723 // A definition of a class template or class member template 3724 // shall be in scope at the point of the explicit instantiation of 3725 // the class template or class member template. 3726 // 3727 // This check comes when we actually try to perform the 3728 // instantiation. 3729 ClassTemplateSpecializationDecl *Def 3730 = cast_or_null<ClassTemplateSpecializationDecl>( 3731 Specialization->getDefinition(Context)); 3732 if (!Def) 3733 InstantiateClassTemplateSpecialization(Specialization, TSK); 3734 else // Instantiate the members of this class template specialization. 3735 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 3736 3737 return DeclPtrTy::make(Specialization); 3738} 3739 3740// Explicit instantiation of a member class of a class template. 3741Sema::DeclResult 3742Sema::ActOnExplicitInstantiation(Scope *S, 3743 SourceLocation ExternLoc, 3744 SourceLocation TemplateLoc, 3745 unsigned TagSpec, 3746 SourceLocation KWLoc, 3747 const CXXScopeSpec &SS, 3748 IdentifierInfo *Name, 3749 SourceLocation NameLoc, 3750 AttributeList *Attr) { 3751 3752 bool Owned = false; 3753 bool IsDependent = false; 3754 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 3755 KWLoc, SS, Name, NameLoc, Attr, AS_none, 3756 MultiTemplateParamsArg(*this, 0, 0), 3757 Owned, IsDependent); 3758 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 3759 3760 if (!TagD) 3761 return true; 3762 3763 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 3764 if (Tag->isEnum()) { 3765 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 3766 << Context.getTypeDeclType(Tag); 3767 return true; 3768 } 3769 3770 if (Tag->isInvalidDecl()) 3771 return true; 3772 3773 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 3774 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 3775 if (!Pattern) { 3776 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 3777 << Context.getTypeDeclType(Record); 3778 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 3779 return true; 3780 } 3781 3782 // C++0x [temp.explicit]p2: 3783 // If the explicit instantiation is for a class or member class, the 3784 // elaborated-type-specifier in the declaration shall include a 3785 // simple-template-id. 3786 // 3787 // C++98 has the same restriction, just worded differently. 3788 if (!ScopeSpecifierHasTemplateId(SS)) 3789 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 3790 << Record << SS.getRange(); 3791 3792 // C++0x [temp.explicit]p2: 3793 // There are two forms of explicit instantiation: an explicit instantiation 3794 // definition and an explicit instantiation declaration. An explicit 3795 // instantiation declaration begins with the extern keyword. [...] 3796 TemplateSpecializationKind TSK 3797 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3798 : TSK_ExplicitInstantiationDeclaration; 3799 3800 // C++0x [temp.explicit]p2: 3801 // [...] An explicit instantiation shall appear in an enclosing 3802 // namespace of its template. [...] 3803 // 3804 // This is C++ DR 275. 3805 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 3806 3807 // Verify that it is okay to explicitly instantiate here. 3808 CXXRecordDecl *PrevDecl 3809 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 3810 if (!PrevDecl && Record->getDefinition(Context)) 3811 PrevDecl = Record; 3812 if (PrevDecl) { 3813 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 3814 bool SuppressNew = false; 3815 assert(MSInfo && "No member specialization information?"); 3816 if (CheckSpecializationInstantiationRedecl(*this, TemplateLoc, TSK, 3817 PrevDecl, 3818 MSInfo->getTemplateSpecializationKind(), 3819 MSInfo->getPointOfInstantiation(), 3820 SuppressNew)) 3821 return true; 3822 if (SuppressNew) 3823 return TagD; 3824 } 3825 3826 CXXRecordDecl *RecordDef 3827 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 3828 if (!RecordDef) { 3829 // C++ [temp.explicit]p3: 3830 // A definition of a member class of a class template shall be in scope 3831 // at the point of an explicit instantiation of the member class. 3832 CXXRecordDecl *Def 3833 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 3834 if (!Def) { 3835 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 3836 << 0 << Record->getDeclName() << Record->getDeclContext(); 3837 Diag(Pattern->getLocation(), diag::note_forward_declaration) 3838 << Pattern; 3839 return true; 3840 } else if (InstantiateClass(NameLoc, Record, Def, 3841 getTemplateInstantiationArgs(Record), 3842 TSK)) 3843 return true; 3844 } else // Instantiate all of the members of the class. 3845 InstantiateClassMembers(NameLoc, RecordDef, 3846 getTemplateInstantiationArgs(Record), TSK); 3847 3848 // FIXME: We don't have any representation for explicit instantiations of 3849 // member classes. Such a representation is not needed for compilation, but it 3850 // should be available for clients that want to see all of the declarations in 3851 // the source code. 3852 return TagD; 3853} 3854 3855Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 3856 SourceLocation ExternLoc, 3857 SourceLocation TemplateLoc, 3858 Declarator &D) { 3859 // Explicit instantiations always require a name. 3860 DeclarationName Name = GetNameForDeclarator(D); 3861 if (!Name) { 3862 if (!D.isInvalidType()) 3863 Diag(D.getDeclSpec().getSourceRange().getBegin(), 3864 diag::err_explicit_instantiation_requires_name) 3865 << D.getDeclSpec().getSourceRange() 3866 << D.getSourceRange(); 3867 3868 return true; 3869 } 3870 3871 // The scope passed in may not be a decl scope. Zip up the scope tree until 3872 // we find one that is. 3873 while ((S->getFlags() & Scope::DeclScope) == 0 || 3874 (S->getFlags() & Scope::TemplateParamScope) != 0) 3875 S = S->getParent(); 3876 3877 // Determine the type of the declaration. 3878 QualType R = GetTypeForDeclarator(D, S, 0); 3879 if (R.isNull()) 3880 return true; 3881 3882 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 3883 // Cannot explicitly instantiate a typedef. 3884 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 3885 << Name; 3886 return true; 3887 } 3888 3889 // C++0x [temp.explicit]p1: 3890 // [...] An explicit instantiation of a function template shall not use the 3891 // inline or constexpr specifiers. 3892 // Presumably, this also applies to member functions of class templates as 3893 // well. 3894 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 3895 Diag(D.getDeclSpec().getInlineSpecLoc(), 3896 diag::err_explicit_instantiation_inline) 3897 << CodeModificationHint::CreateRemoval( 3898 SourceRange(D.getDeclSpec().getInlineSpecLoc())); 3899 3900 // FIXME: check for constexpr specifier. 3901 3902 // C++0x [temp.explicit]p2: 3903 // There are two forms of explicit instantiation: an explicit instantiation 3904 // definition and an explicit instantiation declaration. An explicit 3905 // instantiation declaration begins with the extern keyword. [...] 3906 TemplateSpecializationKind TSK 3907 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3908 : TSK_ExplicitInstantiationDeclaration; 3909 3910 LookupResult Previous; 3911 LookupParsedName(Previous, S, &D.getCXXScopeSpec(), 3912 Name, LookupOrdinaryName); 3913 3914 if (!R->isFunctionType()) { 3915 // C++ [temp.explicit]p1: 3916 // A [...] static data member of a class template can be explicitly 3917 // instantiated from the member definition associated with its class 3918 // template. 3919 if (Previous.isAmbiguous()) { 3920 return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(), 3921 D.getSourceRange()); 3922 } 3923 3924 VarDecl *Prev = dyn_cast_or_null<VarDecl>( 3925 Previous.getAsSingleDecl(Context)); 3926 if (!Prev || !Prev->isStaticDataMember()) { 3927 // We expect to see a data data member here. 3928 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 3929 << Name; 3930 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 3931 P != PEnd; ++P) 3932 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 3933 return true; 3934 } 3935 3936 if (!Prev->getInstantiatedFromStaticDataMember()) { 3937 // FIXME: Check for explicit specialization? 3938 Diag(D.getIdentifierLoc(), 3939 diag::err_explicit_instantiation_data_member_not_instantiated) 3940 << Prev; 3941 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 3942 // FIXME: Can we provide a note showing where this was declared? 3943 return true; 3944 } 3945 3946 // C++0x [temp.explicit]p2: 3947 // If the explicit instantiation is for a member function, a member class 3948 // or a static data member of a class template specialization, the name of 3949 // the class template specialization in the qualified-id for the member 3950 // name shall be a simple-template-id. 3951 // 3952 // C++98 has the same restriction, just worded differently. 3953 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 3954 Diag(D.getIdentifierLoc(), 3955 diag::err_explicit_instantiation_without_qualified_id) 3956 << Prev << D.getCXXScopeSpec().getRange(); 3957 3958 // Check the scope of this explicit instantiation. 3959 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 3960 3961 // Verify that it is okay to explicitly instantiate here. 3962 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 3963 assert(MSInfo && "Missing static data member specialization info?"); 3964 bool SuppressNew = false; 3965 if (CheckSpecializationInstantiationRedecl(*this, D.getIdentifierLoc(), TSK, 3966 Prev, 3967 MSInfo->getTemplateSpecializationKind(), 3968 MSInfo->getPointOfInstantiation(), 3969 SuppressNew)) 3970 return true; 3971 if (SuppressNew) 3972 return DeclPtrTy(); 3973 3974 // Instantiate static data member. 3975 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 3976 if (TSK == TSK_ExplicitInstantiationDefinition) 3977 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 3978 /*DefinitionRequired=*/true); 3979 3980 // FIXME: Create an ExplicitInstantiation node? 3981 return DeclPtrTy(); 3982 } 3983 3984 // If the declarator is a template-id, translate the parser's template 3985 // argument list into our AST format. 3986 bool HasExplicitTemplateArgs = false; 3987 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 3988 if (D.getKind() == Declarator::DK_TemplateId) { 3989 TemplateIdAnnotation *TemplateId = D.getTemplateId(); 3990 ASTTemplateArgsPtr TemplateArgsPtr(*this, 3991 TemplateId->getTemplateArgs(), 3992 TemplateId->getTemplateArgIsType(), 3993 TemplateId->NumArgs); 3994 translateTemplateArguments(TemplateArgsPtr, 3995 TemplateId->getTemplateArgLocations(), 3996 TemplateArgs); 3997 HasExplicitTemplateArgs = true; 3998 TemplateArgsPtr.release(); 3999 } 4000 4001 // C++ [temp.explicit]p1: 4002 // A [...] function [...] can be explicitly instantiated from its template. 4003 // A member function [...] of a class template can be explicitly 4004 // instantiated from the member definition associated with its class 4005 // template. 4006 llvm::SmallVector<FunctionDecl *, 8> Matches; 4007 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4008 P != PEnd; ++P) { 4009 NamedDecl *Prev = *P; 4010 if (!HasExplicitTemplateArgs) { 4011 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4012 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4013 Matches.clear(); 4014 Matches.push_back(Method); 4015 break; 4016 } 4017 } 4018 } 4019 4020 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4021 if (!FunTmpl) 4022 continue; 4023 4024 TemplateDeductionInfo Info(Context); 4025 FunctionDecl *Specialization = 0; 4026 if (TemplateDeductionResult TDK 4027 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 4028 TemplateArgs.data(), TemplateArgs.size(), 4029 R, Specialization, Info)) { 4030 // FIXME: Keep track of almost-matches? 4031 (void)TDK; 4032 continue; 4033 } 4034 4035 Matches.push_back(Specialization); 4036 } 4037 4038 // Find the most specialized function template specialization. 4039 FunctionDecl *Specialization 4040 = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 4041 D.getIdentifierLoc(), 4042 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4043 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4044 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4045 4046 if (!Specialization) 4047 return true; 4048 4049 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4050 Diag(D.getIdentifierLoc(), 4051 diag::err_explicit_instantiation_member_function_not_instantiated) 4052 << Specialization 4053 << (Specialization->getTemplateSpecializationKind() == 4054 TSK_ExplicitSpecialization); 4055 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4056 return true; 4057 } 4058 4059 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4060 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4061 PrevDecl = Specialization; 4062 4063 if (PrevDecl) { 4064 bool SuppressNew = false; 4065 if (CheckSpecializationInstantiationRedecl(*this, D.getIdentifierLoc(), TSK, 4066 PrevDecl, 4067 PrevDecl->getTemplateSpecializationKind(), 4068 PrevDecl->getPointOfInstantiation(), 4069 SuppressNew)) 4070 return true; 4071 4072 // FIXME: We may still want to build some representation of this 4073 // explicit specialization. 4074 if (SuppressNew) 4075 return DeclPtrTy(); 4076 } 4077 4078 if (TSK == TSK_ExplicitInstantiationDefinition) 4079 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4080 false, /*DefinitionRequired=*/true); 4081 4082 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4083 4084 // C++0x [temp.explicit]p2: 4085 // If the explicit instantiation is for a member function, a member class 4086 // or a static data member of a class template specialization, the name of 4087 // the class template specialization in the qualified-id for the member 4088 // name shall be a simple-template-id. 4089 // 4090 // C++98 has the same restriction, just worded differently. 4091 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4092 if (D.getKind() != Declarator::DK_TemplateId && !FunTmpl && 4093 D.getCXXScopeSpec().isSet() && 4094 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4095 Diag(D.getIdentifierLoc(), 4096 diag::err_explicit_instantiation_without_qualified_id) 4097 << Specialization << D.getCXXScopeSpec().getRange(); 4098 4099 CheckExplicitInstantiationScope(*this, 4100 FunTmpl? (NamedDecl *)FunTmpl 4101 : Specialization->getInstantiatedFromMemberFunction(), 4102 D.getIdentifierLoc(), 4103 D.getCXXScopeSpec().isSet()); 4104 4105 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4106 return DeclPtrTy(); 4107} 4108 4109Sema::TypeResult 4110Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4111 const CXXScopeSpec &SS, IdentifierInfo *Name, 4112 SourceLocation TagLoc, SourceLocation NameLoc) { 4113 // This has to hold, because SS is expected to be defined. 4114 assert(Name && "Expected a name in a dependent tag"); 4115 4116 NestedNameSpecifier *NNS 4117 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4118 if (!NNS) 4119 return true; 4120 4121 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4122 if (T.isNull()) 4123 return true; 4124 4125 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4126 QualType ElabType = Context.getElaboratedType(T, TagKind); 4127 4128 return ElabType.getAsOpaquePtr(); 4129} 4130 4131Sema::TypeResult 4132Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4133 const IdentifierInfo &II, SourceLocation IdLoc) { 4134 NestedNameSpecifier *NNS 4135 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4136 if (!NNS) 4137 return true; 4138 4139 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4140 if (T.isNull()) 4141 return true; 4142 return T.getAsOpaquePtr(); 4143} 4144 4145Sema::TypeResult 4146Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4147 SourceLocation TemplateLoc, TypeTy *Ty) { 4148 QualType T = GetTypeFromParser(Ty); 4149 NestedNameSpecifier *NNS 4150 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4151 const TemplateSpecializationType *TemplateId 4152 = T->getAs<TemplateSpecializationType>(); 4153 assert(TemplateId && "Expected a template specialization type"); 4154 4155 if (computeDeclContext(SS, false)) { 4156 // If we can compute a declaration context, then the "typename" 4157 // keyword was superfluous. Just build a QualifiedNameType to keep 4158 // track of the nested-name-specifier. 4159 4160 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4161 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4162 } 4163 4164 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4165} 4166 4167/// \brief Build the type that describes a C++ typename specifier, 4168/// e.g., "typename T::type". 4169QualType 4170Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4171 SourceRange Range) { 4172 CXXRecordDecl *CurrentInstantiation = 0; 4173 if (NNS->isDependent()) { 4174 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4175 4176 // If the nested-name-specifier does not refer to the current 4177 // instantiation, then build a typename type. 4178 if (!CurrentInstantiation) 4179 return Context.getTypenameType(NNS, &II); 4180 4181 // The nested-name-specifier refers to the current instantiation, so the 4182 // "typename" keyword itself is superfluous. In C++03, the program is 4183 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4184 // extraneous "typename" keywords, and we retroactively apply this DR to 4185 // C++03 code. 4186 } 4187 4188 DeclContext *Ctx = 0; 4189 4190 if (CurrentInstantiation) 4191 Ctx = CurrentInstantiation; 4192 else { 4193 CXXScopeSpec SS; 4194 SS.setScopeRep(NNS); 4195 SS.setRange(Range); 4196 if (RequireCompleteDeclContext(SS)) 4197 return QualType(); 4198 4199 Ctx = computeDeclContext(SS); 4200 } 4201 assert(Ctx && "No declaration context?"); 4202 4203 DeclarationName Name(&II); 4204 LookupResult Result; 4205 LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false); 4206 unsigned DiagID = 0; 4207 Decl *Referenced = 0; 4208 switch (Result.getKind()) { 4209 case LookupResult::NotFound: 4210 DiagID = diag::err_typename_nested_not_found; 4211 break; 4212 4213 case LookupResult::Found: 4214 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4215 // We found a type. Build a QualifiedNameType, since the 4216 // typename-specifier was just sugar. FIXME: Tell 4217 // QualifiedNameType that it has a "typename" prefix. 4218 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4219 } 4220 4221 DiagID = diag::err_typename_nested_not_type; 4222 Referenced = Result.getFoundDecl(); 4223 break; 4224 4225 case LookupResult::FoundOverloaded: 4226 DiagID = diag::err_typename_nested_not_type; 4227 Referenced = *Result.begin(); 4228 break; 4229 4230 case LookupResult::Ambiguous: 4231 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 4232 return QualType(); 4233 } 4234 4235 // If we get here, it's because name lookup did not find a 4236 // type. Emit an appropriate diagnostic and return an error. 4237 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4238 if (Referenced) 4239 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4240 << Name; 4241 return QualType(); 4242} 4243 4244namespace { 4245 // See Sema::RebuildTypeInCurrentInstantiation 4246 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 4247 : public TreeTransform<CurrentInstantiationRebuilder> { 4248 SourceLocation Loc; 4249 DeclarationName Entity; 4250 4251 public: 4252 CurrentInstantiationRebuilder(Sema &SemaRef, 4253 SourceLocation Loc, 4254 DeclarationName Entity) 4255 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4256 Loc(Loc), Entity(Entity) { } 4257 4258 /// \brief Determine whether the given type \p T has already been 4259 /// transformed. 4260 /// 4261 /// For the purposes of type reconstruction, a type has already been 4262 /// transformed if it is NULL or if it is not dependent. 4263 bool AlreadyTransformed(QualType T) { 4264 return T.isNull() || !T->isDependentType(); 4265 } 4266 4267 /// \brief Returns the location of the entity whose type is being 4268 /// rebuilt. 4269 SourceLocation getBaseLocation() { return Loc; } 4270 4271 /// \brief Returns the name of the entity whose type is being rebuilt. 4272 DeclarationName getBaseEntity() { return Entity; } 4273 4274 /// \brief Transforms an expression by returning the expression itself 4275 /// (an identity function). 4276 /// 4277 /// FIXME: This is completely unsafe; we will need to actually clone the 4278 /// expressions. 4279 Sema::OwningExprResult TransformExpr(Expr *E) { 4280 return getSema().Owned(E); 4281 } 4282 4283 /// \brief Transforms a typename type by determining whether the type now 4284 /// refers to a member of the current instantiation, and then 4285 /// type-checking and building a QualifiedNameType (when possible). 4286 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4287 QualType TransformTypenameType(TypenameType *T); 4288 }; 4289} 4290 4291QualType 4292CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4293 TypenameTypeLoc TL) { 4294 QualType Result = TransformTypenameType(TL.getTypePtr()); 4295 if (Result.isNull()) 4296 return QualType(); 4297 4298 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4299 NewTL.setNameLoc(TL.getNameLoc()); 4300 4301 return Result; 4302} 4303 4304QualType 4305CurrentInstantiationRebuilder::TransformTypenameType(TypenameType *T) { 4306 4307 NestedNameSpecifier *NNS 4308 = TransformNestedNameSpecifier(T->getQualifier(), 4309 /*FIXME:*/SourceRange(getBaseLocation())); 4310 if (!NNS) 4311 return QualType(); 4312 4313 // If the nested-name-specifier did not change, and we cannot compute the 4314 // context corresponding to the nested-name-specifier, then this 4315 // typename type will not change; exit early. 4316 CXXScopeSpec SS; 4317 SS.setRange(SourceRange(getBaseLocation())); 4318 SS.setScopeRep(NNS); 4319 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4320 return QualType(T, 0); 4321 4322 // Rebuild the typename type, which will probably turn into a 4323 // QualifiedNameType. 4324 if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4325 QualType NewTemplateId 4326 = TransformType(QualType(TemplateId, 0)); 4327 if (NewTemplateId.isNull()) 4328 return QualType(); 4329 4330 if (NNS == T->getQualifier() && 4331 NewTemplateId == QualType(TemplateId, 0)) 4332 return QualType(T, 0); 4333 4334 return getDerived().RebuildTypenameType(NNS, NewTemplateId); 4335 } 4336 4337 return getDerived().RebuildTypenameType(NNS, T->getIdentifier()); 4338} 4339 4340/// \brief Rebuilds a type within the context of the current instantiation. 4341/// 4342/// The type \p T is part of the type of an out-of-line member definition of 4343/// a class template (or class template partial specialization) that was parsed 4344/// and constructed before we entered the scope of the class template (or 4345/// partial specialization thereof). This routine will rebuild that type now 4346/// that we have entered the declarator's scope, which may produce different 4347/// canonical types, e.g., 4348/// 4349/// \code 4350/// template<typename T> 4351/// struct X { 4352/// typedef T* pointer; 4353/// pointer data(); 4354/// }; 4355/// 4356/// template<typename T> 4357/// typename X<T>::pointer X<T>::data() { ... } 4358/// \endcode 4359/// 4360/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4361/// since we do not know that we can look into X<T> when we parsed the type. 4362/// This function will rebuild the type, performing the lookup of "pointer" 4363/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4364/// as the canonical type of T*, allowing the return types of the out-of-line 4365/// definition and the declaration to match. 4366QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4367 DeclarationName Name) { 4368 if (T.isNull() || !T->isDependentType()) 4369 return T; 4370 4371 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4372 return Rebuilder.TransformType(T); 4373} 4374 4375/// \brief Produces a formatted string that describes the binding of 4376/// template parameters to template arguments. 4377std::string 4378Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4379 const TemplateArgumentList &Args) { 4380 std::string Result; 4381 4382 if (!Params || Params->size() == 0) 4383 return Result; 4384 4385 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4386 if (I == 0) 4387 Result += "[with "; 4388 else 4389 Result += ", "; 4390 4391 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 4392 Result += Id->getName(); 4393 } else { 4394 Result += '$'; 4395 Result += llvm::utostr(I); 4396 } 4397 4398 Result += " = "; 4399 4400 switch (Args[I].getKind()) { 4401 case TemplateArgument::Null: 4402 Result += "<no value>"; 4403 break; 4404 4405 case TemplateArgument::Type: { 4406 std::string TypeStr; 4407 Args[I].getAsType().getAsStringInternal(TypeStr, 4408 Context.PrintingPolicy); 4409 Result += TypeStr; 4410 break; 4411 } 4412 4413 case TemplateArgument::Declaration: { 4414 bool Unnamed = true; 4415 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 4416 if (ND->getDeclName()) { 4417 Unnamed = false; 4418 Result += ND->getNameAsString(); 4419 } 4420 } 4421 4422 if (Unnamed) { 4423 Result += "<anonymous>"; 4424 } 4425 break; 4426 } 4427 4428 case TemplateArgument::Integral: { 4429 Result += Args[I].getAsIntegral()->toString(10); 4430 break; 4431 } 4432 4433 case TemplateArgument::Expression: { 4434 assert(false && "No expressions in deduced template arguments!"); 4435 Result += "<expression>"; 4436 break; 4437 } 4438 4439 case TemplateArgument::Pack: 4440 // FIXME: Format template argument packs 4441 Result += "<template argument pack>"; 4442 break; 4443 } 4444 } 4445 4446 Result += ']'; 4447 return Result; 4448} 4449