SemaTemplate.cpp revision bebbe0d9b7568ce43a464286bee49429489ef483
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441                                            const ParsedTemplateArgument &Arg) {
442
443  switch (Arg.getKind()) {
444  case ParsedTemplateArgument::Type: {
445    TypeSourceInfo *DI;
446    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447    if (!DI)
448      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449    return TemplateArgumentLoc(TemplateArgument(T), DI);
450  }
451
452  case ParsedTemplateArgument::NonType: {
453    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454    return TemplateArgumentLoc(TemplateArgument(E), E);
455  }
456
457  case ParsedTemplateArgument::Template: {
458    TemplateName Template = Arg.getAsTemplate().get();
459    return TemplateArgumentLoc(TemplateArgument(Template),
460                               Arg.getScopeSpec().getRange(),
461                               Arg.getLocation());
462  }
463  }
464
465  llvm_unreachable("Unhandled parsed template argument");
466  return TemplateArgumentLoc();
467}
468
469/// \brief Translates template arguments as provided by the parser
470/// into template arguments used by semantic analysis.
471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472                                      TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474   TemplateArgs.addArgument(translateTemplateArgument(*this,
475                                                      TemplateArgsIn[I]));
476}
477
478/// ActOnTypeParameter - Called when a C++ template type parameter
479/// (e.g., "typename T") has been parsed. Typename specifies whether
480/// the keyword "typename" was used to declare the type parameter
481/// (otherwise, "class" was used), and KeyLoc is the location of the
482/// "class" or "typename" keyword. ParamName is the name of the
483/// parameter (NULL indicates an unnamed template parameter) and
484/// ParamName is the location of the parameter name (if any).
485/// If the type parameter has a default argument, it will be added
486/// later via ActOnTypeParameterDefault.
487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488                               SourceLocation EllipsisLoc,
489                               SourceLocation KeyLoc,
490                               IdentifierInfo *ParamName,
491                               SourceLocation ParamNameLoc,
492                               unsigned Depth, unsigned Position,
493                               SourceLocation EqualLoc,
494                               ParsedType DefaultArg) {
495  assert(S->isTemplateParamScope() &&
496         "Template type parameter not in template parameter scope!");
497  bool Invalid = false;
498
499  if (ParamName) {
500    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501                                           LookupOrdinaryName,
502                                           ForRedeclaration);
503    if (PrevDecl && PrevDecl->isTemplateParameter())
504      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505                                                           PrevDecl);
506  }
507
508  SourceLocation Loc = ParamNameLoc;
509  if (!ParamName)
510    Loc = KeyLoc;
511
512  TemplateTypeParmDecl *Param
513    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514                                   Loc, Depth, Position, ParamName, Typename,
515                                   Ellipsis);
516  if (Invalid)
517    Param->setInvalidDecl();
518
519  if (ParamName) {
520    // Add the template parameter into the current scope.
521    S->AddDecl(Param);
522    IdResolver.AddDecl(Param);
523  }
524
525  // Handle the default argument, if provided.
526  if (DefaultArg) {
527    TypeSourceInfo *DefaultTInfo;
528    GetTypeFromParser(DefaultArg, &DefaultTInfo);
529
530    assert(DefaultTInfo && "expected source information for type");
531
532    // C++0x [temp.param]p9:
533    // A default template-argument may be specified for any kind of
534    // template-parameter that is not a template parameter pack.
535    if (Ellipsis) {
536      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537      return Param;
538    }
539
540    // Check the template argument itself.
541    if (CheckTemplateArgument(Param, DefaultTInfo)) {
542      Param->setInvalidDecl();
543      return Param;
544    }
545
546    Param->setDefaultArgument(DefaultTInfo, false);
547  }
548
549  return Param;
550}
551
552/// \brief Check that the type of a non-type template parameter is
553/// well-formed.
554///
555/// \returns the (possibly-promoted) parameter type if valid;
556/// otherwise, produces a diagnostic and returns a NULL type.
557QualType
558Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
559  // We don't allow variably-modified types as the type of non-type template
560  // parameters.
561  if (T->isVariablyModifiedType()) {
562    Diag(Loc, diag::err_variably_modified_nontype_template_param)
563      << T;
564    return QualType();
565  }
566
567  // C++ [temp.param]p4:
568  //
569  // A non-type template-parameter shall have one of the following
570  // (optionally cv-qualified) types:
571  //
572  //       -- integral or enumeration type,
573  if (T->isIntegralOrEnumerationType() ||
574      //   -- pointer to object or pointer to function,
575      T->isPointerType() ||
576      //   -- reference to object or reference to function,
577      T->isReferenceType() ||
578      //   -- pointer to member.
579      T->isMemberPointerType() ||
580      // If T is a dependent type, we can't do the check now, so we
581      // assume that it is well-formed.
582      T->isDependentType())
583    return T;
584  // C++ [temp.param]p8:
585  //
586  //   A non-type template-parameter of type "array of T" or
587  //   "function returning T" is adjusted to be of type "pointer to
588  //   T" or "pointer to function returning T", respectively.
589  else if (T->isArrayType())
590    // FIXME: Keep the type prior to promotion?
591    return Context.getArrayDecayedType(T);
592  else if (T->isFunctionType())
593    // FIXME: Keep the type prior to promotion?
594    return Context.getPointerType(T);
595
596  Diag(Loc, diag::err_template_nontype_parm_bad_type)
597    << T;
598
599  return QualType();
600}
601
602Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
603                                          unsigned Depth,
604                                          unsigned Position,
605                                          SourceLocation EqualLoc,
606                                          Expr *Default) {
607  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
608  QualType T = TInfo->getType();
609
610  assert(S->isTemplateParamScope() &&
611         "Non-type template parameter not in template parameter scope!");
612  bool Invalid = false;
613
614  IdentifierInfo *ParamName = D.getIdentifier();
615  if (ParamName) {
616    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
617                                           LookupOrdinaryName,
618                                           ForRedeclaration);
619    if (PrevDecl && PrevDecl->isTemplateParameter())
620      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
621                                                           PrevDecl);
622  }
623
624  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
625  if (T.isNull()) {
626    T = Context.IntTy; // Recover with an 'int' type.
627    Invalid = true;
628  }
629
630  NonTypeTemplateParmDecl *Param
631    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
632                                      D.getIdentifierLoc(),
633                                      Depth, Position, ParamName, T, TInfo);
634  if (Invalid)
635    Param->setInvalidDecl();
636
637  if (D.getIdentifier()) {
638    // Add the template parameter into the current scope.
639    S->AddDecl(Param);
640    IdResolver.AddDecl(Param);
641  }
642
643  // Check the well-formedness of the default template argument, if provided.
644  if (Default) {
645    TemplateArgument Converted;
646    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
647      Param->setInvalidDecl();
648      return Param;
649    }
650
651    Param->setDefaultArgument(Default, false);
652  }
653
654  return Param;
655}
656
657/// ActOnTemplateTemplateParameter - Called when a C++ template template
658/// parameter (e.g. T in template <template <typename> class T> class array)
659/// has been parsed. S is the current scope.
660Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
661                                           SourceLocation TmpLoc,
662                                           TemplateParamsTy *Params,
663                                           IdentifierInfo *Name,
664                                           SourceLocation NameLoc,
665                                           unsigned Depth,
666                                           unsigned Position,
667                                           SourceLocation EqualLoc,
668                                       const ParsedTemplateArgument &Default) {
669  assert(S->isTemplateParamScope() &&
670         "Template template parameter not in template parameter scope!");
671
672  // Construct the parameter object.
673  TemplateTemplateParmDecl *Param =
674    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
675                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
676                                     Depth, Position, Name,
677                                     Params);
678
679  // If the template template parameter has a name, then link the identifier
680  // into the scope and lookup mechanisms.
681  if (Name) {
682    S->AddDecl(Param);
683    IdResolver.AddDecl(Param);
684  }
685
686  if (!Default.isInvalid()) {
687    // Check only that we have a template template argument. We don't want to
688    // try to check well-formedness now, because our template template parameter
689    // might have dependent types in its template parameters, which we wouldn't
690    // be able to match now.
691    //
692    // If none of the template template parameter's template arguments mention
693    // other template parameters, we could actually perform more checking here.
694    // However, it isn't worth doing.
695    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
696    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
697      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
698        << DefaultArg.getSourceRange();
699      return Param;
700    }
701
702    Param->setDefaultArgument(DefaultArg, false);
703  }
704
705  if (Params->size() == 0) {
706    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
707      << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
708    Param->setInvalidDecl();
709  }
710  return Param;
711}
712
713/// ActOnTemplateParameterList - Builds a TemplateParameterList that
714/// contains the template parameters in Params/NumParams.
715Sema::TemplateParamsTy *
716Sema::ActOnTemplateParameterList(unsigned Depth,
717                                 SourceLocation ExportLoc,
718                                 SourceLocation TemplateLoc,
719                                 SourceLocation LAngleLoc,
720                                 Decl **Params, unsigned NumParams,
721                                 SourceLocation RAngleLoc) {
722  if (ExportLoc.isValid())
723    Diag(ExportLoc, diag::warn_template_export_unsupported);
724
725  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
726                                       (NamedDecl**)Params, NumParams,
727                                       RAngleLoc);
728}
729
730static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
731  if (SS.isSet())
732    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
733                        SS.getRange());
734}
735
736DeclResult
737Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
738                         SourceLocation KWLoc, CXXScopeSpec &SS,
739                         IdentifierInfo *Name, SourceLocation NameLoc,
740                         AttributeList *Attr,
741                         TemplateParameterList *TemplateParams,
742                         AccessSpecifier AS) {
743  assert(TemplateParams && TemplateParams->size() > 0 &&
744         "No template parameters");
745  assert(TUK != TUK_Reference && "Can only declare or define class templates");
746  bool Invalid = false;
747
748  // Check that we can declare a template here.
749  if (CheckTemplateDeclScope(S, TemplateParams))
750    return true;
751
752  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
753  assert(Kind != TTK_Enum && "can't build template of enumerated type");
754
755  // There is no such thing as an unnamed class template.
756  if (!Name) {
757    Diag(KWLoc, diag::err_template_unnamed_class);
758    return true;
759  }
760
761  // Find any previous declaration with this name.
762  DeclContext *SemanticContext;
763  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
764                        ForRedeclaration);
765  if (SS.isNotEmpty() && !SS.isInvalid()) {
766    SemanticContext = computeDeclContext(SS, true);
767    if (!SemanticContext) {
768      // FIXME: Produce a reasonable diagnostic here
769      return true;
770    }
771
772    if (RequireCompleteDeclContext(SS, SemanticContext))
773      return true;
774
775    LookupQualifiedName(Previous, SemanticContext);
776  } else {
777    SemanticContext = CurContext;
778    LookupName(Previous, S);
779  }
780
781  if (Previous.isAmbiguous())
782    return true;
783
784  NamedDecl *PrevDecl = 0;
785  if (Previous.begin() != Previous.end())
786    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
787
788  // If there is a previous declaration with the same name, check
789  // whether this is a valid redeclaration.
790  ClassTemplateDecl *PrevClassTemplate
791    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
792
793  // We may have found the injected-class-name of a class template,
794  // class template partial specialization, or class template specialization.
795  // In these cases, grab the template that is being defined or specialized.
796  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
797      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
798    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
799    PrevClassTemplate
800      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
801    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
802      PrevClassTemplate
803        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
804            ->getSpecializedTemplate();
805    }
806  }
807
808  if (TUK == TUK_Friend) {
809    // C++ [namespace.memdef]p3:
810    //   [...] When looking for a prior declaration of a class or a function
811    //   declared as a friend, and when the name of the friend class or
812    //   function is neither a qualified name nor a template-id, scopes outside
813    //   the innermost enclosing namespace scope are not considered.
814    if (!SS.isSet()) {
815      DeclContext *OutermostContext = CurContext;
816      while (!OutermostContext->isFileContext())
817        OutermostContext = OutermostContext->getLookupParent();
818
819      if (PrevDecl &&
820          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
821           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
822        SemanticContext = PrevDecl->getDeclContext();
823      } else {
824        // Declarations in outer scopes don't matter. However, the outermost
825        // context we computed is the semantic context for our new
826        // declaration.
827        PrevDecl = PrevClassTemplate = 0;
828        SemanticContext = OutermostContext;
829      }
830    }
831
832    if (CurContext->isDependentContext()) {
833      // If this is a dependent context, we don't want to link the friend
834      // class template to the template in scope, because that would perform
835      // checking of the template parameter lists that can't be performed
836      // until the outer context is instantiated.
837      PrevDecl = PrevClassTemplate = 0;
838    }
839  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
840    PrevDecl = PrevClassTemplate = 0;
841
842  if (PrevClassTemplate) {
843    // Ensure that the template parameter lists are compatible.
844    if (!TemplateParameterListsAreEqual(TemplateParams,
845                                   PrevClassTemplate->getTemplateParameters(),
846                                        /*Complain=*/true,
847                                        TPL_TemplateMatch))
848      return true;
849
850    // C++ [temp.class]p4:
851    //   In a redeclaration, partial specialization, explicit
852    //   specialization or explicit instantiation of a class template,
853    //   the class-key shall agree in kind with the original class
854    //   template declaration (7.1.5.3).
855    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
856    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
857      Diag(KWLoc, diag::err_use_with_wrong_tag)
858        << Name
859        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
860      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
861      Kind = PrevRecordDecl->getTagKind();
862    }
863
864    // Check for redefinition of this class template.
865    if (TUK == TUK_Definition) {
866      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
867        Diag(NameLoc, diag::err_redefinition) << Name;
868        Diag(Def->getLocation(), diag::note_previous_definition);
869        // FIXME: Would it make sense to try to "forget" the previous
870        // definition, as part of error recovery?
871        return true;
872      }
873    }
874  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
875    // Maybe we will complain about the shadowed template parameter.
876    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
877    // Just pretend that we didn't see the previous declaration.
878    PrevDecl = 0;
879  } else if (PrevDecl) {
880    // C++ [temp]p5:
881    //   A class template shall not have the same name as any other
882    //   template, class, function, object, enumeration, enumerator,
883    //   namespace, or type in the same scope (3.3), except as specified
884    //   in (14.5.4).
885    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
886    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
887    return true;
888  }
889
890  // Check the template parameter list of this declaration, possibly
891  // merging in the template parameter list from the previous class
892  // template declaration.
893  if (CheckTemplateParameterList(TemplateParams,
894            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
895                                 TPC_ClassTemplate))
896    Invalid = true;
897
898  if (SS.isSet()) {
899    // If the name of the template was qualified, we must be defining the
900    // template out-of-line.
901    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
902        !(TUK == TUK_Friend && CurContext->isDependentContext()))
903      Diag(NameLoc, diag::err_member_def_does_not_match)
904        << Name << SemanticContext << SS.getRange();
905  }
906
907  CXXRecordDecl *NewClass =
908    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
909                          PrevClassTemplate?
910                            PrevClassTemplate->getTemplatedDecl() : 0,
911                          /*DelayTypeCreation=*/true);
912  SetNestedNameSpecifier(NewClass, SS);
913
914  ClassTemplateDecl *NewTemplate
915    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
916                                DeclarationName(Name), TemplateParams,
917                                NewClass, PrevClassTemplate);
918  NewClass->setDescribedClassTemplate(NewTemplate);
919
920  // Build the type for the class template declaration now.
921  QualType T = NewTemplate->getInjectedClassNameSpecialization();
922  T = Context.getInjectedClassNameType(NewClass, T);
923  assert(T->isDependentType() && "Class template type is not dependent?");
924  (void)T;
925
926  // If we are providing an explicit specialization of a member that is a
927  // class template, make a note of that.
928  if (PrevClassTemplate &&
929      PrevClassTemplate->getInstantiatedFromMemberTemplate())
930    PrevClassTemplate->setMemberSpecialization();
931
932  // Set the access specifier.
933  if (!Invalid && TUK != TUK_Friend)
934    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
935
936  // Set the lexical context of these templates
937  NewClass->setLexicalDeclContext(CurContext);
938  NewTemplate->setLexicalDeclContext(CurContext);
939
940  if (TUK == TUK_Definition)
941    NewClass->startDefinition();
942
943  if (Attr)
944    ProcessDeclAttributeList(S, NewClass, Attr);
945
946  if (TUK != TUK_Friend)
947    PushOnScopeChains(NewTemplate, S);
948  else {
949    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
950      NewTemplate->setAccess(PrevClassTemplate->getAccess());
951      NewClass->setAccess(PrevClassTemplate->getAccess());
952    }
953
954    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
955                                       PrevClassTemplate != NULL);
956
957    // Friend templates are visible in fairly strange ways.
958    if (!CurContext->isDependentContext()) {
959      DeclContext *DC = SemanticContext->getRedeclContext();
960      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
961      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
962        PushOnScopeChains(NewTemplate, EnclosingScope,
963                          /* AddToContext = */ false);
964    }
965
966    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
967                                            NewClass->getLocation(),
968                                            NewTemplate,
969                                    /*FIXME:*/NewClass->getLocation());
970    Friend->setAccess(AS_public);
971    CurContext->addDecl(Friend);
972  }
973
974  if (Invalid) {
975    NewTemplate->setInvalidDecl();
976    NewClass->setInvalidDecl();
977  }
978  return NewTemplate;
979}
980
981/// \brief Diagnose the presence of a default template argument on a
982/// template parameter, which is ill-formed in certain contexts.
983///
984/// \returns true if the default template argument should be dropped.
985static bool DiagnoseDefaultTemplateArgument(Sema &S,
986                                            Sema::TemplateParamListContext TPC,
987                                            SourceLocation ParamLoc,
988                                            SourceRange DefArgRange) {
989  switch (TPC) {
990  case Sema::TPC_ClassTemplate:
991    return false;
992
993  case Sema::TPC_FunctionTemplate:
994    // C++ [temp.param]p9:
995    //   A default template-argument shall not be specified in a
996    //   function template declaration or a function template
997    //   definition [...]
998    // (This sentence is not in C++0x, per DR226).
999    if (!S.getLangOptions().CPlusPlus0x)
1000      S.Diag(ParamLoc,
1001             diag::err_template_parameter_default_in_function_template)
1002        << DefArgRange;
1003    return false;
1004
1005  case Sema::TPC_ClassTemplateMember:
1006    // C++0x [temp.param]p9:
1007    //   A default template-argument shall not be specified in the
1008    //   template-parameter-lists of the definition of a member of a
1009    //   class template that appears outside of the member's class.
1010    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1011      << DefArgRange;
1012    return true;
1013
1014  case Sema::TPC_FriendFunctionTemplate:
1015    // C++ [temp.param]p9:
1016    //   A default template-argument shall not be specified in a
1017    //   friend template declaration.
1018    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1019      << DefArgRange;
1020    return true;
1021
1022    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1023    // for friend function templates if there is only a single
1024    // declaration (and it is a definition). Strange!
1025  }
1026
1027  return false;
1028}
1029
1030/// \brief Checks the validity of a template parameter list, possibly
1031/// considering the template parameter list from a previous
1032/// declaration.
1033///
1034/// If an "old" template parameter list is provided, it must be
1035/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1036/// template parameter list.
1037///
1038/// \param NewParams Template parameter list for a new template
1039/// declaration. This template parameter list will be updated with any
1040/// default arguments that are carried through from the previous
1041/// template parameter list.
1042///
1043/// \param OldParams If provided, template parameter list from a
1044/// previous declaration of the same template. Default template
1045/// arguments will be merged from the old template parameter list to
1046/// the new template parameter list.
1047///
1048/// \param TPC Describes the context in which we are checking the given
1049/// template parameter list.
1050///
1051/// \returns true if an error occurred, false otherwise.
1052bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1053                                      TemplateParameterList *OldParams,
1054                                      TemplateParamListContext TPC) {
1055  bool Invalid = false;
1056
1057  // C++ [temp.param]p10:
1058  //   The set of default template-arguments available for use with a
1059  //   template declaration or definition is obtained by merging the
1060  //   default arguments from the definition (if in scope) and all
1061  //   declarations in scope in the same way default function
1062  //   arguments are (8.3.6).
1063  bool SawDefaultArgument = false;
1064  SourceLocation PreviousDefaultArgLoc;
1065
1066  bool SawParameterPack = false;
1067  SourceLocation ParameterPackLoc;
1068
1069  // Dummy initialization to avoid warnings.
1070  TemplateParameterList::iterator OldParam = NewParams->end();
1071  if (OldParams)
1072    OldParam = OldParams->begin();
1073
1074  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1075                                    NewParamEnd = NewParams->end();
1076       NewParam != NewParamEnd; ++NewParam) {
1077    // Variables used to diagnose redundant default arguments
1078    bool RedundantDefaultArg = false;
1079    SourceLocation OldDefaultLoc;
1080    SourceLocation NewDefaultLoc;
1081
1082    // Variables used to diagnose missing default arguments
1083    bool MissingDefaultArg = false;
1084
1085    // C++0x [temp.param]p11:
1086    // If a template parameter of a class template is a template parameter pack,
1087    // it must be the last template parameter.
1088    if (SawParameterPack) {
1089      Diag(ParameterPackLoc,
1090           diag::err_template_param_pack_must_be_last_template_parameter);
1091      Invalid = true;
1092    }
1093
1094    if (TemplateTypeParmDecl *NewTypeParm
1095          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1096      // Check the presence of a default argument here.
1097      if (NewTypeParm->hasDefaultArgument() &&
1098          DiagnoseDefaultTemplateArgument(*this, TPC,
1099                                          NewTypeParm->getLocation(),
1100               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1101                                                       .getSourceRange()))
1102        NewTypeParm->removeDefaultArgument();
1103
1104      // Merge default arguments for template type parameters.
1105      TemplateTypeParmDecl *OldTypeParm
1106          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1107
1108      if (NewTypeParm->isParameterPack()) {
1109        assert(!NewTypeParm->hasDefaultArgument() &&
1110               "Parameter packs can't have a default argument!");
1111        SawParameterPack = true;
1112        ParameterPackLoc = NewTypeParm->getLocation();
1113      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1114                 NewTypeParm->hasDefaultArgument()) {
1115        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1116        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1117        SawDefaultArgument = true;
1118        RedundantDefaultArg = true;
1119        PreviousDefaultArgLoc = NewDefaultLoc;
1120      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1121        // Merge the default argument from the old declaration to the
1122        // new declaration.
1123        SawDefaultArgument = true;
1124        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1125                                        true);
1126        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1127      } else if (NewTypeParm->hasDefaultArgument()) {
1128        SawDefaultArgument = true;
1129        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1130      } else if (SawDefaultArgument)
1131        MissingDefaultArg = true;
1132    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1133               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1134      // Check the presence of a default argument here.
1135      if (NewNonTypeParm->hasDefaultArgument() &&
1136          DiagnoseDefaultTemplateArgument(*this, TPC,
1137                                          NewNonTypeParm->getLocation(),
1138                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1139        NewNonTypeParm->removeDefaultArgument();
1140      }
1141
1142      // Merge default arguments for non-type template parameters
1143      NonTypeTemplateParmDecl *OldNonTypeParm
1144        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1145      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1146          NewNonTypeParm->hasDefaultArgument()) {
1147        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1149        SawDefaultArgument = true;
1150        RedundantDefaultArg = true;
1151        PreviousDefaultArgLoc = NewDefaultLoc;
1152      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1153        // Merge the default argument from the old declaration to the
1154        // new declaration.
1155        SawDefaultArgument = true;
1156        // FIXME: We need to create a new kind of "default argument"
1157        // expression that points to a previous template template
1158        // parameter.
1159        NewNonTypeParm->setDefaultArgument(
1160                                         OldNonTypeParm->getDefaultArgument(),
1161                                         /*Inherited=*/ true);
1162        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1163      } else if (NewNonTypeParm->hasDefaultArgument()) {
1164        SawDefaultArgument = true;
1165        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1166      } else if (SawDefaultArgument)
1167        MissingDefaultArg = true;
1168    } else {
1169      // Check the presence of a default argument here.
1170      TemplateTemplateParmDecl *NewTemplateParm
1171        = cast<TemplateTemplateParmDecl>(*NewParam);
1172      if (NewTemplateParm->hasDefaultArgument() &&
1173          DiagnoseDefaultTemplateArgument(*this, TPC,
1174                                          NewTemplateParm->getLocation(),
1175                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1176        NewTemplateParm->removeDefaultArgument();
1177
1178      // Merge default arguments for template template parameters
1179      TemplateTemplateParmDecl *OldTemplateParm
1180        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1181      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1182          NewTemplateParm->hasDefaultArgument()) {
1183        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1184        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1185        SawDefaultArgument = true;
1186        RedundantDefaultArg = true;
1187        PreviousDefaultArgLoc = NewDefaultLoc;
1188      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1189        // Merge the default argument from the old declaration to the
1190        // new declaration.
1191        SawDefaultArgument = true;
1192        // FIXME: We need to create a new kind of "default argument" expression
1193        // that points to a previous template template parameter.
1194        NewTemplateParm->setDefaultArgument(
1195                                          OldTemplateParm->getDefaultArgument(),
1196                                          /*Inherited=*/ true);
1197        PreviousDefaultArgLoc
1198          = OldTemplateParm->getDefaultArgument().getLocation();
1199      } else if (NewTemplateParm->hasDefaultArgument()) {
1200        SawDefaultArgument = true;
1201        PreviousDefaultArgLoc
1202          = NewTemplateParm->getDefaultArgument().getLocation();
1203      } else if (SawDefaultArgument)
1204        MissingDefaultArg = true;
1205    }
1206
1207    if (RedundantDefaultArg) {
1208      // C++ [temp.param]p12:
1209      //   A template-parameter shall not be given default arguments
1210      //   by two different declarations in the same scope.
1211      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1212      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1213      Invalid = true;
1214    } else if (MissingDefaultArg) {
1215      // C++ [temp.param]p11:
1216      //   If a template-parameter has a default template-argument,
1217      //   all subsequent template-parameters shall have a default
1218      //   template-argument supplied.
1219      Diag((*NewParam)->getLocation(),
1220           diag::err_template_param_default_arg_missing);
1221      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1222      Invalid = true;
1223    }
1224
1225    // If we have an old template parameter list that we're merging
1226    // in, move on to the next parameter.
1227    if (OldParams)
1228      ++OldParam;
1229  }
1230
1231  return Invalid;
1232}
1233
1234namespace {
1235
1236/// A class which looks for a use of a certain level of template
1237/// parameter.
1238struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1239  typedef RecursiveASTVisitor<DependencyChecker> super;
1240
1241  unsigned Depth;
1242  bool Match;
1243
1244  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1245    NamedDecl *ND = Params->getParam(0);
1246    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1247      Depth = PD->getDepth();
1248    } else if (NonTypeTemplateParmDecl *PD =
1249                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1250      Depth = PD->getDepth();
1251    } else {
1252      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1253    }
1254  }
1255
1256  bool Matches(unsigned ParmDepth) {
1257    if (ParmDepth >= Depth) {
1258      Match = true;
1259      return true;
1260    }
1261    return false;
1262  }
1263
1264  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1265    return !Matches(T->getDepth());
1266  }
1267
1268  bool TraverseTemplateName(TemplateName N) {
1269    if (TemplateTemplateParmDecl *PD =
1270          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1271      if (Matches(PD->getDepth())) return false;
1272    return super::TraverseTemplateName(N);
1273  }
1274
1275  bool VisitDeclRefExpr(DeclRefExpr *E) {
1276    if (NonTypeTemplateParmDecl *PD =
1277          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1278      if (PD->getDepth() == Depth) {
1279        Match = true;
1280        return false;
1281      }
1282    }
1283    return super::VisitDeclRefExpr(E);
1284  }
1285};
1286}
1287
1288/// Determines whether a template-id depends on the given parameter
1289/// list.
1290static bool
1291DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1292                            TemplateParameterList *Params) {
1293  DependencyChecker Checker(Params);
1294  Checker.TraverseType(QualType(TemplateId, 0));
1295  return Checker.Match;
1296}
1297
1298/// \brief Match the given template parameter lists to the given scope
1299/// specifier, returning the template parameter list that applies to the
1300/// name.
1301///
1302/// \param DeclStartLoc the start of the declaration that has a scope
1303/// specifier or a template parameter list.
1304///
1305/// \param SS the scope specifier that will be matched to the given template
1306/// parameter lists. This scope specifier precedes a qualified name that is
1307/// being declared.
1308///
1309/// \param ParamLists the template parameter lists, from the outermost to the
1310/// innermost template parameter lists.
1311///
1312/// \param NumParamLists the number of template parameter lists in ParamLists.
1313///
1314/// \param IsFriend Whether to apply the slightly different rules for
1315/// matching template parameters to scope specifiers in friend
1316/// declarations.
1317///
1318/// \param IsExplicitSpecialization will be set true if the entity being
1319/// declared is an explicit specialization, false otherwise.
1320///
1321/// \returns the template parameter list, if any, that corresponds to the
1322/// name that is preceded by the scope specifier @p SS. This template
1323/// parameter list may be have template parameters (if we're declaring a
1324/// template) or may have no template parameters (if we're declaring a
1325/// template specialization), or may be NULL (if we were's declaring isn't
1326/// itself a template).
1327TemplateParameterList *
1328Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1329                                              const CXXScopeSpec &SS,
1330                                          TemplateParameterList **ParamLists,
1331                                              unsigned NumParamLists,
1332                                              bool IsFriend,
1333                                              bool &IsExplicitSpecialization,
1334                                              bool &Invalid) {
1335  IsExplicitSpecialization = false;
1336
1337  // Find the template-ids that occur within the nested-name-specifier. These
1338  // template-ids will match up with the template parameter lists.
1339  llvm::SmallVector<const TemplateSpecializationType *, 4>
1340    TemplateIdsInSpecifier;
1341  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1342    ExplicitSpecializationsInSpecifier;
1343  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1344       NNS; NNS = NNS->getPrefix()) {
1345    const Type *T = NNS->getAsType();
1346    if (!T) break;
1347
1348    // C++0x [temp.expl.spec]p17:
1349    //   A member or a member template may be nested within many
1350    //   enclosing class templates. In an explicit specialization for
1351    //   such a member, the member declaration shall be preceded by a
1352    //   template<> for each enclosing class template that is
1353    //   explicitly specialized.
1354    //
1355    // Following the existing practice of GNU and EDG, we allow a typedef of a
1356    // template specialization type.
1357    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1358      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1359
1360    if (const TemplateSpecializationType *SpecType
1361                                  = dyn_cast<TemplateSpecializationType>(T)) {
1362      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1363      if (!Template)
1364        continue; // FIXME: should this be an error? probably...
1365
1366      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1367        ClassTemplateSpecializationDecl *SpecDecl
1368          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1369        // If the nested name specifier refers to an explicit specialization,
1370        // we don't need a template<> header.
1371        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1372          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1373          continue;
1374        }
1375      }
1376
1377      TemplateIdsInSpecifier.push_back(SpecType);
1378    }
1379  }
1380
1381  // Reverse the list of template-ids in the scope specifier, so that we can
1382  // more easily match up the template-ids and the template parameter lists.
1383  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1384
1385  SourceLocation FirstTemplateLoc = DeclStartLoc;
1386  if (NumParamLists)
1387    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1388
1389  // Match the template-ids found in the specifier to the template parameter
1390  // lists.
1391  unsigned ParamIdx = 0, TemplateIdx = 0;
1392  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1393       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1394    const TemplateSpecializationType *TemplateId
1395      = TemplateIdsInSpecifier[TemplateIdx];
1396    bool DependentTemplateId = TemplateId->isDependentType();
1397
1398    // In friend declarations we can have template-ids which don't
1399    // depend on the corresponding template parameter lists.  But
1400    // assume that empty parameter lists are supposed to match this
1401    // template-id.
1402    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1403      if (!DependentTemplateId ||
1404          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1405        continue;
1406    }
1407
1408    if (ParamIdx >= NumParamLists) {
1409      // We have a template-id without a corresponding template parameter
1410      // list.
1411
1412      // ...which is fine if this is a friend declaration.
1413      if (IsFriend) {
1414        IsExplicitSpecialization = true;
1415        break;
1416      }
1417
1418      if (DependentTemplateId) {
1419        // FIXME: the location information here isn't great.
1420        Diag(SS.getRange().getBegin(),
1421             diag::err_template_spec_needs_template_parameters)
1422          << QualType(TemplateId, 0)
1423          << SS.getRange();
1424        Invalid = true;
1425      } else {
1426        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1427          << SS.getRange()
1428          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1429        IsExplicitSpecialization = true;
1430      }
1431      return 0;
1432    }
1433
1434    // Check the template parameter list against its corresponding template-id.
1435    if (DependentTemplateId) {
1436      TemplateParameterList *ExpectedTemplateParams = 0;
1437
1438      // Are there cases in (e.g.) friends where this won't match?
1439      if (const InjectedClassNameType *Injected
1440            = TemplateId->getAs<InjectedClassNameType>()) {
1441        CXXRecordDecl *Record = Injected->getDecl();
1442        if (ClassTemplatePartialSpecializationDecl *Partial =
1443              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1444          ExpectedTemplateParams = Partial->getTemplateParameters();
1445        else
1446          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1447            ->getTemplateParameters();
1448      }
1449
1450      if (ExpectedTemplateParams)
1451        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1452                                       ExpectedTemplateParams,
1453                                       true, TPL_TemplateMatch);
1454
1455      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1456                                 TPC_ClassTemplateMember);
1457    } else if (ParamLists[ParamIdx]->size() > 0)
1458      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1459           diag::err_template_param_list_matches_nontemplate)
1460        << TemplateId
1461        << ParamLists[ParamIdx]->getSourceRange();
1462    else
1463      IsExplicitSpecialization = true;
1464
1465    ++ParamIdx;
1466  }
1467
1468  // If there were at least as many template-ids as there were template
1469  // parameter lists, then there are no template parameter lists remaining for
1470  // the declaration itself.
1471  if (ParamIdx >= NumParamLists)
1472    return 0;
1473
1474  // If there were too many template parameter lists, complain about that now.
1475  if (ParamIdx != NumParamLists - 1) {
1476    while (ParamIdx < NumParamLists - 1) {
1477      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1478      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1479           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1480                               : diag::err_template_spec_extra_headers)
1481        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1482                       ParamLists[ParamIdx]->getRAngleLoc());
1483
1484      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1485        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1486             diag::note_explicit_template_spec_does_not_need_header)
1487          << ExplicitSpecializationsInSpecifier.back();
1488        ExplicitSpecializationsInSpecifier.pop_back();
1489      }
1490
1491      // We have a template parameter list with no corresponding scope, which
1492      // means that the resulting template declaration can't be instantiated
1493      // properly (we'll end up with dependent nodes when we shouldn't).
1494      if (!isExplicitSpecHeader)
1495        Invalid = true;
1496
1497      ++ParamIdx;
1498    }
1499  }
1500
1501  // Return the last template parameter list, which corresponds to the
1502  // entity being declared.
1503  return ParamLists[NumParamLists - 1];
1504}
1505
1506QualType Sema::CheckTemplateIdType(TemplateName Name,
1507                                   SourceLocation TemplateLoc,
1508                              const TemplateArgumentListInfo &TemplateArgs) {
1509  TemplateDecl *Template = Name.getAsTemplateDecl();
1510  if (!Template) {
1511    // The template name does not resolve to a template, so we just
1512    // build a dependent template-id type.
1513    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1514  }
1515
1516  // Check that the template argument list is well-formed for this
1517  // template.
1518  llvm::SmallVector<TemplateArgument, 4> Converted;
1519  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1520                                false, Converted))
1521    return QualType();
1522
1523  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1524         "Converted template argument list is too short!");
1525
1526  QualType CanonType;
1527
1528  if (Name.isDependent() ||
1529      TemplateSpecializationType::anyDependentTemplateArguments(
1530                                                      TemplateArgs)) {
1531    // This class template specialization is a dependent
1532    // type. Therefore, its canonical type is another class template
1533    // specialization type that contains all of the converted
1534    // arguments in canonical form. This ensures that, e.g., A<T> and
1535    // A<T, T> have identical types when A is declared as:
1536    //
1537    //   template<typename T, typename U = T> struct A;
1538    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1539    CanonType = Context.getTemplateSpecializationType(CanonName,
1540                                                      Converted.data(),
1541                                                      Converted.size());
1542
1543    // FIXME: CanonType is not actually the canonical type, and unfortunately
1544    // it is a TemplateSpecializationType that we will never use again.
1545    // In the future, we need to teach getTemplateSpecializationType to only
1546    // build the canonical type and return that to us.
1547    CanonType = Context.getCanonicalType(CanonType);
1548
1549    // This might work out to be a current instantiation, in which
1550    // case the canonical type needs to be the InjectedClassNameType.
1551    //
1552    // TODO: in theory this could be a simple hashtable lookup; most
1553    // changes to CurContext don't change the set of current
1554    // instantiations.
1555    if (isa<ClassTemplateDecl>(Template)) {
1556      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1557        // If we get out to a namespace, we're done.
1558        if (Ctx->isFileContext()) break;
1559
1560        // If this isn't a record, keep looking.
1561        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1562        if (!Record) continue;
1563
1564        // Look for one of the two cases with InjectedClassNameTypes
1565        // and check whether it's the same template.
1566        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1567            !Record->getDescribedClassTemplate())
1568          continue;
1569
1570        // Fetch the injected class name type and check whether its
1571        // injected type is equal to the type we just built.
1572        QualType ICNT = Context.getTypeDeclType(Record);
1573        QualType Injected = cast<InjectedClassNameType>(ICNT)
1574          ->getInjectedSpecializationType();
1575
1576        if (CanonType != Injected->getCanonicalTypeInternal())
1577          continue;
1578
1579        // If so, the canonical type of this TST is the injected
1580        // class name type of the record we just found.
1581        assert(ICNT.isCanonical());
1582        CanonType = ICNT;
1583        break;
1584      }
1585    }
1586  } else if (ClassTemplateDecl *ClassTemplate
1587               = dyn_cast<ClassTemplateDecl>(Template)) {
1588    // Find the class template specialization declaration that
1589    // corresponds to these arguments.
1590    void *InsertPos = 0;
1591    ClassTemplateSpecializationDecl *Decl
1592      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1593                                          InsertPos);
1594    if (!Decl) {
1595      // This is the first time we have referenced this class template
1596      // specialization. Create the canonical declaration and add it to
1597      // the set of specializations.
1598      Decl = ClassTemplateSpecializationDecl::Create(Context,
1599                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1600                                                ClassTemplate->getDeclContext(),
1601                                                ClassTemplate->getLocation(),
1602                                                     ClassTemplate,
1603                                                     Converted.data(),
1604                                                     Converted.size(), 0);
1605      ClassTemplate->AddSpecialization(Decl, InsertPos);
1606      Decl->setLexicalDeclContext(CurContext);
1607    }
1608
1609    CanonType = Context.getTypeDeclType(Decl);
1610    assert(isa<RecordType>(CanonType) &&
1611           "type of non-dependent specialization is not a RecordType");
1612  }
1613
1614  // Build the fully-sugared type for this class template
1615  // specialization, which refers back to the class template
1616  // specialization we created or found.
1617  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1618}
1619
1620TypeResult
1621Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1622                          SourceLocation LAngleLoc,
1623                          ASTTemplateArgsPtr TemplateArgsIn,
1624                          SourceLocation RAngleLoc) {
1625  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1626
1627  // Translate the parser's template argument list in our AST format.
1628  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1629  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1630
1631  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1632  TemplateArgsIn.release();
1633
1634  if (Result.isNull())
1635    return true;
1636
1637  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1638  TemplateSpecializationTypeLoc TL
1639    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1640  TL.setTemplateNameLoc(TemplateLoc);
1641  TL.setLAngleLoc(LAngleLoc);
1642  TL.setRAngleLoc(RAngleLoc);
1643  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1644    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1645
1646  return CreateParsedType(Result, DI);
1647}
1648
1649TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1650                                        TypeResult TypeResult,
1651                                        TagUseKind TUK,
1652                                        TypeSpecifierType TagSpec,
1653                                        SourceLocation TagLoc) {
1654  if (TypeResult.isInvalid())
1655    return ::TypeResult();
1656
1657  TypeSourceInfo *DI;
1658  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1659
1660  // Verify the tag specifier.
1661  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1662
1663  if (const RecordType *RT = Type->getAs<RecordType>()) {
1664    RecordDecl *D = RT->getDecl();
1665
1666    IdentifierInfo *Id = D->getIdentifier();
1667    assert(Id && "templated class must have an identifier");
1668
1669    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1670      Diag(TagLoc, diag::err_use_with_wrong_tag)
1671        << Type
1672        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1673      Diag(D->getLocation(), diag::note_previous_use);
1674    }
1675  }
1676
1677  ElaboratedTypeKeyword Keyword
1678    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1679  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1680
1681  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1682  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1683  TL.setKeywordLoc(TagLoc);
1684  TL.setQualifierRange(SS.getRange());
1685  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1686  return CreateParsedType(ElabType, ElabDI);
1687}
1688
1689ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1690                                                 LookupResult &R,
1691                                                 bool RequiresADL,
1692                                 const TemplateArgumentListInfo &TemplateArgs) {
1693  // FIXME: Can we do any checking at this point? I guess we could check the
1694  // template arguments that we have against the template name, if the template
1695  // name refers to a single template. That's not a terribly common case,
1696  // though.
1697
1698  // These should be filtered out by our callers.
1699  assert(!R.empty() && "empty lookup results when building templateid");
1700  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1701
1702  NestedNameSpecifier *Qualifier = 0;
1703  SourceRange QualifierRange;
1704  if (SS.isSet()) {
1705    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1706    QualifierRange = SS.getRange();
1707  }
1708
1709  // We don't want lookup warnings at this point.
1710  R.suppressDiagnostics();
1711
1712  UnresolvedLookupExpr *ULE
1713    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1714                                   Qualifier, QualifierRange,
1715                                   R.getLookupNameInfo(),
1716                                   RequiresADL, TemplateArgs,
1717                                   R.begin(), R.end());
1718
1719  return Owned(ULE);
1720}
1721
1722// We actually only call this from template instantiation.
1723ExprResult
1724Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1725                                   const DeclarationNameInfo &NameInfo,
1726                             const TemplateArgumentListInfo &TemplateArgs) {
1727  DeclContext *DC;
1728  if (!(DC = computeDeclContext(SS, false)) ||
1729      DC->isDependentContext() ||
1730      RequireCompleteDeclContext(SS, DC))
1731    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1732
1733  bool MemberOfUnknownSpecialization;
1734  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1735  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1736                     MemberOfUnknownSpecialization);
1737
1738  if (R.isAmbiguous())
1739    return ExprError();
1740
1741  if (R.empty()) {
1742    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1743      << NameInfo.getName() << SS.getRange();
1744    return ExprError();
1745  }
1746
1747  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1748    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1749      << (NestedNameSpecifier*) SS.getScopeRep()
1750      << NameInfo.getName() << SS.getRange();
1751    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1752    return ExprError();
1753  }
1754
1755  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1756}
1757
1758/// \brief Form a dependent template name.
1759///
1760/// This action forms a dependent template name given the template
1761/// name and its (presumably dependent) scope specifier. For
1762/// example, given "MetaFun::template apply", the scope specifier \p
1763/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1764/// of the "template" keyword, and "apply" is the \p Name.
1765TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1766                                                  SourceLocation TemplateKWLoc,
1767                                                  CXXScopeSpec &SS,
1768                                                  UnqualifiedId &Name,
1769                                                  ParsedType ObjectType,
1770                                                  bool EnteringContext,
1771                                                  TemplateTy &Result) {
1772  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1773      !getLangOptions().CPlusPlus0x)
1774    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1775      << FixItHint::CreateRemoval(TemplateKWLoc);
1776
1777  DeclContext *LookupCtx = 0;
1778  if (SS.isSet())
1779    LookupCtx = computeDeclContext(SS, EnteringContext);
1780  if (!LookupCtx && ObjectType)
1781    LookupCtx = computeDeclContext(ObjectType.get());
1782  if (LookupCtx) {
1783    // C++0x [temp.names]p5:
1784    //   If a name prefixed by the keyword template is not the name of
1785    //   a template, the program is ill-formed. [Note: the keyword
1786    //   template may not be applied to non-template members of class
1787    //   templates. -end note ] [ Note: as is the case with the
1788    //   typename prefix, the template prefix is allowed in cases
1789    //   where it is not strictly necessary; i.e., when the
1790    //   nested-name-specifier or the expression on the left of the ->
1791    //   or . is not dependent on a template-parameter, or the use
1792    //   does not appear in the scope of a template. -end note]
1793    //
1794    // Note: C++03 was more strict here, because it banned the use of
1795    // the "template" keyword prior to a template-name that was not a
1796    // dependent name. C++ DR468 relaxed this requirement (the
1797    // "template" keyword is now permitted). We follow the C++0x
1798    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1799    bool MemberOfUnknownSpecialization;
1800    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1801                                          ObjectType, EnteringContext, Result,
1802                                          MemberOfUnknownSpecialization);
1803    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1804        isa<CXXRecordDecl>(LookupCtx) &&
1805        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1806      // This is a dependent template. Handle it below.
1807    } else if (TNK == TNK_Non_template) {
1808      Diag(Name.getSourceRange().getBegin(),
1809           diag::err_template_kw_refers_to_non_template)
1810        << GetNameFromUnqualifiedId(Name).getName()
1811        << Name.getSourceRange()
1812        << TemplateKWLoc;
1813      return TNK_Non_template;
1814    } else {
1815      // We found something; return it.
1816      return TNK;
1817    }
1818  }
1819
1820  NestedNameSpecifier *Qualifier
1821    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1822
1823  switch (Name.getKind()) {
1824  case UnqualifiedId::IK_Identifier:
1825    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1826                                                              Name.Identifier));
1827    return TNK_Dependent_template_name;
1828
1829  case UnqualifiedId::IK_OperatorFunctionId:
1830    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1831                                             Name.OperatorFunctionId.Operator));
1832    return TNK_Dependent_template_name;
1833
1834  case UnqualifiedId::IK_LiteralOperatorId:
1835    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1836
1837  default:
1838    break;
1839  }
1840
1841  Diag(Name.getSourceRange().getBegin(),
1842       diag::err_template_kw_refers_to_non_template)
1843    << GetNameFromUnqualifiedId(Name).getName()
1844    << Name.getSourceRange()
1845    << TemplateKWLoc;
1846  return TNK_Non_template;
1847}
1848
1849bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1850                                     const TemplateArgumentLoc &AL,
1851                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1852  const TemplateArgument &Arg = AL.getArgument();
1853
1854  // Check template type parameter.
1855  switch(Arg.getKind()) {
1856  case TemplateArgument::Type:
1857    // C++ [temp.arg.type]p1:
1858    //   A template-argument for a template-parameter which is a
1859    //   type shall be a type-id.
1860    break;
1861  case TemplateArgument::Template: {
1862    // We have a template type parameter but the template argument
1863    // is a template without any arguments.
1864    SourceRange SR = AL.getSourceRange();
1865    TemplateName Name = Arg.getAsTemplate();
1866    Diag(SR.getBegin(), diag::err_template_missing_args)
1867      << Name << SR;
1868    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1869      Diag(Decl->getLocation(), diag::note_template_decl_here);
1870
1871    return true;
1872  }
1873  default: {
1874    // We have a template type parameter but the template argument
1875    // is not a type.
1876    SourceRange SR = AL.getSourceRange();
1877    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1878    Diag(Param->getLocation(), diag::note_template_param_here);
1879
1880    return true;
1881  }
1882  }
1883
1884  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1885    return true;
1886
1887  // Add the converted template type argument.
1888  Converted.push_back(
1889                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1890  return false;
1891}
1892
1893/// \brief Substitute template arguments into the default template argument for
1894/// the given template type parameter.
1895///
1896/// \param SemaRef the semantic analysis object for which we are performing
1897/// the substitution.
1898///
1899/// \param Template the template that we are synthesizing template arguments
1900/// for.
1901///
1902/// \param TemplateLoc the location of the template name that started the
1903/// template-id we are checking.
1904///
1905/// \param RAngleLoc the location of the right angle bracket ('>') that
1906/// terminates the template-id.
1907///
1908/// \param Param the template template parameter whose default we are
1909/// substituting into.
1910///
1911/// \param Converted the list of template arguments provided for template
1912/// parameters that precede \p Param in the template parameter list.
1913///
1914/// \returns the substituted template argument, or NULL if an error occurred.
1915static TypeSourceInfo *
1916SubstDefaultTemplateArgument(Sema &SemaRef,
1917                             TemplateDecl *Template,
1918                             SourceLocation TemplateLoc,
1919                             SourceLocation RAngleLoc,
1920                             TemplateTypeParmDecl *Param,
1921                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1922  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1923
1924  // If the argument type is dependent, instantiate it now based
1925  // on the previously-computed template arguments.
1926  if (ArgType->getType()->isDependentType()) {
1927    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1928                                      Converted.data(), Converted.size());
1929
1930    MultiLevelTemplateArgumentList AllTemplateArgs
1931      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1932
1933    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1934                                     Template, Converted.data(),
1935                                     Converted.size(),
1936                                     SourceRange(TemplateLoc, RAngleLoc));
1937
1938    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1939                                Param->getDefaultArgumentLoc(),
1940                                Param->getDeclName());
1941  }
1942
1943  return ArgType;
1944}
1945
1946/// \brief Substitute template arguments into the default template argument for
1947/// the given non-type template parameter.
1948///
1949/// \param SemaRef the semantic analysis object for which we are performing
1950/// the substitution.
1951///
1952/// \param Template the template that we are synthesizing template arguments
1953/// for.
1954///
1955/// \param TemplateLoc the location of the template name that started the
1956/// template-id we are checking.
1957///
1958/// \param RAngleLoc the location of the right angle bracket ('>') that
1959/// terminates the template-id.
1960///
1961/// \param Param the non-type template parameter whose default we are
1962/// substituting into.
1963///
1964/// \param Converted the list of template arguments provided for template
1965/// parameters that precede \p Param in the template parameter list.
1966///
1967/// \returns the substituted template argument, or NULL if an error occurred.
1968static ExprResult
1969SubstDefaultTemplateArgument(Sema &SemaRef,
1970                             TemplateDecl *Template,
1971                             SourceLocation TemplateLoc,
1972                             SourceLocation RAngleLoc,
1973                             NonTypeTemplateParmDecl *Param,
1974                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1975  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1976                                    Converted.data(), Converted.size());
1977
1978  MultiLevelTemplateArgumentList AllTemplateArgs
1979    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1980
1981  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1982                                   Template, Converted.data(),
1983                                   Converted.size(),
1984                                   SourceRange(TemplateLoc, RAngleLoc));
1985
1986  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1987}
1988
1989/// \brief Substitute template arguments into the default template argument for
1990/// the given template template parameter.
1991///
1992/// \param SemaRef the semantic analysis object for which we are performing
1993/// the substitution.
1994///
1995/// \param Template the template that we are synthesizing template arguments
1996/// for.
1997///
1998/// \param TemplateLoc the location of the template name that started the
1999/// template-id we are checking.
2000///
2001/// \param RAngleLoc the location of the right angle bracket ('>') that
2002/// terminates the template-id.
2003///
2004/// \param Param the template template parameter whose default we are
2005/// substituting into.
2006///
2007/// \param Converted the list of template arguments provided for template
2008/// parameters that precede \p Param in the template parameter list.
2009///
2010/// \returns the substituted template argument, or NULL if an error occurred.
2011static TemplateName
2012SubstDefaultTemplateArgument(Sema &SemaRef,
2013                             TemplateDecl *Template,
2014                             SourceLocation TemplateLoc,
2015                             SourceLocation RAngleLoc,
2016                             TemplateTemplateParmDecl *Param,
2017                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2018  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2019                                    Converted.data(), Converted.size());
2020
2021  MultiLevelTemplateArgumentList AllTemplateArgs
2022    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2023
2024  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2025                                   Template, Converted.data(),
2026                                   Converted.size(),
2027                                   SourceRange(TemplateLoc, RAngleLoc));
2028
2029  return SemaRef.SubstTemplateName(
2030                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2031                              Param->getDefaultArgument().getTemplateNameLoc(),
2032                                   AllTemplateArgs);
2033}
2034
2035/// \brief If the given template parameter has a default template
2036/// argument, substitute into that default template argument and
2037/// return the corresponding template argument.
2038TemplateArgumentLoc
2039Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2040                                              SourceLocation TemplateLoc,
2041                                              SourceLocation RAngleLoc,
2042                                              Decl *Param,
2043                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2044   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2045    if (!TypeParm->hasDefaultArgument())
2046      return TemplateArgumentLoc();
2047
2048    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2049                                                      TemplateLoc,
2050                                                      RAngleLoc,
2051                                                      TypeParm,
2052                                                      Converted);
2053    if (DI)
2054      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2055
2056    return TemplateArgumentLoc();
2057  }
2058
2059  if (NonTypeTemplateParmDecl *NonTypeParm
2060        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2061    if (!NonTypeParm->hasDefaultArgument())
2062      return TemplateArgumentLoc();
2063
2064    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2065                                                        TemplateLoc,
2066                                                        RAngleLoc,
2067                                                        NonTypeParm,
2068                                                        Converted);
2069    if (Arg.isInvalid())
2070      return TemplateArgumentLoc();
2071
2072    Expr *ArgE = Arg.takeAs<Expr>();
2073    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2074  }
2075
2076  TemplateTemplateParmDecl *TempTempParm
2077    = cast<TemplateTemplateParmDecl>(Param);
2078  if (!TempTempParm->hasDefaultArgument())
2079    return TemplateArgumentLoc();
2080
2081  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2082                                                    TemplateLoc,
2083                                                    RAngleLoc,
2084                                                    TempTempParm,
2085                                                    Converted);
2086  if (TName.isNull())
2087    return TemplateArgumentLoc();
2088
2089  return TemplateArgumentLoc(TemplateArgument(TName),
2090                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2091                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2092}
2093
2094/// \brief Check that the given template argument corresponds to the given
2095/// template parameter.
2096bool Sema::CheckTemplateArgument(NamedDecl *Param,
2097                                 const TemplateArgumentLoc &Arg,
2098                                 TemplateDecl *Template,
2099                                 SourceLocation TemplateLoc,
2100                                 SourceLocation RAngleLoc,
2101                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2102                                 CheckTemplateArgumentKind CTAK) {
2103  // Check template type parameters.
2104  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2105    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2106
2107  // Check non-type template parameters.
2108  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2109    // Do substitution on the type of the non-type template parameter
2110    // with the template arguments we've seen thus far.  But if the
2111    // template has a dependent context then we cannot substitute yet.
2112    QualType NTTPType = NTTP->getType();
2113    if (NTTPType->isDependentType() &&
2114        !isa<TemplateTemplateParmDecl>(Template) &&
2115        !Template->getDeclContext()->isDependentContext()) {
2116      // Do substitution on the type of the non-type template parameter.
2117      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2118                                 NTTP, Converted.data(), Converted.size(),
2119                                 SourceRange(TemplateLoc, RAngleLoc));
2120
2121      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2122                                        Converted.data(), Converted.size());
2123      NTTPType = SubstType(NTTPType,
2124                           MultiLevelTemplateArgumentList(TemplateArgs),
2125                           NTTP->getLocation(),
2126                           NTTP->getDeclName());
2127      // If that worked, check the non-type template parameter type
2128      // for validity.
2129      if (!NTTPType.isNull())
2130        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2131                                                     NTTP->getLocation());
2132      if (NTTPType.isNull())
2133        return true;
2134    }
2135
2136    switch (Arg.getArgument().getKind()) {
2137    case TemplateArgument::Null:
2138      assert(false && "Should never see a NULL template argument here");
2139      return true;
2140
2141    case TemplateArgument::Expression: {
2142      Expr *E = Arg.getArgument().getAsExpr();
2143      TemplateArgument Result;
2144      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2145        return true;
2146
2147      Converted.push_back(Result);
2148      break;
2149    }
2150
2151    case TemplateArgument::Declaration:
2152    case TemplateArgument::Integral:
2153      // We've already checked this template argument, so just copy
2154      // it to the list of converted arguments.
2155      Converted.push_back(Arg.getArgument());
2156      break;
2157
2158    case TemplateArgument::Template:
2159      // We were given a template template argument. It may not be ill-formed;
2160      // see below.
2161      if (DependentTemplateName *DTN
2162            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2163        // We have a template argument such as \c T::template X, which we
2164        // parsed as a template template argument. However, since we now
2165        // know that we need a non-type template argument, convert this
2166        // template name into an expression.
2167
2168        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2169                                     Arg.getTemplateNameLoc());
2170
2171        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2172                                                    DTN->getQualifier(),
2173                                               Arg.getTemplateQualifierRange(),
2174                                                    NameInfo);
2175
2176        TemplateArgument Result;
2177        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2178          return true;
2179
2180        Converted.push_back(Result);
2181        break;
2182      }
2183
2184      // We have a template argument that actually does refer to a class
2185      // template, template alias, or template template parameter, and
2186      // therefore cannot be a non-type template argument.
2187      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2188        << Arg.getSourceRange();
2189
2190      Diag(Param->getLocation(), diag::note_template_param_here);
2191      return true;
2192
2193    case TemplateArgument::Type: {
2194      // We have a non-type template parameter but the template
2195      // argument is a type.
2196
2197      // C++ [temp.arg]p2:
2198      //   In a template-argument, an ambiguity between a type-id and
2199      //   an expression is resolved to a type-id, regardless of the
2200      //   form of the corresponding template-parameter.
2201      //
2202      // We warn specifically about this case, since it can be rather
2203      // confusing for users.
2204      QualType T = Arg.getArgument().getAsType();
2205      SourceRange SR = Arg.getSourceRange();
2206      if (T->isFunctionType())
2207        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2208      else
2209        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2210      Diag(Param->getLocation(), diag::note_template_param_here);
2211      return true;
2212    }
2213
2214    case TemplateArgument::Pack:
2215      llvm_unreachable("Caller must expand template argument packs");
2216      break;
2217    }
2218
2219    return false;
2220  }
2221
2222
2223  // Check template template parameters.
2224  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2225
2226  // Substitute into the template parameter list of the template
2227  // template parameter, since previously-supplied template arguments
2228  // may appear within the template template parameter.
2229  {
2230    // Set up a template instantiation context.
2231    LocalInstantiationScope Scope(*this);
2232    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2233                               TempParm, Converted.data(), Converted.size(),
2234                               SourceRange(TemplateLoc, RAngleLoc));
2235
2236    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2237                                      Converted.data(), Converted.size());
2238    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2239                      SubstDecl(TempParm, CurContext,
2240                                MultiLevelTemplateArgumentList(TemplateArgs)));
2241    if (!TempParm)
2242      return true;
2243
2244    // FIXME: TempParam is leaked.
2245  }
2246
2247  switch (Arg.getArgument().getKind()) {
2248  case TemplateArgument::Null:
2249    assert(false && "Should never see a NULL template argument here");
2250    return true;
2251
2252  case TemplateArgument::Template:
2253    if (CheckTemplateArgument(TempParm, Arg))
2254      return true;
2255
2256    Converted.push_back(Arg.getArgument());
2257    break;
2258
2259  case TemplateArgument::Expression:
2260  case TemplateArgument::Type:
2261    // We have a template template parameter but the template
2262    // argument does not refer to a template.
2263    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2264    return true;
2265
2266  case TemplateArgument::Declaration:
2267    llvm_unreachable(
2268                       "Declaration argument with template template parameter");
2269    break;
2270  case TemplateArgument::Integral:
2271    llvm_unreachable(
2272                          "Integral argument with template template parameter");
2273    break;
2274
2275  case TemplateArgument::Pack:
2276    llvm_unreachable("Caller must expand template argument packs");
2277    break;
2278  }
2279
2280  return false;
2281}
2282
2283/// \brief Check that the given template argument list is well-formed
2284/// for specializing the given template.
2285bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2286                                     SourceLocation TemplateLoc,
2287                                const TemplateArgumentListInfo &TemplateArgs,
2288                                     bool PartialTemplateArgs,
2289                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2290  TemplateParameterList *Params = Template->getTemplateParameters();
2291  unsigned NumParams = Params->size();
2292  unsigned NumArgs = TemplateArgs.size();
2293  bool Invalid = false;
2294
2295  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2296
2297  bool HasParameterPack =
2298    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2299
2300  if ((NumArgs > NumParams && !HasParameterPack) ||
2301      (NumArgs < Params->getMinRequiredArguments() &&
2302       !PartialTemplateArgs)) {
2303    // FIXME: point at either the first arg beyond what we can handle,
2304    // or the '>', depending on whether we have too many or too few
2305    // arguments.
2306    SourceRange Range;
2307    if (NumArgs > NumParams)
2308      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2309    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2310      << (NumArgs > NumParams)
2311      << (isa<ClassTemplateDecl>(Template)? 0 :
2312          isa<FunctionTemplateDecl>(Template)? 1 :
2313          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2314      << Template << Range;
2315    Diag(Template->getLocation(), diag::note_template_decl_here)
2316      << Params->getSourceRange();
2317    Invalid = true;
2318  }
2319
2320  // C++ [temp.arg]p1:
2321  //   [...] The type and form of each template-argument specified in
2322  //   a template-id shall match the type and form specified for the
2323  //   corresponding parameter declared by the template in its
2324  //   template-parameter-list.
2325  unsigned ArgIdx = 0;
2326  for (TemplateParameterList::iterator Param = Params->begin(),
2327                                       ParamEnd = Params->end();
2328       Param != ParamEnd; ++Param, ++ArgIdx) {
2329    if (ArgIdx > NumArgs && PartialTemplateArgs)
2330      break;
2331
2332    // If we have a template parameter pack, check every remaining template
2333    // argument against that template parameter pack.
2334    if ((*Param)->isTemplateParameterPack()) {
2335      Diag(TemplateLoc, diag::err_variadic_templates_unsupported);
2336      return true;
2337    }
2338
2339    if (ArgIdx < NumArgs) {
2340      // Check the template argument we were given.
2341      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2342                                TemplateLoc, RAngleLoc, Converted))
2343        return true;
2344
2345      continue;
2346    }
2347
2348    // We have a default template argument that we will use.
2349    TemplateArgumentLoc Arg;
2350
2351    // Retrieve the default template argument from the template
2352    // parameter. For each kind of template parameter, we substitute the
2353    // template arguments provided thus far and any "outer" template arguments
2354    // (when the template parameter was part of a nested template) into
2355    // the default argument.
2356    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2357      if (!TTP->hasDefaultArgument()) {
2358        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2359        break;
2360      }
2361
2362      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2363                                                             Template,
2364                                                             TemplateLoc,
2365                                                             RAngleLoc,
2366                                                             TTP,
2367                                                             Converted);
2368      if (!ArgType)
2369        return true;
2370
2371      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2372                                ArgType);
2373    } else if (NonTypeTemplateParmDecl *NTTP
2374                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2375      if (!NTTP->hasDefaultArgument()) {
2376        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2377        break;
2378      }
2379
2380      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2381                                                              TemplateLoc,
2382                                                              RAngleLoc,
2383                                                              NTTP,
2384                                                              Converted);
2385      if (E.isInvalid())
2386        return true;
2387
2388      Expr *Ex = E.takeAs<Expr>();
2389      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2390    } else {
2391      TemplateTemplateParmDecl *TempParm
2392        = cast<TemplateTemplateParmDecl>(*Param);
2393
2394      if (!TempParm->hasDefaultArgument()) {
2395        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2396        break;
2397      }
2398
2399      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2400                                                       TemplateLoc,
2401                                                       RAngleLoc,
2402                                                       TempParm,
2403                                                       Converted);
2404      if (Name.isNull())
2405        return true;
2406
2407      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2408                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2409                  TempParm->getDefaultArgument().getTemplateNameLoc());
2410    }
2411
2412    // Introduce an instantiation record that describes where we are using
2413    // the default template argument.
2414    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2415                                        Converted.data(), Converted.size(),
2416                                        SourceRange(TemplateLoc, RAngleLoc));
2417
2418    // Check the default template argument.
2419    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2420                              RAngleLoc, Converted))
2421      return true;
2422  }
2423
2424  return Invalid;
2425}
2426
2427namespace {
2428  class UnnamedLocalNoLinkageFinder
2429    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2430  {
2431    Sema &S;
2432    SourceRange SR;
2433
2434    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2435
2436  public:
2437    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2438
2439    bool Visit(QualType T) {
2440      return inherited::Visit(T.getTypePtr());
2441    }
2442
2443#define TYPE(Class, Parent) \
2444    bool Visit##Class##Type(const Class##Type *);
2445#define ABSTRACT_TYPE(Class, Parent) \
2446    bool Visit##Class##Type(const Class##Type *) { return false; }
2447#define NON_CANONICAL_TYPE(Class, Parent) \
2448    bool Visit##Class##Type(const Class##Type *) { return false; }
2449#include "clang/AST/TypeNodes.def"
2450
2451    bool VisitTagDecl(const TagDecl *Tag);
2452    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2453  };
2454}
2455
2456bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2457  return false;
2458}
2459
2460bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2461  return Visit(T->getElementType());
2462}
2463
2464bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2465  return Visit(T->getPointeeType());
2466}
2467
2468bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2469                                                    const BlockPointerType* T) {
2470  return Visit(T->getPointeeType());
2471}
2472
2473bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2474                                                const LValueReferenceType* T) {
2475  return Visit(T->getPointeeType());
2476}
2477
2478bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2479                                                const RValueReferenceType* T) {
2480  return Visit(T->getPointeeType());
2481}
2482
2483bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2484                                                  const MemberPointerType* T) {
2485  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2486}
2487
2488bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2489                                                  const ConstantArrayType* T) {
2490  return Visit(T->getElementType());
2491}
2492
2493bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2494                                                 const IncompleteArrayType* T) {
2495  return Visit(T->getElementType());
2496}
2497
2498bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2499                                                   const VariableArrayType* T) {
2500  return Visit(T->getElementType());
2501}
2502
2503bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2504                                            const DependentSizedArrayType* T) {
2505  return Visit(T->getElementType());
2506}
2507
2508bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2509                                         const DependentSizedExtVectorType* T) {
2510  return Visit(T->getElementType());
2511}
2512
2513bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2514  return Visit(T->getElementType());
2515}
2516
2517bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2518  return Visit(T->getElementType());
2519}
2520
2521bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2522                                                  const FunctionProtoType* T) {
2523  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2524                                         AEnd = T->arg_type_end();
2525       A != AEnd; ++A) {
2526    if (Visit(*A))
2527      return true;
2528  }
2529
2530  return Visit(T->getResultType());
2531}
2532
2533bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2534                                               const FunctionNoProtoType* T) {
2535  return Visit(T->getResultType());
2536}
2537
2538bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2539                                                  const UnresolvedUsingType*) {
2540  return false;
2541}
2542
2543bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2544  return false;
2545}
2546
2547bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2548  return Visit(T->getUnderlyingType());
2549}
2550
2551bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2552  return false;
2553}
2554
2555bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2556  return VisitTagDecl(T->getDecl());
2557}
2558
2559bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2560  return VisitTagDecl(T->getDecl());
2561}
2562
2563bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2564                                                 const TemplateTypeParmType*) {
2565  return false;
2566}
2567
2568bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2569                                            const TemplateSpecializationType*) {
2570  return false;
2571}
2572
2573bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2574                                              const InjectedClassNameType* T) {
2575  return VisitTagDecl(T->getDecl());
2576}
2577
2578bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2579                                                   const DependentNameType* T) {
2580  return VisitNestedNameSpecifier(T->getQualifier());
2581}
2582
2583bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2584                                 const DependentTemplateSpecializationType* T) {
2585  return VisitNestedNameSpecifier(T->getQualifier());
2586}
2587
2588bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2589  return false;
2590}
2591
2592bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2593                                                   const ObjCInterfaceType *) {
2594  return false;
2595}
2596
2597bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2598                                                const ObjCObjectPointerType *) {
2599  return false;
2600}
2601
2602bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2603  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2604    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2605      << S.Context.getTypeDeclType(Tag) << SR;
2606    return true;
2607  }
2608
2609  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2610    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2611    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2612    return true;
2613  }
2614
2615  return false;
2616}
2617
2618bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2619                                                    NestedNameSpecifier *NNS) {
2620  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2621    return true;
2622
2623  switch (NNS->getKind()) {
2624  case NestedNameSpecifier::Identifier:
2625  case NestedNameSpecifier::Namespace:
2626  case NestedNameSpecifier::Global:
2627    return false;
2628
2629  case NestedNameSpecifier::TypeSpec:
2630  case NestedNameSpecifier::TypeSpecWithTemplate:
2631    return Visit(QualType(NNS->getAsType(), 0));
2632  }
2633  return false;
2634}
2635
2636
2637/// \brief Check a template argument against its corresponding
2638/// template type parameter.
2639///
2640/// This routine implements the semantics of C++ [temp.arg.type]. It
2641/// returns true if an error occurred, and false otherwise.
2642bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2643                                 TypeSourceInfo *ArgInfo) {
2644  assert(ArgInfo && "invalid TypeSourceInfo");
2645  QualType Arg = ArgInfo->getType();
2646  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2647
2648  if (Arg->isVariablyModifiedType()) {
2649    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2650  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2651    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2652  }
2653
2654  // C++03 [temp.arg.type]p2:
2655  //   A local type, a type with no linkage, an unnamed type or a type
2656  //   compounded from any of these types shall not be used as a
2657  //   template-argument for a template type-parameter.
2658  //
2659  // C++0x allows these, and even in C++03 we allow them as an extension with
2660  // a warning.
2661  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2662    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2663    (void)Finder.Visit(Context.getCanonicalType(Arg));
2664  }
2665
2666  return false;
2667}
2668
2669/// \brief Checks whether the given template argument is the address
2670/// of an object or function according to C++ [temp.arg.nontype]p1.
2671static bool
2672CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2673                                               NonTypeTemplateParmDecl *Param,
2674                                               QualType ParamType,
2675                                               Expr *ArgIn,
2676                                               TemplateArgument &Converted) {
2677  bool Invalid = false;
2678  Expr *Arg = ArgIn;
2679  QualType ArgType = Arg->getType();
2680
2681  // See through any implicit casts we added to fix the type.
2682  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2683    Arg = Cast->getSubExpr();
2684
2685  // C++ [temp.arg.nontype]p1:
2686  //
2687  //   A template-argument for a non-type, non-template
2688  //   template-parameter shall be one of: [...]
2689  //
2690  //     -- the address of an object or function with external
2691  //        linkage, including function templates and function
2692  //        template-ids but excluding non-static class members,
2693  //        expressed as & id-expression where the & is optional if
2694  //        the name refers to a function or array, or if the
2695  //        corresponding template-parameter is a reference; or
2696  DeclRefExpr *DRE = 0;
2697
2698  // In C++98/03 mode, give an extension warning on any extra parentheses.
2699  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2700  bool ExtraParens = false;
2701  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2702    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2703      S.Diag(Arg->getSourceRange().getBegin(),
2704             diag::ext_template_arg_extra_parens)
2705        << Arg->getSourceRange();
2706      ExtraParens = true;
2707    }
2708
2709    Arg = Parens->getSubExpr();
2710  }
2711
2712  bool AddressTaken = false;
2713  SourceLocation AddrOpLoc;
2714  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2715    if (UnOp->getOpcode() == UO_AddrOf) {
2716      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2717      AddressTaken = true;
2718      AddrOpLoc = UnOp->getOperatorLoc();
2719    }
2720  } else
2721    DRE = dyn_cast<DeclRefExpr>(Arg);
2722
2723  if (!DRE) {
2724    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2725      << Arg->getSourceRange();
2726    S.Diag(Param->getLocation(), diag::note_template_param_here);
2727    return true;
2728  }
2729
2730  // Stop checking the precise nature of the argument if it is value dependent,
2731  // it should be checked when instantiated.
2732  if (Arg->isValueDependent()) {
2733    Converted = TemplateArgument(ArgIn);
2734    return false;
2735  }
2736
2737  if (!isa<ValueDecl>(DRE->getDecl())) {
2738    S.Diag(Arg->getSourceRange().getBegin(),
2739           diag::err_template_arg_not_object_or_func_form)
2740      << Arg->getSourceRange();
2741    S.Diag(Param->getLocation(), diag::note_template_param_here);
2742    return true;
2743  }
2744
2745  NamedDecl *Entity = 0;
2746
2747  // Cannot refer to non-static data members
2748  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2749    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2750      << Field << Arg->getSourceRange();
2751    S.Diag(Param->getLocation(), diag::note_template_param_here);
2752    return true;
2753  }
2754
2755  // Cannot refer to non-static member functions
2756  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2757    if (!Method->isStatic()) {
2758      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2759        << Method << Arg->getSourceRange();
2760      S.Diag(Param->getLocation(), diag::note_template_param_here);
2761      return true;
2762    }
2763
2764  // Functions must have external linkage.
2765  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2766    if (!isExternalLinkage(Func->getLinkage())) {
2767      S.Diag(Arg->getSourceRange().getBegin(),
2768             diag::err_template_arg_function_not_extern)
2769        << Func << Arg->getSourceRange();
2770      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2771        << true;
2772      return true;
2773    }
2774
2775    // Okay: we've named a function with external linkage.
2776    Entity = Func;
2777
2778    // If the template parameter has pointer type, the function decays.
2779    if (ParamType->isPointerType() && !AddressTaken)
2780      ArgType = S.Context.getPointerType(Func->getType());
2781    else if (AddressTaken && ParamType->isReferenceType()) {
2782      // If we originally had an address-of operator, but the
2783      // parameter has reference type, complain and (if things look
2784      // like they will work) drop the address-of operator.
2785      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2786                                            ParamType.getNonReferenceType())) {
2787        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2788          << ParamType;
2789        S.Diag(Param->getLocation(), diag::note_template_param_here);
2790        return true;
2791      }
2792
2793      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2794        << ParamType
2795        << FixItHint::CreateRemoval(AddrOpLoc);
2796      S.Diag(Param->getLocation(), diag::note_template_param_here);
2797
2798      ArgType = Func->getType();
2799    }
2800  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2801    if (!isExternalLinkage(Var->getLinkage())) {
2802      S.Diag(Arg->getSourceRange().getBegin(),
2803             diag::err_template_arg_object_not_extern)
2804        << Var << Arg->getSourceRange();
2805      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2806        << true;
2807      return true;
2808    }
2809
2810    // A value of reference type is not an object.
2811    if (Var->getType()->isReferenceType()) {
2812      S.Diag(Arg->getSourceRange().getBegin(),
2813             diag::err_template_arg_reference_var)
2814        << Var->getType() << Arg->getSourceRange();
2815      S.Diag(Param->getLocation(), diag::note_template_param_here);
2816      return true;
2817    }
2818
2819    // Okay: we've named an object with external linkage
2820    Entity = Var;
2821
2822    // If the template parameter has pointer type, we must have taken
2823    // the address of this object.
2824    if (ParamType->isReferenceType()) {
2825      if (AddressTaken) {
2826        // If we originally had an address-of operator, but the
2827        // parameter has reference type, complain and (if things look
2828        // like they will work) drop the address-of operator.
2829        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2830                                            ParamType.getNonReferenceType())) {
2831          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2832            << ParamType;
2833          S.Diag(Param->getLocation(), diag::note_template_param_here);
2834          return true;
2835        }
2836
2837        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2838          << ParamType
2839          << FixItHint::CreateRemoval(AddrOpLoc);
2840        S.Diag(Param->getLocation(), diag::note_template_param_here);
2841
2842        ArgType = Var->getType();
2843      }
2844    } else if (!AddressTaken && ParamType->isPointerType()) {
2845      if (Var->getType()->isArrayType()) {
2846        // Array-to-pointer decay.
2847        ArgType = S.Context.getArrayDecayedType(Var->getType());
2848      } else {
2849        // If the template parameter has pointer type but the address of
2850        // this object was not taken, complain and (possibly) recover by
2851        // taking the address of the entity.
2852        ArgType = S.Context.getPointerType(Var->getType());
2853        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2854          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2855            << ParamType;
2856          S.Diag(Param->getLocation(), diag::note_template_param_here);
2857          return true;
2858        }
2859
2860        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2861          << ParamType
2862          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2863
2864        S.Diag(Param->getLocation(), diag::note_template_param_here);
2865      }
2866    }
2867  } else {
2868    // We found something else, but we don't know specifically what it is.
2869    S.Diag(Arg->getSourceRange().getBegin(),
2870           diag::err_template_arg_not_object_or_func)
2871      << Arg->getSourceRange();
2872    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2873    return true;
2874  }
2875
2876  if (ParamType->isPointerType() &&
2877      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2878      S.IsQualificationConversion(ArgType, ParamType)) {
2879    // For pointer-to-object types, qualification conversions are
2880    // permitted.
2881  } else {
2882    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2883      if (!ParamRef->getPointeeType()->isFunctionType()) {
2884        // C++ [temp.arg.nontype]p5b3:
2885        //   For a non-type template-parameter of type reference to
2886        //   object, no conversions apply. The type referred to by the
2887        //   reference may be more cv-qualified than the (otherwise
2888        //   identical) type of the template- argument. The
2889        //   template-parameter is bound directly to the
2890        //   template-argument, which shall be an lvalue.
2891
2892        // FIXME: Other qualifiers?
2893        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2894        unsigned ArgQuals = ArgType.getCVRQualifiers();
2895
2896        if ((ParamQuals | ArgQuals) != ParamQuals) {
2897          S.Diag(Arg->getSourceRange().getBegin(),
2898                 diag::err_template_arg_ref_bind_ignores_quals)
2899            << ParamType << Arg->getType()
2900            << Arg->getSourceRange();
2901          S.Diag(Param->getLocation(), diag::note_template_param_here);
2902          return true;
2903        }
2904      }
2905    }
2906
2907    // At this point, the template argument refers to an object or
2908    // function with external linkage. We now need to check whether the
2909    // argument and parameter types are compatible.
2910    if (!S.Context.hasSameUnqualifiedType(ArgType,
2911                                          ParamType.getNonReferenceType())) {
2912      // We can't perform this conversion or binding.
2913      if (ParamType->isReferenceType())
2914        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2915          << ParamType << Arg->getType() << Arg->getSourceRange();
2916      else
2917        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2918          << Arg->getType() << ParamType << Arg->getSourceRange();
2919      S.Diag(Param->getLocation(), diag::note_template_param_here);
2920      return true;
2921    }
2922  }
2923
2924  // Create the template argument.
2925  Converted = TemplateArgument(Entity->getCanonicalDecl());
2926  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2927  return false;
2928}
2929
2930/// \brief Checks whether the given template argument is a pointer to
2931/// member constant according to C++ [temp.arg.nontype]p1.
2932bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2933                                                TemplateArgument &Converted) {
2934  bool Invalid = false;
2935
2936  // See through any implicit casts we added to fix the type.
2937  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2938    Arg = Cast->getSubExpr();
2939
2940  // C++ [temp.arg.nontype]p1:
2941  //
2942  //   A template-argument for a non-type, non-template
2943  //   template-parameter shall be one of: [...]
2944  //
2945  //     -- a pointer to member expressed as described in 5.3.1.
2946  DeclRefExpr *DRE = 0;
2947
2948  // In C++98/03 mode, give an extension warning on any extra parentheses.
2949  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2950  bool ExtraParens = false;
2951  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2952    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2953      Diag(Arg->getSourceRange().getBegin(),
2954           diag::ext_template_arg_extra_parens)
2955        << Arg->getSourceRange();
2956      ExtraParens = true;
2957    }
2958
2959    Arg = Parens->getSubExpr();
2960  }
2961
2962  // A pointer-to-member constant written &Class::member.
2963  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2964    if (UnOp->getOpcode() == UO_AddrOf) {
2965      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2966      if (DRE && !DRE->getQualifier())
2967        DRE = 0;
2968    }
2969  }
2970  // A constant of pointer-to-member type.
2971  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2972    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2973      if (VD->getType()->isMemberPointerType()) {
2974        if (isa<NonTypeTemplateParmDecl>(VD) ||
2975            (isa<VarDecl>(VD) &&
2976             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2977          if (Arg->isTypeDependent() || Arg->isValueDependent())
2978            Converted = TemplateArgument(Arg);
2979          else
2980            Converted = TemplateArgument(VD->getCanonicalDecl());
2981          return Invalid;
2982        }
2983      }
2984    }
2985
2986    DRE = 0;
2987  }
2988
2989  if (!DRE)
2990    return Diag(Arg->getSourceRange().getBegin(),
2991                diag::err_template_arg_not_pointer_to_member_form)
2992      << Arg->getSourceRange();
2993
2994  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2995    assert((isa<FieldDecl>(DRE->getDecl()) ||
2996            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2997           "Only non-static member pointers can make it here");
2998
2999    // Okay: this is the address of a non-static member, and therefore
3000    // a member pointer constant.
3001    if (Arg->isTypeDependent() || Arg->isValueDependent())
3002      Converted = TemplateArgument(Arg);
3003    else
3004      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3005    return Invalid;
3006  }
3007
3008  // We found something else, but we don't know specifically what it is.
3009  Diag(Arg->getSourceRange().getBegin(),
3010       diag::err_template_arg_not_pointer_to_member_form)
3011      << Arg->getSourceRange();
3012  Diag(DRE->getDecl()->getLocation(),
3013       diag::note_template_arg_refers_here);
3014  return true;
3015}
3016
3017/// \brief Check a template argument against its corresponding
3018/// non-type template parameter.
3019///
3020/// This routine implements the semantics of C++ [temp.arg.nontype].
3021/// It returns true if an error occurred, and false otherwise. \p
3022/// InstantiatedParamType is the type of the non-type template
3023/// parameter after it has been instantiated.
3024///
3025/// If no error was detected, Converted receives the converted template argument.
3026bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3027                                 QualType InstantiatedParamType, Expr *&Arg,
3028                                 TemplateArgument &Converted,
3029                                 CheckTemplateArgumentKind CTAK) {
3030  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3031
3032  // If either the parameter has a dependent type or the argument is
3033  // type-dependent, there's nothing we can check now.
3034  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3035    // FIXME: Produce a cloned, canonical expression?
3036    Converted = TemplateArgument(Arg);
3037    return false;
3038  }
3039
3040  // C++ [temp.arg.nontype]p5:
3041  //   The following conversions are performed on each expression used
3042  //   as a non-type template-argument. If a non-type
3043  //   template-argument cannot be converted to the type of the
3044  //   corresponding template-parameter then the program is
3045  //   ill-formed.
3046  //
3047  //     -- for a non-type template-parameter of integral or
3048  //        enumeration type, integral promotions (4.5) and integral
3049  //        conversions (4.7) are applied.
3050  QualType ParamType = InstantiatedParamType;
3051  QualType ArgType = Arg->getType();
3052  if (ParamType->isIntegralOrEnumerationType()) {
3053    // C++ [temp.arg.nontype]p1:
3054    //   A template-argument for a non-type, non-template
3055    //   template-parameter shall be one of:
3056    //
3057    //     -- an integral constant-expression of integral or enumeration
3058    //        type; or
3059    //     -- the name of a non-type template-parameter; or
3060    SourceLocation NonConstantLoc;
3061    llvm::APSInt Value;
3062    if (!ArgType->isIntegralOrEnumerationType()) {
3063      Diag(Arg->getSourceRange().getBegin(),
3064           diag::err_template_arg_not_integral_or_enumeral)
3065        << ArgType << Arg->getSourceRange();
3066      Diag(Param->getLocation(), diag::note_template_param_here);
3067      return true;
3068    } else if (!Arg->isValueDependent() &&
3069               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3070      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3071        << ArgType << Arg->getSourceRange();
3072      return true;
3073    }
3074
3075    // From here on out, all we care about are the unqualified forms
3076    // of the parameter and argument types.
3077    ParamType = ParamType.getUnqualifiedType();
3078    ArgType = ArgType.getUnqualifiedType();
3079
3080    // Try to convert the argument to the parameter's type.
3081    if (Context.hasSameType(ParamType, ArgType)) {
3082      // Okay: no conversion necessary
3083    } else if (CTAK == CTAK_Deduced) {
3084      // C++ [temp.deduct.type]p17:
3085      //   If, in the declaration of a function template with a non-type
3086      //   template-parameter, the non-type template- parameter is used
3087      //   in an expression in the function parameter-list and, if the
3088      //   corresponding template-argument is deduced, the
3089      //   template-argument type shall match the type of the
3090      //   template-parameter exactly, except that a template-argument
3091      //   deduced from an array bound may be of any integral type.
3092      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3093        << ArgType << ParamType;
3094      Diag(Param->getLocation(), diag::note_template_param_here);
3095      return true;
3096    } else if (ParamType->isBooleanType()) {
3097      // This is an integral-to-boolean conversion.
3098      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3099    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3100               !ParamType->isEnumeralType()) {
3101      // This is an integral promotion or conversion.
3102      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3103    } else {
3104      // We can't perform this conversion.
3105      Diag(Arg->getSourceRange().getBegin(),
3106           diag::err_template_arg_not_convertible)
3107        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3108      Diag(Param->getLocation(), diag::note_template_param_here);
3109      return true;
3110    }
3111
3112    QualType IntegerType = Context.getCanonicalType(ParamType);
3113    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3114      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3115
3116    if (!Arg->isValueDependent()) {
3117      llvm::APSInt OldValue = Value;
3118
3119      // Coerce the template argument's value to the value it will have
3120      // based on the template parameter's type.
3121      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3122      if (Value.getBitWidth() != AllowedBits)
3123        Value = Value.extOrTrunc(AllowedBits);
3124      Value.setIsSigned(IntegerType->isSignedIntegerType());
3125
3126      // Complain if an unsigned parameter received a negative value.
3127      if (IntegerType->isUnsignedIntegerType()
3128          && (OldValue.isSigned() && OldValue.isNegative())) {
3129        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3130          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3131          << Arg->getSourceRange();
3132        Diag(Param->getLocation(), diag::note_template_param_here);
3133      }
3134
3135      // Complain if we overflowed the template parameter's type.
3136      unsigned RequiredBits;
3137      if (IntegerType->isUnsignedIntegerType())
3138        RequiredBits = OldValue.getActiveBits();
3139      else if (OldValue.isUnsigned())
3140        RequiredBits = OldValue.getActiveBits() + 1;
3141      else
3142        RequiredBits = OldValue.getMinSignedBits();
3143      if (RequiredBits > AllowedBits) {
3144        Diag(Arg->getSourceRange().getBegin(),
3145             diag::warn_template_arg_too_large)
3146          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3147          << Arg->getSourceRange();
3148        Diag(Param->getLocation(), diag::note_template_param_here);
3149      }
3150    }
3151
3152    // Add the value of this argument to the list of converted
3153    // arguments. We use the bitwidth and signedness of the template
3154    // parameter.
3155    if (Arg->isValueDependent()) {
3156      // The argument is value-dependent. Create a new
3157      // TemplateArgument with the converted expression.
3158      Converted = TemplateArgument(Arg);
3159      return false;
3160    }
3161
3162    Converted = TemplateArgument(Value,
3163                                 ParamType->isEnumeralType() ? ParamType
3164                                                             : IntegerType);
3165    return false;
3166  }
3167
3168  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3169
3170  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3171  // from a template argument of type std::nullptr_t to a non-type
3172  // template parameter of type pointer to object, pointer to
3173  // function, or pointer-to-member, respectively.
3174  if (ArgType->isNullPtrType() &&
3175      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3176    Converted = TemplateArgument((NamedDecl *)0);
3177    return false;
3178  }
3179
3180  // Handle pointer-to-function, reference-to-function, and
3181  // pointer-to-member-function all in (roughly) the same way.
3182  if (// -- For a non-type template-parameter of type pointer to
3183      //    function, only the function-to-pointer conversion (4.3) is
3184      //    applied. If the template-argument represents a set of
3185      //    overloaded functions (or a pointer to such), the matching
3186      //    function is selected from the set (13.4).
3187      (ParamType->isPointerType() &&
3188       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3189      // -- For a non-type template-parameter of type reference to
3190      //    function, no conversions apply. If the template-argument
3191      //    represents a set of overloaded functions, the matching
3192      //    function is selected from the set (13.4).
3193      (ParamType->isReferenceType() &&
3194       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3195      // -- For a non-type template-parameter of type pointer to
3196      //    member function, no conversions apply. If the
3197      //    template-argument represents a set of overloaded member
3198      //    functions, the matching member function is selected from
3199      //    the set (13.4).
3200      (ParamType->isMemberPointerType() &&
3201       ParamType->getAs<MemberPointerType>()->getPointeeType()
3202         ->isFunctionType())) {
3203
3204    if (Arg->getType() == Context.OverloadTy) {
3205      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3206                                                                true,
3207                                                                FoundResult)) {
3208        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3209          return true;
3210
3211        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3212        ArgType = Arg->getType();
3213      } else
3214        return true;
3215    }
3216
3217    if (!ParamType->isMemberPointerType())
3218      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3219                                                            ParamType,
3220                                                            Arg, Converted);
3221
3222    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3223      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3224    } else if (!Context.hasSameUnqualifiedType(ArgType,
3225                                           ParamType.getNonReferenceType())) {
3226      // We can't perform this conversion.
3227      Diag(Arg->getSourceRange().getBegin(),
3228           diag::err_template_arg_not_convertible)
3229        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3230      Diag(Param->getLocation(), diag::note_template_param_here);
3231      return true;
3232    }
3233
3234    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3235  }
3236
3237  if (ParamType->isPointerType()) {
3238    //   -- for a non-type template-parameter of type pointer to
3239    //      object, qualification conversions (4.4) and the
3240    //      array-to-pointer conversion (4.2) are applied.
3241    // C++0x also allows a value of std::nullptr_t.
3242    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3243           "Only object pointers allowed here");
3244
3245    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3246                                                          ParamType,
3247                                                          Arg, Converted);
3248  }
3249
3250  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3251    //   -- For a non-type template-parameter of type reference to
3252    //      object, no conversions apply. The type referred to by the
3253    //      reference may be more cv-qualified than the (otherwise
3254    //      identical) type of the template-argument. The
3255    //      template-parameter is bound directly to the
3256    //      template-argument, which must be an lvalue.
3257    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3258           "Only object references allowed here");
3259
3260    if (Arg->getType() == Context.OverloadTy) {
3261      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3262                                                 ParamRefType->getPointeeType(),
3263                                                                true,
3264                                                                FoundResult)) {
3265        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3266          return true;
3267
3268        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3269        ArgType = Arg->getType();
3270      } else
3271        return true;
3272    }
3273
3274    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3275                                                          ParamType,
3276                                                          Arg, Converted);
3277  }
3278
3279  //     -- For a non-type template-parameter of type pointer to data
3280  //        member, qualification conversions (4.4) are applied.
3281  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3282
3283  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3284    // Types match exactly: nothing more to do here.
3285  } else if (IsQualificationConversion(ArgType, ParamType)) {
3286    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3287  } else {
3288    // We can't perform this conversion.
3289    Diag(Arg->getSourceRange().getBegin(),
3290         diag::err_template_arg_not_convertible)
3291      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3292    Diag(Param->getLocation(), diag::note_template_param_here);
3293    return true;
3294  }
3295
3296  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3297}
3298
3299/// \brief Check a template argument against its corresponding
3300/// template template parameter.
3301///
3302/// This routine implements the semantics of C++ [temp.arg.template].
3303/// It returns true if an error occurred, and false otherwise.
3304bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3305                                 const TemplateArgumentLoc &Arg) {
3306  TemplateName Name = Arg.getArgument().getAsTemplate();
3307  TemplateDecl *Template = Name.getAsTemplateDecl();
3308  if (!Template) {
3309    // Any dependent template name is fine.
3310    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3311    return false;
3312  }
3313
3314  // C++ [temp.arg.template]p1:
3315  //   A template-argument for a template template-parameter shall be
3316  //   the name of a class template, expressed as id-expression. Only
3317  //   primary class templates are considered when matching the
3318  //   template template argument with the corresponding parameter;
3319  //   partial specializations are not considered even if their
3320  //   parameter lists match that of the template template parameter.
3321  //
3322  // Note that we also allow template template parameters here, which
3323  // will happen when we are dealing with, e.g., class template
3324  // partial specializations.
3325  if (!isa<ClassTemplateDecl>(Template) &&
3326      !isa<TemplateTemplateParmDecl>(Template)) {
3327    assert(isa<FunctionTemplateDecl>(Template) &&
3328           "Only function templates are possible here");
3329    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3330    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3331      << Template;
3332  }
3333
3334  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3335                                         Param->getTemplateParameters(),
3336                                         true,
3337                                         TPL_TemplateTemplateArgumentMatch,
3338                                         Arg.getLocation());
3339}
3340
3341/// \brief Given a non-type template argument that refers to a
3342/// declaration and the type of its corresponding non-type template
3343/// parameter, produce an expression that properly refers to that
3344/// declaration.
3345ExprResult
3346Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3347                                              QualType ParamType,
3348                                              SourceLocation Loc) {
3349  assert(Arg.getKind() == TemplateArgument::Declaration &&
3350         "Only declaration template arguments permitted here");
3351  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3352
3353  if (VD->getDeclContext()->isRecord() &&
3354      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3355    // If the value is a class member, we might have a pointer-to-member.
3356    // Determine whether the non-type template template parameter is of
3357    // pointer-to-member type. If so, we need to build an appropriate
3358    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3359    // would refer to the member itself.
3360    if (ParamType->isMemberPointerType()) {
3361      QualType ClassType
3362        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3363      NestedNameSpecifier *Qualifier
3364        = NestedNameSpecifier::Create(Context, 0, false,
3365                                      ClassType.getTypePtr());
3366      CXXScopeSpec SS;
3367      SS.setScopeRep(Qualifier);
3368
3369      // The actual value-ness of this is unimportant, but for
3370      // internal consistency's sake, references to instance methods
3371      // are r-values.
3372      ExprValueKind VK = VK_LValue;
3373      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3374        VK = VK_RValue;
3375
3376      ExprResult RefExpr = BuildDeclRefExpr(VD,
3377                                            VD->getType().getNonReferenceType(),
3378                                            VK,
3379                                            Loc,
3380                                            &SS);
3381      if (RefExpr.isInvalid())
3382        return ExprError();
3383
3384      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3385
3386      // We might need to perform a trailing qualification conversion, since
3387      // the element type on the parameter could be more qualified than the
3388      // element type in the expression we constructed.
3389      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3390                                    ParamType.getUnqualifiedType())) {
3391        Expr *RefE = RefExpr.takeAs<Expr>();
3392        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3393        RefExpr = Owned(RefE);
3394      }
3395
3396      assert(!RefExpr.isInvalid() &&
3397             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3398                                 ParamType.getUnqualifiedType()));
3399      return move(RefExpr);
3400    }
3401  }
3402
3403  QualType T = VD->getType().getNonReferenceType();
3404  if (ParamType->isPointerType()) {
3405    // When the non-type template parameter is a pointer, take the
3406    // address of the declaration.
3407    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3408    if (RefExpr.isInvalid())
3409      return ExprError();
3410
3411    if (T->isFunctionType() || T->isArrayType()) {
3412      // Decay functions and arrays.
3413      Expr *RefE = (Expr *)RefExpr.get();
3414      DefaultFunctionArrayConversion(RefE);
3415      if (RefE != RefExpr.get()) {
3416        RefExpr.release();
3417        RefExpr = Owned(RefE);
3418      }
3419
3420      return move(RefExpr);
3421    }
3422
3423    // Take the address of everything else
3424    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3425  }
3426
3427  ExprValueKind VK = VK_RValue;
3428
3429  // If the non-type template parameter has reference type, qualify the
3430  // resulting declaration reference with the extra qualifiers on the
3431  // type that the reference refers to.
3432  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3433    VK = VK_LValue;
3434    T = Context.getQualifiedType(T,
3435                              TargetRef->getPointeeType().getQualifiers());
3436  }
3437
3438  return BuildDeclRefExpr(VD, T, VK, Loc);
3439}
3440
3441/// \brief Construct a new expression that refers to the given
3442/// integral template argument with the given source-location
3443/// information.
3444///
3445/// This routine takes care of the mapping from an integral template
3446/// argument (which may have any integral type) to the appropriate
3447/// literal value.
3448ExprResult
3449Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3450                                                  SourceLocation Loc) {
3451  assert(Arg.getKind() == TemplateArgument::Integral &&
3452         "Operation is only value for integral template arguments");
3453  QualType T = Arg.getIntegralType();
3454  if (T->isCharType() || T->isWideCharType())
3455    return Owned(new (Context) CharacterLiteral(
3456                                             Arg.getAsIntegral()->getZExtValue(),
3457                                             T->isWideCharType(),
3458                                             T,
3459                                             Loc));
3460  if (T->isBooleanType())
3461    return Owned(new (Context) CXXBoolLiteralExpr(
3462                                            Arg.getAsIntegral()->getBoolValue(),
3463                                            T,
3464                                            Loc));
3465
3466  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3467}
3468
3469
3470/// \brief Determine whether the given template parameter lists are
3471/// equivalent.
3472///
3473/// \param New  The new template parameter list, typically written in the
3474/// source code as part of a new template declaration.
3475///
3476/// \param Old  The old template parameter list, typically found via
3477/// name lookup of the template declared with this template parameter
3478/// list.
3479///
3480/// \param Complain  If true, this routine will produce a diagnostic if
3481/// the template parameter lists are not equivalent.
3482///
3483/// \param Kind describes how we are to match the template parameter lists.
3484///
3485/// \param TemplateArgLoc If this source location is valid, then we
3486/// are actually checking the template parameter list of a template
3487/// argument (New) against the template parameter list of its
3488/// corresponding template template parameter (Old). We produce
3489/// slightly different diagnostics in this scenario.
3490///
3491/// \returns True if the template parameter lists are equal, false
3492/// otherwise.
3493bool
3494Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3495                                     TemplateParameterList *Old,
3496                                     bool Complain,
3497                                     TemplateParameterListEqualKind Kind,
3498                                     SourceLocation TemplateArgLoc) {
3499  if (Old->size() != New->size()) {
3500    if (Complain) {
3501      unsigned NextDiag = diag::err_template_param_list_different_arity;
3502      if (TemplateArgLoc.isValid()) {
3503        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3504        NextDiag = diag::note_template_param_list_different_arity;
3505      }
3506      Diag(New->getTemplateLoc(), NextDiag)
3507          << (New->size() > Old->size())
3508          << (Kind != TPL_TemplateMatch)
3509          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3510      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3511        << (Kind != TPL_TemplateMatch)
3512        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3513    }
3514
3515    return false;
3516  }
3517
3518  for (TemplateParameterList::iterator OldParm = Old->begin(),
3519         OldParmEnd = Old->end(), NewParm = New->begin();
3520       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3521    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3522      if (Complain) {
3523        unsigned NextDiag = diag::err_template_param_different_kind;
3524        if (TemplateArgLoc.isValid()) {
3525          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3526          NextDiag = diag::note_template_param_different_kind;
3527        }
3528        Diag((*NewParm)->getLocation(), NextDiag)
3529          << (Kind != TPL_TemplateMatch);
3530        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3531          << (Kind != TPL_TemplateMatch);
3532      }
3533      return false;
3534    }
3535
3536    if (TemplateTypeParmDecl *OldTTP
3537                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3538      // Template type parameters are equivalent if either both are template
3539      // type parameter packs or neither are (since we know we're at the same
3540      // index).
3541      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3542      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3543        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3544        // allow one to match a template parameter pack in the template
3545        // parameter list of a template template parameter to one or more
3546        // template parameters in the template parameter list of the
3547        // corresponding template template argument.
3548        if (Complain) {
3549          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3550          if (TemplateArgLoc.isValid()) {
3551            Diag(TemplateArgLoc,
3552                 diag::err_template_arg_template_params_mismatch);
3553            NextDiag = diag::note_template_parameter_pack_non_pack;
3554          }
3555          Diag(NewTTP->getLocation(), NextDiag)
3556            << 0 << NewTTP->isParameterPack();
3557          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3558            << 0 << OldTTP->isParameterPack();
3559        }
3560        return false;
3561      }
3562    } else if (NonTypeTemplateParmDecl *OldNTTP
3563                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3564      // The types of non-type template parameters must agree.
3565      NonTypeTemplateParmDecl *NewNTTP
3566        = cast<NonTypeTemplateParmDecl>(*NewParm);
3567
3568      // If we are matching a template template argument to a template
3569      // template parameter and one of the non-type template parameter types
3570      // is dependent, then we must wait until template instantiation time
3571      // to actually compare the arguments.
3572      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3573          (OldNTTP->getType()->isDependentType() ||
3574           NewNTTP->getType()->isDependentType()))
3575        continue;
3576
3577      if (Context.getCanonicalType(OldNTTP->getType()) !=
3578            Context.getCanonicalType(NewNTTP->getType())) {
3579        if (Complain) {
3580          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3581          if (TemplateArgLoc.isValid()) {
3582            Diag(TemplateArgLoc,
3583                 diag::err_template_arg_template_params_mismatch);
3584            NextDiag = diag::note_template_nontype_parm_different_type;
3585          }
3586          Diag(NewNTTP->getLocation(), NextDiag)
3587            << NewNTTP->getType()
3588            << (Kind != TPL_TemplateMatch);
3589          Diag(OldNTTP->getLocation(),
3590               diag::note_template_nontype_parm_prev_declaration)
3591            << OldNTTP->getType();
3592        }
3593        return false;
3594      }
3595    } else {
3596      // The template parameter lists of template template
3597      // parameters must agree.
3598      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3599             "Only template template parameters handled here");
3600      TemplateTemplateParmDecl *OldTTP
3601        = cast<TemplateTemplateParmDecl>(*OldParm);
3602      TemplateTemplateParmDecl *NewTTP
3603        = cast<TemplateTemplateParmDecl>(*NewParm);
3604      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3605                                          OldTTP->getTemplateParameters(),
3606                                          Complain,
3607              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3608                                          TemplateArgLoc))
3609        return false;
3610    }
3611  }
3612
3613  return true;
3614}
3615
3616/// \brief Check whether a template can be declared within this scope.
3617///
3618/// If the template declaration is valid in this scope, returns
3619/// false. Otherwise, issues a diagnostic and returns true.
3620bool
3621Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3622  // Find the nearest enclosing declaration scope.
3623  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3624         (S->getFlags() & Scope::TemplateParamScope) != 0)
3625    S = S->getParent();
3626
3627  // C++ [temp]p2:
3628  //   A template-declaration can appear only as a namespace scope or
3629  //   class scope declaration.
3630  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3631  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3632      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3633    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3634             << TemplateParams->getSourceRange();
3635
3636  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3637    Ctx = Ctx->getParent();
3638
3639  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3640    return false;
3641
3642  return Diag(TemplateParams->getTemplateLoc(),
3643              diag::err_template_outside_namespace_or_class_scope)
3644    << TemplateParams->getSourceRange();
3645}
3646
3647/// \brief Determine what kind of template specialization the given declaration
3648/// is.
3649static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3650  if (!D)
3651    return TSK_Undeclared;
3652
3653  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3654    return Record->getTemplateSpecializationKind();
3655  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3656    return Function->getTemplateSpecializationKind();
3657  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3658    return Var->getTemplateSpecializationKind();
3659
3660  return TSK_Undeclared;
3661}
3662
3663/// \brief Check whether a specialization is well-formed in the current
3664/// context.
3665///
3666/// This routine determines whether a template specialization can be declared
3667/// in the current context (C++ [temp.expl.spec]p2).
3668///
3669/// \param S the semantic analysis object for which this check is being
3670/// performed.
3671///
3672/// \param Specialized the entity being specialized or instantiated, which
3673/// may be a kind of template (class template, function template, etc.) or
3674/// a member of a class template (member function, static data member,
3675/// member class).
3676///
3677/// \param PrevDecl the previous declaration of this entity, if any.
3678///
3679/// \param Loc the location of the explicit specialization or instantiation of
3680/// this entity.
3681///
3682/// \param IsPartialSpecialization whether this is a partial specialization of
3683/// a class template.
3684///
3685/// \returns true if there was an error that we cannot recover from, false
3686/// otherwise.
3687static bool CheckTemplateSpecializationScope(Sema &S,
3688                                             NamedDecl *Specialized,
3689                                             NamedDecl *PrevDecl,
3690                                             SourceLocation Loc,
3691                                             bool IsPartialSpecialization) {
3692  // Keep these "kind" numbers in sync with the %select statements in the
3693  // various diagnostics emitted by this routine.
3694  int EntityKind = 0;
3695  bool isTemplateSpecialization = false;
3696  if (isa<ClassTemplateDecl>(Specialized)) {
3697    EntityKind = IsPartialSpecialization? 1 : 0;
3698    isTemplateSpecialization = true;
3699  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3700    EntityKind = 2;
3701    isTemplateSpecialization = true;
3702  } else if (isa<CXXMethodDecl>(Specialized))
3703    EntityKind = 3;
3704  else if (isa<VarDecl>(Specialized))
3705    EntityKind = 4;
3706  else if (isa<RecordDecl>(Specialized))
3707    EntityKind = 5;
3708  else {
3709    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3710    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3711    return true;
3712  }
3713
3714  // C++ [temp.expl.spec]p2:
3715  //   An explicit specialization shall be declared in the namespace
3716  //   of which the template is a member, or, for member templates, in
3717  //   the namespace of which the enclosing class or enclosing class
3718  //   template is a member. An explicit specialization of a member
3719  //   function, member class or static data member of a class
3720  //   template shall be declared in the namespace of which the class
3721  //   template is a member. Such a declaration may also be a
3722  //   definition. If the declaration is not a definition, the
3723  //   specialization may be defined later in the name- space in which
3724  //   the explicit specialization was declared, or in a namespace
3725  //   that encloses the one in which the explicit specialization was
3726  //   declared.
3727  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3728    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3729      << Specialized;
3730    return true;
3731  }
3732
3733  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3734    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3735      << Specialized;
3736    return true;
3737  }
3738
3739  // C++ [temp.class.spec]p6:
3740  //   A class template partial specialization may be declared or redeclared
3741  //   in any namespace scope in which its definition may be defined (14.5.1
3742  //   and 14.5.2).
3743  bool ComplainedAboutScope = false;
3744  DeclContext *SpecializedContext
3745    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3746  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3747  if ((!PrevDecl ||
3748       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3749       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3750    // C++ [temp.exp.spec]p2:
3751    //   An explicit specialization shall be declared in the namespace of which
3752    //   the template is a member, or, for member templates, in the namespace
3753    //   of which the enclosing class or enclosing class template is a member.
3754    //   An explicit specialization of a member function, member class or
3755    //   static data member of a class template shall be declared in the
3756    //   namespace of which the class template is a member.
3757    //
3758    // C++0x [temp.expl.spec]p2:
3759    //   An explicit specialization shall be declared in a namespace enclosing
3760    //   the specialized template.
3761    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3762        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3763      bool IsCPlusPlus0xExtension
3764        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3765      if (isa<TranslationUnitDecl>(SpecializedContext))
3766        S.Diag(Loc, IsCPlusPlus0xExtension
3767                      ? diag::ext_template_spec_decl_out_of_scope_global
3768                      : diag::err_template_spec_decl_out_of_scope_global)
3769          << EntityKind << Specialized;
3770      else if (isa<NamespaceDecl>(SpecializedContext))
3771        S.Diag(Loc, IsCPlusPlus0xExtension
3772                      ? diag::ext_template_spec_decl_out_of_scope
3773                      : diag::err_template_spec_decl_out_of_scope)
3774          << EntityKind << Specialized
3775          << cast<NamedDecl>(SpecializedContext);
3776
3777      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3778      ComplainedAboutScope = true;
3779    }
3780  }
3781
3782  // Make sure that this redeclaration (or definition) occurs in an enclosing
3783  // namespace.
3784  // Note that HandleDeclarator() performs this check for explicit
3785  // specializations of function templates, static data members, and member
3786  // functions, so we skip the check here for those kinds of entities.
3787  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3788  // Should we refactor that check, so that it occurs later?
3789  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3790      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3791        isa<FunctionDecl>(Specialized))) {
3792    if (isa<TranslationUnitDecl>(SpecializedContext))
3793      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3794        << EntityKind << Specialized;
3795    else if (isa<NamespaceDecl>(SpecializedContext))
3796      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3797        << EntityKind << Specialized
3798        << cast<NamedDecl>(SpecializedContext);
3799
3800    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3801  }
3802
3803  // FIXME: check for specialization-after-instantiation errors and such.
3804
3805  return false;
3806}
3807
3808/// \brief Check the non-type template arguments of a class template
3809/// partial specialization according to C++ [temp.class.spec]p9.
3810///
3811/// \param TemplateParams the template parameters of the primary class
3812/// template.
3813///
3814/// \param TemplateArg the template arguments of the class template
3815/// partial specialization.
3816///
3817/// \param MirrorsPrimaryTemplate will be set true if the class
3818/// template partial specialization arguments are identical to the
3819/// implicit template arguments of the primary template. This is not
3820/// necessarily an error (C++0x), and it is left to the caller to diagnose
3821/// this condition when it is an error.
3822///
3823/// \returns true if there was an error, false otherwise.
3824bool Sema::CheckClassTemplatePartialSpecializationArgs(
3825                                        TemplateParameterList *TemplateParams,
3826                         llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs,
3827                                        bool &MirrorsPrimaryTemplate) {
3828  // FIXME: the interface to this function will have to change to
3829  // accommodate variadic templates.
3830  MirrorsPrimaryTemplate = true;
3831
3832  const TemplateArgument *ArgList = TemplateArgs.data();
3833
3834  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3835    // Determine whether the template argument list of the partial
3836    // specialization is identical to the implicit argument list of
3837    // the primary template. The caller may need to diagnostic this as
3838    // an error per C++ [temp.class.spec]p9b3.
3839    if (MirrorsPrimaryTemplate) {
3840      if (TemplateTypeParmDecl *TTP
3841            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3842        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3843              Context.getCanonicalType(ArgList[I].getAsType()))
3844          MirrorsPrimaryTemplate = false;
3845      } else if (TemplateTemplateParmDecl *TTP
3846                   = dyn_cast<TemplateTemplateParmDecl>(
3847                                                 TemplateParams->getParam(I))) {
3848        TemplateName Name = ArgList[I].getAsTemplate();
3849        TemplateTemplateParmDecl *ArgDecl
3850          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3851        if (!ArgDecl ||
3852            ArgDecl->getIndex() != TTP->getIndex() ||
3853            ArgDecl->getDepth() != TTP->getDepth())
3854          MirrorsPrimaryTemplate = false;
3855      }
3856    }
3857
3858    NonTypeTemplateParmDecl *Param
3859      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3860    if (!Param) {
3861      continue;
3862    }
3863
3864    Expr *ArgExpr = ArgList[I].getAsExpr();
3865    if (!ArgExpr) {
3866      MirrorsPrimaryTemplate = false;
3867      continue;
3868    }
3869
3870    // C++ [temp.class.spec]p8:
3871    //   A non-type argument is non-specialized if it is the name of a
3872    //   non-type parameter. All other non-type arguments are
3873    //   specialized.
3874    //
3875    // Below, we check the two conditions that only apply to
3876    // specialized non-type arguments, so skip any non-specialized
3877    // arguments.
3878    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3879      if (NonTypeTemplateParmDecl *NTTP
3880            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3881        if (MirrorsPrimaryTemplate &&
3882            (Param->getIndex() != NTTP->getIndex() ||
3883             Param->getDepth() != NTTP->getDepth()))
3884          MirrorsPrimaryTemplate = false;
3885
3886        continue;
3887      }
3888
3889    // C++ [temp.class.spec]p9:
3890    //   Within the argument list of a class template partial
3891    //   specialization, the following restrictions apply:
3892    //     -- A partially specialized non-type argument expression
3893    //        shall not involve a template parameter of the partial
3894    //        specialization except when the argument expression is a
3895    //        simple identifier.
3896    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3897      Diag(ArgExpr->getLocStart(),
3898           diag::err_dependent_non_type_arg_in_partial_spec)
3899        << ArgExpr->getSourceRange();
3900      return true;
3901    }
3902
3903    //     -- The type of a template parameter corresponding to a
3904    //        specialized non-type argument shall not be dependent on a
3905    //        parameter of the specialization.
3906    if (Param->getType()->isDependentType()) {
3907      Diag(ArgExpr->getLocStart(),
3908           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3909        << Param->getType()
3910        << ArgExpr->getSourceRange();
3911      Diag(Param->getLocation(), diag::note_template_param_here);
3912      return true;
3913    }
3914
3915    MirrorsPrimaryTemplate = false;
3916  }
3917
3918  return false;
3919}
3920
3921/// \brief Retrieve the previous declaration of the given declaration.
3922static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3923  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3924    return VD->getPreviousDeclaration();
3925  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3926    return FD->getPreviousDeclaration();
3927  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3928    return TD->getPreviousDeclaration();
3929  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3930    return TD->getPreviousDeclaration();
3931  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3932    return FTD->getPreviousDeclaration();
3933  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3934    return CTD->getPreviousDeclaration();
3935  return 0;
3936}
3937
3938DeclResult
3939Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3940                                       TagUseKind TUK,
3941                                       SourceLocation KWLoc,
3942                                       CXXScopeSpec &SS,
3943                                       TemplateTy TemplateD,
3944                                       SourceLocation TemplateNameLoc,
3945                                       SourceLocation LAngleLoc,
3946                                       ASTTemplateArgsPtr TemplateArgsIn,
3947                                       SourceLocation RAngleLoc,
3948                                       AttributeList *Attr,
3949                               MultiTemplateParamsArg TemplateParameterLists) {
3950  assert(TUK != TUK_Reference && "References are not specializations");
3951
3952  // Find the class template we're specializing
3953  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3954  ClassTemplateDecl *ClassTemplate
3955    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3956
3957  if (!ClassTemplate) {
3958    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3959      << (Name.getAsTemplateDecl() &&
3960          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3961    return true;
3962  }
3963
3964  bool isExplicitSpecialization = false;
3965  bool isPartialSpecialization = false;
3966
3967  // Check the validity of the template headers that introduce this
3968  // template.
3969  // FIXME: We probably shouldn't complain about these headers for
3970  // friend declarations.
3971  bool Invalid = false;
3972  TemplateParameterList *TemplateParams
3973    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3974                        (TemplateParameterList**)TemplateParameterLists.get(),
3975                                              TemplateParameterLists.size(),
3976                                              TUK == TUK_Friend,
3977                                              isExplicitSpecialization,
3978                                              Invalid);
3979  if (Invalid)
3980    return true;
3981
3982  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3983  if (TemplateParams)
3984    --NumMatchedTemplateParamLists;
3985
3986  if (TemplateParams && TemplateParams->size() > 0) {
3987    isPartialSpecialization = true;
3988
3989    // C++ [temp.class.spec]p10:
3990    //   The template parameter list of a specialization shall not
3991    //   contain default template argument values.
3992    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3993      Decl *Param = TemplateParams->getParam(I);
3994      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3995        if (TTP->hasDefaultArgument()) {
3996          Diag(TTP->getDefaultArgumentLoc(),
3997               diag::err_default_arg_in_partial_spec);
3998          TTP->removeDefaultArgument();
3999        }
4000      } else if (NonTypeTemplateParmDecl *NTTP
4001                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4002        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4003          Diag(NTTP->getDefaultArgumentLoc(),
4004               diag::err_default_arg_in_partial_spec)
4005            << DefArg->getSourceRange();
4006          NTTP->removeDefaultArgument();
4007        }
4008      } else {
4009        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4010        if (TTP->hasDefaultArgument()) {
4011          Diag(TTP->getDefaultArgument().getLocation(),
4012               diag::err_default_arg_in_partial_spec)
4013            << TTP->getDefaultArgument().getSourceRange();
4014          TTP->removeDefaultArgument();
4015        }
4016      }
4017    }
4018  } else if (TemplateParams) {
4019    if (TUK == TUK_Friend)
4020      Diag(KWLoc, diag::err_template_spec_friend)
4021        << FixItHint::CreateRemoval(
4022                                SourceRange(TemplateParams->getTemplateLoc(),
4023                                            TemplateParams->getRAngleLoc()))
4024        << SourceRange(LAngleLoc, RAngleLoc);
4025    else
4026      isExplicitSpecialization = true;
4027  } else if (TUK != TUK_Friend) {
4028    Diag(KWLoc, diag::err_template_spec_needs_header)
4029      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4030    isExplicitSpecialization = true;
4031  }
4032
4033  // Check that the specialization uses the same tag kind as the
4034  // original template.
4035  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4036  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4037  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4038                                    Kind, KWLoc,
4039                                    *ClassTemplate->getIdentifier())) {
4040    Diag(KWLoc, diag::err_use_with_wrong_tag)
4041      << ClassTemplate
4042      << FixItHint::CreateReplacement(KWLoc,
4043                            ClassTemplate->getTemplatedDecl()->getKindName());
4044    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4045         diag::note_previous_use);
4046    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4047  }
4048
4049  // Translate the parser's template argument list in our AST format.
4050  TemplateArgumentListInfo TemplateArgs;
4051  TemplateArgs.setLAngleLoc(LAngleLoc);
4052  TemplateArgs.setRAngleLoc(RAngleLoc);
4053  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4054
4055  // Check that the template argument list is well-formed for this
4056  // template.
4057  llvm::SmallVector<TemplateArgument, 4> Converted;
4058  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4059                                TemplateArgs, false, Converted))
4060    return true;
4061
4062  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4063         "Converted template argument list is too short!");
4064
4065  // Find the class template (partial) specialization declaration that
4066  // corresponds to these arguments.
4067  if (isPartialSpecialization) {
4068    bool MirrorsPrimaryTemplate;
4069    if (CheckClassTemplatePartialSpecializationArgs(
4070                                         ClassTemplate->getTemplateParameters(),
4071                                         Converted, MirrorsPrimaryTemplate))
4072      return true;
4073
4074    if (MirrorsPrimaryTemplate) {
4075      // C++ [temp.class.spec]p9b3:
4076      //
4077      //   -- The argument list of the specialization shall not be identical
4078      //      to the implicit argument list of the primary template.
4079      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4080        << (TUK == TUK_Definition)
4081        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4082      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4083                                ClassTemplate->getIdentifier(),
4084                                TemplateNameLoc,
4085                                Attr,
4086                                TemplateParams,
4087                                AS_none);
4088    }
4089
4090    // FIXME: Diagnose friend partial specializations
4091
4092    if (!Name.isDependent() &&
4093        !TemplateSpecializationType::anyDependentTemplateArguments(
4094                                             TemplateArgs.getArgumentArray(),
4095                                                         TemplateArgs.size())) {
4096      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4097        << ClassTemplate->getDeclName();
4098      isPartialSpecialization = false;
4099    }
4100  }
4101
4102  void *InsertPos = 0;
4103  ClassTemplateSpecializationDecl *PrevDecl = 0;
4104
4105  if (isPartialSpecialization)
4106    // FIXME: Template parameter list matters, too
4107    PrevDecl
4108      = ClassTemplate->findPartialSpecialization(Converted.data(),
4109                                                 Converted.size(),
4110                                                 InsertPos);
4111  else
4112    PrevDecl
4113      = ClassTemplate->findSpecialization(Converted.data(),
4114                                          Converted.size(), InsertPos);
4115
4116  ClassTemplateSpecializationDecl *Specialization = 0;
4117
4118  // Check whether we can declare a class template specialization in
4119  // the current scope.
4120  if (TUK != TUK_Friend &&
4121      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4122                                       TemplateNameLoc,
4123                                       isPartialSpecialization))
4124    return true;
4125
4126  // The canonical type
4127  QualType CanonType;
4128  if (PrevDecl &&
4129      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4130               TUK == TUK_Friend)) {
4131    // Since the only prior class template specialization with these
4132    // arguments was referenced but not declared, or we're only
4133    // referencing this specialization as a friend, reuse that
4134    // declaration node as our own, updating its source location to
4135    // reflect our new declaration.
4136    Specialization = PrevDecl;
4137    Specialization->setLocation(TemplateNameLoc);
4138    PrevDecl = 0;
4139    CanonType = Context.getTypeDeclType(Specialization);
4140  } else if (isPartialSpecialization) {
4141    // Build the canonical type that describes the converted template
4142    // arguments of the class template partial specialization.
4143    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4144    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4145                                                  Converted.data(),
4146                                                  Converted.size());
4147
4148    // Create a new class template partial specialization declaration node.
4149    ClassTemplatePartialSpecializationDecl *PrevPartial
4150      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4151    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4152                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4153    ClassTemplatePartialSpecializationDecl *Partial
4154      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4155                                             ClassTemplate->getDeclContext(),
4156                                                       TemplateNameLoc,
4157                                                       TemplateParams,
4158                                                       ClassTemplate,
4159                                                       Converted.data(),
4160                                                       Converted.size(),
4161                                                       TemplateArgs,
4162                                                       CanonType,
4163                                                       PrevPartial,
4164                                                       SequenceNumber);
4165    SetNestedNameSpecifier(Partial, SS);
4166    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4167      Partial->setTemplateParameterListsInfo(Context,
4168                                             NumMatchedTemplateParamLists,
4169                    (TemplateParameterList**) TemplateParameterLists.release());
4170    }
4171
4172    if (!PrevPartial)
4173      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4174    Specialization = Partial;
4175
4176    // If we are providing an explicit specialization of a member class
4177    // template specialization, make a note of that.
4178    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4179      PrevPartial->setMemberSpecialization();
4180
4181    // Check that all of the template parameters of the class template
4182    // partial specialization are deducible from the template
4183    // arguments. If not, this class template partial specialization
4184    // will never be used.
4185    llvm::SmallVector<bool, 8> DeducibleParams;
4186    DeducibleParams.resize(TemplateParams->size());
4187    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4188                               TemplateParams->getDepth(),
4189                               DeducibleParams);
4190    unsigned NumNonDeducible = 0;
4191    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4192      if (!DeducibleParams[I])
4193        ++NumNonDeducible;
4194
4195    if (NumNonDeducible) {
4196      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4197        << (NumNonDeducible > 1)
4198        << SourceRange(TemplateNameLoc, RAngleLoc);
4199      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4200        if (!DeducibleParams[I]) {
4201          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4202          if (Param->getDeclName())
4203            Diag(Param->getLocation(),
4204                 diag::note_partial_spec_unused_parameter)
4205              << Param->getDeclName();
4206          else
4207            Diag(Param->getLocation(),
4208                 diag::note_partial_spec_unused_parameter)
4209              << "<anonymous>";
4210        }
4211      }
4212    }
4213  } else {
4214    // Create a new class template specialization declaration node for
4215    // this explicit specialization or friend declaration.
4216    Specialization
4217      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4218                                             ClassTemplate->getDeclContext(),
4219                                                TemplateNameLoc,
4220                                                ClassTemplate,
4221                                                Converted.data(),
4222                                                Converted.size(),
4223                                                PrevDecl);
4224    SetNestedNameSpecifier(Specialization, SS);
4225    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4226      Specialization->setTemplateParameterListsInfo(Context,
4227                                                  NumMatchedTemplateParamLists,
4228                    (TemplateParameterList**) TemplateParameterLists.release());
4229    }
4230
4231    if (!PrevDecl)
4232      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4233
4234    CanonType = Context.getTypeDeclType(Specialization);
4235  }
4236
4237  // C++ [temp.expl.spec]p6:
4238  //   If a template, a member template or the member of a class template is
4239  //   explicitly specialized then that specialization shall be declared
4240  //   before the first use of that specialization that would cause an implicit
4241  //   instantiation to take place, in every translation unit in which such a
4242  //   use occurs; no diagnostic is required.
4243  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4244    bool Okay = false;
4245    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4246      // Is there any previous explicit specialization declaration?
4247      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4248        Okay = true;
4249        break;
4250      }
4251    }
4252
4253    if (!Okay) {
4254      SourceRange Range(TemplateNameLoc, RAngleLoc);
4255      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4256        << Context.getTypeDeclType(Specialization) << Range;
4257
4258      Diag(PrevDecl->getPointOfInstantiation(),
4259           diag::note_instantiation_required_here)
4260        << (PrevDecl->getTemplateSpecializationKind()
4261                                                != TSK_ImplicitInstantiation);
4262      return true;
4263    }
4264  }
4265
4266  // If this is not a friend, note that this is an explicit specialization.
4267  if (TUK != TUK_Friend)
4268    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4269
4270  // Check that this isn't a redefinition of this specialization.
4271  if (TUK == TUK_Definition) {
4272    if (RecordDecl *Def = Specialization->getDefinition()) {
4273      SourceRange Range(TemplateNameLoc, RAngleLoc);
4274      Diag(TemplateNameLoc, diag::err_redefinition)
4275        << Context.getTypeDeclType(Specialization) << Range;
4276      Diag(Def->getLocation(), diag::note_previous_definition);
4277      Specialization->setInvalidDecl();
4278      return true;
4279    }
4280  }
4281
4282  // Build the fully-sugared type for this class template
4283  // specialization as the user wrote in the specialization
4284  // itself. This means that we'll pretty-print the type retrieved
4285  // from the specialization's declaration the way that the user
4286  // actually wrote the specialization, rather than formatting the
4287  // name based on the "canonical" representation used to store the
4288  // template arguments in the specialization.
4289  TypeSourceInfo *WrittenTy
4290    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4291                                                TemplateArgs, CanonType);
4292  if (TUK != TUK_Friend) {
4293    Specialization->setTypeAsWritten(WrittenTy);
4294    if (TemplateParams)
4295      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4296  }
4297  TemplateArgsIn.release();
4298
4299  // C++ [temp.expl.spec]p9:
4300  //   A template explicit specialization is in the scope of the
4301  //   namespace in which the template was defined.
4302  //
4303  // We actually implement this paragraph where we set the semantic
4304  // context (in the creation of the ClassTemplateSpecializationDecl),
4305  // but we also maintain the lexical context where the actual
4306  // definition occurs.
4307  Specialization->setLexicalDeclContext(CurContext);
4308
4309  // We may be starting the definition of this specialization.
4310  if (TUK == TUK_Definition)
4311    Specialization->startDefinition();
4312
4313  if (TUK == TUK_Friend) {
4314    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4315                                            TemplateNameLoc,
4316                                            WrittenTy,
4317                                            /*FIXME:*/KWLoc);
4318    Friend->setAccess(AS_public);
4319    CurContext->addDecl(Friend);
4320  } else {
4321    // Add the specialization into its lexical context, so that it can
4322    // be seen when iterating through the list of declarations in that
4323    // context. However, specializations are not found by name lookup.
4324    CurContext->addDecl(Specialization);
4325  }
4326  return Specialization;
4327}
4328
4329Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4330                              MultiTemplateParamsArg TemplateParameterLists,
4331                                    Declarator &D) {
4332  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4333}
4334
4335Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4336                               MultiTemplateParamsArg TemplateParameterLists,
4337                                            Declarator &D) {
4338  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4339  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4340
4341  if (FTI.hasPrototype) {
4342    // FIXME: Diagnose arguments without names in C.
4343  }
4344
4345  Scope *ParentScope = FnBodyScope->getParent();
4346
4347  Decl *DP = HandleDeclarator(ParentScope, D,
4348                              move(TemplateParameterLists),
4349                              /*IsFunctionDefinition=*/true);
4350  if (FunctionTemplateDecl *FunctionTemplate
4351        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4352    return ActOnStartOfFunctionDef(FnBodyScope,
4353                                   FunctionTemplate->getTemplatedDecl());
4354  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4355    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4356  return 0;
4357}
4358
4359/// \brief Strips various properties off an implicit instantiation
4360/// that has just been explicitly specialized.
4361static void StripImplicitInstantiation(NamedDecl *D) {
4362  D->dropAttrs();
4363
4364  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4365    FD->setInlineSpecified(false);
4366  }
4367}
4368
4369/// \brief Diagnose cases where we have an explicit template specialization
4370/// before/after an explicit template instantiation, producing diagnostics
4371/// for those cases where they are required and determining whether the
4372/// new specialization/instantiation will have any effect.
4373///
4374/// \param NewLoc the location of the new explicit specialization or
4375/// instantiation.
4376///
4377/// \param NewTSK the kind of the new explicit specialization or instantiation.
4378///
4379/// \param PrevDecl the previous declaration of the entity.
4380///
4381/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4382///
4383/// \param PrevPointOfInstantiation if valid, indicates where the previus
4384/// declaration was instantiated (either implicitly or explicitly).
4385///
4386/// \param HasNoEffect will be set to true to indicate that the new
4387/// specialization or instantiation has no effect and should be ignored.
4388///
4389/// \returns true if there was an error that should prevent the introduction of
4390/// the new declaration into the AST, false otherwise.
4391bool
4392Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4393                                             TemplateSpecializationKind NewTSK,
4394                                             NamedDecl *PrevDecl,
4395                                             TemplateSpecializationKind PrevTSK,
4396                                        SourceLocation PrevPointOfInstantiation,
4397                                             bool &HasNoEffect) {
4398  HasNoEffect = false;
4399
4400  switch (NewTSK) {
4401  case TSK_Undeclared:
4402  case TSK_ImplicitInstantiation:
4403    assert(false && "Don't check implicit instantiations here");
4404    return false;
4405
4406  case TSK_ExplicitSpecialization:
4407    switch (PrevTSK) {
4408    case TSK_Undeclared:
4409    case TSK_ExplicitSpecialization:
4410      // Okay, we're just specializing something that is either already
4411      // explicitly specialized or has merely been mentioned without any
4412      // instantiation.
4413      return false;
4414
4415    case TSK_ImplicitInstantiation:
4416      if (PrevPointOfInstantiation.isInvalid()) {
4417        // The declaration itself has not actually been instantiated, so it is
4418        // still okay to specialize it.
4419        StripImplicitInstantiation(PrevDecl);
4420        return false;
4421      }
4422      // Fall through
4423
4424    case TSK_ExplicitInstantiationDeclaration:
4425    case TSK_ExplicitInstantiationDefinition:
4426      assert((PrevTSK == TSK_ImplicitInstantiation ||
4427              PrevPointOfInstantiation.isValid()) &&
4428             "Explicit instantiation without point of instantiation?");
4429
4430      // C++ [temp.expl.spec]p6:
4431      //   If a template, a member template or the member of a class template
4432      //   is explicitly specialized then that specialization shall be declared
4433      //   before the first use of that specialization that would cause an
4434      //   implicit instantiation to take place, in every translation unit in
4435      //   which such a use occurs; no diagnostic is required.
4436      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4437        // Is there any previous explicit specialization declaration?
4438        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4439          return false;
4440      }
4441
4442      Diag(NewLoc, diag::err_specialization_after_instantiation)
4443        << PrevDecl;
4444      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4445        << (PrevTSK != TSK_ImplicitInstantiation);
4446
4447      return true;
4448    }
4449    break;
4450
4451  case TSK_ExplicitInstantiationDeclaration:
4452    switch (PrevTSK) {
4453    case TSK_ExplicitInstantiationDeclaration:
4454      // This explicit instantiation declaration is redundant (that's okay).
4455      HasNoEffect = true;
4456      return false;
4457
4458    case TSK_Undeclared:
4459    case TSK_ImplicitInstantiation:
4460      // We're explicitly instantiating something that may have already been
4461      // implicitly instantiated; that's fine.
4462      return false;
4463
4464    case TSK_ExplicitSpecialization:
4465      // C++0x [temp.explicit]p4:
4466      //   For a given set of template parameters, if an explicit instantiation
4467      //   of a template appears after a declaration of an explicit
4468      //   specialization for that template, the explicit instantiation has no
4469      //   effect.
4470      HasNoEffect = true;
4471      return false;
4472
4473    case TSK_ExplicitInstantiationDefinition:
4474      // C++0x [temp.explicit]p10:
4475      //   If an entity is the subject of both an explicit instantiation
4476      //   declaration and an explicit instantiation definition in the same
4477      //   translation unit, the definition shall follow the declaration.
4478      Diag(NewLoc,
4479           diag::err_explicit_instantiation_declaration_after_definition);
4480      Diag(PrevPointOfInstantiation,
4481           diag::note_explicit_instantiation_definition_here);
4482      assert(PrevPointOfInstantiation.isValid() &&
4483             "Explicit instantiation without point of instantiation?");
4484      HasNoEffect = true;
4485      return false;
4486    }
4487    break;
4488
4489  case TSK_ExplicitInstantiationDefinition:
4490    switch (PrevTSK) {
4491    case TSK_Undeclared:
4492    case TSK_ImplicitInstantiation:
4493      // We're explicitly instantiating something that may have already been
4494      // implicitly instantiated; that's fine.
4495      return false;
4496
4497    case TSK_ExplicitSpecialization:
4498      // C++ DR 259, C++0x [temp.explicit]p4:
4499      //   For a given set of template parameters, if an explicit
4500      //   instantiation of a template appears after a declaration of
4501      //   an explicit specialization for that template, the explicit
4502      //   instantiation has no effect.
4503      //
4504      // In C++98/03 mode, we only give an extension warning here, because it
4505      // is not harmful to try to explicitly instantiate something that
4506      // has been explicitly specialized.
4507      if (!getLangOptions().CPlusPlus0x) {
4508        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4509          << PrevDecl;
4510        Diag(PrevDecl->getLocation(),
4511             diag::note_previous_template_specialization);
4512      }
4513      HasNoEffect = true;
4514      return false;
4515
4516    case TSK_ExplicitInstantiationDeclaration:
4517      // We're explicity instantiating a definition for something for which we
4518      // were previously asked to suppress instantiations. That's fine.
4519      return false;
4520
4521    case TSK_ExplicitInstantiationDefinition:
4522      // C++0x [temp.spec]p5:
4523      //   For a given template and a given set of template-arguments,
4524      //     - an explicit instantiation definition shall appear at most once
4525      //       in a program,
4526      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4527        << PrevDecl;
4528      Diag(PrevPointOfInstantiation,
4529           diag::note_previous_explicit_instantiation);
4530      HasNoEffect = true;
4531      return false;
4532    }
4533    break;
4534  }
4535
4536  assert(false && "Missing specialization/instantiation case?");
4537
4538  return false;
4539}
4540
4541/// \brief Perform semantic analysis for the given dependent function
4542/// template specialization.  The only possible way to get a dependent
4543/// function template specialization is with a friend declaration,
4544/// like so:
4545///
4546///   template <class T> void foo(T);
4547///   template <class T> class A {
4548///     friend void foo<>(T);
4549///   };
4550///
4551/// There really isn't any useful analysis we can do here, so we
4552/// just store the information.
4553bool
4554Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4555                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4556                                                   LookupResult &Previous) {
4557  // Remove anything from Previous that isn't a function template in
4558  // the correct context.
4559  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4560  LookupResult::Filter F = Previous.makeFilter();
4561  while (F.hasNext()) {
4562    NamedDecl *D = F.next()->getUnderlyingDecl();
4563    if (!isa<FunctionTemplateDecl>(D) ||
4564        !FDLookupContext->InEnclosingNamespaceSetOf(
4565                              D->getDeclContext()->getRedeclContext()))
4566      F.erase();
4567  }
4568  F.done();
4569
4570  // Should this be diagnosed here?
4571  if (Previous.empty()) return true;
4572
4573  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4574                                         ExplicitTemplateArgs);
4575  return false;
4576}
4577
4578/// \brief Perform semantic analysis for the given function template
4579/// specialization.
4580///
4581/// This routine performs all of the semantic analysis required for an
4582/// explicit function template specialization. On successful completion,
4583/// the function declaration \p FD will become a function template
4584/// specialization.
4585///
4586/// \param FD the function declaration, which will be updated to become a
4587/// function template specialization.
4588///
4589/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4590/// if any. Note that this may be valid info even when 0 arguments are
4591/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4592/// as it anyway contains info on the angle brackets locations.
4593///
4594/// \param PrevDecl the set of declarations that may be specialized by
4595/// this function specialization.
4596bool
4597Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4598                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4599                                          LookupResult &Previous) {
4600  // The set of function template specializations that could match this
4601  // explicit function template specialization.
4602  UnresolvedSet<8> Candidates;
4603
4604  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4605  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4606         I != E; ++I) {
4607    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4608    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4609      // Only consider templates found within the same semantic lookup scope as
4610      // FD.
4611      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4612                                Ovl->getDeclContext()->getRedeclContext()))
4613        continue;
4614
4615      // C++ [temp.expl.spec]p11:
4616      //   A trailing template-argument can be left unspecified in the
4617      //   template-id naming an explicit function template specialization
4618      //   provided it can be deduced from the function argument type.
4619      // Perform template argument deduction to determine whether we may be
4620      // specializing this template.
4621      // FIXME: It is somewhat wasteful to build
4622      TemplateDeductionInfo Info(Context, FD->getLocation());
4623      FunctionDecl *Specialization = 0;
4624      if (TemplateDeductionResult TDK
4625            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4626                                      FD->getType(),
4627                                      Specialization,
4628                                      Info)) {
4629        // FIXME: Template argument deduction failed; record why it failed, so
4630        // that we can provide nifty diagnostics.
4631        (void)TDK;
4632        continue;
4633      }
4634
4635      // Record this candidate.
4636      Candidates.addDecl(Specialization, I.getAccess());
4637    }
4638  }
4639
4640  // Find the most specialized function template.
4641  UnresolvedSetIterator Result
4642    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4643                         TPOC_Other, FD->getLocation(),
4644                  PDiag(diag::err_function_template_spec_no_match)
4645                    << FD->getDeclName(),
4646                  PDiag(diag::err_function_template_spec_ambiguous)
4647                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4648                  PDiag(diag::note_function_template_spec_matched));
4649  if (Result == Candidates.end())
4650    return true;
4651
4652  // Ignore access information;  it doesn't figure into redeclaration checking.
4653  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4654  Specialization->setLocation(FD->getLocation());
4655
4656  // FIXME: Check if the prior specialization has a point of instantiation.
4657  // If so, we have run afoul of .
4658
4659  // If this is a friend declaration, then we're not really declaring
4660  // an explicit specialization.
4661  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4662
4663  // Check the scope of this explicit specialization.
4664  if (!isFriend &&
4665      CheckTemplateSpecializationScope(*this,
4666                                       Specialization->getPrimaryTemplate(),
4667                                       Specialization, FD->getLocation(),
4668                                       false))
4669    return true;
4670
4671  // C++ [temp.expl.spec]p6:
4672  //   If a template, a member template or the member of a class template is
4673  //   explicitly specialized then that specialization shall be declared
4674  //   before the first use of that specialization that would cause an implicit
4675  //   instantiation to take place, in every translation unit in which such a
4676  //   use occurs; no diagnostic is required.
4677  FunctionTemplateSpecializationInfo *SpecInfo
4678    = Specialization->getTemplateSpecializationInfo();
4679  assert(SpecInfo && "Function template specialization info missing?");
4680
4681  bool HasNoEffect = false;
4682  if (!isFriend &&
4683      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4684                                             TSK_ExplicitSpecialization,
4685                                             Specialization,
4686                                   SpecInfo->getTemplateSpecializationKind(),
4687                                         SpecInfo->getPointOfInstantiation(),
4688                                             HasNoEffect))
4689    return true;
4690
4691  // Mark the prior declaration as an explicit specialization, so that later
4692  // clients know that this is an explicit specialization.
4693  if (!isFriend) {
4694    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4695    MarkUnusedFileScopedDecl(Specialization);
4696  }
4697
4698  // Turn the given function declaration into a function template
4699  // specialization, with the template arguments from the previous
4700  // specialization.
4701  // Take copies of (semantic and syntactic) template argument lists.
4702  const TemplateArgumentList* TemplArgs = new (Context)
4703    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4704  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4705    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4706  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4707                                        TemplArgs, /*InsertPos=*/0,
4708                                    SpecInfo->getTemplateSpecializationKind(),
4709                                        TemplArgsAsWritten);
4710
4711  // The "previous declaration" for this function template specialization is
4712  // the prior function template specialization.
4713  Previous.clear();
4714  Previous.addDecl(Specialization);
4715  return false;
4716}
4717
4718/// \brief Perform semantic analysis for the given non-template member
4719/// specialization.
4720///
4721/// This routine performs all of the semantic analysis required for an
4722/// explicit member function specialization. On successful completion,
4723/// the function declaration \p FD will become a member function
4724/// specialization.
4725///
4726/// \param Member the member declaration, which will be updated to become a
4727/// specialization.
4728///
4729/// \param Previous the set of declarations, one of which may be specialized
4730/// by this function specialization;  the set will be modified to contain the
4731/// redeclared member.
4732bool
4733Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4734  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4735
4736  // Try to find the member we are instantiating.
4737  NamedDecl *Instantiation = 0;
4738  NamedDecl *InstantiatedFrom = 0;
4739  MemberSpecializationInfo *MSInfo = 0;
4740
4741  if (Previous.empty()) {
4742    // Nowhere to look anyway.
4743  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4744    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4745           I != E; ++I) {
4746      NamedDecl *D = (*I)->getUnderlyingDecl();
4747      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4748        if (Context.hasSameType(Function->getType(), Method->getType())) {
4749          Instantiation = Method;
4750          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4751          MSInfo = Method->getMemberSpecializationInfo();
4752          break;
4753        }
4754      }
4755    }
4756  } else if (isa<VarDecl>(Member)) {
4757    VarDecl *PrevVar;
4758    if (Previous.isSingleResult() &&
4759        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4760      if (PrevVar->isStaticDataMember()) {
4761        Instantiation = PrevVar;
4762        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4763        MSInfo = PrevVar->getMemberSpecializationInfo();
4764      }
4765  } else if (isa<RecordDecl>(Member)) {
4766    CXXRecordDecl *PrevRecord;
4767    if (Previous.isSingleResult() &&
4768        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4769      Instantiation = PrevRecord;
4770      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4771      MSInfo = PrevRecord->getMemberSpecializationInfo();
4772    }
4773  }
4774
4775  if (!Instantiation) {
4776    // There is no previous declaration that matches. Since member
4777    // specializations are always out-of-line, the caller will complain about
4778    // this mismatch later.
4779    return false;
4780  }
4781
4782  // If this is a friend, just bail out here before we start turning
4783  // things into explicit specializations.
4784  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4785    // Preserve instantiation information.
4786    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4787      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4788                                      cast<CXXMethodDecl>(InstantiatedFrom),
4789        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4790    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4791      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4792                                      cast<CXXRecordDecl>(InstantiatedFrom),
4793        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4794    }
4795
4796    Previous.clear();
4797    Previous.addDecl(Instantiation);
4798    return false;
4799  }
4800
4801  // Make sure that this is a specialization of a member.
4802  if (!InstantiatedFrom) {
4803    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4804      << Member;
4805    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4806    return true;
4807  }
4808
4809  // C++ [temp.expl.spec]p6:
4810  //   If a template, a member template or the member of a class template is
4811  //   explicitly specialized then that spe- cialization shall be declared
4812  //   before the first use of that specialization that would cause an implicit
4813  //   instantiation to take place, in every translation unit in which such a
4814  //   use occurs; no diagnostic is required.
4815  assert(MSInfo && "Member specialization info missing?");
4816
4817  bool HasNoEffect = false;
4818  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4819                                             TSK_ExplicitSpecialization,
4820                                             Instantiation,
4821                                     MSInfo->getTemplateSpecializationKind(),
4822                                           MSInfo->getPointOfInstantiation(),
4823                                             HasNoEffect))
4824    return true;
4825
4826  // Check the scope of this explicit specialization.
4827  if (CheckTemplateSpecializationScope(*this,
4828                                       InstantiatedFrom,
4829                                       Instantiation, Member->getLocation(),
4830                                       false))
4831    return true;
4832
4833  // Note that this is an explicit instantiation of a member.
4834  // the original declaration to note that it is an explicit specialization
4835  // (if it was previously an implicit instantiation). This latter step
4836  // makes bookkeeping easier.
4837  if (isa<FunctionDecl>(Member)) {
4838    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4839    if (InstantiationFunction->getTemplateSpecializationKind() ==
4840          TSK_ImplicitInstantiation) {
4841      InstantiationFunction->setTemplateSpecializationKind(
4842                                                  TSK_ExplicitSpecialization);
4843      InstantiationFunction->setLocation(Member->getLocation());
4844    }
4845
4846    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4847                                        cast<CXXMethodDecl>(InstantiatedFrom),
4848                                                  TSK_ExplicitSpecialization);
4849    MarkUnusedFileScopedDecl(InstantiationFunction);
4850  } else if (isa<VarDecl>(Member)) {
4851    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4852    if (InstantiationVar->getTemplateSpecializationKind() ==
4853          TSK_ImplicitInstantiation) {
4854      InstantiationVar->setTemplateSpecializationKind(
4855                                                  TSK_ExplicitSpecialization);
4856      InstantiationVar->setLocation(Member->getLocation());
4857    }
4858
4859    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4860                                                cast<VarDecl>(InstantiatedFrom),
4861                                                TSK_ExplicitSpecialization);
4862    MarkUnusedFileScopedDecl(InstantiationVar);
4863  } else {
4864    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4865    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4866    if (InstantiationClass->getTemplateSpecializationKind() ==
4867          TSK_ImplicitInstantiation) {
4868      InstantiationClass->setTemplateSpecializationKind(
4869                                                   TSK_ExplicitSpecialization);
4870      InstantiationClass->setLocation(Member->getLocation());
4871    }
4872
4873    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4874                                        cast<CXXRecordDecl>(InstantiatedFrom),
4875                                                   TSK_ExplicitSpecialization);
4876  }
4877
4878  // Save the caller the trouble of having to figure out which declaration
4879  // this specialization matches.
4880  Previous.clear();
4881  Previous.addDecl(Instantiation);
4882  return false;
4883}
4884
4885/// \brief Check the scope of an explicit instantiation.
4886///
4887/// \returns true if a serious error occurs, false otherwise.
4888static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4889                                            SourceLocation InstLoc,
4890                                            bool WasQualifiedName) {
4891  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4892  DeclContext *CurContext = S.CurContext->getRedeclContext();
4893
4894  if (CurContext->isRecord()) {
4895    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4896      << D;
4897    return true;
4898  }
4899
4900  // C++0x [temp.explicit]p2:
4901  //   An explicit instantiation shall appear in an enclosing namespace of its
4902  //   template.
4903  //
4904  // This is DR275, which we do not retroactively apply to C++98/03.
4905  if (S.getLangOptions().CPlusPlus0x &&
4906      !CurContext->Encloses(OrigContext)) {
4907    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4908      S.Diag(InstLoc,
4909             S.getLangOptions().CPlusPlus0x?
4910                 diag::err_explicit_instantiation_out_of_scope
4911               : diag::warn_explicit_instantiation_out_of_scope_0x)
4912        << D << NS;
4913    else
4914      S.Diag(InstLoc,
4915             S.getLangOptions().CPlusPlus0x?
4916                 diag::err_explicit_instantiation_must_be_global
4917               : diag::warn_explicit_instantiation_out_of_scope_0x)
4918        << D;
4919    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4920    return false;
4921  }
4922
4923  // C++0x [temp.explicit]p2:
4924  //   If the name declared in the explicit instantiation is an unqualified
4925  //   name, the explicit instantiation shall appear in the namespace where
4926  //   its template is declared or, if that namespace is inline (7.3.1), any
4927  //   namespace from its enclosing namespace set.
4928  if (WasQualifiedName)
4929    return false;
4930
4931  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4932    return false;
4933
4934  S.Diag(InstLoc,
4935         S.getLangOptions().CPlusPlus0x?
4936             diag::err_explicit_instantiation_unqualified_wrong_namespace
4937           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4938    << D << OrigContext;
4939  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4940  return false;
4941}
4942
4943/// \brief Determine whether the given scope specifier has a template-id in it.
4944static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4945  if (!SS.isSet())
4946    return false;
4947
4948  // C++0x [temp.explicit]p2:
4949  //   If the explicit instantiation is for a member function, a member class
4950  //   or a static data member of a class template specialization, the name of
4951  //   the class template specialization in the qualified-id for the member
4952  //   name shall be a simple-template-id.
4953  //
4954  // C++98 has the same restriction, just worded differently.
4955  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4956       NNS; NNS = NNS->getPrefix())
4957    if (Type *T = NNS->getAsType())
4958      if (isa<TemplateSpecializationType>(T))
4959        return true;
4960
4961  return false;
4962}
4963
4964// Explicit instantiation of a class template specialization
4965DeclResult
4966Sema::ActOnExplicitInstantiation(Scope *S,
4967                                 SourceLocation ExternLoc,
4968                                 SourceLocation TemplateLoc,
4969                                 unsigned TagSpec,
4970                                 SourceLocation KWLoc,
4971                                 const CXXScopeSpec &SS,
4972                                 TemplateTy TemplateD,
4973                                 SourceLocation TemplateNameLoc,
4974                                 SourceLocation LAngleLoc,
4975                                 ASTTemplateArgsPtr TemplateArgsIn,
4976                                 SourceLocation RAngleLoc,
4977                                 AttributeList *Attr) {
4978  // Find the class template we're specializing
4979  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4980  ClassTemplateDecl *ClassTemplate
4981    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4982
4983  // Check that the specialization uses the same tag kind as the
4984  // original template.
4985  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4986  assert(Kind != TTK_Enum &&
4987         "Invalid enum tag in class template explicit instantiation!");
4988  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4989                                    Kind, KWLoc,
4990                                    *ClassTemplate->getIdentifier())) {
4991    Diag(KWLoc, diag::err_use_with_wrong_tag)
4992      << ClassTemplate
4993      << FixItHint::CreateReplacement(KWLoc,
4994                            ClassTemplate->getTemplatedDecl()->getKindName());
4995    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4996         diag::note_previous_use);
4997    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4998  }
4999
5000  // C++0x [temp.explicit]p2:
5001  //   There are two forms of explicit instantiation: an explicit instantiation
5002  //   definition and an explicit instantiation declaration. An explicit
5003  //   instantiation declaration begins with the extern keyword. [...]
5004  TemplateSpecializationKind TSK
5005    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5006                           : TSK_ExplicitInstantiationDeclaration;
5007
5008  // Translate the parser's template argument list in our AST format.
5009  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5010  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5011
5012  // Check that the template argument list is well-formed for this
5013  // template.
5014  llvm::SmallVector<TemplateArgument, 4> Converted;
5015  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5016                                TemplateArgs, false, Converted))
5017    return true;
5018
5019  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5020         "Converted template argument list is too short!");
5021
5022  // Find the class template specialization declaration that
5023  // corresponds to these arguments.
5024  void *InsertPos = 0;
5025  ClassTemplateSpecializationDecl *PrevDecl
5026    = ClassTemplate->findSpecialization(Converted.data(),
5027                                        Converted.size(), InsertPos);
5028
5029  TemplateSpecializationKind PrevDecl_TSK
5030    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5031
5032  // C++0x [temp.explicit]p2:
5033  //   [...] An explicit instantiation shall appear in an enclosing
5034  //   namespace of its template. [...]
5035  //
5036  // This is C++ DR 275.
5037  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5038                                      SS.isSet()))
5039    return true;
5040
5041  ClassTemplateSpecializationDecl *Specialization = 0;
5042
5043  bool ReusedDecl = false;
5044  bool HasNoEffect = false;
5045  if (PrevDecl) {
5046    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5047                                               PrevDecl, PrevDecl_TSK,
5048                                            PrevDecl->getPointOfInstantiation(),
5049                                               HasNoEffect))
5050      return PrevDecl;
5051
5052    // Even though HasNoEffect == true means that this explicit instantiation
5053    // has no effect on semantics, we go on to put its syntax in the AST.
5054
5055    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5056        PrevDecl_TSK == TSK_Undeclared) {
5057      // Since the only prior class template specialization with these
5058      // arguments was referenced but not declared, reuse that
5059      // declaration node as our own, updating the source location
5060      // for the template name to reflect our new declaration.
5061      // (Other source locations will be updated later.)
5062      Specialization = PrevDecl;
5063      Specialization->setLocation(TemplateNameLoc);
5064      PrevDecl = 0;
5065      ReusedDecl = true;
5066    }
5067  }
5068
5069  if (!Specialization) {
5070    // Create a new class template specialization declaration node for
5071    // this explicit specialization.
5072    Specialization
5073      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5074                                             ClassTemplate->getDeclContext(),
5075                                                TemplateNameLoc,
5076                                                ClassTemplate,
5077                                                Converted.data(),
5078                                                Converted.size(),
5079                                                PrevDecl);
5080    SetNestedNameSpecifier(Specialization, SS);
5081
5082    if (!HasNoEffect && !PrevDecl) {
5083      // Insert the new specialization.
5084      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5085    }
5086  }
5087
5088  // Build the fully-sugared type for this explicit instantiation as
5089  // the user wrote in the explicit instantiation itself. This means
5090  // that we'll pretty-print the type retrieved from the
5091  // specialization's declaration the way that the user actually wrote
5092  // the explicit instantiation, rather than formatting the name based
5093  // on the "canonical" representation used to store the template
5094  // arguments in the specialization.
5095  TypeSourceInfo *WrittenTy
5096    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5097                                                TemplateArgs,
5098                                  Context.getTypeDeclType(Specialization));
5099  Specialization->setTypeAsWritten(WrittenTy);
5100  TemplateArgsIn.release();
5101
5102  // Set source locations for keywords.
5103  Specialization->setExternLoc(ExternLoc);
5104  Specialization->setTemplateKeywordLoc(TemplateLoc);
5105
5106  // Add the explicit instantiation into its lexical context. However,
5107  // since explicit instantiations are never found by name lookup, we
5108  // just put it into the declaration context directly.
5109  Specialization->setLexicalDeclContext(CurContext);
5110  CurContext->addDecl(Specialization);
5111
5112  // Syntax is now OK, so return if it has no other effect on semantics.
5113  if (HasNoEffect) {
5114    // Set the template specialization kind.
5115    Specialization->setTemplateSpecializationKind(TSK);
5116    return Specialization;
5117  }
5118
5119  // C++ [temp.explicit]p3:
5120  //   A definition of a class template or class member template
5121  //   shall be in scope at the point of the explicit instantiation of
5122  //   the class template or class member template.
5123  //
5124  // This check comes when we actually try to perform the
5125  // instantiation.
5126  ClassTemplateSpecializationDecl *Def
5127    = cast_or_null<ClassTemplateSpecializationDecl>(
5128                                              Specialization->getDefinition());
5129  if (!Def)
5130    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5131  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5132    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5133    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5134  }
5135
5136  // Instantiate the members of this class template specialization.
5137  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5138                                       Specialization->getDefinition());
5139  if (Def) {
5140    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5141
5142    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5143    // TSK_ExplicitInstantiationDefinition
5144    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5145        TSK == TSK_ExplicitInstantiationDefinition)
5146      Def->setTemplateSpecializationKind(TSK);
5147
5148    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5149  }
5150
5151  // Set the template specialization kind.
5152  Specialization->setTemplateSpecializationKind(TSK);
5153  return Specialization;
5154}
5155
5156// Explicit instantiation of a member class of a class template.
5157DeclResult
5158Sema::ActOnExplicitInstantiation(Scope *S,
5159                                 SourceLocation ExternLoc,
5160                                 SourceLocation TemplateLoc,
5161                                 unsigned TagSpec,
5162                                 SourceLocation KWLoc,
5163                                 CXXScopeSpec &SS,
5164                                 IdentifierInfo *Name,
5165                                 SourceLocation NameLoc,
5166                                 AttributeList *Attr) {
5167
5168  bool Owned = false;
5169  bool IsDependent = false;
5170  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5171                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5172                        MultiTemplateParamsArg(*this, 0, 0),
5173                        Owned, IsDependent, false, false,
5174                        TypeResult());
5175  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5176
5177  if (!TagD)
5178    return true;
5179
5180  TagDecl *Tag = cast<TagDecl>(TagD);
5181  if (Tag->isEnum()) {
5182    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5183      << Context.getTypeDeclType(Tag);
5184    return true;
5185  }
5186
5187  if (Tag->isInvalidDecl())
5188    return true;
5189
5190  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5191  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5192  if (!Pattern) {
5193    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5194      << Context.getTypeDeclType(Record);
5195    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5196    return true;
5197  }
5198
5199  // C++0x [temp.explicit]p2:
5200  //   If the explicit instantiation is for a class or member class, the
5201  //   elaborated-type-specifier in the declaration shall include a
5202  //   simple-template-id.
5203  //
5204  // C++98 has the same restriction, just worded differently.
5205  if (!ScopeSpecifierHasTemplateId(SS))
5206    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5207      << Record << SS.getRange();
5208
5209  // C++0x [temp.explicit]p2:
5210  //   There are two forms of explicit instantiation: an explicit instantiation
5211  //   definition and an explicit instantiation declaration. An explicit
5212  //   instantiation declaration begins with the extern keyword. [...]
5213  TemplateSpecializationKind TSK
5214    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5215                           : TSK_ExplicitInstantiationDeclaration;
5216
5217  // C++0x [temp.explicit]p2:
5218  //   [...] An explicit instantiation shall appear in an enclosing
5219  //   namespace of its template. [...]
5220  //
5221  // This is C++ DR 275.
5222  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5223
5224  // Verify that it is okay to explicitly instantiate here.
5225  CXXRecordDecl *PrevDecl
5226    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5227  if (!PrevDecl && Record->getDefinition())
5228    PrevDecl = Record;
5229  if (PrevDecl) {
5230    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5231    bool HasNoEffect = false;
5232    assert(MSInfo && "No member specialization information?");
5233    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5234                                               PrevDecl,
5235                                        MSInfo->getTemplateSpecializationKind(),
5236                                             MSInfo->getPointOfInstantiation(),
5237                                               HasNoEffect))
5238      return true;
5239    if (HasNoEffect)
5240      return TagD;
5241  }
5242
5243  CXXRecordDecl *RecordDef
5244    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5245  if (!RecordDef) {
5246    // C++ [temp.explicit]p3:
5247    //   A definition of a member class of a class template shall be in scope
5248    //   at the point of an explicit instantiation of the member class.
5249    CXXRecordDecl *Def
5250      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5251    if (!Def) {
5252      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5253        << 0 << Record->getDeclName() << Record->getDeclContext();
5254      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5255        << Pattern;
5256      return true;
5257    } else {
5258      if (InstantiateClass(NameLoc, Record, Def,
5259                           getTemplateInstantiationArgs(Record),
5260                           TSK))
5261        return true;
5262
5263      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5264      if (!RecordDef)
5265        return true;
5266    }
5267  }
5268
5269  // Instantiate all of the members of the class.
5270  InstantiateClassMembers(NameLoc, RecordDef,
5271                          getTemplateInstantiationArgs(Record), TSK);
5272
5273  if (TSK == TSK_ExplicitInstantiationDefinition)
5274    MarkVTableUsed(NameLoc, RecordDef, true);
5275
5276  // FIXME: We don't have any representation for explicit instantiations of
5277  // member classes. Such a representation is not needed for compilation, but it
5278  // should be available for clients that want to see all of the declarations in
5279  // the source code.
5280  return TagD;
5281}
5282
5283DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5284                                            SourceLocation ExternLoc,
5285                                            SourceLocation TemplateLoc,
5286                                            Declarator &D) {
5287  // Explicit instantiations always require a name.
5288  // TODO: check if/when DNInfo should replace Name.
5289  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5290  DeclarationName Name = NameInfo.getName();
5291  if (!Name) {
5292    if (!D.isInvalidType())
5293      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5294           diag::err_explicit_instantiation_requires_name)
5295        << D.getDeclSpec().getSourceRange()
5296        << D.getSourceRange();
5297
5298    return true;
5299  }
5300
5301  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5302  // we find one that is.
5303  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5304         (S->getFlags() & Scope::TemplateParamScope) != 0)
5305    S = S->getParent();
5306
5307  // Determine the type of the declaration.
5308  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5309  QualType R = T->getType();
5310  if (R.isNull())
5311    return true;
5312
5313  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5314    // Cannot explicitly instantiate a typedef.
5315    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5316      << Name;
5317    return true;
5318  }
5319
5320  // C++0x [temp.explicit]p1:
5321  //   [...] An explicit instantiation of a function template shall not use the
5322  //   inline or constexpr specifiers.
5323  // Presumably, this also applies to member functions of class templates as
5324  // well.
5325  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5326    Diag(D.getDeclSpec().getInlineSpecLoc(),
5327         diag::err_explicit_instantiation_inline)
5328      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5329
5330  // FIXME: check for constexpr specifier.
5331
5332  // C++0x [temp.explicit]p2:
5333  //   There are two forms of explicit instantiation: an explicit instantiation
5334  //   definition and an explicit instantiation declaration. An explicit
5335  //   instantiation declaration begins with the extern keyword. [...]
5336  TemplateSpecializationKind TSK
5337    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5338                           : TSK_ExplicitInstantiationDeclaration;
5339
5340  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5341  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5342
5343  if (!R->isFunctionType()) {
5344    // C++ [temp.explicit]p1:
5345    //   A [...] static data member of a class template can be explicitly
5346    //   instantiated from the member definition associated with its class
5347    //   template.
5348    if (Previous.isAmbiguous())
5349      return true;
5350
5351    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5352    if (!Prev || !Prev->isStaticDataMember()) {
5353      // We expect to see a data data member here.
5354      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5355        << Name;
5356      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5357           P != PEnd; ++P)
5358        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5359      return true;
5360    }
5361
5362    if (!Prev->getInstantiatedFromStaticDataMember()) {
5363      // FIXME: Check for explicit specialization?
5364      Diag(D.getIdentifierLoc(),
5365           diag::err_explicit_instantiation_data_member_not_instantiated)
5366        << Prev;
5367      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5368      // FIXME: Can we provide a note showing where this was declared?
5369      return true;
5370    }
5371
5372    // C++0x [temp.explicit]p2:
5373    //   If the explicit instantiation is for a member function, a member class
5374    //   or a static data member of a class template specialization, the name of
5375    //   the class template specialization in the qualified-id for the member
5376    //   name shall be a simple-template-id.
5377    //
5378    // C++98 has the same restriction, just worded differently.
5379    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5380      Diag(D.getIdentifierLoc(),
5381           diag::ext_explicit_instantiation_without_qualified_id)
5382        << Prev << D.getCXXScopeSpec().getRange();
5383
5384    // Check the scope of this explicit instantiation.
5385    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5386
5387    // Verify that it is okay to explicitly instantiate here.
5388    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5389    assert(MSInfo && "Missing static data member specialization info?");
5390    bool HasNoEffect = false;
5391    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5392                                        MSInfo->getTemplateSpecializationKind(),
5393                                              MSInfo->getPointOfInstantiation(),
5394                                               HasNoEffect))
5395      return true;
5396    if (HasNoEffect)
5397      return (Decl*) 0;
5398
5399    // Instantiate static data member.
5400    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5401    if (TSK == TSK_ExplicitInstantiationDefinition)
5402      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5403
5404    // FIXME: Create an ExplicitInstantiation node?
5405    return (Decl*) 0;
5406  }
5407
5408  // If the declarator is a template-id, translate the parser's template
5409  // argument list into our AST format.
5410  bool HasExplicitTemplateArgs = false;
5411  TemplateArgumentListInfo TemplateArgs;
5412  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5413    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5414    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5415    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5416    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5417                                       TemplateId->getTemplateArgs(),
5418                                       TemplateId->NumArgs);
5419    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5420    HasExplicitTemplateArgs = true;
5421    TemplateArgsPtr.release();
5422  }
5423
5424  // C++ [temp.explicit]p1:
5425  //   A [...] function [...] can be explicitly instantiated from its template.
5426  //   A member function [...] of a class template can be explicitly
5427  //  instantiated from the member definition associated with its class
5428  //  template.
5429  UnresolvedSet<8> Matches;
5430  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5431       P != PEnd; ++P) {
5432    NamedDecl *Prev = *P;
5433    if (!HasExplicitTemplateArgs) {
5434      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5435        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5436          Matches.clear();
5437
5438          Matches.addDecl(Method, P.getAccess());
5439          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5440            break;
5441        }
5442      }
5443    }
5444
5445    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5446    if (!FunTmpl)
5447      continue;
5448
5449    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5450    FunctionDecl *Specialization = 0;
5451    if (TemplateDeductionResult TDK
5452          = DeduceTemplateArguments(FunTmpl,
5453                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5454                                    R, Specialization, Info)) {
5455      // FIXME: Keep track of almost-matches?
5456      (void)TDK;
5457      continue;
5458    }
5459
5460    Matches.addDecl(Specialization, P.getAccess());
5461  }
5462
5463  // Find the most specialized function template specialization.
5464  UnresolvedSetIterator Result
5465    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5466                         D.getIdentifierLoc(),
5467                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5468                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5469                         PDiag(diag::note_explicit_instantiation_candidate));
5470
5471  if (Result == Matches.end())
5472    return true;
5473
5474  // Ignore access control bits, we don't need them for redeclaration checking.
5475  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5476
5477  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5478    Diag(D.getIdentifierLoc(),
5479         diag::err_explicit_instantiation_member_function_not_instantiated)
5480      << Specialization
5481      << (Specialization->getTemplateSpecializationKind() ==
5482          TSK_ExplicitSpecialization);
5483    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5484    return true;
5485  }
5486
5487  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5488  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5489    PrevDecl = Specialization;
5490
5491  if (PrevDecl) {
5492    bool HasNoEffect = false;
5493    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5494                                               PrevDecl,
5495                                     PrevDecl->getTemplateSpecializationKind(),
5496                                          PrevDecl->getPointOfInstantiation(),
5497                                               HasNoEffect))
5498      return true;
5499
5500    // FIXME: We may still want to build some representation of this
5501    // explicit specialization.
5502    if (HasNoEffect)
5503      return (Decl*) 0;
5504  }
5505
5506  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5507
5508  if (TSK == TSK_ExplicitInstantiationDefinition)
5509    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5510
5511  // C++0x [temp.explicit]p2:
5512  //   If the explicit instantiation is for a member function, a member class
5513  //   or a static data member of a class template specialization, the name of
5514  //   the class template specialization in the qualified-id for the member
5515  //   name shall be a simple-template-id.
5516  //
5517  // C++98 has the same restriction, just worded differently.
5518  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5519  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5520      D.getCXXScopeSpec().isSet() &&
5521      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5522    Diag(D.getIdentifierLoc(),
5523         diag::ext_explicit_instantiation_without_qualified_id)
5524    << Specialization << D.getCXXScopeSpec().getRange();
5525
5526  CheckExplicitInstantiationScope(*this,
5527                   FunTmpl? (NamedDecl *)FunTmpl
5528                          : Specialization->getInstantiatedFromMemberFunction(),
5529                                  D.getIdentifierLoc(),
5530                                  D.getCXXScopeSpec().isSet());
5531
5532  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5533  return (Decl*) 0;
5534}
5535
5536TypeResult
5537Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5538                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5539                        SourceLocation TagLoc, SourceLocation NameLoc) {
5540  // This has to hold, because SS is expected to be defined.
5541  assert(Name && "Expected a name in a dependent tag");
5542
5543  NestedNameSpecifier *NNS
5544    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5545  if (!NNS)
5546    return true;
5547
5548  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5549
5550  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5551    Diag(NameLoc, diag::err_dependent_tag_decl)
5552      << (TUK == TUK_Definition) << Kind << SS.getRange();
5553    return true;
5554  }
5555
5556  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5557  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5558}
5559
5560TypeResult
5561Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5562                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5563                        SourceLocation IdLoc) {
5564  NestedNameSpecifier *NNS
5565    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5566  if (!NNS)
5567    return true;
5568
5569  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5570      !getLangOptions().CPlusPlus0x)
5571    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5572      << FixItHint::CreateRemoval(TypenameLoc);
5573
5574  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5575                                 TypenameLoc, SS.getRange(), IdLoc);
5576  if (T.isNull())
5577    return true;
5578
5579  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5580  if (isa<DependentNameType>(T)) {
5581    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5582    TL.setKeywordLoc(TypenameLoc);
5583    TL.setQualifierRange(SS.getRange());
5584    TL.setNameLoc(IdLoc);
5585  } else {
5586    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5587    TL.setKeywordLoc(TypenameLoc);
5588    TL.setQualifierRange(SS.getRange());
5589    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5590  }
5591
5592  return CreateParsedType(T, TSI);
5593}
5594
5595TypeResult
5596Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5597                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5598                        ParsedType Ty) {
5599  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5600      !getLangOptions().CPlusPlus0x)
5601    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5602      << FixItHint::CreateRemoval(TypenameLoc);
5603
5604  TypeSourceInfo *InnerTSI = 0;
5605  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5606
5607  assert(isa<TemplateSpecializationType>(T) &&
5608         "Expected a template specialization type");
5609
5610  if (computeDeclContext(SS, false)) {
5611    // If we can compute a declaration context, then the "typename"
5612    // keyword was superfluous. Just build an ElaboratedType to keep
5613    // track of the nested-name-specifier.
5614
5615    // Push the inner type, preserving its source locations if possible.
5616    TypeLocBuilder Builder;
5617    if (InnerTSI)
5618      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5619    else
5620      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5621
5622    /* Note: NNS already embedded in template specialization type T. */
5623    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5624    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5625    TL.setKeywordLoc(TypenameLoc);
5626    TL.setQualifierRange(SS.getRange());
5627
5628    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5629    return CreateParsedType(T, TSI);
5630  }
5631
5632  // TODO: it's really silly that we make a template specialization
5633  // type earlier only to drop it again here.
5634  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5635  DependentTemplateName *DTN =
5636    TST->getTemplateName().getAsDependentTemplateName();
5637  assert(DTN && "dependent template has non-dependent name?");
5638  assert(DTN->getQualifier()
5639         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5640  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5641                                                     DTN->getQualifier(),
5642                                                     DTN->getIdentifier(),
5643                                                     TST->getNumArgs(),
5644                                                     TST->getArgs());
5645  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5646  DependentTemplateSpecializationTypeLoc TL =
5647    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5648  if (InnerTSI) {
5649    TemplateSpecializationTypeLoc TSTL =
5650      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5651    TL.setLAngleLoc(TSTL.getLAngleLoc());
5652    TL.setRAngleLoc(TSTL.getRAngleLoc());
5653    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5654      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5655  } else {
5656    TL.initializeLocal(SourceLocation());
5657  }
5658  TL.setKeywordLoc(TypenameLoc);
5659  TL.setQualifierRange(SS.getRange());
5660  return CreateParsedType(T, TSI);
5661}
5662
5663/// \brief Build the type that describes a C++ typename specifier,
5664/// e.g., "typename T::type".
5665QualType
5666Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5667                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5668                        SourceLocation KeywordLoc, SourceRange NNSRange,
5669                        SourceLocation IILoc) {
5670  CXXScopeSpec SS;
5671  SS.setScopeRep(NNS);
5672  SS.setRange(NNSRange);
5673
5674  DeclContext *Ctx = computeDeclContext(SS);
5675  if (!Ctx) {
5676    // If the nested-name-specifier is dependent and couldn't be
5677    // resolved to a type, build a typename type.
5678    assert(NNS->isDependent());
5679    return Context.getDependentNameType(Keyword, NNS, &II);
5680  }
5681
5682  // If the nested-name-specifier refers to the current instantiation,
5683  // the "typename" keyword itself is superfluous. In C++03, the
5684  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5685  // allows such extraneous "typename" keywords, and we retroactively
5686  // apply this DR to C++03 code with only a warning. In any case we continue.
5687
5688  if (RequireCompleteDeclContext(SS, Ctx))
5689    return QualType();
5690
5691  DeclarationName Name(&II);
5692  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5693  LookupQualifiedName(Result, Ctx);
5694  unsigned DiagID = 0;
5695  Decl *Referenced = 0;
5696  switch (Result.getResultKind()) {
5697  case LookupResult::NotFound:
5698    DiagID = diag::err_typename_nested_not_found;
5699    break;
5700
5701  case LookupResult::FoundUnresolvedValue: {
5702    // We found a using declaration that is a value. Most likely, the using
5703    // declaration itself is meant to have the 'typename' keyword.
5704    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5705                          IILoc);
5706    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5707      << Name << Ctx << FullRange;
5708    if (UnresolvedUsingValueDecl *Using
5709          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5710      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5711      Diag(Loc, diag::note_using_value_decl_missing_typename)
5712        << FixItHint::CreateInsertion(Loc, "typename ");
5713    }
5714  }
5715  // Fall through to create a dependent typename type, from which we can recover
5716  // better.
5717
5718  case LookupResult::NotFoundInCurrentInstantiation:
5719    // Okay, it's a member of an unknown instantiation.
5720    return Context.getDependentNameType(Keyword, NNS, &II);
5721
5722  case LookupResult::Found:
5723    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5724      // We found a type. Build an ElaboratedType, since the
5725      // typename-specifier was just sugar.
5726      return Context.getElaboratedType(ETK_Typename, NNS,
5727                                       Context.getTypeDeclType(Type));
5728    }
5729
5730    DiagID = diag::err_typename_nested_not_type;
5731    Referenced = Result.getFoundDecl();
5732    break;
5733
5734
5735    llvm_unreachable("unresolved using decl in non-dependent context");
5736    return QualType();
5737
5738  case LookupResult::FoundOverloaded:
5739    DiagID = diag::err_typename_nested_not_type;
5740    Referenced = *Result.begin();
5741    break;
5742
5743  case LookupResult::Ambiguous:
5744    return QualType();
5745  }
5746
5747  // If we get here, it's because name lookup did not find a
5748  // type. Emit an appropriate diagnostic and return an error.
5749  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5750                        IILoc);
5751  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5752  if (Referenced)
5753    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5754      << Name;
5755  return QualType();
5756}
5757
5758namespace {
5759  // See Sema::RebuildTypeInCurrentInstantiation
5760  class CurrentInstantiationRebuilder
5761    : public TreeTransform<CurrentInstantiationRebuilder> {
5762    SourceLocation Loc;
5763    DeclarationName Entity;
5764
5765  public:
5766    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5767
5768    CurrentInstantiationRebuilder(Sema &SemaRef,
5769                                  SourceLocation Loc,
5770                                  DeclarationName Entity)
5771    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5772      Loc(Loc), Entity(Entity) { }
5773
5774    /// \brief Determine whether the given type \p T has already been
5775    /// transformed.
5776    ///
5777    /// For the purposes of type reconstruction, a type has already been
5778    /// transformed if it is NULL or if it is not dependent.
5779    bool AlreadyTransformed(QualType T) {
5780      return T.isNull() || !T->isDependentType();
5781    }
5782
5783    /// \brief Returns the location of the entity whose type is being
5784    /// rebuilt.
5785    SourceLocation getBaseLocation() { return Loc; }
5786
5787    /// \brief Returns the name of the entity whose type is being rebuilt.
5788    DeclarationName getBaseEntity() { return Entity; }
5789
5790    /// \brief Sets the "base" location and entity when that
5791    /// information is known based on another transformation.
5792    void setBase(SourceLocation Loc, DeclarationName Entity) {
5793      this->Loc = Loc;
5794      this->Entity = Entity;
5795    }
5796  };
5797}
5798
5799/// \brief Rebuilds a type within the context of the current instantiation.
5800///
5801/// The type \p T is part of the type of an out-of-line member definition of
5802/// a class template (or class template partial specialization) that was parsed
5803/// and constructed before we entered the scope of the class template (or
5804/// partial specialization thereof). This routine will rebuild that type now
5805/// that we have entered the declarator's scope, which may produce different
5806/// canonical types, e.g.,
5807///
5808/// \code
5809/// template<typename T>
5810/// struct X {
5811///   typedef T* pointer;
5812///   pointer data();
5813/// };
5814///
5815/// template<typename T>
5816/// typename X<T>::pointer X<T>::data() { ... }
5817/// \endcode
5818///
5819/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5820/// since we do not know that we can look into X<T> when we parsed the type.
5821/// This function will rebuild the type, performing the lookup of "pointer"
5822/// in X<T> and returning an ElaboratedType whose canonical type is the same
5823/// as the canonical type of T*, allowing the return types of the out-of-line
5824/// definition and the declaration to match.
5825TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5826                                                        SourceLocation Loc,
5827                                                        DeclarationName Name) {
5828  if (!T || !T->getType()->isDependentType())
5829    return T;
5830
5831  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5832  return Rebuilder.TransformType(T);
5833}
5834
5835ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5836  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5837                                          DeclarationName());
5838  return Rebuilder.TransformExpr(E);
5839}
5840
5841bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5842  if (SS.isInvalid()) return true;
5843
5844  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5845  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5846                                          DeclarationName());
5847  NestedNameSpecifier *Rebuilt =
5848    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5849  if (!Rebuilt) return true;
5850
5851  SS.setScopeRep(Rebuilt);
5852  return false;
5853}
5854
5855/// \brief Produces a formatted string that describes the binding of
5856/// template parameters to template arguments.
5857std::string
5858Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5859                                      const TemplateArgumentList &Args) {
5860  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5861}
5862
5863std::string
5864Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5865                                      const TemplateArgument *Args,
5866                                      unsigned NumArgs) {
5867  std::string Result;
5868
5869  if (!Params || Params->size() == 0 || NumArgs == 0)
5870    return Result;
5871
5872  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5873    if (I >= NumArgs)
5874      break;
5875
5876    if (I == 0)
5877      Result += "[with ";
5878    else
5879      Result += ", ";
5880
5881    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5882      Result += Id->getName();
5883    } else {
5884      Result += '$';
5885      Result += llvm::utostr(I);
5886    }
5887
5888    Result += " = ";
5889
5890    switch (Args[I].getKind()) {
5891      case TemplateArgument::Null:
5892        Result += "<no value>";
5893        break;
5894
5895      case TemplateArgument::Type: {
5896        std::string TypeStr;
5897        Args[I].getAsType().getAsStringInternal(TypeStr,
5898                                                Context.PrintingPolicy);
5899        Result += TypeStr;
5900        break;
5901      }
5902
5903      case TemplateArgument::Declaration: {
5904        bool Unnamed = true;
5905        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5906          if (ND->getDeclName()) {
5907            Unnamed = false;
5908            Result += ND->getNameAsString();
5909          }
5910        }
5911
5912        if (Unnamed) {
5913          Result += "<anonymous>";
5914        }
5915        break;
5916      }
5917
5918      case TemplateArgument::Template: {
5919        std::string Str;
5920        llvm::raw_string_ostream OS(Str);
5921        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5922        Result += OS.str();
5923        break;
5924      }
5925
5926      case TemplateArgument::Integral: {
5927        Result += Args[I].getAsIntegral()->toString(10);
5928        break;
5929      }
5930
5931      case TemplateArgument::Expression: {
5932        // FIXME: This is non-optimal, since we're regurgitating the
5933        // expression we were given.
5934        std::string Str;
5935        {
5936          llvm::raw_string_ostream OS(Str);
5937          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5938                                           Context.PrintingPolicy);
5939        }
5940        Result += Str;
5941        break;
5942      }
5943
5944      case TemplateArgument::Pack:
5945        // FIXME: Format template argument packs
5946        Result += "<template argument pack>";
5947        break;
5948    }
5949  }
5950
5951  Result += ']';
5952  return Result;
5953}
5954
5955bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
5956                                           TypeSourceInfo *T,
5957                                         UnexpandedParameterPackContext UPPC) {
5958  // C++0x [temp.variadic]p5:
5959  //   An appearance of a name of a parameter pack that is not expanded is
5960  //   ill-formed.
5961  if (!T->getType()->containsUnexpandedParameterPack())
5962    return false;
5963
5964  // FIXME: Provide the names and locations of the unexpanded parameter packs.
5965  Diag(Loc, diag::err_unexpanded_parameter_pack)
5966    << (int)UPPC << T->getTypeLoc().getSourceRange();
5967  return true;
5968}
5969
5970bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
5971                                           UnexpandedParameterPackContext UPPC) {
5972  // C++0x [temp.variadic]p5:
5973  //   An appearance of a name of a parameter pack that is not expanded is
5974  //   ill-formed.
5975  if (!E->containsUnexpandedParameterPack())
5976    return false;
5977
5978  // FIXME: Provide the names and locations of the unexpanded parameter packs.
5979  Diag(E->getSourceRange().getBegin(), diag::err_unexpanded_parameter_pack)
5980    << (int)UPPC << E->getSourceRange();
5981  return true;
5982}
5983
5984