SemaTemplate.cpp revision bd1099efde211cbb63fce3feee4ebcc6bac58781
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    }
69
70    // FIXME: What follows is a slightly less gross hack than what used to
71    // follow.
72    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
73      if (FD->getDescribedFunctionTemplate()) {
74        TemplateResult = TemplateTy::make(FD);
75        return TNK_Function_template;
76      }
77    } else if (OverloadedFunctionDecl *Ovl
78                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
79      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
80                                                  FEnd = Ovl->function_end();
81           F != FEnd; ++F) {
82        if (isa<FunctionTemplateDecl>(*F)) {
83          TemplateResult = TemplateTy::make(Ovl);
84          return TNK_Function_template;
85        }
86      }
87    }
88
89    if (TNK != TNK_Non_template) {
90      if (SS && SS->isSet() && !SS->isInvalid()) {
91        NestedNameSpecifier *Qualifier
92          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
93        TemplateResult
94          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
95                                                              false,
96                                                              Template));
97      } else
98        TemplateResult = TemplateTy::make(TemplateName(Template));
99    }
100  }
101  return TNK;
102}
103
104/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
105/// that the template parameter 'PrevDecl' is being shadowed by a new
106/// declaration at location Loc. Returns true to indicate that this is
107/// an error, and false otherwise.
108bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
109  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
110
111  // Microsoft Visual C++ permits template parameters to be shadowed.
112  if (getLangOptions().Microsoft)
113    return false;
114
115  // C++ [temp.local]p4:
116  //   A template-parameter shall not be redeclared within its
117  //   scope (including nested scopes).
118  Diag(Loc, diag::err_template_param_shadow)
119    << cast<NamedDecl>(PrevDecl)->getDeclName();
120  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
121  return true;
122}
123
124/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
125/// the parameter D to reference the templated declaration and return a pointer
126/// to the template declaration. Otherwise, do nothing to D and return null.
127TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
128  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
129    D = DeclPtrTy::make(Temp->getTemplatedDecl());
130    return Temp;
131  }
132  return 0;
133}
134
135/// ActOnTypeParameter - Called when a C++ template type parameter
136/// (e.g., "typename T") has been parsed. Typename specifies whether
137/// the keyword "typename" was used to declare the type parameter
138/// (otherwise, "class" was used), and KeyLoc is the location of the
139/// "class" or "typename" keyword. ParamName is the name of the
140/// parameter (NULL indicates an unnamed template parameter) and
141/// ParamName is the location of the parameter name (if any).
142/// If the type parameter has a default argument, it will be added
143/// later via ActOnTypeParameterDefault.
144Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
145                                         SourceLocation EllipsisLoc,
146                                         SourceLocation KeyLoc,
147                                         IdentifierInfo *ParamName,
148                                         SourceLocation ParamNameLoc,
149                                         unsigned Depth, unsigned Position) {
150  assert(S->isTemplateParamScope() &&
151	 "Template type parameter not in template parameter scope!");
152  bool Invalid = false;
153
154  if (ParamName) {
155    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
156    if (PrevDecl && PrevDecl->isTemplateParameter())
157      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
158							   PrevDecl);
159  }
160
161  SourceLocation Loc = ParamNameLoc;
162  if (!ParamName)
163    Loc = KeyLoc;
164
165  TemplateTypeParmDecl *Param
166    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
167                                   Depth, Position, ParamName, Typename,
168                                   Ellipsis);
169  if (Invalid)
170    Param->setInvalidDecl();
171
172  if (ParamName) {
173    // Add the template parameter into the current scope.
174    S->AddDecl(DeclPtrTy::make(Param));
175    IdResolver.AddDecl(Param);
176  }
177
178  return DeclPtrTy::make(Param);
179}
180
181/// ActOnTypeParameterDefault - Adds a default argument (the type
182/// Default) to the given template type parameter (TypeParam).
183void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
184                                     SourceLocation EqualLoc,
185                                     SourceLocation DefaultLoc,
186                                     TypeTy *DefaultT) {
187  TemplateTypeParmDecl *Parm
188    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
189  QualType Default = QualType::getFromOpaquePtr(DefaultT);
190
191  // C++0x [temp.param]p9:
192  // A default template-argument may be specified for any kind of
193  // template-parameter that is not a template parameter pack.
194  if (Parm->isParameterPack()) {
195    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
196    return;
197  }
198
199  // C++ [temp.param]p14:
200  //   A template-parameter shall not be used in its own default argument.
201  // FIXME: Implement this check! Needs a recursive walk over the types.
202
203  // Check the template argument itself.
204  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
205    Parm->setInvalidDecl();
206    return;
207  }
208
209  Parm->setDefaultArgument(Default, DefaultLoc, false);
210}
211
212/// \brief Check that the type of a non-type template parameter is
213/// well-formed.
214///
215/// \returns the (possibly-promoted) parameter type if valid;
216/// otherwise, produces a diagnostic and returns a NULL type.
217QualType
218Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
219  // C++ [temp.param]p4:
220  //
221  // A non-type template-parameter shall have one of the following
222  // (optionally cv-qualified) types:
223  //
224  //       -- integral or enumeration type,
225  if (T->isIntegralType() || T->isEnumeralType() ||
226      //   -- pointer to object or pointer to function,
227      (T->isPointerType() &&
228       (T->getAsPointerType()->getPointeeType()->isObjectType() ||
229        T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
230      //   -- reference to object or reference to function,
231      T->isReferenceType() ||
232      //   -- pointer to member.
233      T->isMemberPointerType() ||
234      // If T is a dependent type, we can't do the check now, so we
235      // assume that it is well-formed.
236      T->isDependentType())
237    return T;
238  // C++ [temp.param]p8:
239  //
240  //   A non-type template-parameter of type "array of T" or
241  //   "function returning T" is adjusted to be of type "pointer to
242  //   T" or "pointer to function returning T", respectively.
243  else if (T->isArrayType())
244    // FIXME: Keep the type prior to promotion?
245    return Context.getArrayDecayedType(T);
246  else if (T->isFunctionType())
247    // FIXME: Keep the type prior to promotion?
248    return Context.getPointerType(T);
249
250  Diag(Loc, diag::err_template_nontype_parm_bad_type)
251    << T;
252
253  return QualType();
254}
255
256/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
257/// template parameter (e.g., "int Size" in "template<int Size>
258/// class Array") has been parsed. S is the current scope and D is
259/// the parsed declarator.
260Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
261                                                    unsigned Depth,
262                                                    unsigned Position) {
263  QualType T = GetTypeForDeclarator(D, S);
264
265  assert(S->isTemplateParamScope() &&
266         "Non-type template parameter not in template parameter scope!");
267  bool Invalid = false;
268
269  IdentifierInfo *ParamName = D.getIdentifier();
270  if (ParamName) {
271    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
272    if (PrevDecl && PrevDecl->isTemplateParameter())
273      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
274                                                           PrevDecl);
275  }
276
277  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
278  if (T.isNull()) {
279    T = Context.IntTy; // Recover with an 'int' type.
280    Invalid = true;
281  }
282
283  NonTypeTemplateParmDecl *Param
284    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
285                                      Depth, Position, ParamName, T);
286  if (Invalid)
287    Param->setInvalidDecl();
288
289  if (D.getIdentifier()) {
290    // Add the template parameter into the current scope.
291    S->AddDecl(DeclPtrTy::make(Param));
292    IdResolver.AddDecl(Param);
293  }
294  return DeclPtrTy::make(Param);
295}
296
297/// \brief Adds a default argument to the given non-type template
298/// parameter.
299void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
300                                                SourceLocation EqualLoc,
301                                                ExprArg DefaultE) {
302  NonTypeTemplateParmDecl *TemplateParm
303    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
304  Expr *Default = static_cast<Expr *>(DefaultE.get());
305
306  // C++ [temp.param]p14:
307  //   A template-parameter shall not be used in its own default argument.
308  // FIXME: Implement this check! Needs a recursive walk over the types.
309
310  // Check the well-formedness of the default template argument.
311  TemplateArgument Converted;
312  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
313                            Converted)) {
314    TemplateParm->setInvalidDecl();
315    return;
316  }
317
318  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
319}
320
321
322/// ActOnTemplateTemplateParameter - Called when a C++ template template
323/// parameter (e.g. T in template <template <typename> class T> class array)
324/// has been parsed. S is the current scope.
325Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
326                                                     SourceLocation TmpLoc,
327                                                     TemplateParamsTy *Params,
328                                                     IdentifierInfo *Name,
329                                                     SourceLocation NameLoc,
330                                                     unsigned Depth,
331                                                     unsigned Position)
332{
333  assert(S->isTemplateParamScope() &&
334         "Template template parameter not in template parameter scope!");
335
336  // Construct the parameter object.
337  TemplateTemplateParmDecl *Param =
338    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
339                                     Position, Name,
340                                     (TemplateParameterList*)Params);
341
342  // Make sure the parameter is valid.
343  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
344  // do anything yet. However, if the template parameter list or (eventual)
345  // default value is ever invalidated, that will propagate here.
346  bool Invalid = false;
347  if (Invalid) {
348    Param->setInvalidDecl();
349  }
350
351  // If the tt-param has a name, then link the identifier into the scope
352  // and lookup mechanisms.
353  if (Name) {
354    S->AddDecl(DeclPtrTy::make(Param));
355    IdResolver.AddDecl(Param);
356  }
357
358  return DeclPtrTy::make(Param);
359}
360
361/// \brief Adds a default argument to the given template template
362/// parameter.
363void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
364                                                 SourceLocation EqualLoc,
365                                                 ExprArg DefaultE) {
366  TemplateTemplateParmDecl *TemplateParm
367    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
368
369  // Since a template-template parameter's default argument is an
370  // id-expression, it must be a DeclRefExpr.
371  DeclRefExpr *Default
372    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
373
374  // C++ [temp.param]p14:
375  //   A template-parameter shall not be used in its own default argument.
376  // FIXME: Implement this check! Needs a recursive walk over the types.
377
378  // Check the well-formedness of the template argument.
379  if (!isa<TemplateDecl>(Default->getDecl())) {
380    Diag(Default->getSourceRange().getBegin(),
381         diag::err_template_arg_must_be_template)
382      << Default->getSourceRange();
383    TemplateParm->setInvalidDecl();
384    return;
385  }
386  if (CheckTemplateArgument(TemplateParm, Default)) {
387    TemplateParm->setInvalidDecl();
388    return;
389  }
390
391  DefaultE.release();
392  TemplateParm->setDefaultArgument(Default);
393}
394
395/// ActOnTemplateParameterList - Builds a TemplateParameterList that
396/// contains the template parameters in Params/NumParams.
397Sema::TemplateParamsTy *
398Sema::ActOnTemplateParameterList(unsigned Depth,
399                                 SourceLocation ExportLoc,
400                                 SourceLocation TemplateLoc,
401                                 SourceLocation LAngleLoc,
402                                 DeclPtrTy *Params, unsigned NumParams,
403                                 SourceLocation RAngleLoc) {
404  if (ExportLoc.isValid())
405    Diag(ExportLoc, diag::note_template_export_unsupported);
406
407  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
408                                       (Decl**)Params, NumParams, RAngleLoc);
409}
410
411Sema::DeclResult
412Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
413                         SourceLocation KWLoc, const CXXScopeSpec &SS,
414                         IdentifierInfo *Name, SourceLocation NameLoc,
415                         AttributeList *Attr,
416                         MultiTemplateParamsArg TemplateParameterLists,
417                         AccessSpecifier AS) {
418  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
419  assert(TK != TK_Reference && "Can only declare or define class templates");
420  bool Invalid = false;
421
422  // Check that we can declare a template here.
423  if (CheckTemplateDeclScope(S, TemplateParameterLists))
424    return true;
425
426  TagDecl::TagKind Kind;
427  switch (TagSpec) {
428  default: assert(0 && "Unknown tag type!");
429  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
430  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
431  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
432  }
433
434  // There is no such thing as an unnamed class template.
435  if (!Name) {
436    Diag(KWLoc, diag::err_template_unnamed_class);
437    return true;
438  }
439
440  // Find any previous declaration with this name.
441  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
442                                           true);
443  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
444  NamedDecl *PrevDecl = 0;
445  if (Previous.begin() != Previous.end())
446    PrevDecl = *Previous.begin();
447
448  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
449    PrevDecl = 0;
450
451  DeclContext *SemanticContext = CurContext;
452  if (SS.isNotEmpty() && !SS.isInvalid()) {
453    SemanticContext = computeDeclContext(SS);
454
455    // FIXME: need to match up several levels of template parameter lists here.
456  }
457
458  // FIXME: member templates!
459  TemplateParameterList *TemplateParams
460    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
461
462  // If there is a previous declaration with the same name, check
463  // whether this is a valid redeclaration.
464  ClassTemplateDecl *PrevClassTemplate
465    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
466  if (PrevClassTemplate) {
467    // Ensure that the template parameter lists are compatible.
468    if (!TemplateParameterListsAreEqual(TemplateParams,
469                                   PrevClassTemplate->getTemplateParameters(),
470                                        /*Complain=*/true))
471      return true;
472
473    // C++ [temp.class]p4:
474    //   In a redeclaration, partial specialization, explicit
475    //   specialization or explicit instantiation of a class template,
476    //   the class-key shall agree in kind with the original class
477    //   template declaration (7.1.5.3).
478    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
479    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
480      Diag(KWLoc, diag::err_use_with_wrong_tag)
481        << Name
482        << CodeModificationHint::CreateReplacement(KWLoc,
483                            PrevRecordDecl->getKindName());
484      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
485      Kind = PrevRecordDecl->getTagKind();
486    }
487
488    // Check for redefinition of this class template.
489    if (TK == TK_Definition) {
490      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
491        Diag(NameLoc, diag::err_redefinition) << Name;
492        Diag(Def->getLocation(), diag::note_previous_definition);
493        // FIXME: Would it make sense to try to "forget" the previous
494        // definition, as part of error recovery?
495        return true;
496      }
497    }
498  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
499    // Maybe we will complain about the shadowed template parameter.
500    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
501    // Just pretend that we didn't see the previous declaration.
502    PrevDecl = 0;
503  } else if (PrevDecl) {
504    // C++ [temp]p5:
505    //   A class template shall not have the same name as any other
506    //   template, class, function, object, enumeration, enumerator,
507    //   namespace, or type in the same scope (3.3), except as specified
508    //   in (14.5.4).
509    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
510    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
511    return true;
512  }
513
514  // Check the template parameter list of this declaration, possibly
515  // merging in the template parameter list from the previous class
516  // template declaration.
517  if (CheckTemplateParameterList(TemplateParams,
518            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
519    Invalid = true;
520
521  // FIXME: If we had a scope specifier, we better have a previous template
522  // declaration!
523
524  CXXRecordDecl *NewClass =
525    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
526                          PrevClassTemplate?
527                            PrevClassTemplate->getTemplatedDecl() : 0,
528                          /*DelayTypeCreation=*/true);
529
530  ClassTemplateDecl *NewTemplate
531    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
532                                DeclarationName(Name), TemplateParams,
533                                NewClass, PrevClassTemplate);
534  NewClass->setDescribedClassTemplate(NewTemplate);
535
536  // Build the type for the class template declaration now.
537  QualType T =
538    Context.getTypeDeclType(NewClass,
539                            PrevClassTemplate?
540                              PrevClassTemplate->getTemplatedDecl() : 0);
541  assert(T->isDependentType() && "Class template type is not dependent?");
542  (void)T;
543
544  // Set the access specifier.
545  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
546
547  // Set the lexical context of these templates
548  NewClass->setLexicalDeclContext(CurContext);
549  NewTemplate->setLexicalDeclContext(CurContext);
550
551  if (TK == TK_Definition)
552    NewClass->startDefinition();
553
554  if (Attr)
555    ProcessDeclAttributeList(S, NewClass, Attr);
556
557  PushOnScopeChains(NewTemplate, S);
558
559  if (Invalid) {
560    NewTemplate->setInvalidDecl();
561    NewClass->setInvalidDecl();
562  }
563  return DeclPtrTy::make(NewTemplate);
564}
565
566/// \brief Checks the validity of a template parameter list, possibly
567/// considering the template parameter list from a previous
568/// declaration.
569///
570/// If an "old" template parameter list is provided, it must be
571/// equivalent (per TemplateParameterListsAreEqual) to the "new"
572/// template parameter list.
573///
574/// \param NewParams Template parameter list for a new template
575/// declaration. This template parameter list will be updated with any
576/// default arguments that are carried through from the previous
577/// template parameter list.
578///
579/// \param OldParams If provided, template parameter list from a
580/// previous declaration of the same template. Default template
581/// arguments will be merged from the old template parameter list to
582/// the new template parameter list.
583///
584/// \returns true if an error occurred, false otherwise.
585bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
586                                      TemplateParameterList *OldParams) {
587  bool Invalid = false;
588
589  // C++ [temp.param]p10:
590  //   The set of default template-arguments available for use with a
591  //   template declaration or definition is obtained by merging the
592  //   default arguments from the definition (if in scope) and all
593  //   declarations in scope in the same way default function
594  //   arguments are (8.3.6).
595  bool SawDefaultArgument = false;
596  SourceLocation PreviousDefaultArgLoc;
597
598  bool SawParameterPack = false;
599  SourceLocation ParameterPackLoc;
600
601  // Dummy initialization to avoid warnings.
602  TemplateParameterList::iterator OldParam = NewParams->end();
603  if (OldParams)
604    OldParam = OldParams->begin();
605
606  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
607                                    NewParamEnd = NewParams->end();
608       NewParam != NewParamEnd; ++NewParam) {
609    // Variables used to diagnose redundant default arguments
610    bool RedundantDefaultArg = false;
611    SourceLocation OldDefaultLoc;
612    SourceLocation NewDefaultLoc;
613
614    // Variables used to diagnose missing default arguments
615    bool MissingDefaultArg = false;
616
617    // C++0x [temp.param]p11:
618    // If a template parameter of a class template is a template parameter pack,
619    // it must be the last template parameter.
620    if (SawParameterPack) {
621      Diag(ParameterPackLoc,
622           diag::err_template_param_pack_must_be_last_template_parameter);
623      Invalid = true;
624    }
625
626    // Merge default arguments for template type parameters.
627    if (TemplateTypeParmDecl *NewTypeParm
628          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
629      TemplateTypeParmDecl *OldTypeParm
630          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
631
632      if (NewTypeParm->isParameterPack()) {
633        assert(!NewTypeParm->hasDefaultArgument() &&
634               "Parameter packs can't have a default argument!");
635        SawParameterPack = true;
636        ParameterPackLoc = NewTypeParm->getLocation();
637      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
638          NewTypeParm->hasDefaultArgument()) {
639        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
640        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
641        SawDefaultArgument = true;
642        RedundantDefaultArg = true;
643        PreviousDefaultArgLoc = NewDefaultLoc;
644      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
645        // Merge the default argument from the old declaration to the
646        // new declaration.
647        SawDefaultArgument = true;
648        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
649                                        OldTypeParm->getDefaultArgumentLoc(),
650                                        true);
651        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
652      } else if (NewTypeParm->hasDefaultArgument()) {
653        SawDefaultArgument = true;
654        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
655      } else if (SawDefaultArgument)
656        MissingDefaultArg = true;
657    }
658    // Merge default arguments for non-type template parameters
659    else if (NonTypeTemplateParmDecl *NewNonTypeParm
660               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
661      NonTypeTemplateParmDecl *OldNonTypeParm
662        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
663      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
664          NewNonTypeParm->hasDefaultArgument()) {
665        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
666        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
667        SawDefaultArgument = true;
668        RedundantDefaultArg = true;
669        PreviousDefaultArgLoc = NewDefaultLoc;
670      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
671        // Merge the default argument from the old declaration to the
672        // new declaration.
673        SawDefaultArgument = true;
674        // FIXME: We need to create a new kind of "default argument"
675        // expression that points to a previous template template
676        // parameter.
677        NewNonTypeParm->setDefaultArgument(
678                                        OldNonTypeParm->getDefaultArgument());
679        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
680      } else if (NewNonTypeParm->hasDefaultArgument()) {
681        SawDefaultArgument = true;
682        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
683      } else if (SawDefaultArgument)
684        MissingDefaultArg = true;
685    }
686    // Merge default arguments for template template parameters
687    else {
688      TemplateTemplateParmDecl *NewTemplateParm
689        = cast<TemplateTemplateParmDecl>(*NewParam);
690      TemplateTemplateParmDecl *OldTemplateParm
691        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
692      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
693          NewTemplateParm->hasDefaultArgument()) {
694        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
695        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
696        SawDefaultArgument = true;
697        RedundantDefaultArg = true;
698        PreviousDefaultArgLoc = NewDefaultLoc;
699      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
700        // Merge the default argument from the old declaration to the
701        // new declaration.
702        SawDefaultArgument = true;
703        // FIXME: We need to create a new kind of "default argument" expression
704        // that points to a previous template template parameter.
705        NewTemplateParm->setDefaultArgument(
706                                        OldTemplateParm->getDefaultArgument());
707        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
708      } else if (NewTemplateParm->hasDefaultArgument()) {
709        SawDefaultArgument = true;
710        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
711      } else if (SawDefaultArgument)
712        MissingDefaultArg = true;
713    }
714
715    if (RedundantDefaultArg) {
716      // C++ [temp.param]p12:
717      //   A template-parameter shall not be given default arguments
718      //   by two different declarations in the same scope.
719      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
720      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
721      Invalid = true;
722    } else if (MissingDefaultArg) {
723      // C++ [temp.param]p11:
724      //   If a template-parameter has a default template-argument,
725      //   all subsequent template-parameters shall have a default
726      //   template-argument supplied.
727      Diag((*NewParam)->getLocation(),
728           diag::err_template_param_default_arg_missing);
729      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
730      Invalid = true;
731    }
732
733    // If we have an old template parameter list that we're merging
734    // in, move on to the next parameter.
735    if (OldParams)
736      ++OldParam;
737  }
738
739  return Invalid;
740}
741
742/// \brief Match the given template parameter lists to the given scope
743/// specifier, returning the template parameter list that applies to the
744/// name.
745///
746/// \param DeclStartLoc the start of the declaration that has a scope
747/// specifier or a template parameter list.
748///
749/// \param SS the scope specifier that will be matched to the given template
750/// parameter lists. This scope specifier precedes a qualified name that is
751/// being declared.
752///
753/// \param ParamLists the template parameter lists, from the outermost to the
754/// innermost template parameter lists.
755///
756/// \param NumParamLists the number of template parameter lists in ParamLists.
757///
758/// \returns the template parameter list, if any, that corresponds to the
759/// name that is preceded by the scope specifier @p SS. This template
760/// parameter list may be have template parameters (if we're declaring a
761/// template) or may have no template parameters (if we're declaring a
762/// template specialization), or may be NULL (if we were's declaring isn't
763/// itself a template).
764TemplateParameterList *
765Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
766                                              const CXXScopeSpec &SS,
767                                          TemplateParameterList **ParamLists,
768                                              unsigned NumParamLists) {
769  // FIXME: This routine will need a lot more testing once we have support for
770  // member templates.
771
772  // Find the template-ids that occur within the nested-name-specifier. These
773  // template-ids will match up with the template parameter lists.
774  llvm::SmallVector<const TemplateSpecializationType *, 4>
775    TemplateIdsInSpecifier;
776  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
777       NNS; NNS = NNS->getPrefix()) {
778    if (const TemplateSpecializationType *SpecType
779          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
780      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
781      if (!Template)
782        continue; // FIXME: should this be an error? probably...
783
784      if (const RecordType *Record = SpecType->getAsRecordType()) {
785        ClassTemplateSpecializationDecl *SpecDecl
786          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
787        // If the nested name specifier refers to an explicit specialization,
788        // we don't need a template<> header.
789        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
790          continue;
791      }
792
793      TemplateIdsInSpecifier.push_back(SpecType);
794    }
795  }
796
797  // Reverse the list of template-ids in the scope specifier, so that we can
798  // more easily match up the template-ids and the template parameter lists.
799  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
800
801  SourceLocation FirstTemplateLoc = DeclStartLoc;
802  if (NumParamLists)
803    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
804
805  // Match the template-ids found in the specifier to the template parameter
806  // lists.
807  unsigned Idx = 0;
808  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
809       Idx != NumTemplateIds; ++Idx) {
810    bool DependentTemplateId = TemplateIdsInSpecifier[Idx]->isDependentType();
811    if (Idx >= NumParamLists) {
812      // We have a template-id without a corresponding template parameter
813      // list.
814      if (DependentTemplateId) {
815        // FIXME: the location information here isn't great.
816        Diag(SS.getRange().getBegin(),
817             diag::err_template_spec_needs_template_parameters)
818          << QualType(TemplateIdsInSpecifier[Idx], 0)
819          << SS.getRange();
820      } else {
821        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
822          << SS.getRange()
823          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
824                                                   "template<> ");
825      }
826      return 0;
827    }
828
829    // Check the template parameter list against its corresponding template-id.
830    TemplateDecl *Template
831      = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
832    TemplateParameterListsAreEqual(ParamLists[Idx],
833                                   Template->getTemplateParameters(),
834                                   true);
835  }
836
837  // If there were at least as many template-ids as there were template
838  // parameter lists, then there are no template parameter lists remaining for
839  // the declaration itself.
840  if (Idx >= NumParamLists)
841    return 0;
842
843  // If there were too many template parameter lists, complain about that now.
844  if (Idx != NumParamLists - 1) {
845    while (Idx < NumParamLists - 1) {
846      Diag(ParamLists[Idx]->getTemplateLoc(),
847           diag::err_template_spec_extra_headers)
848        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
849                       ParamLists[Idx]->getRAngleLoc());
850      ++Idx;
851    }
852  }
853
854  // Return the last template parameter list, which corresponds to the
855  // entity being declared.
856  return ParamLists[NumParamLists - 1];
857}
858
859/// \brief Translates template arguments as provided by the parser
860/// into template arguments used by semantic analysis.
861static void
862translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
863                           SourceLocation *TemplateArgLocs,
864                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
865  TemplateArgs.reserve(TemplateArgsIn.size());
866
867  void **Args = TemplateArgsIn.getArgs();
868  bool *ArgIsType = TemplateArgsIn.getArgIsType();
869  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
870    TemplateArgs.push_back(
871      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
872                                       QualType::getFromOpaquePtr(Args[Arg]))
873                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
874  }
875}
876
877/// \brief Build a canonical version of a template argument list.
878///
879/// This function builds a canonical version of the given template
880/// argument list, where each of the template arguments has been
881/// converted into its canonical form. This routine is typically used
882/// to canonicalize a template argument list when the template name
883/// itself is dependent. When the template name refers to an actual
884/// template declaration, Sema::CheckTemplateArgumentList should be
885/// used to check and canonicalize the template arguments.
886///
887/// \param TemplateArgs The incoming template arguments.
888///
889/// \param NumTemplateArgs The number of template arguments in \p
890/// TemplateArgs.
891///
892/// \param Canonical A vector to be filled with the canonical versions
893/// of the template arguments.
894///
895/// \param Context The ASTContext in which the template arguments live.
896static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
897                                          unsigned NumTemplateArgs,
898                            llvm::SmallVectorImpl<TemplateArgument> &Canonical,
899                                          ASTContext &Context) {
900  Canonical.reserve(NumTemplateArgs);
901  for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
902    switch (TemplateArgs[Idx].getKind()) {
903    case TemplateArgument::Null:
904      assert(false && "Should never see a NULL template argument here");
905      break;
906
907    case TemplateArgument::Expression:
908      // FIXME: Build canonical expression (!)
909      Canonical.push_back(TemplateArgs[Idx]);
910      break;
911
912    case TemplateArgument::Declaration:
913      Canonical.push_back(
914                 TemplateArgument(SourceLocation(),
915                            TemplateArgs[Idx].getAsDecl()->getCanonicalDecl()));
916      break;
917
918    case TemplateArgument::Integral:
919      Canonical.push_back(TemplateArgument(SourceLocation(),
920                                           *TemplateArgs[Idx].getAsIntegral(),
921                                        TemplateArgs[Idx].getIntegralType()));
922      break;
923
924    case TemplateArgument::Type: {
925      QualType CanonType
926        = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
927      Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
928      break;
929    }
930
931    case TemplateArgument::Pack:
932      assert(0 && "FIXME: Implement!");
933      break;
934    }
935  }
936}
937
938QualType Sema::CheckTemplateIdType(TemplateName Name,
939                                   SourceLocation TemplateLoc,
940                                   SourceLocation LAngleLoc,
941                                   const TemplateArgument *TemplateArgs,
942                                   unsigned NumTemplateArgs,
943                                   SourceLocation RAngleLoc) {
944  TemplateDecl *Template = Name.getAsTemplateDecl();
945  if (!Template) {
946    // The template name does not resolve to a template, so we just
947    // build a dependent template-id type.
948
949    // Canonicalize the template arguments to build the canonical
950    // template-id type.
951    llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
952    CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
953                                  CanonicalTemplateArgs, Context);
954
955    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
956    QualType CanonType
957      = Context.getTemplateSpecializationType(CanonName,
958                                              &CanonicalTemplateArgs[0],
959                                              CanonicalTemplateArgs.size());
960
961    // Build the dependent template-id type.
962    return Context.getTemplateSpecializationType(Name, TemplateArgs,
963                                                 NumTemplateArgs, CanonType);
964  }
965
966  // Check that the template argument list is well-formed for this
967  // template.
968  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
969                                        NumTemplateArgs);
970  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
971                                TemplateArgs, NumTemplateArgs, RAngleLoc,
972                                false, Converted))
973    return QualType();
974
975  assert((Converted.structuredSize() ==
976            Template->getTemplateParameters()->size()) &&
977         "Converted template argument list is too short!");
978
979  QualType CanonType;
980
981  if (TemplateSpecializationType::anyDependentTemplateArguments(
982                                                      TemplateArgs,
983                                                      NumTemplateArgs)) {
984    // This class template specialization is a dependent
985    // type. Therefore, its canonical type is another class template
986    // specialization type that contains all of the converted
987    // arguments in canonical form. This ensures that, e.g., A<T> and
988    // A<T, T> have identical types when A is declared as:
989    //
990    //   template<typename T, typename U = T> struct A;
991    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
992    CanonType = Context.getTemplateSpecializationType(CanonName,
993                                                   Converted.getFlatArguments(),
994                                                   Converted.flatSize());
995  } else if (ClassTemplateDecl *ClassTemplate
996               = dyn_cast<ClassTemplateDecl>(Template)) {
997    // Find the class template specialization declaration that
998    // corresponds to these arguments.
999    llvm::FoldingSetNodeID ID;
1000    ClassTemplateSpecializationDecl::Profile(ID,
1001                                             Converted.getFlatArguments(),
1002                                             Converted.flatSize());
1003    void *InsertPos = 0;
1004    ClassTemplateSpecializationDecl *Decl
1005      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1006    if (!Decl) {
1007      // This is the first time we have referenced this class template
1008      // specialization. Create the canonical declaration and add it to
1009      // the set of specializations.
1010      Decl = ClassTemplateSpecializationDecl::Create(Context,
1011                                    ClassTemplate->getDeclContext(),
1012                                    TemplateLoc,
1013                                    ClassTemplate,
1014                                    Converted, 0);
1015      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1016      Decl->setLexicalDeclContext(CurContext);
1017    }
1018
1019    CanonType = Context.getTypeDeclType(Decl);
1020  }
1021
1022  // Build the fully-sugared type for this class template
1023  // specialization, which refers back to the class template
1024  // specialization we created or found.
1025  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1026                                               NumTemplateArgs, CanonType);
1027}
1028
1029Action::TypeResult
1030Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1031                          SourceLocation LAngleLoc,
1032                          ASTTemplateArgsPtr TemplateArgsIn,
1033                          SourceLocation *TemplateArgLocs,
1034                          SourceLocation RAngleLoc) {
1035  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1036
1037  // Translate the parser's template argument list in our AST format.
1038  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1039  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1040
1041  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1042                                        TemplateArgs.data(),
1043                                        TemplateArgs.size(),
1044                                        RAngleLoc);
1045  TemplateArgsIn.release();
1046
1047  if (Result.isNull())
1048    return true;
1049
1050  return Result.getAsOpaquePtr();
1051}
1052
1053Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1054                                                 SourceLocation TemplateNameLoc,
1055                                                 SourceLocation LAngleLoc,
1056                                           const TemplateArgument *TemplateArgs,
1057                                                 unsigned NumTemplateArgs,
1058                                                 SourceLocation RAngleLoc) {
1059  // FIXME: Can we do any checking at this point? I guess we could check the
1060  // template arguments that we have against the template name, if the template
1061  // name refers to a single template. That's not a terribly common case,
1062  // though.
1063  return Owned(TemplateIdRefExpr::Create(Context,
1064                                         /*FIXME: New type?*/Context.OverloadTy,
1065                                         /*FIXME: Necessary?*/0,
1066                                         /*FIXME: Necessary?*/SourceRange(),
1067                                         Template, TemplateNameLoc, LAngleLoc,
1068                                         TemplateArgs,
1069                                         NumTemplateArgs, RAngleLoc));
1070}
1071
1072Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1073                                                 SourceLocation TemplateNameLoc,
1074                                                 SourceLocation LAngleLoc,
1075                                              ASTTemplateArgsPtr TemplateArgsIn,
1076                                                SourceLocation *TemplateArgLocs,
1077                                                 SourceLocation RAngleLoc) {
1078  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1079
1080  // Translate the parser's template argument list in our AST format.
1081  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1082  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1083  TemplateArgsIn.release();
1084
1085  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1086                             TemplateArgs.data(), TemplateArgs.size(),
1087                             RAngleLoc);
1088}
1089
1090/// \brief Form a dependent template name.
1091///
1092/// This action forms a dependent template name given the template
1093/// name and its (presumably dependent) scope specifier. For
1094/// example, given "MetaFun::template apply", the scope specifier \p
1095/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1096/// of the "template" keyword, and "apply" is the \p Name.
1097Sema::TemplateTy
1098Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1099                                 const IdentifierInfo &Name,
1100                                 SourceLocation NameLoc,
1101                                 const CXXScopeSpec &SS) {
1102  if (!SS.isSet() || SS.isInvalid())
1103    return TemplateTy();
1104
1105  NestedNameSpecifier *Qualifier
1106    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1107
1108  // FIXME: member of the current instantiation
1109
1110  if (!Qualifier->isDependent()) {
1111    // C++0x [temp.names]p5:
1112    //   If a name prefixed by the keyword template is not the name of
1113    //   a template, the program is ill-formed. [Note: the keyword
1114    //   template may not be applied to non-template members of class
1115    //   templates. -end note ] [ Note: as is the case with the
1116    //   typename prefix, the template prefix is allowed in cases
1117    //   where it is not strictly necessary; i.e., when the
1118    //   nested-name-specifier or the expression on the left of the ->
1119    //   or . is not dependent on a template-parameter, or the use
1120    //   does not appear in the scope of a template. -end note]
1121    //
1122    // Note: C++03 was more strict here, because it banned the use of
1123    // the "template" keyword prior to a template-name that was not a
1124    // dependent name. C++ DR468 relaxed this requirement (the
1125    // "template" keyword is now permitted). We follow the C++0x
1126    // rules, even in C++03 mode, retroactively applying the DR.
1127    TemplateTy Template;
1128    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
1129    if (TNK == TNK_Non_template) {
1130      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1131        << &Name;
1132      return TemplateTy();
1133    }
1134
1135    return Template;
1136  }
1137
1138  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1139}
1140
1141bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1142                                     const TemplateArgument &Arg,
1143                                     TemplateArgumentListBuilder &Converted) {
1144  // Check template type parameter.
1145  if (Arg.getKind() != TemplateArgument::Type) {
1146    // C++ [temp.arg.type]p1:
1147    //   A template-argument for a template-parameter which is a
1148    //   type shall be a type-id.
1149
1150    // We have a template type parameter but the template argument
1151    // is not a type.
1152    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1153    Diag(Param->getLocation(), diag::note_template_param_here);
1154
1155    return true;
1156  }
1157
1158  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1159    return true;
1160
1161  // Add the converted template type argument.
1162  Converted.Append(
1163                 TemplateArgument(Arg.getLocation(),
1164                                  Context.getCanonicalType(Arg.getAsType())));
1165  return false;
1166}
1167
1168/// \brief Check that the given template argument list is well-formed
1169/// for specializing the given template.
1170bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1171                                     SourceLocation TemplateLoc,
1172                                     SourceLocation LAngleLoc,
1173                                     const TemplateArgument *TemplateArgs,
1174                                     unsigned NumTemplateArgs,
1175                                     SourceLocation RAngleLoc,
1176                                     bool PartialTemplateArgs,
1177                                     TemplateArgumentListBuilder &Converted) {
1178  TemplateParameterList *Params = Template->getTemplateParameters();
1179  unsigned NumParams = Params->size();
1180  unsigned NumArgs = NumTemplateArgs;
1181  bool Invalid = false;
1182
1183  bool HasParameterPack =
1184    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1185
1186  if ((NumArgs > NumParams && !HasParameterPack) ||
1187      (NumArgs < Params->getMinRequiredArguments() &&
1188       !PartialTemplateArgs)) {
1189    // FIXME: point at either the first arg beyond what we can handle,
1190    // or the '>', depending on whether we have too many or too few
1191    // arguments.
1192    SourceRange Range;
1193    if (NumArgs > NumParams)
1194      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1195    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1196      << (NumArgs > NumParams)
1197      << (isa<ClassTemplateDecl>(Template)? 0 :
1198          isa<FunctionTemplateDecl>(Template)? 1 :
1199          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1200      << Template << Range;
1201    Diag(Template->getLocation(), diag::note_template_decl_here)
1202      << Params->getSourceRange();
1203    Invalid = true;
1204  }
1205
1206  // C++ [temp.arg]p1:
1207  //   [...] The type and form of each template-argument specified in
1208  //   a template-id shall match the type and form specified for the
1209  //   corresponding parameter declared by the template in its
1210  //   template-parameter-list.
1211  unsigned ArgIdx = 0;
1212  for (TemplateParameterList::iterator Param = Params->begin(),
1213                                       ParamEnd = Params->end();
1214       Param != ParamEnd; ++Param, ++ArgIdx) {
1215    if (ArgIdx > NumArgs && PartialTemplateArgs)
1216      break;
1217
1218    // Decode the template argument
1219    TemplateArgument Arg;
1220    if (ArgIdx >= NumArgs) {
1221      // Retrieve the default template argument from the template
1222      // parameter.
1223      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1224        if (TTP->isParameterPack()) {
1225          // We have an empty argument pack.
1226          Converted.BeginPack();
1227          Converted.EndPack();
1228          break;
1229        }
1230
1231        if (!TTP->hasDefaultArgument())
1232          break;
1233
1234        QualType ArgType = TTP->getDefaultArgument();
1235
1236        // If the argument type is dependent, instantiate it now based
1237        // on the previously-computed template arguments.
1238        if (ArgType->isDependentType()) {
1239          InstantiatingTemplate Inst(*this, TemplateLoc,
1240                                     Template, Converted.getFlatArguments(),
1241                                     Converted.flatSize(),
1242                                     SourceRange(TemplateLoc, RAngleLoc));
1243
1244          TemplateArgumentList TemplateArgs(Context, Converted,
1245                                            /*TakeArgs=*/false);
1246          ArgType = InstantiateType(ArgType, TemplateArgs,
1247                                    TTP->getDefaultArgumentLoc(),
1248                                    TTP->getDeclName());
1249        }
1250
1251        if (ArgType.isNull())
1252          return true;
1253
1254        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1255      } else if (NonTypeTemplateParmDecl *NTTP
1256                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1257        if (!NTTP->hasDefaultArgument())
1258          break;
1259
1260        InstantiatingTemplate Inst(*this, TemplateLoc,
1261                                   Template, Converted.getFlatArguments(),
1262                                   Converted.flatSize(),
1263                                   SourceRange(TemplateLoc, RAngleLoc));
1264
1265        TemplateArgumentList TemplateArgs(Context, Converted,
1266                                          /*TakeArgs=*/false);
1267
1268        Sema::OwningExprResult E = InstantiateExpr(NTTP->getDefaultArgument(),
1269                                                   TemplateArgs);
1270        if (E.isInvalid())
1271          return true;
1272
1273        Arg = TemplateArgument(E.takeAs<Expr>());
1274      } else {
1275        TemplateTemplateParmDecl *TempParm
1276          = cast<TemplateTemplateParmDecl>(*Param);
1277
1278        if (!TempParm->hasDefaultArgument())
1279          break;
1280
1281        // FIXME: Instantiate default argument
1282        Arg = TemplateArgument(TempParm->getDefaultArgument());
1283      }
1284    } else {
1285      // Retrieve the template argument produced by the user.
1286      Arg = TemplateArgs[ArgIdx];
1287    }
1288
1289
1290    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1291      if (TTP->isParameterPack()) {
1292        Converted.BeginPack();
1293        // Check all the remaining arguments (if any).
1294        for (; ArgIdx < NumArgs; ++ArgIdx) {
1295          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1296            Invalid = true;
1297        }
1298
1299        Converted.EndPack();
1300      } else {
1301        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1302          Invalid = true;
1303      }
1304    } else if (NonTypeTemplateParmDecl *NTTP
1305                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1306      // Check non-type template parameters.
1307
1308      // Instantiate the type of the non-type template parameter with
1309      // the template arguments we've seen thus far.
1310      QualType NTTPType = NTTP->getType();
1311      if (NTTPType->isDependentType()) {
1312        // Instantiate the type of the non-type template parameter.
1313        InstantiatingTemplate Inst(*this, TemplateLoc,
1314                                   Template, Converted.getFlatArguments(),
1315                                   Converted.flatSize(),
1316                                   SourceRange(TemplateLoc, RAngleLoc));
1317
1318        TemplateArgumentList TemplateArgs(Context, Converted,
1319                                          /*TakeArgs=*/false);
1320        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1321                                   NTTP->getLocation(),
1322                                   NTTP->getDeclName());
1323        // If that worked, check the non-type template parameter type
1324        // for validity.
1325        if (!NTTPType.isNull())
1326          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1327                                                       NTTP->getLocation());
1328        if (NTTPType.isNull()) {
1329          Invalid = true;
1330          break;
1331        }
1332      }
1333
1334      switch (Arg.getKind()) {
1335      case TemplateArgument::Null:
1336        assert(false && "Should never see a NULL template argument here");
1337        break;
1338
1339      case TemplateArgument::Expression: {
1340        Expr *E = Arg.getAsExpr();
1341        TemplateArgument Result;
1342        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1343          Invalid = true;
1344        else
1345          Converted.Append(Result);
1346        break;
1347      }
1348
1349      case TemplateArgument::Declaration:
1350      case TemplateArgument::Integral:
1351        // We've already checked this template argument, so just copy
1352        // it to the list of converted arguments.
1353        Converted.Append(Arg);
1354        break;
1355
1356      case TemplateArgument::Type:
1357        // We have a non-type template parameter but the template
1358        // argument is a type.
1359
1360        // C++ [temp.arg]p2:
1361        //   In a template-argument, an ambiguity between a type-id and
1362        //   an expression is resolved to a type-id, regardless of the
1363        //   form of the corresponding template-parameter.
1364        //
1365        // We warn specifically about this case, since it can be rather
1366        // confusing for users.
1367        if (Arg.getAsType()->isFunctionType())
1368          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1369            << Arg.getAsType();
1370        else
1371          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1372        Diag((*Param)->getLocation(), diag::note_template_param_here);
1373        Invalid = true;
1374        break;
1375
1376      case TemplateArgument::Pack:
1377        assert(0 && "FIXME: Implement!");
1378        break;
1379      }
1380    } else {
1381      // Check template template parameters.
1382      TemplateTemplateParmDecl *TempParm
1383        = cast<TemplateTemplateParmDecl>(*Param);
1384
1385      switch (Arg.getKind()) {
1386      case TemplateArgument::Null:
1387        assert(false && "Should never see a NULL template argument here");
1388        break;
1389
1390      case TemplateArgument::Expression: {
1391        Expr *ArgExpr = Arg.getAsExpr();
1392        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1393            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1394          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1395            Invalid = true;
1396
1397          // Add the converted template argument.
1398          Decl *D
1399            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1400          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1401          continue;
1402        }
1403      }
1404        // fall through
1405
1406      case TemplateArgument::Type: {
1407        // We have a template template parameter but the template
1408        // argument does not refer to a template.
1409        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1410        Invalid = true;
1411        break;
1412      }
1413
1414      case TemplateArgument::Declaration:
1415        // We've already checked this template argument, so just copy
1416        // it to the list of converted arguments.
1417        Converted.Append(Arg);
1418        break;
1419
1420      case TemplateArgument::Integral:
1421        assert(false && "Integral argument with template template parameter");
1422        break;
1423
1424      case TemplateArgument::Pack:
1425        assert(0 && "FIXME: Implement!");
1426        break;
1427      }
1428    }
1429  }
1430
1431  return Invalid;
1432}
1433
1434/// \brief Check a template argument against its corresponding
1435/// template type parameter.
1436///
1437/// This routine implements the semantics of C++ [temp.arg.type]. It
1438/// returns true if an error occurred, and false otherwise.
1439bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1440                                 QualType Arg, SourceLocation ArgLoc) {
1441  // C++ [temp.arg.type]p2:
1442  //   A local type, a type with no linkage, an unnamed type or a type
1443  //   compounded from any of these types shall not be used as a
1444  //   template-argument for a template type-parameter.
1445  //
1446  // FIXME: Perform the recursive and no-linkage type checks.
1447  const TagType *Tag = 0;
1448  if (const EnumType *EnumT = Arg->getAsEnumType())
1449    Tag = EnumT;
1450  else if (const RecordType *RecordT = Arg->getAsRecordType())
1451    Tag = RecordT;
1452  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1453    return Diag(ArgLoc, diag::err_template_arg_local_type)
1454      << QualType(Tag, 0);
1455  else if (Tag && !Tag->getDecl()->getDeclName() &&
1456           !Tag->getDecl()->getTypedefForAnonDecl()) {
1457    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1458    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1459    return true;
1460  }
1461
1462  return false;
1463}
1464
1465/// \brief Checks whether the given template argument is the address
1466/// of an object or function according to C++ [temp.arg.nontype]p1.
1467bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1468                                                          NamedDecl *&Entity) {
1469  bool Invalid = false;
1470
1471  // See through any implicit casts we added to fix the type.
1472  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1473    Arg = Cast->getSubExpr();
1474
1475  // C++0x allows nullptr, and there's no further checking to be done for that.
1476  if (Arg->getType()->isNullPtrType())
1477    return false;
1478
1479  // C++ [temp.arg.nontype]p1:
1480  //
1481  //   A template-argument for a non-type, non-template
1482  //   template-parameter shall be one of: [...]
1483  //
1484  //     -- the address of an object or function with external
1485  //        linkage, including function templates and function
1486  //        template-ids but excluding non-static class members,
1487  //        expressed as & id-expression where the & is optional if
1488  //        the name refers to a function or array, or if the
1489  //        corresponding template-parameter is a reference; or
1490  DeclRefExpr *DRE = 0;
1491
1492  // Ignore (and complain about) any excess parentheses.
1493  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1494    if (!Invalid) {
1495      Diag(Arg->getSourceRange().getBegin(),
1496           diag::err_template_arg_extra_parens)
1497        << Arg->getSourceRange();
1498      Invalid = true;
1499    }
1500
1501    Arg = Parens->getSubExpr();
1502  }
1503
1504  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1505    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1506      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1507  } else
1508    DRE = dyn_cast<DeclRefExpr>(Arg);
1509
1510  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1511    return Diag(Arg->getSourceRange().getBegin(),
1512                diag::err_template_arg_not_object_or_func_form)
1513      << Arg->getSourceRange();
1514
1515  // Cannot refer to non-static data members
1516  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1517    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1518      << Field << Arg->getSourceRange();
1519
1520  // Cannot refer to non-static member functions
1521  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1522    if (!Method->isStatic())
1523      return Diag(Arg->getSourceRange().getBegin(),
1524                  diag::err_template_arg_method)
1525        << Method << Arg->getSourceRange();
1526
1527  // Functions must have external linkage.
1528  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1529    if (Func->getStorageClass() == FunctionDecl::Static) {
1530      Diag(Arg->getSourceRange().getBegin(),
1531           diag::err_template_arg_function_not_extern)
1532        << Func << Arg->getSourceRange();
1533      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1534        << true;
1535      return true;
1536    }
1537
1538    // Okay: we've named a function with external linkage.
1539    Entity = Func;
1540    return Invalid;
1541  }
1542
1543  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1544    if (!Var->hasGlobalStorage()) {
1545      Diag(Arg->getSourceRange().getBegin(),
1546           diag::err_template_arg_object_not_extern)
1547        << Var << Arg->getSourceRange();
1548      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1549        << true;
1550      return true;
1551    }
1552
1553    // Okay: we've named an object with external linkage
1554    Entity = Var;
1555    return Invalid;
1556  }
1557
1558  // We found something else, but we don't know specifically what it is.
1559  Diag(Arg->getSourceRange().getBegin(),
1560       diag::err_template_arg_not_object_or_func)
1561      << Arg->getSourceRange();
1562  Diag(DRE->getDecl()->getLocation(),
1563       diag::note_template_arg_refers_here);
1564  return true;
1565}
1566
1567/// \brief Checks whether the given template argument is a pointer to
1568/// member constant according to C++ [temp.arg.nontype]p1.
1569bool
1570Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1571  bool Invalid = false;
1572
1573  // See through any implicit casts we added to fix the type.
1574  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1575    Arg = Cast->getSubExpr();
1576
1577  // C++0x allows nullptr, and there's no further checking to be done for that.
1578  if (Arg->getType()->isNullPtrType())
1579    return false;
1580
1581  // C++ [temp.arg.nontype]p1:
1582  //
1583  //   A template-argument for a non-type, non-template
1584  //   template-parameter shall be one of: [...]
1585  //
1586  //     -- a pointer to member expressed as described in 5.3.1.
1587  QualifiedDeclRefExpr *DRE = 0;
1588
1589  // Ignore (and complain about) any excess parentheses.
1590  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1591    if (!Invalid) {
1592      Diag(Arg->getSourceRange().getBegin(),
1593           diag::err_template_arg_extra_parens)
1594        << Arg->getSourceRange();
1595      Invalid = true;
1596    }
1597
1598    Arg = Parens->getSubExpr();
1599  }
1600
1601  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1602    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1603      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1604
1605  if (!DRE)
1606    return Diag(Arg->getSourceRange().getBegin(),
1607                diag::err_template_arg_not_pointer_to_member_form)
1608      << Arg->getSourceRange();
1609
1610  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1611    assert((isa<FieldDecl>(DRE->getDecl()) ||
1612            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1613           "Only non-static member pointers can make it here");
1614
1615    // Okay: this is the address of a non-static member, and therefore
1616    // a member pointer constant.
1617    Member = DRE->getDecl();
1618    return Invalid;
1619  }
1620
1621  // We found something else, but we don't know specifically what it is.
1622  Diag(Arg->getSourceRange().getBegin(),
1623       diag::err_template_arg_not_pointer_to_member_form)
1624      << Arg->getSourceRange();
1625  Diag(DRE->getDecl()->getLocation(),
1626       diag::note_template_arg_refers_here);
1627  return true;
1628}
1629
1630/// \brief Check a template argument against its corresponding
1631/// non-type template parameter.
1632///
1633/// This routine implements the semantics of C++ [temp.arg.nontype].
1634/// It returns true if an error occurred, and false otherwise. \p
1635/// InstantiatedParamType is the type of the non-type template
1636/// parameter after it has been instantiated.
1637///
1638/// If no error was detected, Converted receives the converted template argument.
1639bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1640                                 QualType InstantiatedParamType, Expr *&Arg,
1641                                 TemplateArgument &Converted) {
1642  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1643
1644  // If either the parameter has a dependent type or the argument is
1645  // type-dependent, there's nothing we can check now.
1646  // FIXME: Add template argument to Converted!
1647  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1648    // FIXME: Produce a cloned, canonical expression?
1649    Converted = TemplateArgument(Arg);
1650    return false;
1651  }
1652
1653  // C++ [temp.arg.nontype]p5:
1654  //   The following conversions are performed on each expression used
1655  //   as a non-type template-argument. If a non-type
1656  //   template-argument cannot be converted to the type of the
1657  //   corresponding template-parameter then the program is
1658  //   ill-formed.
1659  //
1660  //     -- for a non-type template-parameter of integral or
1661  //        enumeration type, integral promotions (4.5) and integral
1662  //        conversions (4.7) are applied.
1663  QualType ParamType = InstantiatedParamType;
1664  QualType ArgType = Arg->getType();
1665  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1666    // C++ [temp.arg.nontype]p1:
1667    //   A template-argument for a non-type, non-template
1668    //   template-parameter shall be one of:
1669    //
1670    //     -- an integral constant-expression of integral or enumeration
1671    //        type; or
1672    //     -- the name of a non-type template-parameter; or
1673    SourceLocation NonConstantLoc;
1674    llvm::APSInt Value;
1675    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1676      Diag(Arg->getSourceRange().getBegin(),
1677           diag::err_template_arg_not_integral_or_enumeral)
1678        << ArgType << Arg->getSourceRange();
1679      Diag(Param->getLocation(), diag::note_template_param_here);
1680      return true;
1681    } else if (!Arg->isValueDependent() &&
1682               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1683      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1684        << ArgType << Arg->getSourceRange();
1685      return true;
1686    }
1687
1688    // FIXME: We need some way to more easily get the unqualified form
1689    // of the types without going all the way to the
1690    // canonical type.
1691    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1692      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1693    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1694      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1695
1696    // Try to convert the argument to the parameter's type.
1697    if (ParamType == ArgType) {
1698      // Okay: no conversion necessary
1699    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1700               !ParamType->isEnumeralType()) {
1701      // This is an integral promotion or conversion.
1702      ImpCastExprToType(Arg, ParamType);
1703    } else {
1704      // We can't perform this conversion.
1705      Diag(Arg->getSourceRange().getBegin(),
1706           diag::err_template_arg_not_convertible)
1707        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1708      Diag(Param->getLocation(), diag::note_template_param_here);
1709      return true;
1710    }
1711
1712    QualType IntegerType = Context.getCanonicalType(ParamType);
1713    if (const EnumType *Enum = IntegerType->getAsEnumType())
1714      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1715
1716    if (!Arg->isValueDependent()) {
1717      // Check that an unsigned parameter does not receive a negative
1718      // value.
1719      if (IntegerType->isUnsignedIntegerType()
1720          && (Value.isSigned() && Value.isNegative())) {
1721        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1722          << Value.toString(10) << Param->getType()
1723          << Arg->getSourceRange();
1724        Diag(Param->getLocation(), diag::note_template_param_here);
1725        return true;
1726      }
1727
1728      // Check that we don't overflow the template parameter type.
1729      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1730      if (Value.getActiveBits() > AllowedBits) {
1731        Diag(Arg->getSourceRange().getBegin(),
1732             diag::err_template_arg_too_large)
1733          << Value.toString(10) << Param->getType()
1734          << Arg->getSourceRange();
1735        Diag(Param->getLocation(), diag::note_template_param_here);
1736        return true;
1737      }
1738
1739      if (Value.getBitWidth() != AllowedBits)
1740        Value.extOrTrunc(AllowedBits);
1741      Value.setIsSigned(IntegerType->isSignedIntegerType());
1742    }
1743
1744    // Add the value of this argument to the list of converted
1745    // arguments. We use the bitwidth and signedness of the template
1746    // parameter.
1747    if (Arg->isValueDependent()) {
1748      // The argument is value-dependent. Create a new
1749      // TemplateArgument with the converted expression.
1750      Converted = TemplateArgument(Arg);
1751      return false;
1752    }
1753
1754    Converted = TemplateArgument(StartLoc, Value,
1755                                 ParamType->isEnumeralType() ? ParamType
1756                                                             : IntegerType);
1757    return false;
1758  }
1759
1760  // Handle pointer-to-function, reference-to-function, and
1761  // pointer-to-member-function all in (roughly) the same way.
1762  if (// -- For a non-type template-parameter of type pointer to
1763      //    function, only the function-to-pointer conversion (4.3) is
1764      //    applied. If the template-argument represents a set of
1765      //    overloaded functions (or a pointer to such), the matching
1766      //    function is selected from the set (13.4).
1767      // In C++0x, any std::nullptr_t value can be converted.
1768      (ParamType->isPointerType() &&
1769       ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
1770      // -- For a non-type template-parameter of type reference to
1771      //    function, no conversions apply. If the template-argument
1772      //    represents a set of overloaded functions, the matching
1773      //    function is selected from the set (13.4).
1774      (ParamType->isReferenceType() &&
1775       ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
1776      // -- For a non-type template-parameter of type pointer to
1777      //    member function, no conversions apply. If the
1778      //    template-argument represents a set of overloaded member
1779      //    functions, the matching member function is selected from
1780      //    the set (13.4).
1781      // Again, C++0x allows a std::nullptr_t value.
1782      (ParamType->isMemberPointerType() &&
1783       ParamType->getAsMemberPointerType()->getPointeeType()
1784         ->isFunctionType())) {
1785    if (Context.hasSameUnqualifiedType(ArgType,
1786                                       ParamType.getNonReferenceType())) {
1787      // We don't have to do anything: the types already match.
1788    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1789                 ParamType->isMemberPointerType())) {
1790      ArgType = ParamType;
1791      ImpCastExprToType(Arg, ParamType);
1792    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1793      ArgType = Context.getPointerType(ArgType);
1794      ImpCastExprToType(Arg, ArgType);
1795    } else if (FunctionDecl *Fn
1796                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1797      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1798        return true;
1799
1800      FixOverloadedFunctionReference(Arg, Fn);
1801      ArgType = Arg->getType();
1802      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1803        ArgType = Context.getPointerType(Arg->getType());
1804        ImpCastExprToType(Arg, ArgType);
1805      }
1806    }
1807
1808    if (!Context.hasSameUnqualifiedType(ArgType,
1809                                        ParamType.getNonReferenceType())) {
1810      // We can't perform this conversion.
1811      Diag(Arg->getSourceRange().getBegin(),
1812           diag::err_template_arg_not_convertible)
1813        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1814      Diag(Param->getLocation(), diag::note_template_param_here);
1815      return true;
1816    }
1817
1818    if (ParamType->isMemberPointerType()) {
1819      NamedDecl *Member = 0;
1820      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1821        return true;
1822
1823      if (Member)
1824        Member = cast<NamedDecl>(Member->getCanonicalDecl());
1825      Converted = TemplateArgument(StartLoc, Member);
1826      return false;
1827    }
1828
1829    NamedDecl *Entity = 0;
1830    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1831      return true;
1832
1833    if (Entity)
1834      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1835    Converted = TemplateArgument(StartLoc, Entity);
1836    return false;
1837  }
1838
1839  if (ParamType->isPointerType()) {
1840    //   -- for a non-type template-parameter of type pointer to
1841    //      object, qualification conversions (4.4) and the
1842    //      array-to-pointer conversion (4.2) are applied.
1843    // C++0x also allows a value of std::nullptr_t.
1844    assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
1845           "Only object pointers allowed here");
1846
1847    if (ArgType->isNullPtrType()) {
1848      ArgType = ParamType;
1849      ImpCastExprToType(Arg, ParamType);
1850    } else if (ArgType->isArrayType()) {
1851      ArgType = Context.getArrayDecayedType(ArgType);
1852      ImpCastExprToType(Arg, ArgType);
1853    }
1854
1855    if (IsQualificationConversion(ArgType, ParamType)) {
1856      ArgType = ParamType;
1857      ImpCastExprToType(Arg, ParamType);
1858    }
1859
1860    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1861      // We can't perform this conversion.
1862      Diag(Arg->getSourceRange().getBegin(),
1863           diag::err_template_arg_not_convertible)
1864        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1865      Diag(Param->getLocation(), diag::note_template_param_here);
1866      return true;
1867    }
1868
1869    NamedDecl *Entity = 0;
1870    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1871      return true;
1872
1873    if (Entity)
1874      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1875    Converted = TemplateArgument(StartLoc, Entity);
1876    return false;
1877  }
1878
1879  if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
1880    //   -- For a non-type template-parameter of type reference to
1881    //      object, no conversions apply. The type referred to by the
1882    //      reference may be more cv-qualified than the (otherwise
1883    //      identical) type of the template-argument. The
1884    //      template-parameter is bound directly to the
1885    //      template-argument, which must be an lvalue.
1886    assert(ParamRefType->getPointeeType()->isObjectType() &&
1887           "Only object references allowed here");
1888
1889    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1890      Diag(Arg->getSourceRange().getBegin(),
1891           diag::err_template_arg_no_ref_bind)
1892        << InstantiatedParamType << Arg->getType()
1893        << Arg->getSourceRange();
1894      Diag(Param->getLocation(), diag::note_template_param_here);
1895      return true;
1896    }
1897
1898    unsigned ParamQuals
1899      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1900    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1901
1902    if ((ParamQuals | ArgQuals) != ParamQuals) {
1903      Diag(Arg->getSourceRange().getBegin(),
1904           diag::err_template_arg_ref_bind_ignores_quals)
1905        << InstantiatedParamType << Arg->getType()
1906        << Arg->getSourceRange();
1907      Diag(Param->getLocation(), diag::note_template_param_here);
1908      return true;
1909    }
1910
1911    NamedDecl *Entity = 0;
1912    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1913      return true;
1914
1915    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1916    Converted = TemplateArgument(StartLoc, Entity);
1917    return false;
1918  }
1919
1920  //     -- For a non-type template-parameter of type pointer to data
1921  //        member, qualification conversions (4.4) are applied.
1922  // C++0x allows std::nullptr_t values.
1923  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1924
1925  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1926    // Types match exactly: nothing more to do here.
1927  } else if (ArgType->isNullPtrType()) {
1928    ImpCastExprToType(Arg, ParamType);
1929  } else if (IsQualificationConversion(ArgType, ParamType)) {
1930    ImpCastExprToType(Arg, ParamType);
1931  } else {
1932    // We can't perform this conversion.
1933    Diag(Arg->getSourceRange().getBegin(),
1934         diag::err_template_arg_not_convertible)
1935      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1936    Diag(Param->getLocation(), diag::note_template_param_here);
1937    return true;
1938  }
1939
1940  NamedDecl *Member = 0;
1941  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1942    return true;
1943
1944  if (Member)
1945    Member = cast<NamedDecl>(Member->getCanonicalDecl());
1946  Converted = TemplateArgument(StartLoc, Member);
1947  return false;
1948}
1949
1950/// \brief Check a template argument against its corresponding
1951/// template template parameter.
1952///
1953/// This routine implements the semantics of C++ [temp.arg.template].
1954/// It returns true if an error occurred, and false otherwise.
1955bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1956                                 DeclRefExpr *Arg) {
1957  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1958  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1959
1960  // C++ [temp.arg.template]p1:
1961  //   A template-argument for a template template-parameter shall be
1962  //   the name of a class template, expressed as id-expression. Only
1963  //   primary class templates are considered when matching the
1964  //   template template argument with the corresponding parameter;
1965  //   partial specializations are not considered even if their
1966  //   parameter lists match that of the template template parameter.
1967  //
1968  // Note that we also allow template template parameters here, which
1969  // will happen when we are dealing with, e.g., class template
1970  // partial specializations.
1971  if (!isa<ClassTemplateDecl>(Template) &&
1972      !isa<TemplateTemplateParmDecl>(Template)) {
1973    assert(isa<FunctionTemplateDecl>(Template) &&
1974           "Only function templates are possible here");
1975    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
1976    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
1977      << Template;
1978  }
1979
1980  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1981                                         Param->getTemplateParameters(),
1982                                         true, true,
1983                                         Arg->getSourceRange().getBegin());
1984}
1985
1986/// \brief Determine whether the given template parameter lists are
1987/// equivalent.
1988///
1989/// \param New  The new template parameter list, typically written in the
1990/// source code as part of a new template declaration.
1991///
1992/// \param Old  The old template parameter list, typically found via
1993/// name lookup of the template declared with this template parameter
1994/// list.
1995///
1996/// \param Complain  If true, this routine will produce a diagnostic if
1997/// the template parameter lists are not equivalent.
1998///
1999/// \param IsTemplateTemplateParm  If true, this routine is being
2000/// called to compare the template parameter lists of a template
2001/// template parameter.
2002///
2003/// \param TemplateArgLoc If this source location is valid, then we
2004/// are actually checking the template parameter list of a template
2005/// argument (New) against the template parameter list of its
2006/// corresponding template template parameter (Old). We produce
2007/// slightly different diagnostics in this scenario.
2008///
2009/// \returns True if the template parameter lists are equal, false
2010/// otherwise.
2011bool
2012Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2013                                     TemplateParameterList *Old,
2014                                     bool Complain,
2015                                     bool IsTemplateTemplateParm,
2016                                     SourceLocation TemplateArgLoc) {
2017  if (Old->size() != New->size()) {
2018    if (Complain) {
2019      unsigned NextDiag = diag::err_template_param_list_different_arity;
2020      if (TemplateArgLoc.isValid()) {
2021        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2022        NextDiag = diag::note_template_param_list_different_arity;
2023      }
2024      Diag(New->getTemplateLoc(), NextDiag)
2025          << (New->size() > Old->size())
2026          << IsTemplateTemplateParm
2027          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2028      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2029        << IsTemplateTemplateParm
2030        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2031    }
2032
2033    return false;
2034  }
2035
2036  for (TemplateParameterList::iterator OldParm = Old->begin(),
2037         OldParmEnd = Old->end(), NewParm = New->begin();
2038       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2039    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2040      if (Complain) {
2041        unsigned NextDiag = diag::err_template_param_different_kind;
2042        if (TemplateArgLoc.isValid()) {
2043          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2044          NextDiag = diag::note_template_param_different_kind;
2045        }
2046        Diag((*NewParm)->getLocation(), NextDiag)
2047        << IsTemplateTemplateParm;
2048        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2049        << IsTemplateTemplateParm;
2050      }
2051      return false;
2052    }
2053
2054    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2055      // Okay; all template type parameters are equivalent (since we
2056      // know we're at the same index).
2057#if 0
2058      // FIXME: Enable this code in debug mode *after* we properly go through
2059      // and "instantiate" the template parameter lists of template template
2060      // parameters. It's only after this instantiation that (1) any dependent
2061      // types within the template parameter list of the template template
2062      // parameter can be checked, and (2) the template type parameter depths
2063      // will match up.
2064      QualType OldParmType
2065        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2066      QualType NewParmType
2067        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2068      assert(Context.getCanonicalType(OldParmType) ==
2069             Context.getCanonicalType(NewParmType) &&
2070             "type parameter mismatch?");
2071#endif
2072    } else if (NonTypeTemplateParmDecl *OldNTTP
2073                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2074      // The types of non-type template parameters must agree.
2075      NonTypeTemplateParmDecl *NewNTTP
2076        = cast<NonTypeTemplateParmDecl>(*NewParm);
2077      if (Context.getCanonicalType(OldNTTP->getType()) !=
2078            Context.getCanonicalType(NewNTTP->getType())) {
2079        if (Complain) {
2080          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2081          if (TemplateArgLoc.isValid()) {
2082            Diag(TemplateArgLoc,
2083                 diag::err_template_arg_template_params_mismatch);
2084            NextDiag = diag::note_template_nontype_parm_different_type;
2085          }
2086          Diag(NewNTTP->getLocation(), NextDiag)
2087            << NewNTTP->getType()
2088            << IsTemplateTemplateParm;
2089          Diag(OldNTTP->getLocation(),
2090               diag::note_template_nontype_parm_prev_declaration)
2091            << OldNTTP->getType();
2092        }
2093        return false;
2094      }
2095    } else {
2096      // The template parameter lists of template template
2097      // parameters must agree.
2098      // FIXME: Could we perform a faster "type" comparison here?
2099      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2100             "Only template template parameters handled here");
2101      TemplateTemplateParmDecl *OldTTP
2102        = cast<TemplateTemplateParmDecl>(*OldParm);
2103      TemplateTemplateParmDecl *NewTTP
2104        = cast<TemplateTemplateParmDecl>(*NewParm);
2105      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2106                                          OldTTP->getTemplateParameters(),
2107                                          Complain,
2108                                          /*IsTemplateTemplateParm=*/true,
2109                                          TemplateArgLoc))
2110        return false;
2111    }
2112  }
2113
2114  return true;
2115}
2116
2117/// \brief Check whether a template can be declared within this scope.
2118///
2119/// If the template declaration is valid in this scope, returns
2120/// false. Otherwise, issues a diagnostic and returns true.
2121bool
2122Sema::CheckTemplateDeclScope(Scope *S,
2123                             MultiTemplateParamsArg &TemplateParameterLists) {
2124  assert(TemplateParameterLists.size() > 0 && "Not a template");
2125
2126  // Find the nearest enclosing declaration scope.
2127  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2128         (S->getFlags() & Scope::TemplateParamScope) != 0)
2129    S = S->getParent();
2130
2131  TemplateParameterList *TemplateParams =
2132    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2133  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
2134  SourceRange TemplateRange
2135    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
2136
2137  // C++ [temp]p2:
2138  //   A template-declaration can appear only as a namespace scope or
2139  //   class scope declaration.
2140  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2141  while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
2142    if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2143      return Diag(TemplateLoc, diag::err_template_linkage)
2144        << TemplateRange;
2145
2146    Ctx = Ctx->getParent();
2147  }
2148
2149  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2150    return false;
2151
2152  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
2153    << TemplateRange;
2154}
2155
2156/// \brief Check whether a class template specialization or explicit
2157/// instantiation in the current context is well-formed.
2158///
2159/// This routine determines whether a class template specialization or
2160/// explicit instantiation can be declared in the current context
2161/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
2162/// appropriate diagnostics if there was an error. It returns true if
2163// there was an error that we cannot recover from, and false otherwise.
2164bool
2165Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
2166                                   ClassTemplateSpecializationDecl *PrevDecl,
2167                                            SourceLocation TemplateNameLoc,
2168                                            SourceRange ScopeSpecifierRange,
2169                                            bool PartialSpecialization,
2170                                            bool ExplicitInstantiation) {
2171  // C++ [temp.expl.spec]p2:
2172  //   An explicit specialization shall be declared in the namespace
2173  //   of which the template is a member, or, for member templates, in
2174  //   the namespace of which the enclosing class or enclosing class
2175  //   template is a member. An explicit specialization of a member
2176  //   function, member class or static data member of a class
2177  //   template shall be declared in the namespace of which the class
2178  //   template is a member. Such a declaration may also be a
2179  //   definition. If the declaration is not a definition, the
2180  //   specialization may be defined later in the name- space in which
2181  //   the explicit specialization was declared, or in a namespace
2182  //   that encloses the one in which the explicit specialization was
2183  //   declared.
2184  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2185    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2186    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
2187      << Kind << ClassTemplate;
2188    return true;
2189  }
2190
2191  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
2192  DeclContext *TemplateContext
2193    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
2194  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
2195      !ExplicitInstantiation) {
2196    // There is no prior declaration of this entity, so this
2197    // specialization must be in the same context as the template
2198    // itself.
2199    if (DC != TemplateContext) {
2200      if (isa<TranslationUnitDecl>(TemplateContext))
2201        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
2202          << PartialSpecialization
2203          << ClassTemplate << ScopeSpecifierRange;
2204      else if (isa<NamespaceDecl>(TemplateContext))
2205        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
2206          << PartialSpecialization << ClassTemplate
2207          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2208
2209      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2210    }
2211
2212    return false;
2213  }
2214
2215  // We have a previous declaration of this entity. Make sure that
2216  // this redeclaration (or definition) occurs in an enclosing namespace.
2217  if (!CurContext->Encloses(TemplateContext)) {
2218    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
2219    // dependent on a -Wc++0x flag.
2220    bool SuppressedDiag = false;
2221    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2222    if (isa<TranslationUnitDecl>(TemplateContext)) {
2223      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2224        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
2225          << Kind << ClassTemplate << ScopeSpecifierRange;
2226      else
2227        SuppressedDiag = true;
2228    } else if (isa<NamespaceDecl>(TemplateContext)) {
2229      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2230        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2231          << Kind << ClassTemplate
2232          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2233      else
2234        SuppressedDiag = true;
2235    }
2236
2237    if (!SuppressedDiag)
2238      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2239  }
2240
2241  return false;
2242}
2243
2244/// \brief Check the non-type template arguments of a class template
2245/// partial specialization according to C++ [temp.class.spec]p9.
2246///
2247/// \param TemplateParams the template parameters of the primary class
2248/// template.
2249///
2250/// \param TemplateArg the template arguments of the class template
2251/// partial specialization.
2252///
2253/// \param MirrorsPrimaryTemplate will be set true if the class
2254/// template partial specialization arguments are identical to the
2255/// implicit template arguments of the primary template. This is not
2256/// necessarily an error (C++0x), and it is left to the caller to diagnose
2257/// this condition when it is an error.
2258///
2259/// \returns true if there was an error, false otherwise.
2260bool Sema::CheckClassTemplatePartialSpecializationArgs(
2261                                        TemplateParameterList *TemplateParams,
2262                             const TemplateArgumentListBuilder &TemplateArgs,
2263                                        bool &MirrorsPrimaryTemplate) {
2264  // FIXME: the interface to this function will have to change to
2265  // accommodate variadic templates.
2266  MirrorsPrimaryTemplate = true;
2267
2268  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2269
2270  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2271    // Determine whether the template argument list of the partial
2272    // specialization is identical to the implicit argument list of
2273    // the primary template. The caller may need to diagnostic this as
2274    // an error per C++ [temp.class.spec]p9b3.
2275    if (MirrorsPrimaryTemplate) {
2276      if (TemplateTypeParmDecl *TTP
2277            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2278        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2279              Context.getCanonicalType(ArgList[I].getAsType()))
2280          MirrorsPrimaryTemplate = false;
2281      } else if (TemplateTemplateParmDecl *TTP
2282                   = dyn_cast<TemplateTemplateParmDecl>(
2283                                                 TemplateParams->getParam(I))) {
2284        // FIXME: We should settle on either Declaration storage or
2285        // Expression storage for template template parameters.
2286        TemplateTemplateParmDecl *ArgDecl
2287          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2288                                                  ArgList[I].getAsDecl());
2289        if (!ArgDecl)
2290          if (DeclRefExpr *DRE
2291                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2292            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2293
2294        if (!ArgDecl ||
2295            ArgDecl->getIndex() != TTP->getIndex() ||
2296            ArgDecl->getDepth() != TTP->getDepth())
2297          MirrorsPrimaryTemplate = false;
2298      }
2299    }
2300
2301    NonTypeTemplateParmDecl *Param
2302      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2303    if (!Param) {
2304      continue;
2305    }
2306
2307    Expr *ArgExpr = ArgList[I].getAsExpr();
2308    if (!ArgExpr) {
2309      MirrorsPrimaryTemplate = false;
2310      continue;
2311    }
2312
2313    // C++ [temp.class.spec]p8:
2314    //   A non-type argument is non-specialized if it is the name of a
2315    //   non-type parameter. All other non-type arguments are
2316    //   specialized.
2317    //
2318    // Below, we check the two conditions that only apply to
2319    // specialized non-type arguments, so skip any non-specialized
2320    // arguments.
2321    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2322      if (NonTypeTemplateParmDecl *NTTP
2323            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2324        if (MirrorsPrimaryTemplate &&
2325            (Param->getIndex() != NTTP->getIndex() ||
2326             Param->getDepth() != NTTP->getDepth()))
2327          MirrorsPrimaryTemplate = false;
2328
2329        continue;
2330      }
2331
2332    // C++ [temp.class.spec]p9:
2333    //   Within the argument list of a class template partial
2334    //   specialization, the following restrictions apply:
2335    //     -- A partially specialized non-type argument expression
2336    //        shall not involve a template parameter of the partial
2337    //        specialization except when the argument expression is a
2338    //        simple identifier.
2339    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2340      Diag(ArgExpr->getLocStart(),
2341           diag::err_dependent_non_type_arg_in_partial_spec)
2342        << ArgExpr->getSourceRange();
2343      return true;
2344    }
2345
2346    //     -- The type of a template parameter corresponding to a
2347    //        specialized non-type argument shall not be dependent on a
2348    //        parameter of the specialization.
2349    if (Param->getType()->isDependentType()) {
2350      Diag(ArgExpr->getLocStart(),
2351           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2352        << Param->getType()
2353        << ArgExpr->getSourceRange();
2354      Diag(Param->getLocation(), diag::note_template_param_here);
2355      return true;
2356    }
2357
2358    MirrorsPrimaryTemplate = false;
2359  }
2360
2361  return false;
2362}
2363
2364Sema::DeclResult
2365Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
2366                                       SourceLocation KWLoc,
2367                                       const CXXScopeSpec &SS,
2368                                       TemplateTy TemplateD,
2369                                       SourceLocation TemplateNameLoc,
2370                                       SourceLocation LAngleLoc,
2371                                       ASTTemplateArgsPtr TemplateArgsIn,
2372                                       SourceLocation *TemplateArgLocs,
2373                                       SourceLocation RAngleLoc,
2374                                       AttributeList *Attr,
2375                               MultiTemplateParamsArg TemplateParameterLists) {
2376  // Find the class template we're specializing
2377  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2378  ClassTemplateDecl *ClassTemplate
2379    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2380
2381  bool isPartialSpecialization = false;
2382
2383  // Check the validity of the template headers that introduce this
2384  // template.
2385  // FIXME: Once we have member templates, we'll need to check
2386  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2387  // template<> headers.
2388  if (TemplateParameterLists.size() == 0)
2389    Diag(KWLoc, diag::err_template_spec_needs_header)
2390      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2391  else {
2392    TemplateParameterList *TemplateParams
2393      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2394    if (TemplateParameterLists.size() > 1) {
2395      Diag(TemplateParams->getTemplateLoc(),
2396           diag::err_template_spec_extra_headers);
2397      return true;
2398    }
2399
2400    if (TemplateParams->size() > 0) {
2401      isPartialSpecialization = true;
2402
2403      // C++ [temp.class.spec]p10:
2404      //   The template parameter list of a specialization shall not
2405      //   contain default template argument values.
2406      for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2407        Decl *Param = TemplateParams->getParam(I);
2408        if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2409          if (TTP->hasDefaultArgument()) {
2410            Diag(TTP->getDefaultArgumentLoc(),
2411                 diag::err_default_arg_in_partial_spec);
2412            TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2413          }
2414        } else if (NonTypeTemplateParmDecl *NTTP
2415                     = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2416          if (Expr *DefArg = NTTP->getDefaultArgument()) {
2417            Diag(NTTP->getDefaultArgumentLoc(),
2418                 diag::err_default_arg_in_partial_spec)
2419              << DefArg->getSourceRange();
2420            NTTP->setDefaultArgument(0);
2421            DefArg->Destroy(Context);
2422          }
2423        } else {
2424          TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2425          if (Expr *DefArg = TTP->getDefaultArgument()) {
2426            Diag(TTP->getDefaultArgumentLoc(),
2427                 diag::err_default_arg_in_partial_spec)
2428              << DefArg->getSourceRange();
2429            TTP->setDefaultArgument(0);
2430            DefArg->Destroy(Context);
2431          }
2432        }
2433      }
2434    }
2435  }
2436
2437  // Check that the specialization uses the same tag kind as the
2438  // original template.
2439  TagDecl::TagKind Kind;
2440  switch (TagSpec) {
2441  default: assert(0 && "Unknown tag type!");
2442  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2443  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2444  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2445  }
2446  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2447                                    Kind, KWLoc,
2448                                    *ClassTemplate->getIdentifier())) {
2449    Diag(KWLoc, diag::err_use_with_wrong_tag)
2450      << ClassTemplate
2451      << CodeModificationHint::CreateReplacement(KWLoc,
2452                            ClassTemplate->getTemplatedDecl()->getKindName());
2453    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2454         diag::note_previous_use);
2455    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2456  }
2457
2458  // Translate the parser's template argument list in our AST format.
2459  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2460  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2461
2462  // Check that the template argument list is well-formed for this
2463  // template.
2464  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2465                                        TemplateArgs.size());
2466  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2467                                TemplateArgs.data(), TemplateArgs.size(),
2468                                RAngleLoc, false, Converted))
2469    return true;
2470
2471  assert((Converted.structuredSize() ==
2472            ClassTemplate->getTemplateParameters()->size()) &&
2473         "Converted template argument list is too short!");
2474
2475  // Find the class template (partial) specialization declaration that
2476  // corresponds to these arguments.
2477  llvm::FoldingSetNodeID ID;
2478  if (isPartialSpecialization) {
2479    bool MirrorsPrimaryTemplate;
2480    if (CheckClassTemplatePartialSpecializationArgs(
2481                                         ClassTemplate->getTemplateParameters(),
2482                                         Converted, MirrorsPrimaryTemplate))
2483      return true;
2484
2485    if (MirrorsPrimaryTemplate) {
2486      // C++ [temp.class.spec]p9b3:
2487      //
2488      //   -- The argument list of the specialization shall not be identical
2489      //      to the implicit argument list of the primary template.
2490      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2491        << (TK == TK_Definition)
2492        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2493                                                           RAngleLoc));
2494      return CheckClassTemplate(S, TagSpec, TK, KWLoc, SS,
2495                                ClassTemplate->getIdentifier(),
2496                                TemplateNameLoc,
2497                                Attr,
2498                                move(TemplateParameterLists),
2499                                AS_none);
2500    }
2501
2502    // FIXME: Template parameter list matters, too
2503    ClassTemplatePartialSpecializationDecl::Profile(ID,
2504                                                   Converted.getFlatArguments(),
2505                                                   Converted.flatSize());
2506  }
2507  else
2508    ClassTemplateSpecializationDecl::Profile(ID,
2509                                             Converted.getFlatArguments(),
2510                                             Converted.flatSize());
2511  void *InsertPos = 0;
2512  ClassTemplateSpecializationDecl *PrevDecl = 0;
2513
2514  if (isPartialSpecialization)
2515    PrevDecl
2516      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2517                                                                    InsertPos);
2518  else
2519    PrevDecl
2520      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2521
2522  ClassTemplateSpecializationDecl *Specialization = 0;
2523
2524  // Check whether we can declare a class template specialization in
2525  // the current scope.
2526  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2527                                            TemplateNameLoc,
2528                                            SS.getRange(),
2529                                            isPartialSpecialization,
2530                                            /*ExplicitInstantiation=*/false))
2531    return true;
2532
2533  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2534    // Since the only prior class template specialization with these
2535    // arguments was referenced but not declared, reuse that
2536    // declaration node as our own, updating its source location to
2537    // reflect our new declaration.
2538    Specialization = PrevDecl;
2539    Specialization->setLocation(TemplateNameLoc);
2540    PrevDecl = 0;
2541  } else if (isPartialSpecialization) {
2542    // Create a new class template partial specialization declaration node.
2543    TemplateParameterList *TemplateParams
2544      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2545    ClassTemplatePartialSpecializationDecl *PrevPartial
2546      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2547    ClassTemplatePartialSpecializationDecl *Partial
2548      = ClassTemplatePartialSpecializationDecl::Create(Context,
2549                                             ClassTemplate->getDeclContext(),
2550                                                       TemplateNameLoc,
2551                                                       TemplateParams,
2552                                                       ClassTemplate,
2553                                                       Converted,
2554                                                       PrevPartial);
2555
2556    if (PrevPartial) {
2557      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2558      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2559    } else {
2560      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2561    }
2562    Specialization = Partial;
2563
2564    // Check that all of the template parameters of the class template
2565    // partial specialization are deducible from the template
2566    // arguments. If not, this class template partial specialization
2567    // will never be used.
2568    llvm::SmallVector<bool, 8> DeducibleParams;
2569    DeducibleParams.resize(TemplateParams->size());
2570    MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams);
2571    unsigned NumNonDeducible = 0;
2572    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2573      if (!DeducibleParams[I])
2574        ++NumNonDeducible;
2575
2576    if (NumNonDeducible) {
2577      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2578        << (NumNonDeducible > 1)
2579        << SourceRange(TemplateNameLoc, RAngleLoc);
2580      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2581        if (!DeducibleParams[I]) {
2582          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2583          if (Param->getDeclName())
2584            Diag(Param->getLocation(),
2585                 diag::note_partial_spec_unused_parameter)
2586              << Param->getDeclName();
2587          else
2588            Diag(Param->getLocation(),
2589                 diag::note_partial_spec_unused_parameter)
2590              << std::string("<anonymous>");
2591        }
2592      }
2593    }
2594
2595  } else {
2596    // Create a new class template specialization declaration node for
2597    // this explicit specialization.
2598    Specialization
2599      = ClassTemplateSpecializationDecl::Create(Context,
2600                                             ClassTemplate->getDeclContext(),
2601                                                TemplateNameLoc,
2602                                                ClassTemplate,
2603                                                Converted,
2604                                                PrevDecl);
2605
2606    if (PrevDecl) {
2607      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2608      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2609    } else {
2610      ClassTemplate->getSpecializations().InsertNode(Specialization,
2611                                                     InsertPos);
2612    }
2613  }
2614
2615  // Note that this is an explicit specialization.
2616  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2617
2618  // Check that this isn't a redefinition of this specialization.
2619  if (TK == TK_Definition) {
2620    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2621      // FIXME: Should also handle explicit specialization after implicit
2622      // instantiation with a special diagnostic.
2623      SourceRange Range(TemplateNameLoc, RAngleLoc);
2624      Diag(TemplateNameLoc, diag::err_redefinition)
2625        << Context.getTypeDeclType(Specialization) << Range;
2626      Diag(Def->getLocation(), diag::note_previous_definition);
2627      Specialization->setInvalidDecl();
2628      return true;
2629    }
2630  }
2631
2632  // Build the fully-sugared type for this class template
2633  // specialization as the user wrote in the specialization
2634  // itself. This means that we'll pretty-print the type retrieved
2635  // from the specialization's declaration the way that the user
2636  // actually wrote the specialization, rather than formatting the
2637  // name based on the "canonical" representation used to store the
2638  // template arguments in the specialization.
2639  QualType WrittenTy
2640    = Context.getTemplateSpecializationType(Name,
2641                                            TemplateArgs.data(),
2642                                            TemplateArgs.size(),
2643                                  Context.getTypeDeclType(Specialization));
2644  Specialization->setTypeAsWritten(WrittenTy);
2645  TemplateArgsIn.release();
2646
2647  // C++ [temp.expl.spec]p9:
2648  //   A template explicit specialization is in the scope of the
2649  //   namespace in which the template was defined.
2650  //
2651  // We actually implement this paragraph where we set the semantic
2652  // context (in the creation of the ClassTemplateSpecializationDecl),
2653  // but we also maintain the lexical context where the actual
2654  // definition occurs.
2655  Specialization->setLexicalDeclContext(CurContext);
2656
2657  // We may be starting the definition of this specialization.
2658  if (TK == TK_Definition)
2659    Specialization->startDefinition();
2660
2661  // Add the specialization into its lexical context, so that it can
2662  // be seen when iterating through the list of declarations in that
2663  // context. However, specializations are not found by name lookup.
2664  CurContext->addDecl(Specialization);
2665  return DeclPtrTy::make(Specialization);
2666}
2667
2668Sema::DeclPtrTy
2669Sema::ActOnTemplateDeclarator(Scope *S,
2670                              MultiTemplateParamsArg TemplateParameterLists,
2671                              Declarator &D) {
2672  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2673}
2674
2675Sema::DeclPtrTy
2676Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2677                               MultiTemplateParamsArg TemplateParameterLists,
2678                                      Declarator &D) {
2679  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2680  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2681         "Not a function declarator!");
2682  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2683
2684  if (FTI.hasPrototype) {
2685    // FIXME: Diagnose arguments without names in C.
2686  }
2687
2688  Scope *ParentScope = FnBodyScope->getParent();
2689
2690  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2691                                  move(TemplateParameterLists),
2692                                  /*IsFunctionDefinition=*/true);
2693  if (FunctionTemplateDecl *FunctionTemplate
2694        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2695    return ActOnStartOfFunctionDef(FnBodyScope,
2696                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2697  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2698    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2699  return DeclPtrTy();
2700}
2701
2702// Explicit instantiation of a class template specialization
2703Sema::DeclResult
2704Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2705                                 unsigned TagSpec,
2706                                 SourceLocation KWLoc,
2707                                 const CXXScopeSpec &SS,
2708                                 TemplateTy TemplateD,
2709                                 SourceLocation TemplateNameLoc,
2710                                 SourceLocation LAngleLoc,
2711                                 ASTTemplateArgsPtr TemplateArgsIn,
2712                                 SourceLocation *TemplateArgLocs,
2713                                 SourceLocation RAngleLoc,
2714                                 AttributeList *Attr) {
2715  // Find the class template we're specializing
2716  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2717  ClassTemplateDecl *ClassTemplate
2718    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2719
2720  // Check that the specialization uses the same tag kind as the
2721  // original template.
2722  TagDecl::TagKind Kind;
2723  switch (TagSpec) {
2724  default: assert(0 && "Unknown tag type!");
2725  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2726  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2727  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2728  }
2729  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2730                                    Kind, KWLoc,
2731                                    *ClassTemplate->getIdentifier())) {
2732    Diag(KWLoc, diag::err_use_with_wrong_tag)
2733      << ClassTemplate
2734      << CodeModificationHint::CreateReplacement(KWLoc,
2735                            ClassTemplate->getTemplatedDecl()->getKindName());
2736    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2737         diag::note_previous_use);
2738    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2739  }
2740
2741  // C++0x [temp.explicit]p2:
2742  //   [...] An explicit instantiation shall appear in an enclosing
2743  //   namespace of its template. [...]
2744  //
2745  // This is C++ DR 275.
2746  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2747                                            TemplateNameLoc,
2748                                            SS.getRange(),
2749                                            /*PartialSpecialization=*/false,
2750                                            /*ExplicitInstantiation=*/true))
2751    return true;
2752
2753  // Translate the parser's template argument list in our AST format.
2754  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2755  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2756
2757  // Check that the template argument list is well-formed for this
2758  // template.
2759  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2760                                        TemplateArgs.size());
2761  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2762                                TemplateArgs.data(), TemplateArgs.size(),
2763                                RAngleLoc, false, Converted))
2764    return true;
2765
2766  assert((Converted.structuredSize() ==
2767            ClassTemplate->getTemplateParameters()->size()) &&
2768         "Converted template argument list is too short!");
2769
2770  // Find the class template specialization declaration that
2771  // corresponds to these arguments.
2772  llvm::FoldingSetNodeID ID;
2773  ClassTemplateSpecializationDecl::Profile(ID,
2774                                           Converted.getFlatArguments(),
2775                                           Converted.flatSize());
2776  void *InsertPos = 0;
2777  ClassTemplateSpecializationDecl *PrevDecl
2778    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2779
2780  ClassTemplateSpecializationDecl *Specialization = 0;
2781
2782  bool SpecializationRequiresInstantiation = true;
2783  if (PrevDecl) {
2784    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2785      // This particular specialization has already been declared or
2786      // instantiated. We cannot explicitly instantiate it.
2787      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2788        << Context.getTypeDeclType(PrevDecl);
2789      Diag(PrevDecl->getLocation(),
2790           diag::note_previous_explicit_instantiation);
2791      return DeclPtrTy::make(PrevDecl);
2792    }
2793
2794    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2795      // C++ DR 259, C++0x [temp.explicit]p4:
2796      //   For a given set of template parameters, if an explicit
2797      //   instantiation of a template appears after a declaration of
2798      //   an explicit specialization for that template, the explicit
2799      //   instantiation has no effect.
2800      if (!getLangOptions().CPlusPlus0x) {
2801        Diag(TemplateNameLoc,
2802             diag::ext_explicit_instantiation_after_specialization)
2803          << Context.getTypeDeclType(PrevDecl);
2804        Diag(PrevDecl->getLocation(),
2805             diag::note_previous_template_specialization);
2806      }
2807
2808      // Create a new class template specialization declaration node
2809      // for this explicit specialization. This node is only used to
2810      // record the existence of this explicit instantiation for
2811      // accurate reproduction of the source code; we don't actually
2812      // use it for anything, since it is semantically irrelevant.
2813      Specialization
2814        = ClassTemplateSpecializationDecl::Create(Context,
2815                                             ClassTemplate->getDeclContext(),
2816                                                  TemplateNameLoc,
2817                                                  ClassTemplate,
2818                                                  Converted, 0);
2819      Specialization->setLexicalDeclContext(CurContext);
2820      CurContext->addDecl(Specialization);
2821      return DeclPtrTy::make(Specialization);
2822    }
2823
2824    // If we have already (implicitly) instantiated this
2825    // specialization, there is less work to do.
2826    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2827      SpecializationRequiresInstantiation = false;
2828
2829    // Since the only prior class template specialization with these
2830    // arguments was referenced but not declared, reuse that
2831    // declaration node as our own, updating its source location to
2832    // reflect our new declaration.
2833    Specialization = PrevDecl;
2834    Specialization->setLocation(TemplateNameLoc);
2835    PrevDecl = 0;
2836  } else {
2837    // Create a new class template specialization declaration node for
2838    // this explicit specialization.
2839    Specialization
2840      = ClassTemplateSpecializationDecl::Create(Context,
2841                                             ClassTemplate->getDeclContext(),
2842                                                TemplateNameLoc,
2843                                                ClassTemplate,
2844                                                Converted, 0);
2845
2846    ClassTemplate->getSpecializations().InsertNode(Specialization,
2847                                                   InsertPos);
2848  }
2849
2850  // Build the fully-sugared type for this explicit instantiation as
2851  // the user wrote in the explicit instantiation itself. This means
2852  // that we'll pretty-print the type retrieved from the
2853  // specialization's declaration the way that the user actually wrote
2854  // the explicit instantiation, rather than formatting the name based
2855  // on the "canonical" representation used to store the template
2856  // arguments in the specialization.
2857  QualType WrittenTy
2858    = Context.getTemplateSpecializationType(Name,
2859                                            TemplateArgs.data(),
2860                                            TemplateArgs.size(),
2861                                  Context.getTypeDeclType(Specialization));
2862  Specialization->setTypeAsWritten(WrittenTy);
2863  TemplateArgsIn.release();
2864
2865  // Add the explicit instantiation into its lexical context. However,
2866  // since explicit instantiations are never found by name lookup, we
2867  // just put it into the declaration context directly.
2868  Specialization->setLexicalDeclContext(CurContext);
2869  CurContext->addDecl(Specialization);
2870
2871  // C++ [temp.explicit]p3:
2872  //   A definition of a class template or class member template
2873  //   shall be in scope at the point of the explicit instantiation of
2874  //   the class template or class member template.
2875  //
2876  // This check comes when we actually try to perform the
2877  // instantiation.
2878  if (SpecializationRequiresInstantiation)
2879    InstantiateClassTemplateSpecialization(Specialization, true);
2880  else // Instantiate the members of this class template specialization.
2881    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2882
2883  return DeclPtrTy::make(Specialization);
2884}
2885
2886// Explicit instantiation of a member class of a class template.
2887Sema::DeclResult
2888Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2889                                 unsigned TagSpec,
2890                                 SourceLocation KWLoc,
2891                                 const CXXScopeSpec &SS,
2892                                 IdentifierInfo *Name,
2893                                 SourceLocation NameLoc,
2894                                 AttributeList *Attr) {
2895
2896  bool Owned = false;
2897  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference,
2898                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
2899                            MultiTemplateParamsArg(*this, 0, 0), Owned);
2900  if (!TagD)
2901    return true;
2902
2903  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2904  if (Tag->isEnum()) {
2905    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2906      << Context.getTypeDeclType(Tag);
2907    return true;
2908  }
2909
2910  if (Tag->isInvalidDecl())
2911    return true;
2912
2913  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2914  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2915  if (!Pattern) {
2916    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2917      << Context.getTypeDeclType(Record);
2918    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2919    return true;
2920  }
2921
2922  // C++0x [temp.explicit]p2:
2923  //   [...] An explicit instantiation shall appear in an enclosing
2924  //   namespace of its template. [...]
2925  //
2926  // This is C++ DR 275.
2927  if (getLangOptions().CPlusPlus0x) {
2928    // FIXME: In C++98, we would like to turn these errors into warnings,
2929    // dependent on a -Wc++0x flag.
2930    DeclContext *PatternContext
2931      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2932    if (!CurContext->Encloses(PatternContext)) {
2933      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2934        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2935      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2936    }
2937  }
2938
2939  if (!Record->getDefinition(Context)) {
2940    // If the class has a definition, instantiate it (and all of its
2941    // members, recursively).
2942    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2943    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2944                                    getTemplateInstantiationArgs(Record),
2945                                    /*ExplicitInstantiation=*/true))
2946      return true;
2947  } else // Instantiate all of the members of class.
2948    InstantiateClassMembers(TemplateLoc, Record,
2949                            getTemplateInstantiationArgs(Record));
2950
2951  // FIXME: We don't have any representation for explicit instantiations of
2952  // member classes. Such a representation is not needed for compilation, but it
2953  // should be available for clients that want to see all of the declarations in
2954  // the source code.
2955  return TagD;
2956}
2957
2958Sema::TypeResult
2959Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2960                        const IdentifierInfo &II, SourceLocation IdLoc) {
2961  NestedNameSpecifier *NNS
2962    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2963  if (!NNS)
2964    return true;
2965
2966  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2967  if (T.isNull())
2968    return true;
2969  return T.getAsOpaquePtr();
2970}
2971
2972Sema::TypeResult
2973Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2974                        SourceLocation TemplateLoc, TypeTy *Ty) {
2975  QualType T = QualType::getFromOpaquePtr(Ty);
2976  NestedNameSpecifier *NNS
2977    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2978  const TemplateSpecializationType *TemplateId
2979    = T->getAsTemplateSpecializationType();
2980  assert(TemplateId && "Expected a template specialization type");
2981
2982  if (NNS->isDependent())
2983    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2984
2985  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2986}
2987
2988/// \brief Build the type that describes a C++ typename specifier,
2989/// e.g., "typename T::type".
2990QualType
2991Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2992                        SourceRange Range) {
2993  CXXRecordDecl *CurrentInstantiation = 0;
2994  if (NNS->isDependent()) {
2995    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2996
2997    // If the nested-name-specifier does not refer to the current
2998    // instantiation, then build a typename type.
2999    if (!CurrentInstantiation)
3000      return Context.getTypenameType(NNS, &II);
3001  }
3002
3003  DeclContext *Ctx = 0;
3004
3005  if (CurrentInstantiation)
3006    Ctx = CurrentInstantiation;
3007  else {
3008    CXXScopeSpec SS;
3009    SS.setScopeRep(NNS);
3010    SS.setRange(Range);
3011    if (RequireCompleteDeclContext(SS))
3012      return QualType();
3013
3014    Ctx = computeDeclContext(SS);
3015  }
3016  assert(Ctx && "No declaration context?");
3017
3018  DeclarationName Name(&II);
3019  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3020                                            false);
3021  unsigned DiagID = 0;
3022  Decl *Referenced = 0;
3023  switch (Result.getKind()) {
3024  case LookupResult::NotFound:
3025    if (Ctx->isTranslationUnit())
3026      DiagID = diag::err_typename_nested_not_found_global;
3027    else
3028      DiagID = diag::err_typename_nested_not_found;
3029    break;
3030
3031  case LookupResult::Found:
3032    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3033      // We found a type. Build a QualifiedNameType, since the
3034      // typename-specifier was just sugar. FIXME: Tell
3035      // QualifiedNameType that it has a "typename" prefix.
3036      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3037    }
3038
3039    DiagID = diag::err_typename_nested_not_type;
3040    Referenced = Result.getAsDecl();
3041    break;
3042
3043  case LookupResult::FoundOverloaded:
3044    DiagID = diag::err_typename_nested_not_type;
3045    Referenced = *Result.begin();
3046    break;
3047
3048  case LookupResult::AmbiguousBaseSubobjectTypes:
3049  case LookupResult::AmbiguousBaseSubobjects:
3050  case LookupResult::AmbiguousReference:
3051    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3052    return QualType();
3053  }
3054
3055  // If we get here, it's because name lookup did not find a
3056  // type. Emit an appropriate diagnostic and return an error.
3057  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3058    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3059  else
3060    Diag(Range.getEnd(), DiagID) << Range << Name;
3061  if (Referenced)
3062    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3063      << Name;
3064  return QualType();
3065}
3066