SemaTemplate.cpp revision bacb9493770ff19cfd8f7bc46a075f14b4d08159
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441                                            const ParsedTemplateArgument &Arg) {
442
443  switch (Arg.getKind()) {
444  case ParsedTemplateArgument::Type: {
445    TypeSourceInfo *DI;
446    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447    if (!DI)
448      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449    return TemplateArgumentLoc(TemplateArgument(T), DI);
450  }
451
452  case ParsedTemplateArgument::NonType: {
453    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454    return TemplateArgumentLoc(TemplateArgument(E), E);
455  }
456
457  case ParsedTemplateArgument::Template: {
458    TemplateName Template = Arg.getAsTemplate().get();
459    return TemplateArgumentLoc(TemplateArgument(Template),
460                               Arg.getScopeSpec().getRange(),
461                               Arg.getLocation());
462  }
463  }
464
465  llvm_unreachable("Unhandled parsed template argument");
466  return TemplateArgumentLoc();
467}
468
469/// \brief Translates template arguments as provided by the parser
470/// into template arguments used by semantic analysis.
471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472                                      TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474   TemplateArgs.addArgument(translateTemplateArgument(*this,
475                                                      TemplateArgsIn[I]));
476}
477
478/// ActOnTypeParameter - Called when a C++ template type parameter
479/// (e.g., "typename T") has been parsed. Typename specifies whether
480/// the keyword "typename" was used to declare the type parameter
481/// (otherwise, "class" was used), and KeyLoc is the location of the
482/// "class" or "typename" keyword. ParamName is the name of the
483/// parameter (NULL indicates an unnamed template parameter) and
484/// ParamName is the location of the parameter name (if any).
485/// If the type parameter has a default argument, it will be added
486/// later via ActOnTypeParameterDefault.
487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488                               SourceLocation EllipsisLoc,
489                               SourceLocation KeyLoc,
490                               IdentifierInfo *ParamName,
491                               SourceLocation ParamNameLoc,
492                               unsigned Depth, unsigned Position,
493                               SourceLocation EqualLoc,
494                               ParsedType DefaultArg) {
495  assert(S->isTemplateParamScope() &&
496         "Template type parameter not in template parameter scope!");
497  bool Invalid = false;
498
499  if (ParamName) {
500    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501                                           LookupOrdinaryName,
502                                           ForRedeclaration);
503    if (PrevDecl && PrevDecl->isTemplateParameter())
504      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505                                                           PrevDecl);
506  }
507
508  SourceLocation Loc = ParamNameLoc;
509  if (!ParamName)
510    Loc = KeyLoc;
511
512  TemplateTypeParmDecl *Param
513    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514                                   Loc, Depth, Position, ParamName, Typename,
515                                   Ellipsis);
516  if (Invalid)
517    Param->setInvalidDecl();
518
519  if (ParamName) {
520    // Add the template parameter into the current scope.
521    S->AddDecl(Param);
522    IdResolver.AddDecl(Param);
523  }
524
525  // Handle the default argument, if provided.
526  if (DefaultArg) {
527    TypeSourceInfo *DefaultTInfo;
528    GetTypeFromParser(DefaultArg, &DefaultTInfo);
529
530    assert(DefaultTInfo && "expected source information for type");
531
532    // C++0x [temp.param]p9:
533    // A default template-argument may be specified for any kind of
534    // template-parameter that is not a template parameter pack.
535    if (Ellipsis) {
536      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537      return Param;
538    }
539
540    // Check for unexpanded parameter packs.
541    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
542                                        UPPC_DefaultArgument))
543      return Param;
544
545    // Check the template argument itself.
546    if (CheckTemplateArgument(Param, DefaultTInfo)) {
547      Param->setInvalidDecl();
548      return Param;
549    }
550
551    Param->setDefaultArgument(DefaultTInfo, false);
552  }
553
554  return Param;
555}
556
557/// \brief Check that the type of a non-type template parameter is
558/// well-formed.
559///
560/// \returns the (possibly-promoted) parameter type if valid;
561/// otherwise, produces a diagnostic and returns a NULL type.
562QualType
563Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
564  // We don't allow variably-modified types as the type of non-type template
565  // parameters.
566  if (T->isVariablyModifiedType()) {
567    Diag(Loc, diag::err_variably_modified_nontype_template_param)
568      << T;
569    return QualType();
570  }
571
572  // C++ [temp.param]p4:
573  //
574  // A non-type template-parameter shall have one of the following
575  // (optionally cv-qualified) types:
576  //
577  //       -- integral or enumeration type,
578  if (T->isIntegralOrEnumerationType() ||
579      //   -- pointer to object or pointer to function,
580      T->isPointerType() ||
581      //   -- reference to object or reference to function,
582      T->isReferenceType() ||
583      //   -- pointer to member.
584      T->isMemberPointerType() ||
585      // If T is a dependent type, we can't do the check now, so we
586      // assume that it is well-formed.
587      T->isDependentType())
588    return T;
589  // C++ [temp.param]p8:
590  //
591  //   A non-type template-parameter of type "array of T" or
592  //   "function returning T" is adjusted to be of type "pointer to
593  //   T" or "pointer to function returning T", respectively.
594  else if (T->isArrayType())
595    // FIXME: Keep the type prior to promotion?
596    return Context.getArrayDecayedType(T);
597  else if (T->isFunctionType())
598    // FIXME: Keep the type prior to promotion?
599    return Context.getPointerType(T);
600
601  Diag(Loc, diag::err_template_nontype_parm_bad_type)
602    << T;
603
604  return QualType();
605}
606
607Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
608                                          unsigned Depth,
609                                          unsigned Position,
610                                          SourceLocation EqualLoc,
611                                          Expr *Default) {
612  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
613  QualType T = TInfo->getType();
614
615  assert(S->isTemplateParamScope() &&
616         "Non-type template parameter not in template parameter scope!");
617  bool Invalid = false;
618
619  IdentifierInfo *ParamName = D.getIdentifier();
620  if (ParamName) {
621    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
622                                           LookupOrdinaryName,
623                                           ForRedeclaration);
624    if (PrevDecl && PrevDecl->isTemplateParameter())
625      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
626                                                           PrevDecl);
627  }
628
629  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
630  if (T.isNull()) {
631    T = Context.IntTy; // Recover with an 'int' type.
632    Invalid = true;
633  }
634
635  bool IsParameterPack = D.hasEllipsis();
636  NonTypeTemplateParmDecl *Param
637    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
638                                      D.getIdentifierLoc(),
639                                      Depth, Position, ParamName, T,
640                                      IsParameterPack, TInfo);
641  if (Invalid)
642    Param->setInvalidDecl();
643
644  if (D.getIdentifier()) {
645    // Add the template parameter into the current scope.
646    S->AddDecl(Param);
647    IdResolver.AddDecl(Param);
648  }
649
650  // Check the well-formedness of the default template argument, if provided.
651  if (Default) {
652    // C++0x [temp.param]p9:
653    //   A default template-argument may be specified for any kind of
654    //   template-parameter that is not a template parameter pack.
655    if (IsParameterPack) {
656      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
657      return Param;
658    }
659
660    // Check for unexpanded parameter packs.
661    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
662      return Param;
663
664    TemplateArgument Converted;
665    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
666      Param->setInvalidDecl();
667      return Param;
668    }
669
670    Param->setDefaultArgument(Default, false);
671  }
672
673  return Param;
674}
675
676/// ActOnTemplateTemplateParameter - Called when a C++ template template
677/// parameter (e.g. T in template <template <typename> class T> class array)
678/// has been parsed. S is the current scope.
679Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
680                                           SourceLocation TmpLoc,
681                                           TemplateParamsTy *Params,
682                                           IdentifierInfo *Name,
683                                           SourceLocation NameLoc,
684                                           unsigned Depth,
685                                           unsigned Position,
686                                           SourceLocation EqualLoc,
687                                       const ParsedTemplateArgument &Default) {
688  assert(S->isTemplateParamScope() &&
689         "Template template parameter not in template parameter scope!");
690
691  // Construct the parameter object.
692  TemplateTemplateParmDecl *Param =
693    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
694                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
695                                     Depth, Position, Name,
696                                     Params);
697
698  // If the template template parameter has a name, then link the identifier
699  // into the scope and lookup mechanisms.
700  if (Name) {
701    S->AddDecl(Param);
702    IdResolver.AddDecl(Param);
703  }
704
705  if (Params->size() == 0) {
706    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
707    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
708    Param->setInvalidDecl();
709  }
710
711  if (!Default.isInvalid()) {
712    // Check only that we have a template template argument. We don't want to
713    // try to check well-formedness now, because our template template parameter
714    // might have dependent types in its template parameters, which we wouldn't
715    // be able to match now.
716    //
717    // If none of the template template parameter's template arguments mention
718    // other template parameters, we could actually perform more checking here.
719    // However, it isn't worth doing.
720    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
721    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
722      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
723        << DefaultArg.getSourceRange();
724      return Param;
725    }
726
727    // Check for unexpanded parameter packs.
728    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
729                                        DefaultArg.getArgument().getAsTemplate(),
730                                        UPPC_DefaultArgument))
731      return Param;
732
733    Param->setDefaultArgument(DefaultArg, false);
734  }
735
736  return Param;
737}
738
739/// ActOnTemplateParameterList - Builds a TemplateParameterList that
740/// contains the template parameters in Params/NumParams.
741Sema::TemplateParamsTy *
742Sema::ActOnTemplateParameterList(unsigned Depth,
743                                 SourceLocation ExportLoc,
744                                 SourceLocation TemplateLoc,
745                                 SourceLocation LAngleLoc,
746                                 Decl **Params, unsigned NumParams,
747                                 SourceLocation RAngleLoc) {
748  if (ExportLoc.isValid())
749    Diag(ExportLoc, diag::warn_template_export_unsupported);
750
751  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
752                                       (NamedDecl**)Params, NumParams,
753                                       RAngleLoc);
754}
755
756static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
757  if (SS.isSet())
758    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
759                        SS.getRange());
760}
761
762DeclResult
763Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
764                         SourceLocation KWLoc, CXXScopeSpec &SS,
765                         IdentifierInfo *Name, SourceLocation NameLoc,
766                         AttributeList *Attr,
767                         TemplateParameterList *TemplateParams,
768                         AccessSpecifier AS) {
769  assert(TemplateParams && TemplateParams->size() > 0 &&
770         "No template parameters");
771  assert(TUK != TUK_Reference && "Can only declare or define class templates");
772  bool Invalid = false;
773
774  // Check that we can declare a template here.
775  if (CheckTemplateDeclScope(S, TemplateParams))
776    return true;
777
778  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
779  assert(Kind != TTK_Enum && "can't build template of enumerated type");
780
781  // There is no such thing as an unnamed class template.
782  if (!Name) {
783    Diag(KWLoc, diag::err_template_unnamed_class);
784    return true;
785  }
786
787  // Find any previous declaration with this name.
788  DeclContext *SemanticContext;
789  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
790                        ForRedeclaration);
791  if (SS.isNotEmpty() && !SS.isInvalid()) {
792    SemanticContext = computeDeclContext(SS, true);
793    if (!SemanticContext) {
794      // FIXME: Produce a reasonable diagnostic here
795      return true;
796    }
797
798    if (RequireCompleteDeclContext(SS, SemanticContext))
799      return true;
800
801    LookupQualifiedName(Previous, SemanticContext);
802  } else {
803    SemanticContext = CurContext;
804    LookupName(Previous, S);
805  }
806
807  if (Previous.isAmbiguous())
808    return true;
809
810  NamedDecl *PrevDecl = 0;
811  if (Previous.begin() != Previous.end())
812    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
813
814  // If there is a previous declaration with the same name, check
815  // whether this is a valid redeclaration.
816  ClassTemplateDecl *PrevClassTemplate
817    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
818
819  // We may have found the injected-class-name of a class template,
820  // class template partial specialization, or class template specialization.
821  // In these cases, grab the template that is being defined or specialized.
822  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
823      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
824    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
825    PrevClassTemplate
826      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
827    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
828      PrevClassTemplate
829        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
830            ->getSpecializedTemplate();
831    }
832  }
833
834  if (TUK == TUK_Friend) {
835    // C++ [namespace.memdef]p3:
836    //   [...] When looking for a prior declaration of a class or a function
837    //   declared as a friend, and when the name of the friend class or
838    //   function is neither a qualified name nor a template-id, scopes outside
839    //   the innermost enclosing namespace scope are not considered.
840    if (!SS.isSet()) {
841      DeclContext *OutermostContext = CurContext;
842      while (!OutermostContext->isFileContext())
843        OutermostContext = OutermostContext->getLookupParent();
844
845      if (PrevDecl &&
846          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
847           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
848        SemanticContext = PrevDecl->getDeclContext();
849      } else {
850        // Declarations in outer scopes don't matter. However, the outermost
851        // context we computed is the semantic context for our new
852        // declaration.
853        PrevDecl = PrevClassTemplate = 0;
854        SemanticContext = OutermostContext;
855      }
856    }
857
858    if (CurContext->isDependentContext()) {
859      // If this is a dependent context, we don't want to link the friend
860      // class template to the template in scope, because that would perform
861      // checking of the template parameter lists that can't be performed
862      // until the outer context is instantiated.
863      PrevDecl = PrevClassTemplate = 0;
864    }
865  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
866    PrevDecl = PrevClassTemplate = 0;
867
868  if (PrevClassTemplate) {
869    // Ensure that the template parameter lists are compatible.
870    if (!TemplateParameterListsAreEqual(TemplateParams,
871                                   PrevClassTemplate->getTemplateParameters(),
872                                        /*Complain=*/true,
873                                        TPL_TemplateMatch))
874      return true;
875
876    // C++ [temp.class]p4:
877    //   In a redeclaration, partial specialization, explicit
878    //   specialization or explicit instantiation of a class template,
879    //   the class-key shall agree in kind with the original class
880    //   template declaration (7.1.5.3).
881    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
882    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
883      Diag(KWLoc, diag::err_use_with_wrong_tag)
884        << Name
885        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
886      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
887      Kind = PrevRecordDecl->getTagKind();
888    }
889
890    // Check for redefinition of this class template.
891    if (TUK == TUK_Definition) {
892      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
893        Diag(NameLoc, diag::err_redefinition) << Name;
894        Diag(Def->getLocation(), diag::note_previous_definition);
895        // FIXME: Would it make sense to try to "forget" the previous
896        // definition, as part of error recovery?
897        return true;
898      }
899    }
900  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
901    // Maybe we will complain about the shadowed template parameter.
902    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
903    // Just pretend that we didn't see the previous declaration.
904    PrevDecl = 0;
905  } else if (PrevDecl) {
906    // C++ [temp]p5:
907    //   A class template shall not have the same name as any other
908    //   template, class, function, object, enumeration, enumerator,
909    //   namespace, or type in the same scope (3.3), except as specified
910    //   in (14.5.4).
911    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
912    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
913    return true;
914  }
915
916  // Check the template parameter list of this declaration, possibly
917  // merging in the template parameter list from the previous class
918  // template declaration.
919  if (CheckTemplateParameterList(TemplateParams,
920            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
921                                 TPC_ClassTemplate))
922    Invalid = true;
923
924  if (SS.isSet()) {
925    // If the name of the template was qualified, we must be defining the
926    // template out-of-line.
927    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
928        !(TUK == TUK_Friend && CurContext->isDependentContext()))
929      Diag(NameLoc, diag::err_member_def_does_not_match)
930        << Name << SemanticContext << SS.getRange();
931  }
932
933  CXXRecordDecl *NewClass =
934    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
935                          PrevClassTemplate?
936                            PrevClassTemplate->getTemplatedDecl() : 0,
937                          /*DelayTypeCreation=*/true);
938  SetNestedNameSpecifier(NewClass, SS);
939
940  ClassTemplateDecl *NewTemplate
941    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
942                                DeclarationName(Name), TemplateParams,
943                                NewClass, PrevClassTemplate);
944  NewClass->setDescribedClassTemplate(NewTemplate);
945
946  // Build the type for the class template declaration now.
947  QualType T = NewTemplate->getInjectedClassNameSpecialization();
948  T = Context.getInjectedClassNameType(NewClass, T);
949  assert(T->isDependentType() && "Class template type is not dependent?");
950  (void)T;
951
952  // If we are providing an explicit specialization of a member that is a
953  // class template, make a note of that.
954  if (PrevClassTemplate &&
955      PrevClassTemplate->getInstantiatedFromMemberTemplate())
956    PrevClassTemplate->setMemberSpecialization();
957
958  // Set the access specifier.
959  if (!Invalid && TUK != TUK_Friend)
960    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
961
962  // Set the lexical context of these templates
963  NewClass->setLexicalDeclContext(CurContext);
964  NewTemplate->setLexicalDeclContext(CurContext);
965
966  if (TUK == TUK_Definition)
967    NewClass->startDefinition();
968
969  if (Attr)
970    ProcessDeclAttributeList(S, NewClass, Attr);
971
972  if (TUK != TUK_Friend)
973    PushOnScopeChains(NewTemplate, S);
974  else {
975    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
976      NewTemplate->setAccess(PrevClassTemplate->getAccess());
977      NewClass->setAccess(PrevClassTemplate->getAccess());
978    }
979
980    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
981                                       PrevClassTemplate != NULL);
982
983    // Friend templates are visible in fairly strange ways.
984    if (!CurContext->isDependentContext()) {
985      DeclContext *DC = SemanticContext->getRedeclContext();
986      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
987      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
988        PushOnScopeChains(NewTemplate, EnclosingScope,
989                          /* AddToContext = */ false);
990    }
991
992    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
993                                            NewClass->getLocation(),
994                                            NewTemplate,
995                                    /*FIXME:*/NewClass->getLocation());
996    Friend->setAccess(AS_public);
997    CurContext->addDecl(Friend);
998  }
999
1000  if (Invalid) {
1001    NewTemplate->setInvalidDecl();
1002    NewClass->setInvalidDecl();
1003  }
1004  return NewTemplate;
1005}
1006
1007/// \brief Diagnose the presence of a default template argument on a
1008/// template parameter, which is ill-formed in certain contexts.
1009///
1010/// \returns true if the default template argument should be dropped.
1011static bool DiagnoseDefaultTemplateArgument(Sema &S,
1012                                            Sema::TemplateParamListContext TPC,
1013                                            SourceLocation ParamLoc,
1014                                            SourceRange DefArgRange) {
1015  switch (TPC) {
1016  case Sema::TPC_ClassTemplate:
1017    return false;
1018
1019  case Sema::TPC_FunctionTemplate:
1020    // C++ [temp.param]p9:
1021    //   A default template-argument shall not be specified in a
1022    //   function template declaration or a function template
1023    //   definition [...]
1024    // (This sentence is not in C++0x, per DR226).
1025    if (!S.getLangOptions().CPlusPlus0x)
1026      S.Diag(ParamLoc,
1027             diag::err_template_parameter_default_in_function_template)
1028        << DefArgRange;
1029    return false;
1030
1031  case Sema::TPC_ClassTemplateMember:
1032    // C++0x [temp.param]p9:
1033    //   A default template-argument shall not be specified in the
1034    //   template-parameter-lists of the definition of a member of a
1035    //   class template that appears outside of the member's class.
1036    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1037      << DefArgRange;
1038    return true;
1039
1040  case Sema::TPC_FriendFunctionTemplate:
1041    // C++ [temp.param]p9:
1042    //   A default template-argument shall not be specified in a
1043    //   friend template declaration.
1044    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1045      << DefArgRange;
1046    return true;
1047
1048    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1049    // for friend function templates if there is only a single
1050    // declaration (and it is a definition). Strange!
1051  }
1052
1053  return false;
1054}
1055
1056/// \brief Check for unexpanded parameter packs within the template parameters
1057/// of a template template parameter, recursively.
1058bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1059  TemplateParameterList *Params = TTP->getTemplateParameters();
1060  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1061    NamedDecl *P = Params->getParam(I);
1062    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1063      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1064                                            NTTP->getTypeSourceInfo(),
1065                                      Sema::UPPC_NonTypeTemplateParameterType))
1066        return true;
1067
1068      continue;
1069    }
1070
1071    if (TemplateTemplateParmDecl *InnerTTP
1072                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1073      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1074        return true;
1075  }
1076
1077  return false;
1078}
1079
1080/// \brief Checks the validity of a template parameter list, possibly
1081/// considering the template parameter list from a previous
1082/// declaration.
1083///
1084/// If an "old" template parameter list is provided, it must be
1085/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1086/// template parameter list.
1087///
1088/// \param NewParams Template parameter list for a new template
1089/// declaration. This template parameter list will be updated with any
1090/// default arguments that are carried through from the previous
1091/// template parameter list.
1092///
1093/// \param OldParams If provided, template parameter list from a
1094/// previous declaration of the same template. Default template
1095/// arguments will be merged from the old template parameter list to
1096/// the new template parameter list.
1097///
1098/// \param TPC Describes the context in which we are checking the given
1099/// template parameter list.
1100///
1101/// \returns true if an error occurred, false otherwise.
1102bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1103                                      TemplateParameterList *OldParams,
1104                                      TemplateParamListContext TPC) {
1105  bool Invalid = false;
1106
1107  // C++ [temp.param]p10:
1108  //   The set of default template-arguments available for use with a
1109  //   template declaration or definition is obtained by merging the
1110  //   default arguments from the definition (if in scope) and all
1111  //   declarations in scope in the same way default function
1112  //   arguments are (8.3.6).
1113  bool SawDefaultArgument = false;
1114  SourceLocation PreviousDefaultArgLoc;
1115
1116  bool SawParameterPack = false;
1117  SourceLocation ParameterPackLoc;
1118
1119  // Dummy initialization to avoid warnings.
1120  TemplateParameterList::iterator OldParam = NewParams->end();
1121  if (OldParams)
1122    OldParam = OldParams->begin();
1123
1124  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1125                                    NewParamEnd = NewParams->end();
1126       NewParam != NewParamEnd; ++NewParam) {
1127    // Variables used to diagnose redundant default arguments
1128    bool RedundantDefaultArg = false;
1129    SourceLocation OldDefaultLoc;
1130    SourceLocation NewDefaultLoc;
1131
1132    // Variables used to diagnose missing default arguments
1133    bool MissingDefaultArg = false;
1134
1135    // C++0x [temp.param]p11:
1136    // If a template parameter of a class template is a template parameter pack,
1137    // it must be the last template parameter.
1138    if (SawParameterPack) {
1139      Diag(ParameterPackLoc,
1140           diag::err_template_param_pack_must_be_last_template_parameter);
1141      Invalid = true;
1142    }
1143
1144    if (TemplateTypeParmDecl *NewTypeParm
1145          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1146      // Check the presence of a default argument here.
1147      if (NewTypeParm->hasDefaultArgument() &&
1148          DiagnoseDefaultTemplateArgument(*this, TPC,
1149                                          NewTypeParm->getLocation(),
1150               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1151                                                       .getSourceRange()))
1152        NewTypeParm->removeDefaultArgument();
1153
1154      // Merge default arguments for template type parameters.
1155      TemplateTypeParmDecl *OldTypeParm
1156          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1157
1158      if (NewTypeParm->isParameterPack()) {
1159        assert(!NewTypeParm->hasDefaultArgument() &&
1160               "Parameter packs can't have a default argument!");
1161        SawParameterPack = true;
1162        ParameterPackLoc = NewTypeParm->getLocation();
1163      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1164                 NewTypeParm->hasDefaultArgument()) {
1165        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1166        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1167        SawDefaultArgument = true;
1168        RedundantDefaultArg = true;
1169        PreviousDefaultArgLoc = NewDefaultLoc;
1170      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1171        // Merge the default argument from the old declaration to the
1172        // new declaration.
1173        SawDefaultArgument = true;
1174        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1175                                        true);
1176        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1177      } else if (NewTypeParm->hasDefaultArgument()) {
1178        SawDefaultArgument = true;
1179        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1180      } else if (SawDefaultArgument)
1181        MissingDefaultArg = true;
1182    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1183               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1184      // Check for unexpanded parameter packs.
1185      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1186                                          NewNonTypeParm->getTypeSourceInfo(),
1187                                          UPPC_NonTypeTemplateParameterType)) {
1188        Invalid = true;
1189        continue;
1190      }
1191
1192      // Check the presence of a default argument here.
1193      if (NewNonTypeParm->hasDefaultArgument() &&
1194          DiagnoseDefaultTemplateArgument(*this, TPC,
1195                                          NewNonTypeParm->getLocation(),
1196                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1197        NewNonTypeParm->removeDefaultArgument();
1198      }
1199
1200      // Merge default arguments for non-type template parameters
1201      NonTypeTemplateParmDecl *OldNonTypeParm
1202        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1203      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1204          NewNonTypeParm->hasDefaultArgument()) {
1205        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1206        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1207        SawDefaultArgument = true;
1208        RedundantDefaultArg = true;
1209        PreviousDefaultArgLoc = NewDefaultLoc;
1210      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1211        // Merge the default argument from the old declaration to the
1212        // new declaration.
1213        SawDefaultArgument = true;
1214        // FIXME: We need to create a new kind of "default argument"
1215        // expression that points to a previous template template
1216        // parameter.
1217        NewNonTypeParm->setDefaultArgument(
1218                                         OldNonTypeParm->getDefaultArgument(),
1219                                         /*Inherited=*/ true);
1220        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1221      } else if (NewNonTypeParm->hasDefaultArgument()) {
1222        SawDefaultArgument = true;
1223        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1224      } else if (SawDefaultArgument)
1225        MissingDefaultArg = true;
1226    } else {
1227      // Check the presence of a default argument here.
1228      TemplateTemplateParmDecl *NewTemplateParm
1229        = cast<TemplateTemplateParmDecl>(*NewParam);
1230
1231      // Check for unexpanded parameter packs, recursively.
1232      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1233        Invalid = true;
1234        continue;
1235      }
1236
1237      if (NewTemplateParm->hasDefaultArgument() &&
1238          DiagnoseDefaultTemplateArgument(*this, TPC,
1239                                          NewTemplateParm->getLocation(),
1240                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1241        NewTemplateParm->removeDefaultArgument();
1242
1243      // Merge default arguments for template template parameters
1244      TemplateTemplateParmDecl *OldTemplateParm
1245        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1246      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1247          NewTemplateParm->hasDefaultArgument()) {
1248        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1249        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1250        SawDefaultArgument = true;
1251        RedundantDefaultArg = true;
1252        PreviousDefaultArgLoc = NewDefaultLoc;
1253      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1254        // Merge the default argument from the old declaration to the
1255        // new declaration.
1256        SawDefaultArgument = true;
1257        // FIXME: We need to create a new kind of "default argument" expression
1258        // that points to a previous template template parameter.
1259        NewTemplateParm->setDefaultArgument(
1260                                          OldTemplateParm->getDefaultArgument(),
1261                                          /*Inherited=*/ true);
1262        PreviousDefaultArgLoc
1263          = OldTemplateParm->getDefaultArgument().getLocation();
1264      } else if (NewTemplateParm->hasDefaultArgument()) {
1265        SawDefaultArgument = true;
1266        PreviousDefaultArgLoc
1267          = NewTemplateParm->getDefaultArgument().getLocation();
1268      } else if (SawDefaultArgument)
1269        MissingDefaultArg = true;
1270    }
1271
1272    if (RedundantDefaultArg) {
1273      // C++ [temp.param]p12:
1274      //   A template-parameter shall not be given default arguments
1275      //   by two different declarations in the same scope.
1276      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1277      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1278      Invalid = true;
1279    } else if (MissingDefaultArg) {
1280      // C++ [temp.param]p11:
1281      //   If a template-parameter has a default template-argument,
1282      //   all subsequent template-parameters shall have a default
1283      //   template-argument supplied.
1284      Diag((*NewParam)->getLocation(),
1285           diag::err_template_param_default_arg_missing);
1286      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1287      Invalid = true;
1288    }
1289
1290    // If we have an old template parameter list that we're merging
1291    // in, move on to the next parameter.
1292    if (OldParams)
1293      ++OldParam;
1294  }
1295
1296  return Invalid;
1297}
1298
1299namespace {
1300
1301/// A class which looks for a use of a certain level of template
1302/// parameter.
1303struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1304  typedef RecursiveASTVisitor<DependencyChecker> super;
1305
1306  unsigned Depth;
1307  bool Match;
1308
1309  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1310    NamedDecl *ND = Params->getParam(0);
1311    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1312      Depth = PD->getDepth();
1313    } else if (NonTypeTemplateParmDecl *PD =
1314                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1315      Depth = PD->getDepth();
1316    } else {
1317      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1318    }
1319  }
1320
1321  bool Matches(unsigned ParmDepth) {
1322    if (ParmDepth >= Depth) {
1323      Match = true;
1324      return true;
1325    }
1326    return false;
1327  }
1328
1329  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1330    return !Matches(T->getDepth());
1331  }
1332
1333  bool TraverseTemplateName(TemplateName N) {
1334    if (TemplateTemplateParmDecl *PD =
1335          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1336      if (Matches(PD->getDepth())) return false;
1337    return super::TraverseTemplateName(N);
1338  }
1339
1340  bool VisitDeclRefExpr(DeclRefExpr *E) {
1341    if (NonTypeTemplateParmDecl *PD =
1342          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1343      if (PD->getDepth() == Depth) {
1344        Match = true;
1345        return false;
1346      }
1347    }
1348    return super::VisitDeclRefExpr(E);
1349  }
1350};
1351}
1352
1353/// Determines whether a template-id depends on the given parameter
1354/// list.
1355static bool
1356DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1357                            TemplateParameterList *Params) {
1358  DependencyChecker Checker(Params);
1359  Checker.TraverseType(QualType(TemplateId, 0));
1360  return Checker.Match;
1361}
1362
1363/// \brief Match the given template parameter lists to the given scope
1364/// specifier, returning the template parameter list that applies to the
1365/// name.
1366///
1367/// \param DeclStartLoc the start of the declaration that has a scope
1368/// specifier or a template parameter list.
1369///
1370/// \param SS the scope specifier that will be matched to the given template
1371/// parameter lists. This scope specifier precedes a qualified name that is
1372/// being declared.
1373///
1374/// \param ParamLists the template parameter lists, from the outermost to the
1375/// innermost template parameter lists.
1376///
1377/// \param NumParamLists the number of template parameter lists in ParamLists.
1378///
1379/// \param IsFriend Whether to apply the slightly different rules for
1380/// matching template parameters to scope specifiers in friend
1381/// declarations.
1382///
1383/// \param IsExplicitSpecialization will be set true if the entity being
1384/// declared is an explicit specialization, false otherwise.
1385///
1386/// \returns the template parameter list, if any, that corresponds to the
1387/// name that is preceded by the scope specifier @p SS. This template
1388/// parameter list may be have template parameters (if we're declaring a
1389/// template) or may have no template parameters (if we're declaring a
1390/// template specialization), or may be NULL (if we were's declaring isn't
1391/// itself a template).
1392TemplateParameterList *
1393Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1394                                              const CXXScopeSpec &SS,
1395                                          TemplateParameterList **ParamLists,
1396                                              unsigned NumParamLists,
1397                                              bool IsFriend,
1398                                              bool &IsExplicitSpecialization,
1399                                              bool &Invalid) {
1400  IsExplicitSpecialization = false;
1401
1402  // Find the template-ids that occur within the nested-name-specifier. These
1403  // template-ids will match up with the template parameter lists.
1404  llvm::SmallVector<const TemplateSpecializationType *, 4>
1405    TemplateIdsInSpecifier;
1406  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1407    ExplicitSpecializationsInSpecifier;
1408  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1409       NNS; NNS = NNS->getPrefix()) {
1410    const Type *T = NNS->getAsType();
1411    if (!T) break;
1412
1413    // C++0x [temp.expl.spec]p17:
1414    //   A member or a member template may be nested within many
1415    //   enclosing class templates. In an explicit specialization for
1416    //   such a member, the member declaration shall be preceded by a
1417    //   template<> for each enclosing class template that is
1418    //   explicitly specialized.
1419    //
1420    // Following the existing practice of GNU and EDG, we allow a typedef of a
1421    // template specialization type.
1422    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1423      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1424
1425    if (const TemplateSpecializationType *SpecType
1426                                  = dyn_cast<TemplateSpecializationType>(T)) {
1427      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1428      if (!Template)
1429        continue; // FIXME: should this be an error? probably...
1430
1431      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1432        ClassTemplateSpecializationDecl *SpecDecl
1433          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1434        // If the nested name specifier refers to an explicit specialization,
1435        // we don't need a template<> header.
1436        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1437          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1438          continue;
1439        }
1440      }
1441
1442      TemplateIdsInSpecifier.push_back(SpecType);
1443    }
1444  }
1445
1446  // Reverse the list of template-ids in the scope specifier, so that we can
1447  // more easily match up the template-ids and the template parameter lists.
1448  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1449
1450  SourceLocation FirstTemplateLoc = DeclStartLoc;
1451  if (NumParamLists)
1452    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1453
1454  // Match the template-ids found in the specifier to the template parameter
1455  // lists.
1456  unsigned ParamIdx = 0, TemplateIdx = 0;
1457  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1458       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1459    const TemplateSpecializationType *TemplateId
1460      = TemplateIdsInSpecifier[TemplateIdx];
1461    bool DependentTemplateId = TemplateId->isDependentType();
1462
1463    // In friend declarations we can have template-ids which don't
1464    // depend on the corresponding template parameter lists.  But
1465    // assume that empty parameter lists are supposed to match this
1466    // template-id.
1467    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1468      if (!DependentTemplateId ||
1469          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1470        continue;
1471    }
1472
1473    if (ParamIdx >= NumParamLists) {
1474      // We have a template-id without a corresponding template parameter
1475      // list.
1476
1477      // ...which is fine if this is a friend declaration.
1478      if (IsFriend) {
1479        IsExplicitSpecialization = true;
1480        break;
1481      }
1482
1483      if (DependentTemplateId) {
1484        // FIXME: the location information here isn't great.
1485        Diag(SS.getRange().getBegin(),
1486             diag::err_template_spec_needs_template_parameters)
1487          << QualType(TemplateId, 0)
1488          << SS.getRange();
1489        Invalid = true;
1490      } else {
1491        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1492          << SS.getRange()
1493          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1494        IsExplicitSpecialization = true;
1495      }
1496      return 0;
1497    }
1498
1499    // Check the template parameter list against its corresponding template-id.
1500    if (DependentTemplateId) {
1501      TemplateParameterList *ExpectedTemplateParams = 0;
1502
1503      // Are there cases in (e.g.) friends where this won't match?
1504      if (const InjectedClassNameType *Injected
1505            = TemplateId->getAs<InjectedClassNameType>()) {
1506        CXXRecordDecl *Record = Injected->getDecl();
1507        if (ClassTemplatePartialSpecializationDecl *Partial =
1508              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1509          ExpectedTemplateParams = Partial->getTemplateParameters();
1510        else
1511          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1512            ->getTemplateParameters();
1513      }
1514
1515      if (ExpectedTemplateParams)
1516        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1517                                       ExpectedTemplateParams,
1518                                       true, TPL_TemplateMatch);
1519
1520      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1521                                 TPC_ClassTemplateMember);
1522    } else if (ParamLists[ParamIdx]->size() > 0)
1523      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1524           diag::err_template_param_list_matches_nontemplate)
1525        << TemplateId
1526        << ParamLists[ParamIdx]->getSourceRange();
1527    else
1528      IsExplicitSpecialization = true;
1529
1530    ++ParamIdx;
1531  }
1532
1533  // If there were at least as many template-ids as there were template
1534  // parameter lists, then there are no template parameter lists remaining for
1535  // the declaration itself.
1536  if (ParamIdx >= NumParamLists)
1537    return 0;
1538
1539  // If there were too many template parameter lists, complain about that now.
1540  if (ParamIdx != NumParamLists - 1) {
1541    while (ParamIdx < NumParamLists - 1) {
1542      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1543      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1544           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1545                               : diag::err_template_spec_extra_headers)
1546        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1547                       ParamLists[ParamIdx]->getRAngleLoc());
1548
1549      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1550        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1551             diag::note_explicit_template_spec_does_not_need_header)
1552          << ExplicitSpecializationsInSpecifier.back();
1553        ExplicitSpecializationsInSpecifier.pop_back();
1554      }
1555
1556      // We have a template parameter list with no corresponding scope, which
1557      // means that the resulting template declaration can't be instantiated
1558      // properly (we'll end up with dependent nodes when we shouldn't).
1559      if (!isExplicitSpecHeader)
1560        Invalid = true;
1561
1562      ++ParamIdx;
1563    }
1564  }
1565
1566  // Return the last template parameter list, which corresponds to the
1567  // entity being declared.
1568  return ParamLists[NumParamLists - 1];
1569}
1570
1571QualType Sema::CheckTemplateIdType(TemplateName Name,
1572                                   SourceLocation TemplateLoc,
1573                              const TemplateArgumentListInfo &TemplateArgs) {
1574  TemplateDecl *Template = Name.getAsTemplateDecl();
1575  if (!Template) {
1576    // The template name does not resolve to a template, so we just
1577    // build a dependent template-id type.
1578    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1579  }
1580
1581  // Check that the template argument list is well-formed for this
1582  // template.
1583  llvm::SmallVector<TemplateArgument, 4> Converted;
1584  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1585                                false, Converted))
1586    return QualType();
1587
1588  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1589         "Converted template argument list is too short!");
1590
1591  QualType CanonType;
1592
1593  if (Name.isDependent() ||
1594      TemplateSpecializationType::anyDependentTemplateArguments(
1595                                                      TemplateArgs)) {
1596    // This class template specialization is a dependent
1597    // type. Therefore, its canonical type is another class template
1598    // specialization type that contains all of the converted
1599    // arguments in canonical form. This ensures that, e.g., A<T> and
1600    // A<T, T> have identical types when A is declared as:
1601    //
1602    //   template<typename T, typename U = T> struct A;
1603    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1604    CanonType = Context.getTemplateSpecializationType(CanonName,
1605                                                      Converted.data(),
1606                                                      Converted.size());
1607
1608    // FIXME: CanonType is not actually the canonical type, and unfortunately
1609    // it is a TemplateSpecializationType that we will never use again.
1610    // In the future, we need to teach getTemplateSpecializationType to only
1611    // build the canonical type and return that to us.
1612    CanonType = Context.getCanonicalType(CanonType);
1613
1614    // This might work out to be a current instantiation, in which
1615    // case the canonical type needs to be the InjectedClassNameType.
1616    //
1617    // TODO: in theory this could be a simple hashtable lookup; most
1618    // changes to CurContext don't change the set of current
1619    // instantiations.
1620    if (isa<ClassTemplateDecl>(Template)) {
1621      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1622        // If we get out to a namespace, we're done.
1623        if (Ctx->isFileContext()) break;
1624
1625        // If this isn't a record, keep looking.
1626        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1627        if (!Record) continue;
1628
1629        // Look for one of the two cases with InjectedClassNameTypes
1630        // and check whether it's the same template.
1631        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1632            !Record->getDescribedClassTemplate())
1633          continue;
1634
1635        // Fetch the injected class name type and check whether its
1636        // injected type is equal to the type we just built.
1637        QualType ICNT = Context.getTypeDeclType(Record);
1638        QualType Injected = cast<InjectedClassNameType>(ICNT)
1639          ->getInjectedSpecializationType();
1640
1641        if (CanonType != Injected->getCanonicalTypeInternal())
1642          continue;
1643
1644        // If so, the canonical type of this TST is the injected
1645        // class name type of the record we just found.
1646        assert(ICNT.isCanonical());
1647        CanonType = ICNT;
1648        break;
1649      }
1650    }
1651  } else if (ClassTemplateDecl *ClassTemplate
1652               = dyn_cast<ClassTemplateDecl>(Template)) {
1653    // Find the class template specialization declaration that
1654    // corresponds to these arguments.
1655    void *InsertPos = 0;
1656    ClassTemplateSpecializationDecl *Decl
1657      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1658                                          InsertPos);
1659    if (!Decl) {
1660      // This is the first time we have referenced this class template
1661      // specialization. Create the canonical declaration and add it to
1662      // the set of specializations.
1663      Decl = ClassTemplateSpecializationDecl::Create(Context,
1664                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1665                                                ClassTemplate->getDeclContext(),
1666                                                ClassTemplate->getLocation(),
1667                                                     ClassTemplate,
1668                                                     Converted.data(),
1669                                                     Converted.size(), 0);
1670      ClassTemplate->AddSpecialization(Decl, InsertPos);
1671      Decl->setLexicalDeclContext(CurContext);
1672    }
1673
1674    CanonType = Context.getTypeDeclType(Decl);
1675    assert(isa<RecordType>(CanonType) &&
1676           "type of non-dependent specialization is not a RecordType");
1677  }
1678
1679  // Build the fully-sugared type for this class template
1680  // specialization, which refers back to the class template
1681  // specialization we created or found.
1682  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1683}
1684
1685TypeResult
1686Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1687                          SourceLocation LAngleLoc,
1688                          ASTTemplateArgsPtr TemplateArgsIn,
1689                          SourceLocation RAngleLoc) {
1690  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1691
1692  // Translate the parser's template argument list in our AST format.
1693  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1694  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1695
1696  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1697  TemplateArgsIn.release();
1698
1699  if (Result.isNull())
1700    return true;
1701
1702  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1703  TemplateSpecializationTypeLoc TL
1704    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1705  TL.setTemplateNameLoc(TemplateLoc);
1706  TL.setLAngleLoc(LAngleLoc);
1707  TL.setRAngleLoc(RAngleLoc);
1708  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1709    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1710
1711  return CreateParsedType(Result, DI);
1712}
1713
1714TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1715                                        TypeResult TypeResult,
1716                                        TagUseKind TUK,
1717                                        TypeSpecifierType TagSpec,
1718                                        SourceLocation TagLoc) {
1719  if (TypeResult.isInvalid())
1720    return ::TypeResult();
1721
1722  TypeSourceInfo *DI;
1723  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1724
1725  // Verify the tag specifier.
1726  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1727
1728  if (const RecordType *RT = Type->getAs<RecordType>()) {
1729    RecordDecl *D = RT->getDecl();
1730
1731    IdentifierInfo *Id = D->getIdentifier();
1732    assert(Id && "templated class must have an identifier");
1733
1734    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1735      Diag(TagLoc, diag::err_use_with_wrong_tag)
1736        << Type
1737        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1738      Diag(D->getLocation(), diag::note_previous_use);
1739    }
1740  }
1741
1742  ElaboratedTypeKeyword Keyword
1743    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1744  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1745
1746  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1747  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1748  TL.setKeywordLoc(TagLoc);
1749  TL.setQualifierRange(SS.getRange());
1750  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1751  return CreateParsedType(ElabType, ElabDI);
1752}
1753
1754ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1755                                                 LookupResult &R,
1756                                                 bool RequiresADL,
1757                                 const TemplateArgumentListInfo &TemplateArgs) {
1758  // FIXME: Can we do any checking at this point? I guess we could check the
1759  // template arguments that we have against the template name, if the template
1760  // name refers to a single template. That's not a terribly common case,
1761  // though.
1762
1763  // These should be filtered out by our callers.
1764  assert(!R.empty() && "empty lookup results when building templateid");
1765  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1766
1767  NestedNameSpecifier *Qualifier = 0;
1768  SourceRange QualifierRange;
1769  if (SS.isSet()) {
1770    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1771    QualifierRange = SS.getRange();
1772  }
1773
1774  // We don't want lookup warnings at this point.
1775  R.suppressDiagnostics();
1776
1777  UnresolvedLookupExpr *ULE
1778    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1779                                   Qualifier, QualifierRange,
1780                                   R.getLookupNameInfo(),
1781                                   RequiresADL, TemplateArgs,
1782                                   R.begin(), R.end());
1783
1784  return Owned(ULE);
1785}
1786
1787// We actually only call this from template instantiation.
1788ExprResult
1789Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1790                                   const DeclarationNameInfo &NameInfo,
1791                             const TemplateArgumentListInfo &TemplateArgs) {
1792  DeclContext *DC;
1793  if (!(DC = computeDeclContext(SS, false)) ||
1794      DC->isDependentContext() ||
1795      RequireCompleteDeclContext(SS, DC))
1796    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1797
1798  bool MemberOfUnknownSpecialization;
1799  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1800  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1801                     MemberOfUnknownSpecialization);
1802
1803  if (R.isAmbiguous())
1804    return ExprError();
1805
1806  if (R.empty()) {
1807    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1808      << NameInfo.getName() << SS.getRange();
1809    return ExprError();
1810  }
1811
1812  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1813    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1814      << (NestedNameSpecifier*) SS.getScopeRep()
1815      << NameInfo.getName() << SS.getRange();
1816    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1817    return ExprError();
1818  }
1819
1820  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1821}
1822
1823/// \brief Form a dependent template name.
1824///
1825/// This action forms a dependent template name given the template
1826/// name and its (presumably dependent) scope specifier. For
1827/// example, given "MetaFun::template apply", the scope specifier \p
1828/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1829/// of the "template" keyword, and "apply" is the \p Name.
1830TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1831                                                  SourceLocation TemplateKWLoc,
1832                                                  CXXScopeSpec &SS,
1833                                                  UnqualifiedId &Name,
1834                                                  ParsedType ObjectType,
1835                                                  bool EnteringContext,
1836                                                  TemplateTy &Result) {
1837  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1838      !getLangOptions().CPlusPlus0x)
1839    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1840      << FixItHint::CreateRemoval(TemplateKWLoc);
1841
1842  DeclContext *LookupCtx = 0;
1843  if (SS.isSet())
1844    LookupCtx = computeDeclContext(SS, EnteringContext);
1845  if (!LookupCtx && ObjectType)
1846    LookupCtx = computeDeclContext(ObjectType.get());
1847  if (LookupCtx) {
1848    // C++0x [temp.names]p5:
1849    //   If a name prefixed by the keyword template is not the name of
1850    //   a template, the program is ill-formed. [Note: the keyword
1851    //   template may not be applied to non-template members of class
1852    //   templates. -end note ] [ Note: as is the case with the
1853    //   typename prefix, the template prefix is allowed in cases
1854    //   where it is not strictly necessary; i.e., when the
1855    //   nested-name-specifier or the expression on the left of the ->
1856    //   or . is not dependent on a template-parameter, or the use
1857    //   does not appear in the scope of a template. -end note]
1858    //
1859    // Note: C++03 was more strict here, because it banned the use of
1860    // the "template" keyword prior to a template-name that was not a
1861    // dependent name. C++ DR468 relaxed this requirement (the
1862    // "template" keyword is now permitted). We follow the C++0x
1863    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1864    bool MemberOfUnknownSpecialization;
1865    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1866                                          ObjectType, EnteringContext, Result,
1867                                          MemberOfUnknownSpecialization);
1868    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1869        isa<CXXRecordDecl>(LookupCtx) &&
1870        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1871      // This is a dependent template. Handle it below.
1872    } else if (TNK == TNK_Non_template) {
1873      Diag(Name.getSourceRange().getBegin(),
1874           diag::err_template_kw_refers_to_non_template)
1875        << GetNameFromUnqualifiedId(Name).getName()
1876        << Name.getSourceRange()
1877        << TemplateKWLoc;
1878      return TNK_Non_template;
1879    } else {
1880      // We found something; return it.
1881      return TNK;
1882    }
1883  }
1884
1885  NestedNameSpecifier *Qualifier
1886    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1887
1888  switch (Name.getKind()) {
1889  case UnqualifiedId::IK_Identifier:
1890    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1891                                                              Name.Identifier));
1892    return TNK_Dependent_template_name;
1893
1894  case UnqualifiedId::IK_OperatorFunctionId:
1895    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1896                                             Name.OperatorFunctionId.Operator));
1897    return TNK_Dependent_template_name;
1898
1899  case UnqualifiedId::IK_LiteralOperatorId:
1900    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1901
1902  default:
1903    break;
1904  }
1905
1906  Diag(Name.getSourceRange().getBegin(),
1907       diag::err_template_kw_refers_to_non_template)
1908    << GetNameFromUnqualifiedId(Name).getName()
1909    << Name.getSourceRange()
1910    << TemplateKWLoc;
1911  return TNK_Non_template;
1912}
1913
1914bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1915                                     const TemplateArgumentLoc &AL,
1916                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1917  const TemplateArgument &Arg = AL.getArgument();
1918
1919  // Check template type parameter.
1920  switch(Arg.getKind()) {
1921  case TemplateArgument::Type:
1922    // C++ [temp.arg.type]p1:
1923    //   A template-argument for a template-parameter which is a
1924    //   type shall be a type-id.
1925    break;
1926  case TemplateArgument::Template: {
1927    // We have a template type parameter but the template argument
1928    // is a template without any arguments.
1929    SourceRange SR = AL.getSourceRange();
1930    TemplateName Name = Arg.getAsTemplate();
1931    Diag(SR.getBegin(), diag::err_template_missing_args)
1932      << Name << SR;
1933    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1934      Diag(Decl->getLocation(), diag::note_template_decl_here);
1935
1936    return true;
1937  }
1938  default: {
1939    // We have a template type parameter but the template argument
1940    // is not a type.
1941    SourceRange SR = AL.getSourceRange();
1942    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1943    Diag(Param->getLocation(), diag::note_template_param_here);
1944
1945    return true;
1946  }
1947  }
1948
1949  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1950    return true;
1951
1952  // Add the converted template type argument.
1953  Converted.push_back(
1954                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1955  return false;
1956}
1957
1958/// \brief Substitute template arguments into the default template argument for
1959/// the given template type parameter.
1960///
1961/// \param SemaRef the semantic analysis object for which we are performing
1962/// the substitution.
1963///
1964/// \param Template the template that we are synthesizing template arguments
1965/// for.
1966///
1967/// \param TemplateLoc the location of the template name that started the
1968/// template-id we are checking.
1969///
1970/// \param RAngleLoc the location of the right angle bracket ('>') that
1971/// terminates the template-id.
1972///
1973/// \param Param the template template parameter whose default we are
1974/// substituting into.
1975///
1976/// \param Converted the list of template arguments provided for template
1977/// parameters that precede \p Param in the template parameter list.
1978///
1979/// \returns the substituted template argument, or NULL if an error occurred.
1980static TypeSourceInfo *
1981SubstDefaultTemplateArgument(Sema &SemaRef,
1982                             TemplateDecl *Template,
1983                             SourceLocation TemplateLoc,
1984                             SourceLocation RAngleLoc,
1985                             TemplateTypeParmDecl *Param,
1986                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1987  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1988
1989  // If the argument type is dependent, instantiate it now based
1990  // on the previously-computed template arguments.
1991  if (ArgType->getType()->isDependentType()) {
1992    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1993                                      Converted.data(), Converted.size());
1994
1995    MultiLevelTemplateArgumentList AllTemplateArgs
1996      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1997
1998    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1999                                     Template, Converted.data(),
2000                                     Converted.size(),
2001                                     SourceRange(TemplateLoc, RAngleLoc));
2002
2003    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2004                                Param->getDefaultArgumentLoc(),
2005                                Param->getDeclName());
2006  }
2007
2008  return ArgType;
2009}
2010
2011/// \brief Substitute template arguments into the default template argument for
2012/// the given non-type template parameter.
2013///
2014/// \param SemaRef the semantic analysis object for which we are performing
2015/// the substitution.
2016///
2017/// \param Template the template that we are synthesizing template arguments
2018/// for.
2019///
2020/// \param TemplateLoc the location of the template name that started the
2021/// template-id we are checking.
2022///
2023/// \param RAngleLoc the location of the right angle bracket ('>') that
2024/// terminates the template-id.
2025///
2026/// \param Param the non-type template parameter whose default we are
2027/// substituting into.
2028///
2029/// \param Converted the list of template arguments provided for template
2030/// parameters that precede \p Param in the template parameter list.
2031///
2032/// \returns the substituted template argument, or NULL if an error occurred.
2033static ExprResult
2034SubstDefaultTemplateArgument(Sema &SemaRef,
2035                             TemplateDecl *Template,
2036                             SourceLocation TemplateLoc,
2037                             SourceLocation RAngleLoc,
2038                             NonTypeTemplateParmDecl *Param,
2039                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2040  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2041                                    Converted.data(), Converted.size());
2042
2043  MultiLevelTemplateArgumentList AllTemplateArgs
2044    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2045
2046  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2047                                   Template, Converted.data(),
2048                                   Converted.size(),
2049                                   SourceRange(TemplateLoc, RAngleLoc));
2050
2051  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2052}
2053
2054/// \brief Substitute template arguments into the default template argument for
2055/// the given template template parameter.
2056///
2057/// \param SemaRef the semantic analysis object for which we are performing
2058/// the substitution.
2059///
2060/// \param Template the template that we are synthesizing template arguments
2061/// for.
2062///
2063/// \param TemplateLoc the location of the template name that started the
2064/// template-id we are checking.
2065///
2066/// \param RAngleLoc the location of the right angle bracket ('>') that
2067/// terminates the template-id.
2068///
2069/// \param Param the template template parameter whose default we are
2070/// substituting into.
2071///
2072/// \param Converted the list of template arguments provided for template
2073/// parameters that precede \p Param in the template parameter list.
2074///
2075/// \returns the substituted template argument, or NULL if an error occurred.
2076static TemplateName
2077SubstDefaultTemplateArgument(Sema &SemaRef,
2078                             TemplateDecl *Template,
2079                             SourceLocation TemplateLoc,
2080                             SourceLocation RAngleLoc,
2081                             TemplateTemplateParmDecl *Param,
2082                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2083  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2084                                    Converted.data(), Converted.size());
2085
2086  MultiLevelTemplateArgumentList AllTemplateArgs
2087    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2088
2089  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2090                                   Template, Converted.data(),
2091                                   Converted.size(),
2092                                   SourceRange(TemplateLoc, RAngleLoc));
2093
2094  return SemaRef.SubstTemplateName(
2095                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2096                              Param->getDefaultArgument().getTemplateNameLoc(),
2097                                   AllTemplateArgs);
2098}
2099
2100/// \brief If the given template parameter has a default template
2101/// argument, substitute into that default template argument and
2102/// return the corresponding template argument.
2103TemplateArgumentLoc
2104Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2105                                              SourceLocation TemplateLoc,
2106                                              SourceLocation RAngleLoc,
2107                                              Decl *Param,
2108                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2109   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2110    if (!TypeParm->hasDefaultArgument())
2111      return TemplateArgumentLoc();
2112
2113    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2114                                                      TemplateLoc,
2115                                                      RAngleLoc,
2116                                                      TypeParm,
2117                                                      Converted);
2118    if (DI)
2119      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2120
2121    return TemplateArgumentLoc();
2122  }
2123
2124  if (NonTypeTemplateParmDecl *NonTypeParm
2125        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2126    if (!NonTypeParm->hasDefaultArgument())
2127      return TemplateArgumentLoc();
2128
2129    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2130                                                        TemplateLoc,
2131                                                        RAngleLoc,
2132                                                        NonTypeParm,
2133                                                        Converted);
2134    if (Arg.isInvalid())
2135      return TemplateArgumentLoc();
2136
2137    Expr *ArgE = Arg.takeAs<Expr>();
2138    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2139  }
2140
2141  TemplateTemplateParmDecl *TempTempParm
2142    = cast<TemplateTemplateParmDecl>(Param);
2143  if (!TempTempParm->hasDefaultArgument())
2144    return TemplateArgumentLoc();
2145
2146  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2147                                                    TemplateLoc,
2148                                                    RAngleLoc,
2149                                                    TempTempParm,
2150                                                    Converted);
2151  if (TName.isNull())
2152    return TemplateArgumentLoc();
2153
2154  return TemplateArgumentLoc(TemplateArgument(TName),
2155                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2156                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2157}
2158
2159/// \brief Check that the given template argument corresponds to the given
2160/// template parameter.
2161bool Sema::CheckTemplateArgument(NamedDecl *Param,
2162                                 const TemplateArgumentLoc &Arg,
2163                                 TemplateDecl *Template,
2164                                 SourceLocation TemplateLoc,
2165                                 SourceLocation RAngleLoc,
2166                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2167                                 CheckTemplateArgumentKind CTAK) {
2168  // Check template type parameters.
2169  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2170    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2171
2172  // Check non-type template parameters.
2173  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2174    // Do substitution on the type of the non-type template parameter
2175    // with the template arguments we've seen thus far.  But if the
2176    // template has a dependent context then we cannot substitute yet.
2177    QualType NTTPType = NTTP->getType();
2178    if (NTTPType->isDependentType() &&
2179        !isa<TemplateTemplateParmDecl>(Template) &&
2180        !Template->getDeclContext()->isDependentContext()) {
2181      // Do substitution on the type of the non-type template parameter.
2182      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2183                                 NTTP, Converted.data(), Converted.size(),
2184                                 SourceRange(TemplateLoc, RAngleLoc));
2185
2186      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2187                                        Converted.data(), Converted.size());
2188      NTTPType = SubstType(NTTPType,
2189                           MultiLevelTemplateArgumentList(TemplateArgs),
2190                           NTTP->getLocation(),
2191                           NTTP->getDeclName());
2192      // If that worked, check the non-type template parameter type
2193      // for validity.
2194      if (!NTTPType.isNull())
2195        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2196                                                     NTTP->getLocation());
2197      if (NTTPType.isNull())
2198        return true;
2199    }
2200
2201    switch (Arg.getArgument().getKind()) {
2202    case TemplateArgument::Null:
2203      assert(false && "Should never see a NULL template argument here");
2204      return true;
2205
2206    case TemplateArgument::Expression: {
2207      Expr *E = Arg.getArgument().getAsExpr();
2208      TemplateArgument Result;
2209      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2210        return true;
2211
2212      Converted.push_back(Result);
2213      break;
2214    }
2215
2216    case TemplateArgument::Declaration:
2217    case TemplateArgument::Integral:
2218      // We've already checked this template argument, so just copy
2219      // it to the list of converted arguments.
2220      Converted.push_back(Arg.getArgument());
2221      break;
2222
2223    case TemplateArgument::Template:
2224      // We were given a template template argument. It may not be ill-formed;
2225      // see below.
2226      if (DependentTemplateName *DTN
2227            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2228        // We have a template argument such as \c T::template X, which we
2229        // parsed as a template template argument. However, since we now
2230        // know that we need a non-type template argument, convert this
2231        // template name into an expression.
2232
2233        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2234                                     Arg.getTemplateNameLoc());
2235
2236        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2237                                                    DTN->getQualifier(),
2238                                               Arg.getTemplateQualifierRange(),
2239                                                    NameInfo);
2240
2241        TemplateArgument Result;
2242        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2243          return true;
2244
2245        Converted.push_back(Result);
2246        break;
2247      }
2248
2249      // We have a template argument that actually does refer to a class
2250      // template, template alias, or template template parameter, and
2251      // therefore cannot be a non-type template argument.
2252      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2253        << Arg.getSourceRange();
2254
2255      Diag(Param->getLocation(), diag::note_template_param_here);
2256      return true;
2257
2258    case TemplateArgument::Type: {
2259      // We have a non-type template parameter but the template
2260      // argument is a type.
2261
2262      // C++ [temp.arg]p2:
2263      //   In a template-argument, an ambiguity between a type-id and
2264      //   an expression is resolved to a type-id, regardless of the
2265      //   form of the corresponding template-parameter.
2266      //
2267      // We warn specifically about this case, since it can be rather
2268      // confusing for users.
2269      QualType T = Arg.getArgument().getAsType();
2270      SourceRange SR = Arg.getSourceRange();
2271      if (T->isFunctionType())
2272        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2273      else
2274        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2275      Diag(Param->getLocation(), diag::note_template_param_here);
2276      return true;
2277    }
2278
2279    case TemplateArgument::Pack:
2280      llvm_unreachable("Caller must expand template argument packs");
2281      break;
2282    }
2283
2284    return false;
2285  }
2286
2287
2288  // Check template template parameters.
2289  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2290
2291  // Substitute into the template parameter list of the template
2292  // template parameter, since previously-supplied template arguments
2293  // may appear within the template template parameter.
2294  {
2295    // Set up a template instantiation context.
2296    LocalInstantiationScope Scope(*this);
2297    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2298                               TempParm, Converted.data(), Converted.size(),
2299                               SourceRange(TemplateLoc, RAngleLoc));
2300
2301    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2302                                      Converted.data(), Converted.size());
2303    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2304                      SubstDecl(TempParm, CurContext,
2305                                MultiLevelTemplateArgumentList(TemplateArgs)));
2306    if (!TempParm)
2307      return true;
2308  }
2309
2310  switch (Arg.getArgument().getKind()) {
2311  case TemplateArgument::Null:
2312    assert(false && "Should never see a NULL template argument here");
2313    return true;
2314
2315  case TemplateArgument::Template:
2316    if (CheckTemplateArgument(TempParm, Arg))
2317      return true;
2318
2319    Converted.push_back(Arg.getArgument());
2320    break;
2321
2322  case TemplateArgument::Expression:
2323  case TemplateArgument::Type:
2324    // We have a template template parameter but the template
2325    // argument does not refer to a template.
2326    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2327    return true;
2328
2329  case TemplateArgument::Declaration:
2330    llvm_unreachable(
2331                       "Declaration argument with template template parameter");
2332    break;
2333  case TemplateArgument::Integral:
2334    llvm_unreachable(
2335                          "Integral argument with template template parameter");
2336    break;
2337
2338  case TemplateArgument::Pack:
2339    llvm_unreachable("Caller must expand template argument packs");
2340    break;
2341  }
2342
2343  return false;
2344}
2345
2346/// \brief Check that the given template argument list is well-formed
2347/// for specializing the given template.
2348bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2349                                     SourceLocation TemplateLoc,
2350                                const TemplateArgumentListInfo &TemplateArgs,
2351                                     bool PartialTemplateArgs,
2352                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2353  TemplateParameterList *Params = Template->getTemplateParameters();
2354  unsigned NumParams = Params->size();
2355  unsigned NumArgs = TemplateArgs.size();
2356  bool Invalid = false;
2357
2358  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2359
2360  bool HasParameterPack =
2361    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2362
2363  if ((NumArgs > NumParams && !HasParameterPack) ||
2364      (NumArgs < Params->getMinRequiredArguments() &&
2365       !PartialTemplateArgs)) {
2366    // FIXME: point at either the first arg beyond what we can handle,
2367    // or the '>', depending on whether we have too many or too few
2368    // arguments.
2369    SourceRange Range;
2370    if (NumArgs > NumParams)
2371      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2372    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2373      << (NumArgs > NumParams)
2374      << (isa<ClassTemplateDecl>(Template)? 0 :
2375          isa<FunctionTemplateDecl>(Template)? 1 :
2376          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2377      << Template << Range;
2378    Diag(Template->getLocation(), diag::note_template_decl_here)
2379      << Params->getSourceRange();
2380    Invalid = true;
2381  }
2382
2383  // C++ [temp.arg]p1:
2384  //   [...] The type and form of each template-argument specified in
2385  //   a template-id shall match the type and form specified for the
2386  //   corresponding parameter declared by the template in its
2387  //   template-parameter-list.
2388  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2389  TemplateParameterList::iterator Param = Params->begin(),
2390                               ParamEnd = Params->end();
2391  unsigned ArgIdx = 0;
2392  while (Param != ParamEnd) {
2393    if (ArgIdx > NumArgs && PartialTemplateArgs)
2394      break;
2395
2396    if (ArgIdx < NumArgs) {
2397      // Check the template argument we were given.
2398      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2399                                TemplateLoc, RAngleLoc, Converted))
2400        return true;
2401
2402      if ((*Param)->isTemplateParameterPack()) {
2403        // The template parameter was a template parameter pack, so take the
2404        // deduced argument and place it on the argument pack. Note that we
2405        // stay on the same template parameter so that we can deduce more
2406        // arguments.
2407        ArgumentPack.push_back(Converted.back());
2408        Converted.pop_back();
2409      } else {
2410        // Move to the next template parameter.
2411        ++Param;
2412      }
2413      ++ArgIdx;
2414      continue;
2415    }
2416
2417    // If we have a template parameter pack with no more corresponding
2418    // arguments, just break out now and we'll fill in the argument pack below.
2419    if ((*Param)->isTemplateParameterPack())
2420      break;
2421
2422    // We have a default template argument that we will use.
2423    TemplateArgumentLoc Arg;
2424
2425    // Retrieve the default template argument from the template
2426    // parameter. For each kind of template parameter, we substitute the
2427    // template arguments provided thus far and any "outer" template arguments
2428    // (when the template parameter was part of a nested template) into
2429    // the default argument.
2430    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2431      if (!TTP->hasDefaultArgument()) {
2432        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2433        break;
2434      }
2435
2436      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2437                                                             Template,
2438                                                             TemplateLoc,
2439                                                             RAngleLoc,
2440                                                             TTP,
2441                                                             Converted);
2442      if (!ArgType)
2443        return true;
2444
2445      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2446                                ArgType);
2447    } else if (NonTypeTemplateParmDecl *NTTP
2448                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2449      if (!NTTP->hasDefaultArgument()) {
2450        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2451        break;
2452      }
2453
2454      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2455                                                              TemplateLoc,
2456                                                              RAngleLoc,
2457                                                              NTTP,
2458                                                              Converted);
2459      if (E.isInvalid())
2460        return true;
2461
2462      Expr *Ex = E.takeAs<Expr>();
2463      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2464    } else {
2465      TemplateTemplateParmDecl *TempParm
2466        = cast<TemplateTemplateParmDecl>(*Param);
2467
2468      if (!TempParm->hasDefaultArgument()) {
2469        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2470        break;
2471      }
2472
2473      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2474                                                       TemplateLoc,
2475                                                       RAngleLoc,
2476                                                       TempParm,
2477                                                       Converted);
2478      if (Name.isNull())
2479        return true;
2480
2481      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2482                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2483                  TempParm->getDefaultArgument().getTemplateNameLoc());
2484    }
2485
2486    // Introduce an instantiation record that describes where we are using
2487    // the default template argument.
2488    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2489                                        Converted.data(), Converted.size(),
2490                                        SourceRange(TemplateLoc, RAngleLoc));
2491
2492    // Check the default template argument.
2493    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2494                              RAngleLoc, Converted))
2495      return true;
2496
2497    // Move to the next template parameter and argument.
2498    ++Param;
2499    ++ArgIdx;
2500  }
2501
2502  // Form argument packs for each of the parameter packs remaining.
2503  while (Param != ParamEnd) {
2504    if ((*Param)->isTemplateParameterPack()) {
2505      // The parameter pack takes the contents of the current argument pack,
2506      // which we built up earlier.
2507      if (ArgumentPack.empty()) {
2508        Converted.push_back(TemplateArgument(0, 0));
2509      } else {
2510        TemplateArgument *PackedArgs
2511          = new (Context) TemplateArgument [ArgumentPack.size()];
2512        std::copy(ArgumentPack.begin(), ArgumentPack.end(), PackedArgs);
2513        Converted.push_back(TemplateArgument(PackedArgs, ArgumentPack.size()));
2514        ArgumentPack.clear();
2515      }
2516    }
2517
2518    ++Param;
2519  }
2520
2521  return Invalid;
2522}
2523
2524namespace {
2525  class UnnamedLocalNoLinkageFinder
2526    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2527  {
2528    Sema &S;
2529    SourceRange SR;
2530
2531    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2532
2533  public:
2534    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2535
2536    bool Visit(QualType T) {
2537      return inherited::Visit(T.getTypePtr());
2538    }
2539
2540#define TYPE(Class, Parent) \
2541    bool Visit##Class##Type(const Class##Type *);
2542#define ABSTRACT_TYPE(Class, Parent) \
2543    bool Visit##Class##Type(const Class##Type *) { return false; }
2544#define NON_CANONICAL_TYPE(Class, Parent) \
2545    bool Visit##Class##Type(const Class##Type *) { return false; }
2546#include "clang/AST/TypeNodes.def"
2547
2548    bool VisitTagDecl(const TagDecl *Tag);
2549    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2550  };
2551}
2552
2553bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2554  return false;
2555}
2556
2557bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2558  return Visit(T->getElementType());
2559}
2560
2561bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2562  return Visit(T->getPointeeType());
2563}
2564
2565bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2566                                                    const BlockPointerType* T) {
2567  return Visit(T->getPointeeType());
2568}
2569
2570bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2571                                                const LValueReferenceType* T) {
2572  return Visit(T->getPointeeType());
2573}
2574
2575bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2576                                                const RValueReferenceType* T) {
2577  return Visit(T->getPointeeType());
2578}
2579
2580bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2581                                                  const MemberPointerType* T) {
2582  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2583}
2584
2585bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2586                                                  const ConstantArrayType* T) {
2587  return Visit(T->getElementType());
2588}
2589
2590bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2591                                                 const IncompleteArrayType* T) {
2592  return Visit(T->getElementType());
2593}
2594
2595bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2596                                                   const VariableArrayType* T) {
2597  return Visit(T->getElementType());
2598}
2599
2600bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2601                                            const DependentSizedArrayType* T) {
2602  return Visit(T->getElementType());
2603}
2604
2605bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2606                                         const DependentSizedExtVectorType* T) {
2607  return Visit(T->getElementType());
2608}
2609
2610bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2611  return Visit(T->getElementType());
2612}
2613
2614bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2615  return Visit(T->getElementType());
2616}
2617
2618bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2619                                                  const FunctionProtoType* T) {
2620  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2621                                         AEnd = T->arg_type_end();
2622       A != AEnd; ++A) {
2623    if (Visit(*A))
2624      return true;
2625  }
2626
2627  return Visit(T->getResultType());
2628}
2629
2630bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2631                                               const FunctionNoProtoType* T) {
2632  return Visit(T->getResultType());
2633}
2634
2635bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2636                                                  const UnresolvedUsingType*) {
2637  return false;
2638}
2639
2640bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2641  return false;
2642}
2643
2644bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2645  return Visit(T->getUnderlyingType());
2646}
2647
2648bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2649  return false;
2650}
2651
2652bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2653  return VisitTagDecl(T->getDecl());
2654}
2655
2656bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2657  return VisitTagDecl(T->getDecl());
2658}
2659
2660bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2661                                                 const TemplateTypeParmType*) {
2662  return false;
2663}
2664
2665bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2666                                            const TemplateSpecializationType*) {
2667  return false;
2668}
2669
2670bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2671                                              const InjectedClassNameType* T) {
2672  return VisitTagDecl(T->getDecl());
2673}
2674
2675bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2676                                                   const DependentNameType* T) {
2677  return VisitNestedNameSpecifier(T->getQualifier());
2678}
2679
2680bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2681                                 const DependentTemplateSpecializationType* T) {
2682  return VisitNestedNameSpecifier(T->getQualifier());
2683}
2684
2685bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2686                                                   const PackExpansionType* T) {
2687  return Visit(T->getPattern());
2688}
2689
2690bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2691  return false;
2692}
2693
2694bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2695                                                   const ObjCInterfaceType *) {
2696  return false;
2697}
2698
2699bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2700                                                const ObjCObjectPointerType *) {
2701  return false;
2702}
2703
2704bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2705  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2706    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2707      << S.Context.getTypeDeclType(Tag) << SR;
2708    return true;
2709  }
2710
2711  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2712    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2713    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2714    return true;
2715  }
2716
2717  return false;
2718}
2719
2720bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2721                                                    NestedNameSpecifier *NNS) {
2722  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2723    return true;
2724
2725  switch (NNS->getKind()) {
2726  case NestedNameSpecifier::Identifier:
2727  case NestedNameSpecifier::Namespace:
2728  case NestedNameSpecifier::Global:
2729    return false;
2730
2731  case NestedNameSpecifier::TypeSpec:
2732  case NestedNameSpecifier::TypeSpecWithTemplate:
2733    return Visit(QualType(NNS->getAsType(), 0));
2734  }
2735  return false;
2736}
2737
2738
2739/// \brief Check a template argument against its corresponding
2740/// template type parameter.
2741///
2742/// This routine implements the semantics of C++ [temp.arg.type]. It
2743/// returns true if an error occurred, and false otherwise.
2744bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2745                                 TypeSourceInfo *ArgInfo) {
2746  assert(ArgInfo && "invalid TypeSourceInfo");
2747  QualType Arg = ArgInfo->getType();
2748  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2749
2750  if (Arg->isVariablyModifiedType()) {
2751    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2752  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2753    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2754  }
2755
2756  // C++03 [temp.arg.type]p2:
2757  //   A local type, a type with no linkage, an unnamed type or a type
2758  //   compounded from any of these types shall not be used as a
2759  //   template-argument for a template type-parameter.
2760  //
2761  // C++0x allows these, and even in C++03 we allow them as an extension with
2762  // a warning.
2763  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2764    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2765    (void)Finder.Visit(Context.getCanonicalType(Arg));
2766  }
2767
2768  return false;
2769}
2770
2771/// \brief Checks whether the given template argument is the address
2772/// of an object or function according to C++ [temp.arg.nontype]p1.
2773static bool
2774CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2775                                               NonTypeTemplateParmDecl *Param,
2776                                               QualType ParamType,
2777                                               Expr *ArgIn,
2778                                               TemplateArgument &Converted) {
2779  bool Invalid = false;
2780  Expr *Arg = ArgIn;
2781  QualType ArgType = Arg->getType();
2782
2783  // See through any implicit casts we added to fix the type.
2784  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2785    Arg = Cast->getSubExpr();
2786
2787  // C++ [temp.arg.nontype]p1:
2788  //
2789  //   A template-argument for a non-type, non-template
2790  //   template-parameter shall be one of: [...]
2791  //
2792  //     -- the address of an object or function with external
2793  //        linkage, including function templates and function
2794  //        template-ids but excluding non-static class members,
2795  //        expressed as & id-expression where the & is optional if
2796  //        the name refers to a function or array, or if the
2797  //        corresponding template-parameter is a reference; or
2798  DeclRefExpr *DRE = 0;
2799
2800  // In C++98/03 mode, give an extension warning on any extra parentheses.
2801  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2802  bool ExtraParens = false;
2803  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2804    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2805      S.Diag(Arg->getSourceRange().getBegin(),
2806             diag::ext_template_arg_extra_parens)
2807        << Arg->getSourceRange();
2808      ExtraParens = true;
2809    }
2810
2811    Arg = Parens->getSubExpr();
2812  }
2813
2814  bool AddressTaken = false;
2815  SourceLocation AddrOpLoc;
2816  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2817    if (UnOp->getOpcode() == UO_AddrOf) {
2818      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2819      AddressTaken = true;
2820      AddrOpLoc = UnOp->getOperatorLoc();
2821    }
2822  } else
2823    DRE = dyn_cast<DeclRefExpr>(Arg);
2824
2825  if (!DRE) {
2826    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2827      << Arg->getSourceRange();
2828    S.Diag(Param->getLocation(), diag::note_template_param_here);
2829    return true;
2830  }
2831
2832  // Stop checking the precise nature of the argument if it is value dependent,
2833  // it should be checked when instantiated.
2834  if (Arg->isValueDependent()) {
2835    Converted = TemplateArgument(ArgIn);
2836    return false;
2837  }
2838
2839  if (!isa<ValueDecl>(DRE->getDecl())) {
2840    S.Diag(Arg->getSourceRange().getBegin(),
2841           diag::err_template_arg_not_object_or_func_form)
2842      << Arg->getSourceRange();
2843    S.Diag(Param->getLocation(), diag::note_template_param_here);
2844    return true;
2845  }
2846
2847  NamedDecl *Entity = 0;
2848
2849  // Cannot refer to non-static data members
2850  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2851    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2852      << Field << Arg->getSourceRange();
2853    S.Diag(Param->getLocation(), diag::note_template_param_here);
2854    return true;
2855  }
2856
2857  // Cannot refer to non-static member functions
2858  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2859    if (!Method->isStatic()) {
2860      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2861        << Method << Arg->getSourceRange();
2862      S.Diag(Param->getLocation(), diag::note_template_param_here);
2863      return true;
2864    }
2865
2866  // Functions must have external linkage.
2867  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2868    if (!isExternalLinkage(Func->getLinkage())) {
2869      S.Diag(Arg->getSourceRange().getBegin(),
2870             diag::err_template_arg_function_not_extern)
2871        << Func << Arg->getSourceRange();
2872      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2873        << true;
2874      return true;
2875    }
2876
2877    // Okay: we've named a function with external linkage.
2878    Entity = Func;
2879
2880    // If the template parameter has pointer type, the function decays.
2881    if (ParamType->isPointerType() && !AddressTaken)
2882      ArgType = S.Context.getPointerType(Func->getType());
2883    else if (AddressTaken && ParamType->isReferenceType()) {
2884      // If we originally had an address-of operator, but the
2885      // parameter has reference type, complain and (if things look
2886      // like they will work) drop the address-of operator.
2887      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2888                                            ParamType.getNonReferenceType())) {
2889        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2890          << ParamType;
2891        S.Diag(Param->getLocation(), diag::note_template_param_here);
2892        return true;
2893      }
2894
2895      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2896        << ParamType
2897        << FixItHint::CreateRemoval(AddrOpLoc);
2898      S.Diag(Param->getLocation(), diag::note_template_param_here);
2899
2900      ArgType = Func->getType();
2901    }
2902  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2903    if (!isExternalLinkage(Var->getLinkage())) {
2904      S.Diag(Arg->getSourceRange().getBegin(),
2905             diag::err_template_arg_object_not_extern)
2906        << Var << Arg->getSourceRange();
2907      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2908        << true;
2909      return true;
2910    }
2911
2912    // A value of reference type is not an object.
2913    if (Var->getType()->isReferenceType()) {
2914      S.Diag(Arg->getSourceRange().getBegin(),
2915             diag::err_template_arg_reference_var)
2916        << Var->getType() << Arg->getSourceRange();
2917      S.Diag(Param->getLocation(), diag::note_template_param_here);
2918      return true;
2919    }
2920
2921    // Okay: we've named an object with external linkage
2922    Entity = Var;
2923
2924    // If the template parameter has pointer type, we must have taken
2925    // the address of this object.
2926    if (ParamType->isReferenceType()) {
2927      if (AddressTaken) {
2928        // If we originally had an address-of operator, but the
2929        // parameter has reference type, complain and (if things look
2930        // like they will work) drop the address-of operator.
2931        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2932                                            ParamType.getNonReferenceType())) {
2933          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2934            << ParamType;
2935          S.Diag(Param->getLocation(), diag::note_template_param_here);
2936          return true;
2937        }
2938
2939        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2940          << ParamType
2941          << FixItHint::CreateRemoval(AddrOpLoc);
2942        S.Diag(Param->getLocation(), diag::note_template_param_here);
2943
2944        ArgType = Var->getType();
2945      }
2946    } else if (!AddressTaken && ParamType->isPointerType()) {
2947      if (Var->getType()->isArrayType()) {
2948        // Array-to-pointer decay.
2949        ArgType = S.Context.getArrayDecayedType(Var->getType());
2950      } else {
2951        // If the template parameter has pointer type but the address of
2952        // this object was not taken, complain and (possibly) recover by
2953        // taking the address of the entity.
2954        ArgType = S.Context.getPointerType(Var->getType());
2955        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2956          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2957            << ParamType;
2958          S.Diag(Param->getLocation(), diag::note_template_param_here);
2959          return true;
2960        }
2961
2962        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2963          << ParamType
2964          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2965
2966        S.Diag(Param->getLocation(), diag::note_template_param_here);
2967      }
2968    }
2969  } else {
2970    // We found something else, but we don't know specifically what it is.
2971    S.Diag(Arg->getSourceRange().getBegin(),
2972           diag::err_template_arg_not_object_or_func)
2973      << Arg->getSourceRange();
2974    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2975    return true;
2976  }
2977
2978  if (ParamType->isPointerType() &&
2979      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2980      S.IsQualificationConversion(ArgType, ParamType)) {
2981    // For pointer-to-object types, qualification conversions are
2982    // permitted.
2983  } else {
2984    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2985      if (!ParamRef->getPointeeType()->isFunctionType()) {
2986        // C++ [temp.arg.nontype]p5b3:
2987        //   For a non-type template-parameter of type reference to
2988        //   object, no conversions apply. The type referred to by the
2989        //   reference may be more cv-qualified than the (otherwise
2990        //   identical) type of the template- argument. The
2991        //   template-parameter is bound directly to the
2992        //   template-argument, which shall be an lvalue.
2993
2994        // FIXME: Other qualifiers?
2995        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2996        unsigned ArgQuals = ArgType.getCVRQualifiers();
2997
2998        if ((ParamQuals | ArgQuals) != ParamQuals) {
2999          S.Diag(Arg->getSourceRange().getBegin(),
3000                 diag::err_template_arg_ref_bind_ignores_quals)
3001            << ParamType << Arg->getType()
3002            << Arg->getSourceRange();
3003          S.Diag(Param->getLocation(), diag::note_template_param_here);
3004          return true;
3005        }
3006      }
3007    }
3008
3009    // At this point, the template argument refers to an object or
3010    // function with external linkage. We now need to check whether the
3011    // argument and parameter types are compatible.
3012    if (!S.Context.hasSameUnqualifiedType(ArgType,
3013                                          ParamType.getNonReferenceType())) {
3014      // We can't perform this conversion or binding.
3015      if (ParamType->isReferenceType())
3016        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3017          << ParamType << Arg->getType() << Arg->getSourceRange();
3018      else
3019        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3020          << Arg->getType() << ParamType << Arg->getSourceRange();
3021      S.Diag(Param->getLocation(), diag::note_template_param_here);
3022      return true;
3023    }
3024  }
3025
3026  // Create the template argument.
3027  Converted = TemplateArgument(Entity->getCanonicalDecl());
3028  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3029  return false;
3030}
3031
3032/// \brief Checks whether the given template argument is a pointer to
3033/// member constant according to C++ [temp.arg.nontype]p1.
3034bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3035                                                TemplateArgument &Converted) {
3036  bool Invalid = false;
3037
3038  // See through any implicit casts we added to fix the type.
3039  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3040    Arg = Cast->getSubExpr();
3041
3042  // C++ [temp.arg.nontype]p1:
3043  //
3044  //   A template-argument for a non-type, non-template
3045  //   template-parameter shall be one of: [...]
3046  //
3047  //     -- a pointer to member expressed as described in 5.3.1.
3048  DeclRefExpr *DRE = 0;
3049
3050  // In C++98/03 mode, give an extension warning on any extra parentheses.
3051  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3052  bool ExtraParens = false;
3053  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3054    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3055      Diag(Arg->getSourceRange().getBegin(),
3056           diag::ext_template_arg_extra_parens)
3057        << Arg->getSourceRange();
3058      ExtraParens = true;
3059    }
3060
3061    Arg = Parens->getSubExpr();
3062  }
3063
3064  // A pointer-to-member constant written &Class::member.
3065  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3066    if (UnOp->getOpcode() == UO_AddrOf) {
3067      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3068      if (DRE && !DRE->getQualifier())
3069        DRE = 0;
3070    }
3071  }
3072  // A constant of pointer-to-member type.
3073  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3074    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3075      if (VD->getType()->isMemberPointerType()) {
3076        if (isa<NonTypeTemplateParmDecl>(VD) ||
3077            (isa<VarDecl>(VD) &&
3078             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3079          if (Arg->isTypeDependent() || Arg->isValueDependent())
3080            Converted = TemplateArgument(Arg);
3081          else
3082            Converted = TemplateArgument(VD->getCanonicalDecl());
3083          return Invalid;
3084        }
3085      }
3086    }
3087
3088    DRE = 0;
3089  }
3090
3091  if (!DRE)
3092    return Diag(Arg->getSourceRange().getBegin(),
3093                diag::err_template_arg_not_pointer_to_member_form)
3094      << Arg->getSourceRange();
3095
3096  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3097    assert((isa<FieldDecl>(DRE->getDecl()) ||
3098            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3099           "Only non-static member pointers can make it here");
3100
3101    // Okay: this is the address of a non-static member, and therefore
3102    // a member pointer constant.
3103    if (Arg->isTypeDependent() || Arg->isValueDependent())
3104      Converted = TemplateArgument(Arg);
3105    else
3106      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3107    return Invalid;
3108  }
3109
3110  // We found something else, but we don't know specifically what it is.
3111  Diag(Arg->getSourceRange().getBegin(),
3112       diag::err_template_arg_not_pointer_to_member_form)
3113      << Arg->getSourceRange();
3114  Diag(DRE->getDecl()->getLocation(),
3115       diag::note_template_arg_refers_here);
3116  return true;
3117}
3118
3119/// \brief Check a template argument against its corresponding
3120/// non-type template parameter.
3121///
3122/// This routine implements the semantics of C++ [temp.arg.nontype].
3123/// It returns true if an error occurred, and false otherwise. \p
3124/// InstantiatedParamType is the type of the non-type template
3125/// parameter after it has been instantiated.
3126///
3127/// If no error was detected, Converted receives the converted template argument.
3128bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3129                                 QualType InstantiatedParamType, Expr *&Arg,
3130                                 TemplateArgument &Converted,
3131                                 CheckTemplateArgumentKind CTAK) {
3132  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3133
3134  // If either the parameter has a dependent type or the argument is
3135  // type-dependent, there's nothing we can check now.
3136  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3137    // FIXME: Produce a cloned, canonical expression?
3138    Converted = TemplateArgument(Arg);
3139    return false;
3140  }
3141
3142  // C++ [temp.arg.nontype]p5:
3143  //   The following conversions are performed on each expression used
3144  //   as a non-type template-argument. If a non-type
3145  //   template-argument cannot be converted to the type of the
3146  //   corresponding template-parameter then the program is
3147  //   ill-formed.
3148  //
3149  //     -- for a non-type template-parameter of integral or
3150  //        enumeration type, integral promotions (4.5) and integral
3151  //        conversions (4.7) are applied.
3152  QualType ParamType = InstantiatedParamType;
3153  QualType ArgType = Arg->getType();
3154  if (ParamType->isIntegralOrEnumerationType()) {
3155    // C++ [temp.arg.nontype]p1:
3156    //   A template-argument for a non-type, non-template
3157    //   template-parameter shall be one of:
3158    //
3159    //     -- an integral constant-expression of integral or enumeration
3160    //        type; or
3161    //     -- the name of a non-type template-parameter; or
3162    SourceLocation NonConstantLoc;
3163    llvm::APSInt Value;
3164    if (!ArgType->isIntegralOrEnumerationType()) {
3165      Diag(Arg->getSourceRange().getBegin(),
3166           diag::err_template_arg_not_integral_or_enumeral)
3167        << ArgType << Arg->getSourceRange();
3168      Diag(Param->getLocation(), diag::note_template_param_here);
3169      return true;
3170    } else if (!Arg->isValueDependent() &&
3171               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3172      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3173        << ArgType << Arg->getSourceRange();
3174      return true;
3175    }
3176
3177    // From here on out, all we care about are the unqualified forms
3178    // of the parameter and argument types.
3179    ParamType = ParamType.getUnqualifiedType();
3180    ArgType = ArgType.getUnqualifiedType();
3181
3182    // Try to convert the argument to the parameter's type.
3183    if (Context.hasSameType(ParamType, ArgType)) {
3184      // Okay: no conversion necessary
3185    } else if (CTAK == CTAK_Deduced) {
3186      // C++ [temp.deduct.type]p17:
3187      //   If, in the declaration of a function template with a non-type
3188      //   template-parameter, the non-type template- parameter is used
3189      //   in an expression in the function parameter-list and, if the
3190      //   corresponding template-argument is deduced, the
3191      //   template-argument type shall match the type of the
3192      //   template-parameter exactly, except that a template-argument
3193      //   deduced from an array bound may be of any integral type.
3194      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3195        << ArgType << ParamType;
3196      Diag(Param->getLocation(), diag::note_template_param_here);
3197      return true;
3198    } else if (ParamType->isBooleanType()) {
3199      // This is an integral-to-boolean conversion.
3200      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3201    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3202               !ParamType->isEnumeralType()) {
3203      // This is an integral promotion or conversion.
3204      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3205    } else {
3206      // We can't perform this conversion.
3207      Diag(Arg->getSourceRange().getBegin(),
3208           diag::err_template_arg_not_convertible)
3209        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3210      Diag(Param->getLocation(), diag::note_template_param_here);
3211      return true;
3212    }
3213
3214    QualType IntegerType = Context.getCanonicalType(ParamType);
3215    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3216      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3217
3218    if (!Arg->isValueDependent()) {
3219      llvm::APSInt OldValue = Value;
3220
3221      // Coerce the template argument's value to the value it will have
3222      // based on the template parameter's type.
3223      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3224      if (Value.getBitWidth() != AllowedBits)
3225        Value = Value.extOrTrunc(AllowedBits);
3226      Value.setIsSigned(IntegerType->isSignedIntegerType());
3227
3228      // Complain if an unsigned parameter received a negative value.
3229      if (IntegerType->isUnsignedIntegerType()
3230          && (OldValue.isSigned() && OldValue.isNegative())) {
3231        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3232          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3233          << Arg->getSourceRange();
3234        Diag(Param->getLocation(), diag::note_template_param_here);
3235      }
3236
3237      // Complain if we overflowed the template parameter's type.
3238      unsigned RequiredBits;
3239      if (IntegerType->isUnsignedIntegerType())
3240        RequiredBits = OldValue.getActiveBits();
3241      else if (OldValue.isUnsigned())
3242        RequiredBits = OldValue.getActiveBits() + 1;
3243      else
3244        RequiredBits = OldValue.getMinSignedBits();
3245      if (RequiredBits > AllowedBits) {
3246        Diag(Arg->getSourceRange().getBegin(),
3247             diag::warn_template_arg_too_large)
3248          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3249          << Arg->getSourceRange();
3250        Diag(Param->getLocation(), diag::note_template_param_here);
3251      }
3252    }
3253
3254    // Add the value of this argument to the list of converted
3255    // arguments. We use the bitwidth and signedness of the template
3256    // parameter.
3257    if (Arg->isValueDependent()) {
3258      // The argument is value-dependent. Create a new
3259      // TemplateArgument with the converted expression.
3260      Converted = TemplateArgument(Arg);
3261      return false;
3262    }
3263
3264    Converted = TemplateArgument(Value,
3265                                 ParamType->isEnumeralType() ? ParamType
3266                                                             : IntegerType);
3267    return false;
3268  }
3269
3270  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3271
3272  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3273  // from a template argument of type std::nullptr_t to a non-type
3274  // template parameter of type pointer to object, pointer to
3275  // function, or pointer-to-member, respectively.
3276  if (ArgType->isNullPtrType() &&
3277      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3278    Converted = TemplateArgument((NamedDecl *)0);
3279    return false;
3280  }
3281
3282  // Handle pointer-to-function, reference-to-function, and
3283  // pointer-to-member-function all in (roughly) the same way.
3284  if (// -- For a non-type template-parameter of type pointer to
3285      //    function, only the function-to-pointer conversion (4.3) is
3286      //    applied. If the template-argument represents a set of
3287      //    overloaded functions (or a pointer to such), the matching
3288      //    function is selected from the set (13.4).
3289      (ParamType->isPointerType() &&
3290       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3291      // -- For a non-type template-parameter of type reference to
3292      //    function, no conversions apply. If the template-argument
3293      //    represents a set of overloaded functions, the matching
3294      //    function is selected from the set (13.4).
3295      (ParamType->isReferenceType() &&
3296       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3297      // -- For a non-type template-parameter of type pointer to
3298      //    member function, no conversions apply. If the
3299      //    template-argument represents a set of overloaded member
3300      //    functions, the matching member function is selected from
3301      //    the set (13.4).
3302      (ParamType->isMemberPointerType() &&
3303       ParamType->getAs<MemberPointerType>()->getPointeeType()
3304         ->isFunctionType())) {
3305
3306    if (Arg->getType() == Context.OverloadTy) {
3307      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3308                                                                true,
3309                                                                FoundResult)) {
3310        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3311          return true;
3312
3313        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3314        ArgType = Arg->getType();
3315      } else
3316        return true;
3317    }
3318
3319    if (!ParamType->isMemberPointerType())
3320      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3321                                                            ParamType,
3322                                                            Arg, Converted);
3323
3324    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3325      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3326    } else if (!Context.hasSameUnqualifiedType(ArgType,
3327                                           ParamType.getNonReferenceType())) {
3328      // We can't perform this conversion.
3329      Diag(Arg->getSourceRange().getBegin(),
3330           diag::err_template_arg_not_convertible)
3331        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3332      Diag(Param->getLocation(), diag::note_template_param_here);
3333      return true;
3334    }
3335
3336    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3337  }
3338
3339  if (ParamType->isPointerType()) {
3340    //   -- for a non-type template-parameter of type pointer to
3341    //      object, qualification conversions (4.4) and the
3342    //      array-to-pointer conversion (4.2) are applied.
3343    // C++0x also allows a value of std::nullptr_t.
3344    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3345           "Only object pointers allowed here");
3346
3347    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3348                                                          ParamType,
3349                                                          Arg, Converted);
3350  }
3351
3352  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3353    //   -- For a non-type template-parameter of type reference to
3354    //      object, no conversions apply. The type referred to by the
3355    //      reference may be more cv-qualified than the (otherwise
3356    //      identical) type of the template-argument. The
3357    //      template-parameter is bound directly to the
3358    //      template-argument, which must be an lvalue.
3359    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3360           "Only object references allowed here");
3361
3362    if (Arg->getType() == Context.OverloadTy) {
3363      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3364                                                 ParamRefType->getPointeeType(),
3365                                                                true,
3366                                                                FoundResult)) {
3367        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3368          return true;
3369
3370        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3371        ArgType = Arg->getType();
3372      } else
3373        return true;
3374    }
3375
3376    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3377                                                          ParamType,
3378                                                          Arg, Converted);
3379  }
3380
3381  //     -- For a non-type template-parameter of type pointer to data
3382  //        member, qualification conversions (4.4) are applied.
3383  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3384
3385  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3386    // Types match exactly: nothing more to do here.
3387  } else if (IsQualificationConversion(ArgType, ParamType)) {
3388    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3389  } else {
3390    // We can't perform this conversion.
3391    Diag(Arg->getSourceRange().getBegin(),
3392         diag::err_template_arg_not_convertible)
3393      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3394    Diag(Param->getLocation(), diag::note_template_param_here);
3395    return true;
3396  }
3397
3398  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3399}
3400
3401/// \brief Check a template argument against its corresponding
3402/// template template parameter.
3403///
3404/// This routine implements the semantics of C++ [temp.arg.template].
3405/// It returns true if an error occurred, and false otherwise.
3406bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3407                                 const TemplateArgumentLoc &Arg) {
3408  TemplateName Name = Arg.getArgument().getAsTemplate();
3409  TemplateDecl *Template = Name.getAsTemplateDecl();
3410  if (!Template) {
3411    // Any dependent template name is fine.
3412    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3413    return false;
3414  }
3415
3416  // C++ [temp.arg.template]p1:
3417  //   A template-argument for a template template-parameter shall be
3418  //   the name of a class template, expressed as id-expression. Only
3419  //   primary class templates are considered when matching the
3420  //   template template argument with the corresponding parameter;
3421  //   partial specializations are not considered even if their
3422  //   parameter lists match that of the template template parameter.
3423  //
3424  // Note that we also allow template template parameters here, which
3425  // will happen when we are dealing with, e.g., class template
3426  // partial specializations.
3427  if (!isa<ClassTemplateDecl>(Template) &&
3428      !isa<TemplateTemplateParmDecl>(Template)) {
3429    assert(isa<FunctionTemplateDecl>(Template) &&
3430           "Only function templates are possible here");
3431    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3432    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3433      << Template;
3434  }
3435
3436  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3437                                         Param->getTemplateParameters(),
3438                                         true,
3439                                         TPL_TemplateTemplateArgumentMatch,
3440                                         Arg.getLocation());
3441}
3442
3443/// \brief Given a non-type template argument that refers to a
3444/// declaration and the type of its corresponding non-type template
3445/// parameter, produce an expression that properly refers to that
3446/// declaration.
3447ExprResult
3448Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3449                                              QualType ParamType,
3450                                              SourceLocation Loc) {
3451  assert(Arg.getKind() == TemplateArgument::Declaration &&
3452         "Only declaration template arguments permitted here");
3453  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3454
3455  if (VD->getDeclContext()->isRecord() &&
3456      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3457    // If the value is a class member, we might have a pointer-to-member.
3458    // Determine whether the non-type template template parameter is of
3459    // pointer-to-member type. If so, we need to build an appropriate
3460    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3461    // would refer to the member itself.
3462    if (ParamType->isMemberPointerType()) {
3463      QualType ClassType
3464        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3465      NestedNameSpecifier *Qualifier
3466        = NestedNameSpecifier::Create(Context, 0, false,
3467                                      ClassType.getTypePtr());
3468      CXXScopeSpec SS;
3469      SS.setScopeRep(Qualifier);
3470
3471      // The actual value-ness of this is unimportant, but for
3472      // internal consistency's sake, references to instance methods
3473      // are r-values.
3474      ExprValueKind VK = VK_LValue;
3475      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3476        VK = VK_RValue;
3477
3478      ExprResult RefExpr = BuildDeclRefExpr(VD,
3479                                            VD->getType().getNonReferenceType(),
3480                                            VK,
3481                                            Loc,
3482                                            &SS);
3483      if (RefExpr.isInvalid())
3484        return ExprError();
3485
3486      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3487
3488      // We might need to perform a trailing qualification conversion, since
3489      // the element type on the parameter could be more qualified than the
3490      // element type in the expression we constructed.
3491      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3492                                    ParamType.getUnqualifiedType())) {
3493        Expr *RefE = RefExpr.takeAs<Expr>();
3494        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3495        RefExpr = Owned(RefE);
3496      }
3497
3498      assert(!RefExpr.isInvalid() &&
3499             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3500                                 ParamType.getUnqualifiedType()));
3501      return move(RefExpr);
3502    }
3503  }
3504
3505  QualType T = VD->getType().getNonReferenceType();
3506  if (ParamType->isPointerType()) {
3507    // When the non-type template parameter is a pointer, take the
3508    // address of the declaration.
3509    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3510    if (RefExpr.isInvalid())
3511      return ExprError();
3512
3513    if (T->isFunctionType() || T->isArrayType()) {
3514      // Decay functions and arrays.
3515      Expr *RefE = (Expr *)RefExpr.get();
3516      DefaultFunctionArrayConversion(RefE);
3517      if (RefE != RefExpr.get()) {
3518        RefExpr.release();
3519        RefExpr = Owned(RefE);
3520      }
3521
3522      return move(RefExpr);
3523    }
3524
3525    // Take the address of everything else
3526    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3527  }
3528
3529  ExprValueKind VK = VK_RValue;
3530
3531  // If the non-type template parameter has reference type, qualify the
3532  // resulting declaration reference with the extra qualifiers on the
3533  // type that the reference refers to.
3534  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3535    VK = VK_LValue;
3536    T = Context.getQualifiedType(T,
3537                              TargetRef->getPointeeType().getQualifiers());
3538  }
3539
3540  return BuildDeclRefExpr(VD, T, VK, Loc);
3541}
3542
3543/// \brief Construct a new expression that refers to the given
3544/// integral template argument with the given source-location
3545/// information.
3546///
3547/// This routine takes care of the mapping from an integral template
3548/// argument (which may have any integral type) to the appropriate
3549/// literal value.
3550ExprResult
3551Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3552                                                  SourceLocation Loc) {
3553  assert(Arg.getKind() == TemplateArgument::Integral &&
3554         "Operation is only value for integral template arguments");
3555  QualType T = Arg.getIntegralType();
3556  if (T->isCharType() || T->isWideCharType())
3557    return Owned(new (Context) CharacterLiteral(
3558                                             Arg.getAsIntegral()->getZExtValue(),
3559                                             T->isWideCharType(),
3560                                             T,
3561                                             Loc));
3562  if (T->isBooleanType())
3563    return Owned(new (Context) CXXBoolLiteralExpr(
3564                                            Arg.getAsIntegral()->getBoolValue(),
3565                                            T,
3566                                            Loc));
3567
3568  QualType BT;
3569  if (const EnumType *ET = T->getAs<EnumType>())
3570    BT = ET->getDecl()->getPromotionType();
3571  else
3572    BT = T;
3573
3574  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3575  ImpCastExprToType(E, T, CK_IntegralCast);
3576
3577  return Owned(E);
3578}
3579
3580
3581/// \brief Determine whether the given template parameter lists are
3582/// equivalent.
3583///
3584/// \param New  The new template parameter list, typically written in the
3585/// source code as part of a new template declaration.
3586///
3587/// \param Old  The old template parameter list, typically found via
3588/// name lookup of the template declared with this template parameter
3589/// list.
3590///
3591/// \param Complain  If true, this routine will produce a diagnostic if
3592/// the template parameter lists are not equivalent.
3593///
3594/// \param Kind describes how we are to match the template parameter lists.
3595///
3596/// \param TemplateArgLoc If this source location is valid, then we
3597/// are actually checking the template parameter list of a template
3598/// argument (New) against the template parameter list of its
3599/// corresponding template template parameter (Old). We produce
3600/// slightly different diagnostics in this scenario.
3601///
3602/// \returns True if the template parameter lists are equal, false
3603/// otherwise.
3604bool
3605Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3606                                     TemplateParameterList *Old,
3607                                     bool Complain,
3608                                     TemplateParameterListEqualKind Kind,
3609                                     SourceLocation TemplateArgLoc) {
3610  if (Old->size() != New->size()) {
3611    if (Complain) {
3612      unsigned NextDiag = diag::err_template_param_list_different_arity;
3613      if (TemplateArgLoc.isValid()) {
3614        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3615        NextDiag = diag::note_template_param_list_different_arity;
3616      }
3617      Diag(New->getTemplateLoc(), NextDiag)
3618          << (New->size() > Old->size())
3619          << (Kind != TPL_TemplateMatch)
3620          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3621      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3622        << (Kind != TPL_TemplateMatch)
3623        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3624    }
3625
3626    return false;
3627  }
3628
3629  for (TemplateParameterList::iterator OldParm = Old->begin(),
3630         OldParmEnd = Old->end(), NewParm = New->begin();
3631       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3632    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3633      if (Complain) {
3634        unsigned NextDiag = diag::err_template_param_different_kind;
3635        if (TemplateArgLoc.isValid()) {
3636          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3637          NextDiag = diag::note_template_param_different_kind;
3638        }
3639        Diag((*NewParm)->getLocation(), NextDiag)
3640          << (Kind != TPL_TemplateMatch);
3641        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3642          << (Kind != TPL_TemplateMatch);
3643      }
3644      return false;
3645    }
3646
3647    if (TemplateTypeParmDecl *OldTTP
3648                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3649      // Template type parameters are equivalent if either both are template
3650      // type parameter packs or neither are (since we know we're at the same
3651      // index).
3652      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3653      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3654        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3655        // allow one to match a template parameter pack in the template
3656        // parameter list of a template template parameter to one or more
3657        // template parameters in the template parameter list of the
3658        // corresponding template template argument.
3659        if (Complain) {
3660          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3661          if (TemplateArgLoc.isValid()) {
3662            Diag(TemplateArgLoc,
3663                 diag::err_template_arg_template_params_mismatch);
3664            NextDiag = diag::note_template_parameter_pack_non_pack;
3665          }
3666          Diag(NewTTP->getLocation(), NextDiag)
3667            << 0 << NewTTP->isParameterPack();
3668          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3669            << 0 << OldTTP->isParameterPack();
3670        }
3671        return false;
3672      }
3673    } else if (NonTypeTemplateParmDecl *OldNTTP
3674                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3675      // The types of non-type template parameters must agree.
3676      NonTypeTemplateParmDecl *NewNTTP
3677        = cast<NonTypeTemplateParmDecl>(*NewParm);
3678
3679      // If we are matching a template template argument to a template
3680      // template parameter and one of the non-type template parameter types
3681      // is dependent, then we must wait until template instantiation time
3682      // to actually compare the arguments.
3683      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3684          (OldNTTP->getType()->isDependentType() ||
3685           NewNTTP->getType()->isDependentType()))
3686        continue;
3687
3688      if (Context.getCanonicalType(OldNTTP->getType()) !=
3689            Context.getCanonicalType(NewNTTP->getType())) {
3690        if (Complain) {
3691          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3692          if (TemplateArgLoc.isValid()) {
3693            Diag(TemplateArgLoc,
3694                 diag::err_template_arg_template_params_mismatch);
3695            NextDiag = diag::note_template_nontype_parm_different_type;
3696          }
3697          Diag(NewNTTP->getLocation(), NextDiag)
3698            << NewNTTP->getType()
3699            << (Kind != TPL_TemplateMatch);
3700          Diag(OldNTTP->getLocation(),
3701               diag::note_template_nontype_parm_prev_declaration)
3702            << OldNTTP->getType();
3703        }
3704        return false;
3705      }
3706    } else {
3707      // The template parameter lists of template template
3708      // parameters must agree.
3709      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3710             "Only template template parameters handled here");
3711      TemplateTemplateParmDecl *OldTTP
3712        = cast<TemplateTemplateParmDecl>(*OldParm);
3713      TemplateTemplateParmDecl *NewTTP
3714        = cast<TemplateTemplateParmDecl>(*NewParm);
3715      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3716                                          OldTTP->getTemplateParameters(),
3717                                          Complain,
3718              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3719                                          TemplateArgLoc))
3720        return false;
3721    }
3722  }
3723
3724  return true;
3725}
3726
3727/// \brief Check whether a template can be declared within this scope.
3728///
3729/// If the template declaration is valid in this scope, returns
3730/// false. Otherwise, issues a diagnostic and returns true.
3731bool
3732Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3733  // Find the nearest enclosing declaration scope.
3734  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3735         (S->getFlags() & Scope::TemplateParamScope) != 0)
3736    S = S->getParent();
3737
3738  // C++ [temp]p2:
3739  //   A template-declaration can appear only as a namespace scope or
3740  //   class scope declaration.
3741  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3742  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3743      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3744    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3745             << TemplateParams->getSourceRange();
3746
3747  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3748    Ctx = Ctx->getParent();
3749
3750  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3751    return false;
3752
3753  return Diag(TemplateParams->getTemplateLoc(),
3754              diag::err_template_outside_namespace_or_class_scope)
3755    << TemplateParams->getSourceRange();
3756}
3757
3758/// \brief Determine what kind of template specialization the given declaration
3759/// is.
3760static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3761  if (!D)
3762    return TSK_Undeclared;
3763
3764  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3765    return Record->getTemplateSpecializationKind();
3766  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3767    return Function->getTemplateSpecializationKind();
3768  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3769    return Var->getTemplateSpecializationKind();
3770
3771  return TSK_Undeclared;
3772}
3773
3774/// \brief Check whether a specialization is well-formed in the current
3775/// context.
3776///
3777/// This routine determines whether a template specialization can be declared
3778/// in the current context (C++ [temp.expl.spec]p2).
3779///
3780/// \param S the semantic analysis object for which this check is being
3781/// performed.
3782///
3783/// \param Specialized the entity being specialized or instantiated, which
3784/// may be a kind of template (class template, function template, etc.) or
3785/// a member of a class template (member function, static data member,
3786/// member class).
3787///
3788/// \param PrevDecl the previous declaration of this entity, if any.
3789///
3790/// \param Loc the location of the explicit specialization or instantiation of
3791/// this entity.
3792///
3793/// \param IsPartialSpecialization whether this is a partial specialization of
3794/// a class template.
3795///
3796/// \returns true if there was an error that we cannot recover from, false
3797/// otherwise.
3798static bool CheckTemplateSpecializationScope(Sema &S,
3799                                             NamedDecl *Specialized,
3800                                             NamedDecl *PrevDecl,
3801                                             SourceLocation Loc,
3802                                             bool IsPartialSpecialization) {
3803  // Keep these "kind" numbers in sync with the %select statements in the
3804  // various diagnostics emitted by this routine.
3805  int EntityKind = 0;
3806  bool isTemplateSpecialization = false;
3807  if (isa<ClassTemplateDecl>(Specialized)) {
3808    EntityKind = IsPartialSpecialization? 1 : 0;
3809    isTemplateSpecialization = true;
3810  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3811    EntityKind = 2;
3812    isTemplateSpecialization = true;
3813  } else if (isa<CXXMethodDecl>(Specialized))
3814    EntityKind = 3;
3815  else if (isa<VarDecl>(Specialized))
3816    EntityKind = 4;
3817  else if (isa<RecordDecl>(Specialized))
3818    EntityKind = 5;
3819  else {
3820    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3821    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3822    return true;
3823  }
3824
3825  // C++ [temp.expl.spec]p2:
3826  //   An explicit specialization shall be declared in the namespace
3827  //   of which the template is a member, or, for member templates, in
3828  //   the namespace of which the enclosing class or enclosing class
3829  //   template is a member. An explicit specialization of a member
3830  //   function, member class or static data member of a class
3831  //   template shall be declared in the namespace of which the class
3832  //   template is a member. Such a declaration may also be a
3833  //   definition. If the declaration is not a definition, the
3834  //   specialization may be defined later in the name- space in which
3835  //   the explicit specialization was declared, or in a namespace
3836  //   that encloses the one in which the explicit specialization was
3837  //   declared.
3838  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3839    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3840      << Specialized;
3841    return true;
3842  }
3843
3844  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3845    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3846      << Specialized;
3847    return true;
3848  }
3849
3850  // C++ [temp.class.spec]p6:
3851  //   A class template partial specialization may be declared or redeclared
3852  //   in any namespace scope in which its definition may be defined (14.5.1
3853  //   and 14.5.2).
3854  bool ComplainedAboutScope = false;
3855  DeclContext *SpecializedContext
3856    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3857  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3858  if ((!PrevDecl ||
3859       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3860       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3861    // C++ [temp.exp.spec]p2:
3862    //   An explicit specialization shall be declared in the namespace of which
3863    //   the template is a member, or, for member templates, in the namespace
3864    //   of which the enclosing class or enclosing class template is a member.
3865    //   An explicit specialization of a member function, member class or
3866    //   static data member of a class template shall be declared in the
3867    //   namespace of which the class template is a member.
3868    //
3869    // C++0x [temp.expl.spec]p2:
3870    //   An explicit specialization shall be declared in a namespace enclosing
3871    //   the specialized template.
3872    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3873        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3874      bool IsCPlusPlus0xExtension
3875        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3876      if (isa<TranslationUnitDecl>(SpecializedContext))
3877        S.Diag(Loc, IsCPlusPlus0xExtension
3878                      ? diag::ext_template_spec_decl_out_of_scope_global
3879                      : diag::err_template_spec_decl_out_of_scope_global)
3880          << EntityKind << Specialized;
3881      else if (isa<NamespaceDecl>(SpecializedContext))
3882        S.Diag(Loc, IsCPlusPlus0xExtension
3883                      ? diag::ext_template_spec_decl_out_of_scope
3884                      : diag::err_template_spec_decl_out_of_scope)
3885          << EntityKind << Specialized
3886          << cast<NamedDecl>(SpecializedContext);
3887
3888      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3889      ComplainedAboutScope = true;
3890    }
3891  }
3892
3893  // Make sure that this redeclaration (or definition) occurs in an enclosing
3894  // namespace.
3895  // Note that HandleDeclarator() performs this check for explicit
3896  // specializations of function templates, static data members, and member
3897  // functions, so we skip the check here for those kinds of entities.
3898  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3899  // Should we refactor that check, so that it occurs later?
3900  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3901      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3902        isa<FunctionDecl>(Specialized))) {
3903    if (isa<TranslationUnitDecl>(SpecializedContext))
3904      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3905        << EntityKind << Specialized;
3906    else if (isa<NamespaceDecl>(SpecializedContext))
3907      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3908        << EntityKind << Specialized
3909        << cast<NamedDecl>(SpecializedContext);
3910
3911    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3912  }
3913
3914  // FIXME: check for specialization-after-instantiation errors and such.
3915
3916  return false;
3917}
3918
3919/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
3920/// that checks non-type template partial specialization arguments.
3921static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
3922                                                NonTypeTemplateParmDecl *Param,
3923                                                  const TemplateArgument *Args,
3924                                                        unsigned NumArgs) {
3925  for (unsigned I = 0; I != NumArgs; ++I) {
3926    if (Args[I].getKind() == TemplateArgument::Pack) {
3927      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
3928                                                           Args[I].pack_begin(),
3929                                                           Args[I].pack_size()))
3930        return true;
3931
3932      continue;
3933    }
3934
3935    Expr *ArgExpr = Args[I].getAsExpr();
3936    if (!ArgExpr) {
3937      continue;
3938    }
3939
3940    // We can have a pack expansion of any of the above.
3941    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
3942      ArgExpr = Expansion->getPattern();
3943
3944    // C++ [temp.class.spec]p8:
3945    //   A non-type argument is non-specialized if it is the name of a
3946    //   non-type parameter. All other non-type arguments are
3947    //   specialized.
3948    //
3949    // Below, we check the two conditions that only apply to
3950    // specialized non-type arguments, so skip any non-specialized
3951    // arguments.
3952    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3953      if (llvm::isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
3954        continue;
3955
3956    // C++ [temp.class.spec]p9:
3957    //   Within the argument list of a class template partial
3958    //   specialization, the following restrictions apply:
3959    //     -- A partially specialized non-type argument expression
3960    //        shall not involve a template parameter of the partial
3961    //        specialization except when the argument expression is a
3962    //        simple identifier.
3963    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3964      S.Diag(ArgExpr->getLocStart(),
3965           diag::err_dependent_non_type_arg_in_partial_spec)
3966        << ArgExpr->getSourceRange();
3967      return true;
3968    }
3969
3970    //     -- The type of a template parameter corresponding to a
3971    //        specialized non-type argument shall not be dependent on a
3972    //        parameter of the specialization.
3973    if (Param->getType()->isDependentType()) {
3974      S.Diag(ArgExpr->getLocStart(),
3975           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3976        << Param->getType()
3977        << ArgExpr->getSourceRange();
3978      S.Diag(Param->getLocation(), diag::note_template_param_here);
3979      return true;
3980    }
3981  }
3982
3983  return false;
3984}
3985
3986/// \brief Check the non-type template arguments of a class template
3987/// partial specialization according to C++ [temp.class.spec]p9.
3988///
3989/// \param TemplateParams the template parameters of the primary class
3990/// template.
3991///
3992/// \param TemplateArg the template arguments of the class template
3993/// partial specialization.
3994///
3995/// \returns true if there was an error, false otherwise.
3996static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
3997                                        TemplateParameterList *TemplateParams,
3998                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
3999  const TemplateArgument *ArgList = TemplateArgs.data();
4000
4001  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4002    NonTypeTemplateParmDecl *Param
4003      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4004    if (!Param)
4005      continue;
4006
4007    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4008                                                           &ArgList[I], 1))
4009      return true;
4010  }
4011
4012  return false;
4013}
4014
4015/// \brief Retrieve the previous declaration of the given declaration.
4016static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4017  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4018    return VD->getPreviousDeclaration();
4019  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4020    return FD->getPreviousDeclaration();
4021  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4022    return TD->getPreviousDeclaration();
4023  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4024    return TD->getPreviousDeclaration();
4025  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4026    return FTD->getPreviousDeclaration();
4027  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4028    return CTD->getPreviousDeclaration();
4029  return 0;
4030}
4031
4032DeclResult
4033Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4034                                       TagUseKind TUK,
4035                                       SourceLocation KWLoc,
4036                                       CXXScopeSpec &SS,
4037                                       TemplateTy TemplateD,
4038                                       SourceLocation TemplateNameLoc,
4039                                       SourceLocation LAngleLoc,
4040                                       ASTTemplateArgsPtr TemplateArgsIn,
4041                                       SourceLocation RAngleLoc,
4042                                       AttributeList *Attr,
4043                               MultiTemplateParamsArg TemplateParameterLists) {
4044  assert(TUK != TUK_Reference && "References are not specializations");
4045
4046  // Find the class template we're specializing
4047  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4048  ClassTemplateDecl *ClassTemplate
4049    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4050
4051  if (!ClassTemplate) {
4052    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4053      << (Name.getAsTemplateDecl() &&
4054          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4055    return true;
4056  }
4057
4058  bool isExplicitSpecialization = false;
4059  bool isPartialSpecialization = false;
4060
4061  // Check the validity of the template headers that introduce this
4062  // template.
4063  // FIXME: We probably shouldn't complain about these headers for
4064  // friend declarations.
4065  bool Invalid = false;
4066  TemplateParameterList *TemplateParams
4067    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4068                        (TemplateParameterList**)TemplateParameterLists.get(),
4069                                              TemplateParameterLists.size(),
4070                                              TUK == TUK_Friend,
4071                                              isExplicitSpecialization,
4072                                              Invalid);
4073  if (Invalid)
4074    return true;
4075
4076  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4077  if (TemplateParams)
4078    --NumMatchedTemplateParamLists;
4079
4080  if (TemplateParams && TemplateParams->size() > 0) {
4081    isPartialSpecialization = true;
4082
4083    if (TUK == TUK_Friend) {
4084      Diag(KWLoc, diag::err_partial_specialization_friend)
4085        << SourceRange(LAngleLoc, RAngleLoc);
4086      return true;
4087    }
4088
4089    // C++ [temp.class.spec]p10:
4090    //   The template parameter list of a specialization shall not
4091    //   contain default template argument values.
4092    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4093      Decl *Param = TemplateParams->getParam(I);
4094      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4095        if (TTP->hasDefaultArgument()) {
4096          Diag(TTP->getDefaultArgumentLoc(),
4097               diag::err_default_arg_in_partial_spec);
4098          TTP->removeDefaultArgument();
4099        }
4100      } else if (NonTypeTemplateParmDecl *NTTP
4101                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4102        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4103          Diag(NTTP->getDefaultArgumentLoc(),
4104               diag::err_default_arg_in_partial_spec)
4105            << DefArg->getSourceRange();
4106          NTTP->removeDefaultArgument();
4107        }
4108      } else {
4109        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4110        if (TTP->hasDefaultArgument()) {
4111          Diag(TTP->getDefaultArgument().getLocation(),
4112               diag::err_default_arg_in_partial_spec)
4113            << TTP->getDefaultArgument().getSourceRange();
4114          TTP->removeDefaultArgument();
4115        }
4116      }
4117    }
4118  } else if (TemplateParams) {
4119    if (TUK == TUK_Friend)
4120      Diag(KWLoc, diag::err_template_spec_friend)
4121        << FixItHint::CreateRemoval(
4122                                SourceRange(TemplateParams->getTemplateLoc(),
4123                                            TemplateParams->getRAngleLoc()))
4124        << SourceRange(LAngleLoc, RAngleLoc);
4125    else
4126      isExplicitSpecialization = true;
4127  } else if (TUK != TUK_Friend) {
4128    Diag(KWLoc, diag::err_template_spec_needs_header)
4129      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4130    isExplicitSpecialization = true;
4131  }
4132
4133  // Check that the specialization uses the same tag kind as the
4134  // original template.
4135  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4136  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4137  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4138                                    Kind, KWLoc,
4139                                    *ClassTemplate->getIdentifier())) {
4140    Diag(KWLoc, diag::err_use_with_wrong_tag)
4141      << ClassTemplate
4142      << FixItHint::CreateReplacement(KWLoc,
4143                            ClassTemplate->getTemplatedDecl()->getKindName());
4144    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4145         diag::note_previous_use);
4146    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4147  }
4148
4149  // Translate the parser's template argument list in our AST format.
4150  TemplateArgumentListInfo TemplateArgs;
4151  TemplateArgs.setLAngleLoc(LAngleLoc);
4152  TemplateArgs.setRAngleLoc(RAngleLoc);
4153  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4154
4155  // Check for unexpanded parameter packs in any of the template arguments.
4156  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4157    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4158                                        UPPC_PartialSpecialization))
4159      return true;
4160
4161  // Check that the template argument list is well-formed for this
4162  // template.
4163  llvm::SmallVector<TemplateArgument, 4> Converted;
4164  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4165                                TemplateArgs, false, Converted))
4166    return true;
4167
4168  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4169         "Converted template argument list is too short!");
4170
4171  // Find the class template (partial) specialization declaration that
4172  // corresponds to these arguments.
4173  if (isPartialSpecialization) {
4174    if (CheckClassTemplatePartialSpecializationArgs(*this,
4175                                         ClassTemplate->getTemplateParameters(),
4176                                         Converted))
4177      return true;
4178
4179    if (!Name.isDependent() &&
4180        !TemplateSpecializationType::anyDependentTemplateArguments(
4181                                             TemplateArgs.getArgumentArray(),
4182                                                         TemplateArgs.size())) {
4183      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4184        << ClassTemplate->getDeclName();
4185      isPartialSpecialization = false;
4186    }
4187  }
4188
4189  void *InsertPos = 0;
4190  ClassTemplateSpecializationDecl *PrevDecl = 0;
4191
4192  if (isPartialSpecialization)
4193    // FIXME: Template parameter list matters, too
4194    PrevDecl
4195      = ClassTemplate->findPartialSpecialization(Converted.data(),
4196                                                 Converted.size(),
4197                                                 InsertPos);
4198  else
4199    PrevDecl
4200      = ClassTemplate->findSpecialization(Converted.data(),
4201                                          Converted.size(), InsertPos);
4202
4203  ClassTemplateSpecializationDecl *Specialization = 0;
4204
4205  // Check whether we can declare a class template specialization in
4206  // the current scope.
4207  if (TUK != TUK_Friend &&
4208      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4209                                       TemplateNameLoc,
4210                                       isPartialSpecialization))
4211    return true;
4212
4213  // The canonical type
4214  QualType CanonType;
4215  if (PrevDecl &&
4216      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4217               TUK == TUK_Friend)) {
4218    // Since the only prior class template specialization with these
4219    // arguments was referenced but not declared, or we're only
4220    // referencing this specialization as a friend, reuse that
4221    // declaration node as our own, updating its source location to
4222    // reflect our new declaration.
4223    Specialization = PrevDecl;
4224    Specialization->setLocation(TemplateNameLoc);
4225    PrevDecl = 0;
4226    CanonType = Context.getTypeDeclType(Specialization);
4227  } else if (isPartialSpecialization) {
4228    // Build the canonical type that describes the converted template
4229    // arguments of the class template partial specialization.
4230    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4231    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4232                                                      Converted.data(),
4233                                                      Converted.size());
4234
4235    if (Context.hasSameType(CanonType,
4236                        ClassTemplate->getInjectedClassNameSpecialization())) {
4237      // C++ [temp.class.spec]p9b3:
4238      //
4239      //   -- The argument list of the specialization shall not be identical
4240      //      to the implicit argument list of the primary template.
4241      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4242      << (TUK == TUK_Definition)
4243      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4244      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4245                                ClassTemplate->getIdentifier(),
4246                                TemplateNameLoc,
4247                                Attr,
4248                                TemplateParams,
4249                                AS_none);
4250    }
4251
4252    // Create a new class template partial specialization declaration node.
4253    ClassTemplatePartialSpecializationDecl *PrevPartial
4254      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4255    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4256                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4257    ClassTemplatePartialSpecializationDecl *Partial
4258      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4259                                             ClassTemplate->getDeclContext(),
4260                                                       TemplateNameLoc,
4261                                                       TemplateParams,
4262                                                       ClassTemplate,
4263                                                       Converted.data(),
4264                                                       Converted.size(),
4265                                                       TemplateArgs,
4266                                                       CanonType,
4267                                                       PrevPartial,
4268                                                       SequenceNumber);
4269    SetNestedNameSpecifier(Partial, SS);
4270    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4271      Partial->setTemplateParameterListsInfo(Context,
4272                                             NumMatchedTemplateParamLists,
4273                    (TemplateParameterList**) TemplateParameterLists.release());
4274    }
4275
4276    if (!PrevPartial)
4277      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4278    Specialization = Partial;
4279
4280    // If we are providing an explicit specialization of a member class
4281    // template specialization, make a note of that.
4282    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4283      PrevPartial->setMemberSpecialization();
4284
4285    // Check that all of the template parameters of the class template
4286    // partial specialization are deducible from the template
4287    // arguments. If not, this class template partial specialization
4288    // will never be used.
4289    llvm::SmallVector<bool, 8> DeducibleParams;
4290    DeducibleParams.resize(TemplateParams->size());
4291    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4292                               TemplateParams->getDepth(),
4293                               DeducibleParams);
4294    unsigned NumNonDeducible = 0;
4295    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4296      if (!DeducibleParams[I])
4297        ++NumNonDeducible;
4298
4299    if (NumNonDeducible) {
4300      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4301        << (NumNonDeducible > 1)
4302        << SourceRange(TemplateNameLoc, RAngleLoc);
4303      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4304        if (!DeducibleParams[I]) {
4305          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4306          if (Param->getDeclName())
4307            Diag(Param->getLocation(),
4308                 diag::note_partial_spec_unused_parameter)
4309              << Param->getDeclName();
4310          else
4311            Diag(Param->getLocation(),
4312                 diag::note_partial_spec_unused_parameter)
4313              << "<anonymous>";
4314        }
4315      }
4316    }
4317  } else {
4318    // Create a new class template specialization declaration node for
4319    // this explicit specialization or friend declaration.
4320    Specialization
4321      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4322                                             ClassTemplate->getDeclContext(),
4323                                                TemplateNameLoc,
4324                                                ClassTemplate,
4325                                                Converted.data(),
4326                                                Converted.size(),
4327                                                PrevDecl);
4328    SetNestedNameSpecifier(Specialization, SS);
4329    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4330      Specialization->setTemplateParameterListsInfo(Context,
4331                                                  NumMatchedTemplateParamLists,
4332                    (TemplateParameterList**) TemplateParameterLists.release());
4333    }
4334
4335    if (!PrevDecl)
4336      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4337
4338    CanonType = Context.getTypeDeclType(Specialization);
4339  }
4340
4341  // C++ [temp.expl.spec]p6:
4342  //   If a template, a member template or the member of a class template is
4343  //   explicitly specialized then that specialization shall be declared
4344  //   before the first use of that specialization that would cause an implicit
4345  //   instantiation to take place, in every translation unit in which such a
4346  //   use occurs; no diagnostic is required.
4347  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4348    bool Okay = false;
4349    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4350      // Is there any previous explicit specialization declaration?
4351      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4352        Okay = true;
4353        break;
4354      }
4355    }
4356
4357    if (!Okay) {
4358      SourceRange Range(TemplateNameLoc, RAngleLoc);
4359      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4360        << Context.getTypeDeclType(Specialization) << Range;
4361
4362      Diag(PrevDecl->getPointOfInstantiation(),
4363           diag::note_instantiation_required_here)
4364        << (PrevDecl->getTemplateSpecializationKind()
4365                                                != TSK_ImplicitInstantiation);
4366      return true;
4367    }
4368  }
4369
4370  // If this is not a friend, note that this is an explicit specialization.
4371  if (TUK != TUK_Friend)
4372    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4373
4374  // Check that this isn't a redefinition of this specialization.
4375  if (TUK == TUK_Definition) {
4376    if (RecordDecl *Def = Specialization->getDefinition()) {
4377      SourceRange Range(TemplateNameLoc, RAngleLoc);
4378      Diag(TemplateNameLoc, diag::err_redefinition)
4379        << Context.getTypeDeclType(Specialization) << Range;
4380      Diag(Def->getLocation(), diag::note_previous_definition);
4381      Specialization->setInvalidDecl();
4382      return true;
4383    }
4384  }
4385
4386  if (Attr)
4387    ProcessDeclAttributeList(S, Specialization, Attr);
4388
4389  // Build the fully-sugared type for this class template
4390  // specialization as the user wrote in the specialization
4391  // itself. This means that we'll pretty-print the type retrieved
4392  // from the specialization's declaration the way that the user
4393  // actually wrote the specialization, rather than formatting the
4394  // name based on the "canonical" representation used to store the
4395  // template arguments in the specialization.
4396  TypeSourceInfo *WrittenTy
4397    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4398                                                TemplateArgs, CanonType);
4399  if (TUK != TUK_Friend) {
4400    Specialization->setTypeAsWritten(WrittenTy);
4401    if (TemplateParams)
4402      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4403  }
4404  TemplateArgsIn.release();
4405
4406  // C++ [temp.expl.spec]p9:
4407  //   A template explicit specialization is in the scope of the
4408  //   namespace in which the template was defined.
4409  //
4410  // We actually implement this paragraph where we set the semantic
4411  // context (in the creation of the ClassTemplateSpecializationDecl),
4412  // but we also maintain the lexical context where the actual
4413  // definition occurs.
4414  Specialization->setLexicalDeclContext(CurContext);
4415
4416  // We may be starting the definition of this specialization.
4417  if (TUK == TUK_Definition)
4418    Specialization->startDefinition();
4419
4420  if (TUK == TUK_Friend) {
4421    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4422                                            TemplateNameLoc,
4423                                            WrittenTy,
4424                                            /*FIXME:*/KWLoc);
4425    Friend->setAccess(AS_public);
4426    CurContext->addDecl(Friend);
4427  } else {
4428    // Add the specialization into its lexical context, so that it can
4429    // be seen when iterating through the list of declarations in that
4430    // context. However, specializations are not found by name lookup.
4431    CurContext->addDecl(Specialization);
4432  }
4433  return Specialization;
4434}
4435
4436Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4437                              MultiTemplateParamsArg TemplateParameterLists,
4438                                    Declarator &D) {
4439  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4440}
4441
4442Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4443                               MultiTemplateParamsArg TemplateParameterLists,
4444                                            Declarator &D) {
4445  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4446  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4447
4448  if (FTI.hasPrototype) {
4449    // FIXME: Diagnose arguments without names in C.
4450  }
4451
4452  Scope *ParentScope = FnBodyScope->getParent();
4453
4454  Decl *DP = HandleDeclarator(ParentScope, D,
4455                              move(TemplateParameterLists),
4456                              /*IsFunctionDefinition=*/true);
4457  if (FunctionTemplateDecl *FunctionTemplate
4458        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4459    return ActOnStartOfFunctionDef(FnBodyScope,
4460                                   FunctionTemplate->getTemplatedDecl());
4461  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4462    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4463  return 0;
4464}
4465
4466/// \brief Strips various properties off an implicit instantiation
4467/// that has just been explicitly specialized.
4468static void StripImplicitInstantiation(NamedDecl *D) {
4469  D->dropAttrs();
4470
4471  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4472    FD->setInlineSpecified(false);
4473  }
4474}
4475
4476/// \brief Diagnose cases where we have an explicit template specialization
4477/// before/after an explicit template instantiation, producing diagnostics
4478/// for those cases where they are required and determining whether the
4479/// new specialization/instantiation will have any effect.
4480///
4481/// \param NewLoc the location of the new explicit specialization or
4482/// instantiation.
4483///
4484/// \param NewTSK the kind of the new explicit specialization or instantiation.
4485///
4486/// \param PrevDecl the previous declaration of the entity.
4487///
4488/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4489///
4490/// \param PrevPointOfInstantiation if valid, indicates where the previus
4491/// declaration was instantiated (either implicitly or explicitly).
4492///
4493/// \param HasNoEffect will be set to true to indicate that the new
4494/// specialization or instantiation has no effect and should be ignored.
4495///
4496/// \returns true if there was an error that should prevent the introduction of
4497/// the new declaration into the AST, false otherwise.
4498bool
4499Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4500                                             TemplateSpecializationKind NewTSK,
4501                                             NamedDecl *PrevDecl,
4502                                             TemplateSpecializationKind PrevTSK,
4503                                        SourceLocation PrevPointOfInstantiation,
4504                                             bool &HasNoEffect) {
4505  HasNoEffect = false;
4506
4507  switch (NewTSK) {
4508  case TSK_Undeclared:
4509  case TSK_ImplicitInstantiation:
4510    assert(false && "Don't check implicit instantiations here");
4511    return false;
4512
4513  case TSK_ExplicitSpecialization:
4514    switch (PrevTSK) {
4515    case TSK_Undeclared:
4516    case TSK_ExplicitSpecialization:
4517      // Okay, we're just specializing something that is either already
4518      // explicitly specialized or has merely been mentioned without any
4519      // instantiation.
4520      return false;
4521
4522    case TSK_ImplicitInstantiation:
4523      if (PrevPointOfInstantiation.isInvalid()) {
4524        // The declaration itself has not actually been instantiated, so it is
4525        // still okay to specialize it.
4526        StripImplicitInstantiation(PrevDecl);
4527        return false;
4528      }
4529      // Fall through
4530
4531    case TSK_ExplicitInstantiationDeclaration:
4532    case TSK_ExplicitInstantiationDefinition:
4533      assert((PrevTSK == TSK_ImplicitInstantiation ||
4534              PrevPointOfInstantiation.isValid()) &&
4535             "Explicit instantiation without point of instantiation?");
4536
4537      // C++ [temp.expl.spec]p6:
4538      //   If a template, a member template or the member of a class template
4539      //   is explicitly specialized then that specialization shall be declared
4540      //   before the first use of that specialization that would cause an
4541      //   implicit instantiation to take place, in every translation unit in
4542      //   which such a use occurs; no diagnostic is required.
4543      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4544        // Is there any previous explicit specialization declaration?
4545        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4546          return false;
4547      }
4548
4549      Diag(NewLoc, diag::err_specialization_after_instantiation)
4550        << PrevDecl;
4551      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4552        << (PrevTSK != TSK_ImplicitInstantiation);
4553
4554      return true;
4555    }
4556    break;
4557
4558  case TSK_ExplicitInstantiationDeclaration:
4559    switch (PrevTSK) {
4560    case TSK_ExplicitInstantiationDeclaration:
4561      // This explicit instantiation declaration is redundant (that's okay).
4562      HasNoEffect = true;
4563      return false;
4564
4565    case TSK_Undeclared:
4566    case TSK_ImplicitInstantiation:
4567      // We're explicitly instantiating something that may have already been
4568      // implicitly instantiated; that's fine.
4569      return false;
4570
4571    case TSK_ExplicitSpecialization:
4572      // C++0x [temp.explicit]p4:
4573      //   For a given set of template parameters, if an explicit instantiation
4574      //   of a template appears after a declaration of an explicit
4575      //   specialization for that template, the explicit instantiation has no
4576      //   effect.
4577      HasNoEffect = true;
4578      return false;
4579
4580    case TSK_ExplicitInstantiationDefinition:
4581      // C++0x [temp.explicit]p10:
4582      //   If an entity is the subject of both an explicit instantiation
4583      //   declaration and an explicit instantiation definition in the same
4584      //   translation unit, the definition shall follow the declaration.
4585      Diag(NewLoc,
4586           diag::err_explicit_instantiation_declaration_after_definition);
4587      Diag(PrevPointOfInstantiation,
4588           diag::note_explicit_instantiation_definition_here);
4589      assert(PrevPointOfInstantiation.isValid() &&
4590             "Explicit instantiation without point of instantiation?");
4591      HasNoEffect = true;
4592      return false;
4593    }
4594    break;
4595
4596  case TSK_ExplicitInstantiationDefinition:
4597    switch (PrevTSK) {
4598    case TSK_Undeclared:
4599    case TSK_ImplicitInstantiation:
4600      // We're explicitly instantiating something that may have already been
4601      // implicitly instantiated; that's fine.
4602      return false;
4603
4604    case TSK_ExplicitSpecialization:
4605      // C++ DR 259, C++0x [temp.explicit]p4:
4606      //   For a given set of template parameters, if an explicit
4607      //   instantiation of a template appears after a declaration of
4608      //   an explicit specialization for that template, the explicit
4609      //   instantiation has no effect.
4610      //
4611      // In C++98/03 mode, we only give an extension warning here, because it
4612      // is not harmful to try to explicitly instantiate something that
4613      // has been explicitly specialized.
4614      if (!getLangOptions().CPlusPlus0x) {
4615        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4616          << PrevDecl;
4617        Diag(PrevDecl->getLocation(),
4618             diag::note_previous_template_specialization);
4619      }
4620      HasNoEffect = true;
4621      return false;
4622
4623    case TSK_ExplicitInstantiationDeclaration:
4624      // We're explicity instantiating a definition for something for which we
4625      // were previously asked to suppress instantiations. That's fine.
4626      return false;
4627
4628    case TSK_ExplicitInstantiationDefinition:
4629      // C++0x [temp.spec]p5:
4630      //   For a given template and a given set of template-arguments,
4631      //     - an explicit instantiation definition shall appear at most once
4632      //       in a program,
4633      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4634        << PrevDecl;
4635      Diag(PrevPointOfInstantiation,
4636           diag::note_previous_explicit_instantiation);
4637      HasNoEffect = true;
4638      return false;
4639    }
4640    break;
4641  }
4642
4643  assert(false && "Missing specialization/instantiation case?");
4644
4645  return false;
4646}
4647
4648/// \brief Perform semantic analysis for the given dependent function
4649/// template specialization.  The only possible way to get a dependent
4650/// function template specialization is with a friend declaration,
4651/// like so:
4652///
4653///   template <class T> void foo(T);
4654///   template <class T> class A {
4655///     friend void foo<>(T);
4656///   };
4657///
4658/// There really isn't any useful analysis we can do here, so we
4659/// just store the information.
4660bool
4661Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4662                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4663                                                   LookupResult &Previous) {
4664  // Remove anything from Previous that isn't a function template in
4665  // the correct context.
4666  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4667  LookupResult::Filter F = Previous.makeFilter();
4668  while (F.hasNext()) {
4669    NamedDecl *D = F.next()->getUnderlyingDecl();
4670    if (!isa<FunctionTemplateDecl>(D) ||
4671        !FDLookupContext->InEnclosingNamespaceSetOf(
4672                              D->getDeclContext()->getRedeclContext()))
4673      F.erase();
4674  }
4675  F.done();
4676
4677  // Should this be diagnosed here?
4678  if (Previous.empty()) return true;
4679
4680  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4681                                         ExplicitTemplateArgs);
4682  return false;
4683}
4684
4685/// \brief Perform semantic analysis for the given function template
4686/// specialization.
4687///
4688/// This routine performs all of the semantic analysis required for an
4689/// explicit function template specialization. On successful completion,
4690/// the function declaration \p FD will become a function template
4691/// specialization.
4692///
4693/// \param FD the function declaration, which will be updated to become a
4694/// function template specialization.
4695///
4696/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4697/// if any. Note that this may be valid info even when 0 arguments are
4698/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4699/// as it anyway contains info on the angle brackets locations.
4700///
4701/// \param PrevDecl the set of declarations that may be specialized by
4702/// this function specialization.
4703bool
4704Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4705                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4706                                          LookupResult &Previous) {
4707  // The set of function template specializations that could match this
4708  // explicit function template specialization.
4709  UnresolvedSet<8> Candidates;
4710
4711  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4712  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4713         I != E; ++I) {
4714    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4715    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4716      // Only consider templates found within the same semantic lookup scope as
4717      // FD.
4718      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4719                                Ovl->getDeclContext()->getRedeclContext()))
4720        continue;
4721
4722      // C++ [temp.expl.spec]p11:
4723      //   A trailing template-argument can be left unspecified in the
4724      //   template-id naming an explicit function template specialization
4725      //   provided it can be deduced from the function argument type.
4726      // Perform template argument deduction to determine whether we may be
4727      // specializing this template.
4728      // FIXME: It is somewhat wasteful to build
4729      TemplateDeductionInfo Info(Context, FD->getLocation());
4730      FunctionDecl *Specialization = 0;
4731      if (TemplateDeductionResult TDK
4732            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4733                                      FD->getType(),
4734                                      Specialization,
4735                                      Info)) {
4736        // FIXME: Template argument deduction failed; record why it failed, so
4737        // that we can provide nifty diagnostics.
4738        (void)TDK;
4739        continue;
4740      }
4741
4742      // Record this candidate.
4743      Candidates.addDecl(Specialization, I.getAccess());
4744    }
4745  }
4746
4747  // Find the most specialized function template.
4748  UnresolvedSetIterator Result
4749    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4750                         TPOC_Other, FD->getLocation(),
4751                  PDiag(diag::err_function_template_spec_no_match)
4752                    << FD->getDeclName(),
4753                  PDiag(diag::err_function_template_spec_ambiguous)
4754                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4755                  PDiag(diag::note_function_template_spec_matched));
4756  if (Result == Candidates.end())
4757    return true;
4758
4759  // Ignore access information;  it doesn't figure into redeclaration checking.
4760  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4761  Specialization->setLocation(FD->getLocation());
4762
4763  // FIXME: Check if the prior specialization has a point of instantiation.
4764  // If so, we have run afoul of .
4765
4766  // If this is a friend declaration, then we're not really declaring
4767  // an explicit specialization.
4768  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4769
4770  // Check the scope of this explicit specialization.
4771  if (!isFriend &&
4772      CheckTemplateSpecializationScope(*this,
4773                                       Specialization->getPrimaryTemplate(),
4774                                       Specialization, FD->getLocation(),
4775                                       false))
4776    return true;
4777
4778  // C++ [temp.expl.spec]p6:
4779  //   If a template, a member template or the member of a class template is
4780  //   explicitly specialized then that specialization shall be declared
4781  //   before the first use of that specialization that would cause an implicit
4782  //   instantiation to take place, in every translation unit in which such a
4783  //   use occurs; no diagnostic is required.
4784  FunctionTemplateSpecializationInfo *SpecInfo
4785    = Specialization->getTemplateSpecializationInfo();
4786  assert(SpecInfo && "Function template specialization info missing?");
4787
4788  bool HasNoEffect = false;
4789  if (!isFriend &&
4790      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4791                                             TSK_ExplicitSpecialization,
4792                                             Specialization,
4793                                   SpecInfo->getTemplateSpecializationKind(),
4794                                         SpecInfo->getPointOfInstantiation(),
4795                                             HasNoEffect))
4796    return true;
4797
4798  // Mark the prior declaration as an explicit specialization, so that later
4799  // clients know that this is an explicit specialization.
4800  if (!isFriend) {
4801    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4802    MarkUnusedFileScopedDecl(Specialization);
4803  }
4804
4805  // Turn the given function declaration into a function template
4806  // specialization, with the template arguments from the previous
4807  // specialization.
4808  // Take copies of (semantic and syntactic) template argument lists.
4809  const TemplateArgumentList* TemplArgs = new (Context)
4810    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4811  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4812    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4813  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4814                                        TemplArgs, /*InsertPos=*/0,
4815                                    SpecInfo->getTemplateSpecializationKind(),
4816                                        TemplArgsAsWritten);
4817
4818  // The "previous declaration" for this function template specialization is
4819  // the prior function template specialization.
4820  Previous.clear();
4821  Previous.addDecl(Specialization);
4822  return false;
4823}
4824
4825/// \brief Perform semantic analysis for the given non-template member
4826/// specialization.
4827///
4828/// This routine performs all of the semantic analysis required for an
4829/// explicit member function specialization. On successful completion,
4830/// the function declaration \p FD will become a member function
4831/// specialization.
4832///
4833/// \param Member the member declaration, which will be updated to become a
4834/// specialization.
4835///
4836/// \param Previous the set of declarations, one of which may be specialized
4837/// by this function specialization;  the set will be modified to contain the
4838/// redeclared member.
4839bool
4840Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4841  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4842
4843  // Try to find the member we are instantiating.
4844  NamedDecl *Instantiation = 0;
4845  NamedDecl *InstantiatedFrom = 0;
4846  MemberSpecializationInfo *MSInfo = 0;
4847
4848  if (Previous.empty()) {
4849    // Nowhere to look anyway.
4850  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4851    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4852           I != E; ++I) {
4853      NamedDecl *D = (*I)->getUnderlyingDecl();
4854      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4855        if (Context.hasSameType(Function->getType(), Method->getType())) {
4856          Instantiation = Method;
4857          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4858          MSInfo = Method->getMemberSpecializationInfo();
4859          break;
4860        }
4861      }
4862    }
4863  } else if (isa<VarDecl>(Member)) {
4864    VarDecl *PrevVar;
4865    if (Previous.isSingleResult() &&
4866        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4867      if (PrevVar->isStaticDataMember()) {
4868        Instantiation = PrevVar;
4869        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4870        MSInfo = PrevVar->getMemberSpecializationInfo();
4871      }
4872  } else if (isa<RecordDecl>(Member)) {
4873    CXXRecordDecl *PrevRecord;
4874    if (Previous.isSingleResult() &&
4875        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4876      Instantiation = PrevRecord;
4877      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4878      MSInfo = PrevRecord->getMemberSpecializationInfo();
4879    }
4880  }
4881
4882  if (!Instantiation) {
4883    // There is no previous declaration that matches. Since member
4884    // specializations are always out-of-line, the caller will complain about
4885    // this mismatch later.
4886    return false;
4887  }
4888
4889  // If this is a friend, just bail out here before we start turning
4890  // things into explicit specializations.
4891  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4892    // Preserve instantiation information.
4893    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4894      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4895                                      cast<CXXMethodDecl>(InstantiatedFrom),
4896        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4897    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4898      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4899                                      cast<CXXRecordDecl>(InstantiatedFrom),
4900        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4901    }
4902
4903    Previous.clear();
4904    Previous.addDecl(Instantiation);
4905    return false;
4906  }
4907
4908  // Make sure that this is a specialization of a member.
4909  if (!InstantiatedFrom) {
4910    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4911      << Member;
4912    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4913    return true;
4914  }
4915
4916  // C++ [temp.expl.spec]p6:
4917  //   If a template, a member template or the member of a class template is
4918  //   explicitly specialized then that spe- cialization shall be declared
4919  //   before the first use of that specialization that would cause an implicit
4920  //   instantiation to take place, in every translation unit in which such a
4921  //   use occurs; no diagnostic is required.
4922  assert(MSInfo && "Member specialization info missing?");
4923
4924  bool HasNoEffect = false;
4925  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4926                                             TSK_ExplicitSpecialization,
4927                                             Instantiation,
4928                                     MSInfo->getTemplateSpecializationKind(),
4929                                           MSInfo->getPointOfInstantiation(),
4930                                             HasNoEffect))
4931    return true;
4932
4933  // Check the scope of this explicit specialization.
4934  if (CheckTemplateSpecializationScope(*this,
4935                                       InstantiatedFrom,
4936                                       Instantiation, Member->getLocation(),
4937                                       false))
4938    return true;
4939
4940  // Note that this is an explicit instantiation of a member.
4941  // the original declaration to note that it is an explicit specialization
4942  // (if it was previously an implicit instantiation). This latter step
4943  // makes bookkeeping easier.
4944  if (isa<FunctionDecl>(Member)) {
4945    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4946    if (InstantiationFunction->getTemplateSpecializationKind() ==
4947          TSK_ImplicitInstantiation) {
4948      InstantiationFunction->setTemplateSpecializationKind(
4949                                                  TSK_ExplicitSpecialization);
4950      InstantiationFunction->setLocation(Member->getLocation());
4951    }
4952
4953    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4954                                        cast<CXXMethodDecl>(InstantiatedFrom),
4955                                                  TSK_ExplicitSpecialization);
4956    MarkUnusedFileScopedDecl(InstantiationFunction);
4957  } else if (isa<VarDecl>(Member)) {
4958    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4959    if (InstantiationVar->getTemplateSpecializationKind() ==
4960          TSK_ImplicitInstantiation) {
4961      InstantiationVar->setTemplateSpecializationKind(
4962                                                  TSK_ExplicitSpecialization);
4963      InstantiationVar->setLocation(Member->getLocation());
4964    }
4965
4966    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4967                                                cast<VarDecl>(InstantiatedFrom),
4968                                                TSK_ExplicitSpecialization);
4969    MarkUnusedFileScopedDecl(InstantiationVar);
4970  } else {
4971    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4972    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4973    if (InstantiationClass->getTemplateSpecializationKind() ==
4974          TSK_ImplicitInstantiation) {
4975      InstantiationClass->setTemplateSpecializationKind(
4976                                                   TSK_ExplicitSpecialization);
4977      InstantiationClass->setLocation(Member->getLocation());
4978    }
4979
4980    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4981                                        cast<CXXRecordDecl>(InstantiatedFrom),
4982                                                   TSK_ExplicitSpecialization);
4983  }
4984
4985  // Save the caller the trouble of having to figure out which declaration
4986  // this specialization matches.
4987  Previous.clear();
4988  Previous.addDecl(Instantiation);
4989  return false;
4990}
4991
4992/// \brief Check the scope of an explicit instantiation.
4993///
4994/// \returns true if a serious error occurs, false otherwise.
4995static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4996                                            SourceLocation InstLoc,
4997                                            bool WasQualifiedName) {
4998  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4999  DeclContext *CurContext = S.CurContext->getRedeclContext();
5000
5001  if (CurContext->isRecord()) {
5002    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5003      << D;
5004    return true;
5005  }
5006
5007  // C++0x [temp.explicit]p2:
5008  //   An explicit instantiation shall appear in an enclosing namespace of its
5009  //   template.
5010  //
5011  // This is DR275, which we do not retroactively apply to C++98/03.
5012  if (S.getLangOptions().CPlusPlus0x &&
5013      !CurContext->Encloses(OrigContext)) {
5014    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5015      S.Diag(InstLoc,
5016             S.getLangOptions().CPlusPlus0x?
5017                 diag::err_explicit_instantiation_out_of_scope
5018               : diag::warn_explicit_instantiation_out_of_scope_0x)
5019        << D << NS;
5020    else
5021      S.Diag(InstLoc,
5022             S.getLangOptions().CPlusPlus0x?
5023                 diag::err_explicit_instantiation_must_be_global
5024               : diag::warn_explicit_instantiation_out_of_scope_0x)
5025        << D;
5026    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5027    return false;
5028  }
5029
5030  // C++0x [temp.explicit]p2:
5031  //   If the name declared in the explicit instantiation is an unqualified
5032  //   name, the explicit instantiation shall appear in the namespace where
5033  //   its template is declared or, if that namespace is inline (7.3.1), any
5034  //   namespace from its enclosing namespace set.
5035  if (WasQualifiedName)
5036    return false;
5037
5038  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5039    return false;
5040
5041  S.Diag(InstLoc,
5042         S.getLangOptions().CPlusPlus0x?
5043             diag::err_explicit_instantiation_unqualified_wrong_namespace
5044           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5045    << D << OrigContext;
5046  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5047  return false;
5048}
5049
5050/// \brief Determine whether the given scope specifier has a template-id in it.
5051static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5052  if (!SS.isSet())
5053    return false;
5054
5055  // C++0x [temp.explicit]p2:
5056  //   If the explicit instantiation is for a member function, a member class
5057  //   or a static data member of a class template specialization, the name of
5058  //   the class template specialization in the qualified-id for the member
5059  //   name shall be a simple-template-id.
5060  //
5061  // C++98 has the same restriction, just worded differently.
5062  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5063       NNS; NNS = NNS->getPrefix())
5064    if (Type *T = NNS->getAsType())
5065      if (isa<TemplateSpecializationType>(T))
5066        return true;
5067
5068  return false;
5069}
5070
5071// Explicit instantiation of a class template specialization
5072DeclResult
5073Sema::ActOnExplicitInstantiation(Scope *S,
5074                                 SourceLocation ExternLoc,
5075                                 SourceLocation TemplateLoc,
5076                                 unsigned TagSpec,
5077                                 SourceLocation KWLoc,
5078                                 const CXXScopeSpec &SS,
5079                                 TemplateTy TemplateD,
5080                                 SourceLocation TemplateNameLoc,
5081                                 SourceLocation LAngleLoc,
5082                                 ASTTemplateArgsPtr TemplateArgsIn,
5083                                 SourceLocation RAngleLoc,
5084                                 AttributeList *Attr) {
5085  // Find the class template we're specializing
5086  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5087  ClassTemplateDecl *ClassTemplate
5088    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5089
5090  // Check that the specialization uses the same tag kind as the
5091  // original template.
5092  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5093  assert(Kind != TTK_Enum &&
5094         "Invalid enum tag in class template explicit instantiation!");
5095  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5096                                    Kind, KWLoc,
5097                                    *ClassTemplate->getIdentifier())) {
5098    Diag(KWLoc, diag::err_use_with_wrong_tag)
5099      << ClassTemplate
5100      << FixItHint::CreateReplacement(KWLoc,
5101                            ClassTemplate->getTemplatedDecl()->getKindName());
5102    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5103         diag::note_previous_use);
5104    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5105  }
5106
5107  // C++0x [temp.explicit]p2:
5108  //   There are two forms of explicit instantiation: an explicit instantiation
5109  //   definition and an explicit instantiation declaration. An explicit
5110  //   instantiation declaration begins with the extern keyword. [...]
5111  TemplateSpecializationKind TSK
5112    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5113                           : TSK_ExplicitInstantiationDeclaration;
5114
5115  // Translate the parser's template argument list in our AST format.
5116  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5117  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5118
5119  // Check that the template argument list is well-formed for this
5120  // template.
5121  llvm::SmallVector<TemplateArgument, 4> Converted;
5122  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5123                                TemplateArgs, false, Converted))
5124    return true;
5125
5126  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5127         "Converted template argument list is too short!");
5128
5129  // Find the class template specialization declaration that
5130  // corresponds to these arguments.
5131  void *InsertPos = 0;
5132  ClassTemplateSpecializationDecl *PrevDecl
5133    = ClassTemplate->findSpecialization(Converted.data(),
5134                                        Converted.size(), InsertPos);
5135
5136  TemplateSpecializationKind PrevDecl_TSK
5137    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5138
5139  // C++0x [temp.explicit]p2:
5140  //   [...] An explicit instantiation shall appear in an enclosing
5141  //   namespace of its template. [...]
5142  //
5143  // This is C++ DR 275.
5144  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5145                                      SS.isSet()))
5146    return true;
5147
5148  ClassTemplateSpecializationDecl *Specialization = 0;
5149
5150  bool ReusedDecl = false;
5151  bool HasNoEffect = false;
5152  if (PrevDecl) {
5153    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5154                                               PrevDecl, PrevDecl_TSK,
5155                                            PrevDecl->getPointOfInstantiation(),
5156                                               HasNoEffect))
5157      return PrevDecl;
5158
5159    // Even though HasNoEffect == true means that this explicit instantiation
5160    // has no effect on semantics, we go on to put its syntax in the AST.
5161
5162    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5163        PrevDecl_TSK == TSK_Undeclared) {
5164      // Since the only prior class template specialization with these
5165      // arguments was referenced but not declared, reuse that
5166      // declaration node as our own, updating the source location
5167      // for the template name to reflect our new declaration.
5168      // (Other source locations will be updated later.)
5169      Specialization = PrevDecl;
5170      Specialization->setLocation(TemplateNameLoc);
5171      PrevDecl = 0;
5172      ReusedDecl = true;
5173    }
5174  }
5175
5176  if (!Specialization) {
5177    // Create a new class template specialization declaration node for
5178    // this explicit specialization.
5179    Specialization
5180      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5181                                             ClassTemplate->getDeclContext(),
5182                                                TemplateNameLoc,
5183                                                ClassTemplate,
5184                                                Converted.data(),
5185                                                Converted.size(),
5186                                                PrevDecl);
5187    SetNestedNameSpecifier(Specialization, SS);
5188
5189    if (!HasNoEffect && !PrevDecl) {
5190      // Insert the new specialization.
5191      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5192    }
5193  }
5194
5195  // Build the fully-sugared type for this explicit instantiation as
5196  // the user wrote in the explicit instantiation itself. This means
5197  // that we'll pretty-print the type retrieved from the
5198  // specialization's declaration the way that the user actually wrote
5199  // the explicit instantiation, rather than formatting the name based
5200  // on the "canonical" representation used to store the template
5201  // arguments in the specialization.
5202  TypeSourceInfo *WrittenTy
5203    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5204                                                TemplateArgs,
5205                                  Context.getTypeDeclType(Specialization));
5206  Specialization->setTypeAsWritten(WrittenTy);
5207  TemplateArgsIn.release();
5208
5209  // Set source locations for keywords.
5210  Specialization->setExternLoc(ExternLoc);
5211  Specialization->setTemplateKeywordLoc(TemplateLoc);
5212
5213  // Add the explicit instantiation into its lexical context. However,
5214  // since explicit instantiations are never found by name lookup, we
5215  // just put it into the declaration context directly.
5216  Specialization->setLexicalDeclContext(CurContext);
5217  CurContext->addDecl(Specialization);
5218
5219  // Syntax is now OK, so return if it has no other effect on semantics.
5220  if (HasNoEffect) {
5221    // Set the template specialization kind.
5222    Specialization->setTemplateSpecializationKind(TSK);
5223    return Specialization;
5224  }
5225
5226  // C++ [temp.explicit]p3:
5227  //   A definition of a class template or class member template
5228  //   shall be in scope at the point of the explicit instantiation of
5229  //   the class template or class member template.
5230  //
5231  // This check comes when we actually try to perform the
5232  // instantiation.
5233  ClassTemplateSpecializationDecl *Def
5234    = cast_or_null<ClassTemplateSpecializationDecl>(
5235                                              Specialization->getDefinition());
5236  if (!Def)
5237    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5238  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5239    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5240    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5241  }
5242
5243  // Instantiate the members of this class template specialization.
5244  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5245                                       Specialization->getDefinition());
5246  if (Def) {
5247    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5248
5249    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5250    // TSK_ExplicitInstantiationDefinition
5251    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5252        TSK == TSK_ExplicitInstantiationDefinition)
5253      Def->setTemplateSpecializationKind(TSK);
5254
5255    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5256  }
5257
5258  // Set the template specialization kind.
5259  Specialization->setTemplateSpecializationKind(TSK);
5260  return Specialization;
5261}
5262
5263// Explicit instantiation of a member class of a class template.
5264DeclResult
5265Sema::ActOnExplicitInstantiation(Scope *S,
5266                                 SourceLocation ExternLoc,
5267                                 SourceLocation TemplateLoc,
5268                                 unsigned TagSpec,
5269                                 SourceLocation KWLoc,
5270                                 CXXScopeSpec &SS,
5271                                 IdentifierInfo *Name,
5272                                 SourceLocation NameLoc,
5273                                 AttributeList *Attr) {
5274
5275  bool Owned = false;
5276  bool IsDependent = false;
5277  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5278                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5279                        MultiTemplateParamsArg(*this, 0, 0),
5280                        Owned, IsDependent, false, false,
5281                        TypeResult());
5282  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5283
5284  if (!TagD)
5285    return true;
5286
5287  TagDecl *Tag = cast<TagDecl>(TagD);
5288  if (Tag->isEnum()) {
5289    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5290      << Context.getTypeDeclType(Tag);
5291    return true;
5292  }
5293
5294  if (Tag->isInvalidDecl())
5295    return true;
5296
5297  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5298  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5299  if (!Pattern) {
5300    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5301      << Context.getTypeDeclType(Record);
5302    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5303    return true;
5304  }
5305
5306  // C++0x [temp.explicit]p2:
5307  //   If the explicit instantiation is for a class or member class, the
5308  //   elaborated-type-specifier in the declaration shall include a
5309  //   simple-template-id.
5310  //
5311  // C++98 has the same restriction, just worded differently.
5312  if (!ScopeSpecifierHasTemplateId(SS))
5313    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5314      << Record << SS.getRange();
5315
5316  // C++0x [temp.explicit]p2:
5317  //   There are two forms of explicit instantiation: an explicit instantiation
5318  //   definition and an explicit instantiation declaration. An explicit
5319  //   instantiation declaration begins with the extern keyword. [...]
5320  TemplateSpecializationKind TSK
5321    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5322                           : TSK_ExplicitInstantiationDeclaration;
5323
5324  // C++0x [temp.explicit]p2:
5325  //   [...] An explicit instantiation shall appear in an enclosing
5326  //   namespace of its template. [...]
5327  //
5328  // This is C++ DR 275.
5329  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5330
5331  // Verify that it is okay to explicitly instantiate here.
5332  CXXRecordDecl *PrevDecl
5333    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5334  if (!PrevDecl && Record->getDefinition())
5335    PrevDecl = Record;
5336  if (PrevDecl) {
5337    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5338    bool HasNoEffect = false;
5339    assert(MSInfo && "No member specialization information?");
5340    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5341                                               PrevDecl,
5342                                        MSInfo->getTemplateSpecializationKind(),
5343                                             MSInfo->getPointOfInstantiation(),
5344                                               HasNoEffect))
5345      return true;
5346    if (HasNoEffect)
5347      return TagD;
5348  }
5349
5350  CXXRecordDecl *RecordDef
5351    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5352  if (!RecordDef) {
5353    // C++ [temp.explicit]p3:
5354    //   A definition of a member class of a class template shall be in scope
5355    //   at the point of an explicit instantiation of the member class.
5356    CXXRecordDecl *Def
5357      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5358    if (!Def) {
5359      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5360        << 0 << Record->getDeclName() << Record->getDeclContext();
5361      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5362        << Pattern;
5363      return true;
5364    } else {
5365      if (InstantiateClass(NameLoc, Record, Def,
5366                           getTemplateInstantiationArgs(Record),
5367                           TSK))
5368        return true;
5369
5370      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5371      if (!RecordDef)
5372        return true;
5373    }
5374  }
5375
5376  // Instantiate all of the members of the class.
5377  InstantiateClassMembers(NameLoc, RecordDef,
5378                          getTemplateInstantiationArgs(Record), TSK);
5379
5380  if (TSK == TSK_ExplicitInstantiationDefinition)
5381    MarkVTableUsed(NameLoc, RecordDef, true);
5382
5383  // FIXME: We don't have any representation for explicit instantiations of
5384  // member classes. Such a representation is not needed for compilation, but it
5385  // should be available for clients that want to see all of the declarations in
5386  // the source code.
5387  return TagD;
5388}
5389
5390DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5391                                            SourceLocation ExternLoc,
5392                                            SourceLocation TemplateLoc,
5393                                            Declarator &D) {
5394  // Explicit instantiations always require a name.
5395  // TODO: check if/when DNInfo should replace Name.
5396  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5397  DeclarationName Name = NameInfo.getName();
5398  if (!Name) {
5399    if (!D.isInvalidType())
5400      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5401           diag::err_explicit_instantiation_requires_name)
5402        << D.getDeclSpec().getSourceRange()
5403        << D.getSourceRange();
5404
5405    return true;
5406  }
5407
5408  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5409  // we find one that is.
5410  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5411         (S->getFlags() & Scope::TemplateParamScope) != 0)
5412    S = S->getParent();
5413
5414  // Determine the type of the declaration.
5415  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5416  QualType R = T->getType();
5417  if (R.isNull())
5418    return true;
5419
5420  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5421    // Cannot explicitly instantiate a typedef.
5422    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5423      << Name;
5424    return true;
5425  }
5426
5427  // C++0x [temp.explicit]p1:
5428  //   [...] An explicit instantiation of a function template shall not use the
5429  //   inline or constexpr specifiers.
5430  // Presumably, this also applies to member functions of class templates as
5431  // well.
5432  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5433    Diag(D.getDeclSpec().getInlineSpecLoc(),
5434         diag::err_explicit_instantiation_inline)
5435      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5436
5437  // FIXME: check for constexpr specifier.
5438
5439  // C++0x [temp.explicit]p2:
5440  //   There are two forms of explicit instantiation: an explicit instantiation
5441  //   definition and an explicit instantiation declaration. An explicit
5442  //   instantiation declaration begins with the extern keyword. [...]
5443  TemplateSpecializationKind TSK
5444    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5445                           : TSK_ExplicitInstantiationDeclaration;
5446
5447  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5448  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5449
5450  if (!R->isFunctionType()) {
5451    // C++ [temp.explicit]p1:
5452    //   A [...] static data member of a class template can be explicitly
5453    //   instantiated from the member definition associated with its class
5454    //   template.
5455    if (Previous.isAmbiguous())
5456      return true;
5457
5458    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5459    if (!Prev || !Prev->isStaticDataMember()) {
5460      // We expect to see a data data member here.
5461      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5462        << Name;
5463      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5464           P != PEnd; ++P)
5465        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5466      return true;
5467    }
5468
5469    if (!Prev->getInstantiatedFromStaticDataMember()) {
5470      // FIXME: Check for explicit specialization?
5471      Diag(D.getIdentifierLoc(),
5472           diag::err_explicit_instantiation_data_member_not_instantiated)
5473        << Prev;
5474      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5475      // FIXME: Can we provide a note showing where this was declared?
5476      return true;
5477    }
5478
5479    // C++0x [temp.explicit]p2:
5480    //   If the explicit instantiation is for a member function, a member class
5481    //   or a static data member of a class template specialization, the name of
5482    //   the class template specialization in the qualified-id for the member
5483    //   name shall be a simple-template-id.
5484    //
5485    // C++98 has the same restriction, just worded differently.
5486    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5487      Diag(D.getIdentifierLoc(),
5488           diag::ext_explicit_instantiation_without_qualified_id)
5489        << Prev << D.getCXXScopeSpec().getRange();
5490
5491    // Check the scope of this explicit instantiation.
5492    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5493
5494    // Verify that it is okay to explicitly instantiate here.
5495    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5496    assert(MSInfo && "Missing static data member specialization info?");
5497    bool HasNoEffect = false;
5498    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5499                                        MSInfo->getTemplateSpecializationKind(),
5500                                              MSInfo->getPointOfInstantiation(),
5501                                               HasNoEffect))
5502      return true;
5503    if (HasNoEffect)
5504      return (Decl*) 0;
5505
5506    // Instantiate static data member.
5507    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5508    if (TSK == TSK_ExplicitInstantiationDefinition)
5509      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5510
5511    // FIXME: Create an ExplicitInstantiation node?
5512    return (Decl*) 0;
5513  }
5514
5515  // If the declarator is a template-id, translate the parser's template
5516  // argument list into our AST format.
5517  bool HasExplicitTemplateArgs = false;
5518  TemplateArgumentListInfo TemplateArgs;
5519  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5520    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5521    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5522    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5523    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5524                                       TemplateId->getTemplateArgs(),
5525                                       TemplateId->NumArgs);
5526    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5527    HasExplicitTemplateArgs = true;
5528    TemplateArgsPtr.release();
5529  }
5530
5531  // C++ [temp.explicit]p1:
5532  //   A [...] function [...] can be explicitly instantiated from its template.
5533  //   A member function [...] of a class template can be explicitly
5534  //  instantiated from the member definition associated with its class
5535  //  template.
5536  UnresolvedSet<8> Matches;
5537  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5538       P != PEnd; ++P) {
5539    NamedDecl *Prev = *P;
5540    if (!HasExplicitTemplateArgs) {
5541      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5542        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5543          Matches.clear();
5544
5545          Matches.addDecl(Method, P.getAccess());
5546          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5547            break;
5548        }
5549      }
5550    }
5551
5552    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5553    if (!FunTmpl)
5554      continue;
5555
5556    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5557    FunctionDecl *Specialization = 0;
5558    if (TemplateDeductionResult TDK
5559          = DeduceTemplateArguments(FunTmpl,
5560                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5561                                    R, Specialization, Info)) {
5562      // FIXME: Keep track of almost-matches?
5563      (void)TDK;
5564      continue;
5565    }
5566
5567    Matches.addDecl(Specialization, P.getAccess());
5568  }
5569
5570  // Find the most specialized function template specialization.
5571  UnresolvedSetIterator Result
5572    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5573                         D.getIdentifierLoc(),
5574                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5575                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5576                         PDiag(diag::note_explicit_instantiation_candidate));
5577
5578  if (Result == Matches.end())
5579    return true;
5580
5581  // Ignore access control bits, we don't need them for redeclaration checking.
5582  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5583
5584  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5585    Diag(D.getIdentifierLoc(),
5586         diag::err_explicit_instantiation_member_function_not_instantiated)
5587      << Specialization
5588      << (Specialization->getTemplateSpecializationKind() ==
5589          TSK_ExplicitSpecialization);
5590    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5591    return true;
5592  }
5593
5594  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5595  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5596    PrevDecl = Specialization;
5597
5598  if (PrevDecl) {
5599    bool HasNoEffect = false;
5600    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5601                                               PrevDecl,
5602                                     PrevDecl->getTemplateSpecializationKind(),
5603                                          PrevDecl->getPointOfInstantiation(),
5604                                               HasNoEffect))
5605      return true;
5606
5607    // FIXME: We may still want to build some representation of this
5608    // explicit specialization.
5609    if (HasNoEffect)
5610      return (Decl*) 0;
5611  }
5612
5613  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5614
5615  if (TSK == TSK_ExplicitInstantiationDefinition)
5616    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5617
5618  // C++0x [temp.explicit]p2:
5619  //   If the explicit instantiation is for a member function, a member class
5620  //   or a static data member of a class template specialization, the name of
5621  //   the class template specialization in the qualified-id for the member
5622  //   name shall be a simple-template-id.
5623  //
5624  // C++98 has the same restriction, just worded differently.
5625  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5626  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5627      D.getCXXScopeSpec().isSet() &&
5628      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5629    Diag(D.getIdentifierLoc(),
5630         diag::ext_explicit_instantiation_without_qualified_id)
5631    << Specialization << D.getCXXScopeSpec().getRange();
5632
5633  CheckExplicitInstantiationScope(*this,
5634                   FunTmpl? (NamedDecl *)FunTmpl
5635                          : Specialization->getInstantiatedFromMemberFunction(),
5636                                  D.getIdentifierLoc(),
5637                                  D.getCXXScopeSpec().isSet());
5638
5639  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5640  return (Decl*) 0;
5641}
5642
5643TypeResult
5644Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5645                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5646                        SourceLocation TagLoc, SourceLocation NameLoc) {
5647  // This has to hold, because SS is expected to be defined.
5648  assert(Name && "Expected a name in a dependent tag");
5649
5650  NestedNameSpecifier *NNS
5651    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5652  if (!NNS)
5653    return true;
5654
5655  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5656
5657  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5658    Diag(NameLoc, diag::err_dependent_tag_decl)
5659      << (TUK == TUK_Definition) << Kind << SS.getRange();
5660    return true;
5661  }
5662
5663  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5664  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5665}
5666
5667TypeResult
5668Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5669                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5670                        SourceLocation IdLoc) {
5671  NestedNameSpecifier *NNS
5672    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5673  if (!NNS)
5674    return true;
5675
5676  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5677      !getLangOptions().CPlusPlus0x)
5678    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5679      << FixItHint::CreateRemoval(TypenameLoc);
5680
5681  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5682                                 TypenameLoc, SS.getRange(), IdLoc);
5683  if (T.isNull())
5684    return true;
5685
5686  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5687  if (isa<DependentNameType>(T)) {
5688    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5689    TL.setKeywordLoc(TypenameLoc);
5690    TL.setQualifierRange(SS.getRange());
5691    TL.setNameLoc(IdLoc);
5692  } else {
5693    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5694    TL.setKeywordLoc(TypenameLoc);
5695    TL.setQualifierRange(SS.getRange());
5696    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5697  }
5698
5699  return CreateParsedType(T, TSI);
5700}
5701
5702TypeResult
5703Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5704                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5705                        ParsedType Ty) {
5706  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5707      !getLangOptions().CPlusPlus0x)
5708    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5709      << FixItHint::CreateRemoval(TypenameLoc);
5710
5711  TypeSourceInfo *InnerTSI = 0;
5712  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5713
5714  assert(isa<TemplateSpecializationType>(T) &&
5715         "Expected a template specialization type");
5716
5717  if (computeDeclContext(SS, false)) {
5718    // If we can compute a declaration context, then the "typename"
5719    // keyword was superfluous. Just build an ElaboratedType to keep
5720    // track of the nested-name-specifier.
5721
5722    // Push the inner type, preserving its source locations if possible.
5723    TypeLocBuilder Builder;
5724    if (InnerTSI)
5725      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5726    else
5727      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5728
5729    /* Note: NNS already embedded in template specialization type T. */
5730    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5731    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5732    TL.setKeywordLoc(TypenameLoc);
5733    TL.setQualifierRange(SS.getRange());
5734
5735    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5736    return CreateParsedType(T, TSI);
5737  }
5738
5739  // TODO: it's really silly that we make a template specialization
5740  // type earlier only to drop it again here.
5741  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5742  DependentTemplateName *DTN =
5743    TST->getTemplateName().getAsDependentTemplateName();
5744  assert(DTN && "dependent template has non-dependent name?");
5745  assert(DTN->getQualifier()
5746         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5747  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5748                                                     DTN->getQualifier(),
5749                                                     DTN->getIdentifier(),
5750                                                     TST->getNumArgs(),
5751                                                     TST->getArgs());
5752  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5753  DependentTemplateSpecializationTypeLoc TL =
5754    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5755  if (InnerTSI) {
5756    TemplateSpecializationTypeLoc TSTL =
5757      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5758    TL.setLAngleLoc(TSTL.getLAngleLoc());
5759    TL.setRAngleLoc(TSTL.getRAngleLoc());
5760    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5761      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5762  } else {
5763    TL.initializeLocal(SourceLocation());
5764  }
5765  TL.setKeywordLoc(TypenameLoc);
5766  TL.setQualifierRange(SS.getRange());
5767  return CreateParsedType(T, TSI);
5768}
5769
5770/// \brief Build the type that describes a C++ typename specifier,
5771/// e.g., "typename T::type".
5772QualType
5773Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5774                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5775                        SourceLocation KeywordLoc, SourceRange NNSRange,
5776                        SourceLocation IILoc) {
5777  CXXScopeSpec SS;
5778  SS.setScopeRep(NNS);
5779  SS.setRange(NNSRange);
5780
5781  DeclContext *Ctx = computeDeclContext(SS);
5782  if (!Ctx) {
5783    // If the nested-name-specifier is dependent and couldn't be
5784    // resolved to a type, build a typename type.
5785    assert(NNS->isDependent());
5786    return Context.getDependentNameType(Keyword, NNS, &II);
5787  }
5788
5789  // If the nested-name-specifier refers to the current instantiation,
5790  // the "typename" keyword itself is superfluous. In C++03, the
5791  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5792  // allows such extraneous "typename" keywords, and we retroactively
5793  // apply this DR to C++03 code with only a warning. In any case we continue.
5794
5795  if (RequireCompleteDeclContext(SS, Ctx))
5796    return QualType();
5797
5798  DeclarationName Name(&II);
5799  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5800  LookupQualifiedName(Result, Ctx);
5801  unsigned DiagID = 0;
5802  Decl *Referenced = 0;
5803  switch (Result.getResultKind()) {
5804  case LookupResult::NotFound:
5805    DiagID = diag::err_typename_nested_not_found;
5806    break;
5807
5808  case LookupResult::FoundUnresolvedValue: {
5809    // We found a using declaration that is a value. Most likely, the using
5810    // declaration itself is meant to have the 'typename' keyword.
5811    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5812                          IILoc);
5813    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5814      << Name << Ctx << FullRange;
5815    if (UnresolvedUsingValueDecl *Using
5816          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5817      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5818      Diag(Loc, diag::note_using_value_decl_missing_typename)
5819        << FixItHint::CreateInsertion(Loc, "typename ");
5820    }
5821  }
5822  // Fall through to create a dependent typename type, from which we can recover
5823  // better.
5824
5825  case LookupResult::NotFoundInCurrentInstantiation:
5826    // Okay, it's a member of an unknown instantiation.
5827    return Context.getDependentNameType(Keyword, NNS, &II);
5828
5829  case LookupResult::Found:
5830    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5831      // We found a type. Build an ElaboratedType, since the
5832      // typename-specifier was just sugar.
5833      return Context.getElaboratedType(ETK_Typename, NNS,
5834                                       Context.getTypeDeclType(Type));
5835    }
5836
5837    DiagID = diag::err_typename_nested_not_type;
5838    Referenced = Result.getFoundDecl();
5839    break;
5840
5841
5842    llvm_unreachable("unresolved using decl in non-dependent context");
5843    return QualType();
5844
5845  case LookupResult::FoundOverloaded:
5846    DiagID = diag::err_typename_nested_not_type;
5847    Referenced = *Result.begin();
5848    break;
5849
5850  case LookupResult::Ambiguous:
5851    return QualType();
5852  }
5853
5854  // If we get here, it's because name lookup did not find a
5855  // type. Emit an appropriate diagnostic and return an error.
5856  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5857                        IILoc);
5858  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5859  if (Referenced)
5860    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5861      << Name;
5862  return QualType();
5863}
5864
5865namespace {
5866  // See Sema::RebuildTypeInCurrentInstantiation
5867  class CurrentInstantiationRebuilder
5868    : public TreeTransform<CurrentInstantiationRebuilder> {
5869    SourceLocation Loc;
5870    DeclarationName Entity;
5871
5872  public:
5873    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5874
5875    CurrentInstantiationRebuilder(Sema &SemaRef,
5876                                  SourceLocation Loc,
5877                                  DeclarationName Entity)
5878    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5879      Loc(Loc), Entity(Entity) { }
5880
5881    /// \brief Determine whether the given type \p T has already been
5882    /// transformed.
5883    ///
5884    /// For the purposes of type reconstruction, a type has already been
5885    /// transformed if it is NULL or if it is not dependent.
5886    bool AlreadyTransformed(QualType T) {
5887      return T.isNull() || !T->isDependentType();
5888    }
5889
5890    /// \brief Returns the location of the entity whose type is being
5891    /// rebuilt.
5892    SourceLocation getBaseLocation() { return Loc; }
5893
5894    /// \brief Returns the name of the entity whose type is being rebuilt.
5895    DeclarationName getBaseEntity() { return Entity; }
5896
5897    /// \brief Sets the "base" location and entity when that
5898    /// information is known based on another transformation.
5899    void setBase(SourceLocation Loc, DeclarationName Entity) {
5900      this->Loc = Loc;
5901      this->Entity = Entity;
5902    }
5903  };
5904}
5905
5906/// \brief Rebuilds a type within the context of the current instantiation.
5907///
5908/// The type \p T is part of the type of an out-of-line member definition of
5909/// a class template (or class template partial specialization) that was parsed
5910/// and constructed before we entered the scope of the class template (or
5911/// partial specialization thereof). This routine will rebuild that type now
5912/// that we have entered the declarator's scope, which may produce different
5913/// canonical types, e.g.,
5914///
5915/// \code
5916/// template<typename T>
5917/// struct X {
5918///   typedef T* pointer;
5919///   pointer data();
5920/// };
5921///
5922/// template<typename T>
5923/// typename X<T>::pointer X<T>::data() { ... }
5924/// \endcode
5925///
5926/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5927/// since we do not know that we can look into X<T> when we parsed the type.
5928/// This function will rebuild the type, performing the lookup of "pointer"
5929/// in X<T> and returning an ElaboratedType whose canonical type is the same
5930/// as the canonical type of T*, allowing the return types of the out-of-line
5931/// definition and the declaration to match.
5932TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5933                                                        SourceLocation Loc,
5934                                                        DeclarationName Name) {
5935  if (!T || !T->getType()->isDependentType())
5936    return T;
5937
5938  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5939  return Rebuilder.TransformType(T);
5940}
5941
5942ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5943  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5944                                          DeclarationName());
5945  return Rebuilder.TransformExpr(E);
5946}
5947
5948bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5949  if (SS.isInvalid()) return true;
5950
5951  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5952  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5953                                          DeclarationName());
5954  NestedNameSpecifier *Rebuilt =
5955    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5956  if (!Rebuilt) return true;
5957
5958  SS.setScopeRep(Rebuilt);
5959  return false;
5960}
5961
5962/// \brief Produces a formatted string that describes the binding of
5963/// template parameters to template arguments.
5964std::string
5965Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5966                                      const TemplateArgumentList &Args) {
5967  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5968}
5969
5970std::string
5971Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5972                                      const TemplateArgument *Args,
5973                                      unsigned NumArgs) {
5974  llvm::SmallString<128> Str;
5975  llvm::raw_svector_ostream Out(Str);
5976
5977  if (!Params || Params->size() == 0 || NumArgs == 0)
5978    return std::string();
5979
5980  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5981    if (I >= NumArgs)
5982      break;
5983
5984    if (I == 0)
5985      Out << "[with ";
5986    else
5987      Out << ", ";
5988
5989    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5990      Out << Id->getName();
5991    } else {
5992      Out << '$' << I;
5993    }
5994
5995    Out << " = ";
5996    Args[I].print(Context.PrintingPolicy, Out);
5997  }
5998
5999  Out << ']';
6000  return Out.str();
6001}
6002
6003