SemaTemplate.cpp revision c21c7e9c2cded68f91be15be6847c9649242dc17
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 441 SourceLocation EllipsisLoc) const { 442 assert(Kind == Template && 443 "Only template template arguments can be pack expansions here"); 444 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 445 "Template template argument pack expansion without packs"); 446 ParsedTemplateArgument Result(*this); 447 Result.EllipsisLoc = EllipsisLoc; 448 return Result; 449} 450 451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 452 const ParsedTemplateArgument &Arg) { 453 454 switch (Arg.getKind()) { 455 case ParsedTemplateArgument::Type: { 456 TypeSourceInfo *DI; 457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 458 if (!DI) 459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 460 return TemplateArgumentLoc(TemplateArgument(T), DI); 461 } 462 463 case ParsedTemplateArgument::NonType: { 464 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 465 return TemplateArgumentLoc(TemplateArgument(E), E); 466 } 467 468 case ParsedTemplateArgument::Template: { 469 TemplateName Template = Arg.getAsTemplate().get(); 470 TemplateArgument TArg; 471 if (Arg.getEllipsisLoc().isValid()) 472 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 473 else 474 TArg = Template; 475 return TemplateArgumentLoc(TArg, 476 Arg.getScopeSpec().getRange(), 477 Arg.getLocation(), 478 Arg.getEllipsisLoc()); 479 } 480 } 481 482 llvm_unreachable("Unhandled parsed template argument"); 483 return TemplateArgumentLoc(); 484} 485 486/// \brief Translates template arguments as provided by the parser 487/// into template arguments used by semantic analysis. 488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 489 TemplateArgumentListInfo &TemplateArgs) { 490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 491 TemplateArgs.addArgument(translateTemplateArgument(*this, 492 TemplateArgsIn[I])); 493} 494 495/// ActOnTypeParameter - Called when a C++ template type parameter 496/// (e.g., "typename T") has been parsed. Typename specifies whether 497/// the keyword "typename" was used to declare the type parameter 498/// (otherwise, "class" was used), and KeyLoc is the location of the 499/// "class" or "typename" keyword. ParamName is the name of the 500/// parameter (NULL indicates an unnamed template parameter) and 501/// ParamName is the location of the parameter name (if any). 502/// If the type parameter has a default argument, it will be added 503/// later via ActOnTypeParameterDefault. 504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 505 SourceLocation EllipsisLoc, 506 SourceLocation KeyLoc, 507 IdentifierInfo *ParamName, 508 SourceLocation ParamNameLoc, 509 unsigned Depth, unsigned Position, 510 SourceLocation EqualLoc, 511 ParsedType DefaultArg) { 512 assert(S->isTemplateParamScope() && 513 "Template type parameter not in template parameter scope!"); 514 bool Invalid = false; 515 516 if (ParamName) { 517 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 518 LookupOrdinaryName, 519 ForRedeclaration); 520 if (PrevDecl && PrevDecl->isTemplateParameter()) 521 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 522 PrevDecl); 523 } 524 525 SourceLocation Loc = ParamNameLoc; 526 if (!ParamName) 527 Loc = KeyLoc; 528 529 TemplateTypeParmDecl *Param 530 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 531 Loc, Depth, Position, ParamName, Typename, 532 Ellipsis); 533 if (Invalid) 534 Param->setInvalidDecl(); 535 536 if (ParamName) { 537 // Add the template parameter into the current scope. 538 S->AddDecl(Param); 539 IdResolver.AddDecl(Param); 540 } 541 542 // C++0x [temp.param]p9: 543 // A default template-argument may be specified for any kind of 544 // template-parameter that is not a template parameter pack. 545 if (DefaultArg && Ellipsis) { 546 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 547 DefaultArg = ParsedType(); 548 } 549 550 // Handle the default argument, if provided. 551 if (DefaultArg) { 552 TypeSourceInfo *DefaultTInfo; 553 GetTypeFromParser(DefaultArg, &DefaultTInfo); 554 555 assert(DefaultTInfo && "expected source information for type"); 556 557 // Check for unexpanded parameter packs. 558 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 559 UPPC_DefaultArgument)) 560 return Param; 561 562 // Check the template argument itself. 563 if (CheckTemplateArgument(Param, DefaultTInfo)) { 564 Param->setInvalidDecl(); 565 return Param; 566 } 567 568 Param->setDefaultArgument(DefaultTInfo, false); 569 } 570 571 return Param; 572} 573 574/// \brief Check that the type of a non-type template parameter is 575/// well-formed. 576/// 577/// \returns the (possibly-promoted) parameter type if valid; 578/// otherwise, produces a diagnostic and returns a NULL type. 579QualType 580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 581 // We don't allow variably-modified types as the type of non-type template 582 // parameters. 583 if (T->isVariablyModifiedType()) { 584 Diag(Loc, diag::err_variably_modified_nontype_template_param) 585 << T; 586 return QualType(); 587 } 588 589 // C++ [temp.param]p4: 590 // 591 // A non-type template-parameter shall have one of the following 592 // (optionally cv-qualified) types: 593 // 594 // -- integral or enumeration type, 595 if (T->isIntegralOrEnumerationType() || 596 // -- pointer to object or pointer to function, 597 T->isPointerType() || 598 // -- reference to object or reference to function, 599 T->isReferenceType() || 600 // -- pointer to member. 601 T->isMemberPointerType() || 602 // If T is a dependent type, we can't do the check now, so we 603 // assume that it is well-formed. 604 T->isDependentType()) 605 return T; 606 // C++ [temp.param]p8: 607 // 608 // A non-type template-parameter of type "array of T" or 609 // "function returning T" is adjusted to be of type "pointer to 610 // T" or "pointer to function returning T", respectively. 611 else if (T->isArrayType()) 612 // FIXME: Keep the type prior to promotion? 613 return Context.getArrayDecayedType(T); 614 else if (T->isFunctionType()) 615 // FIXME: Keep the type prior to promotion? 616 return Context.getPointerType(T); 617 618 Diag(Loc, diag::err_template_nontype_parm_bad_type) 619 << T; 620 621 return QualType(); 622} 623 624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 625 unsigned Depth, 626 unsigned Position, 627 SourceLocation EqualLoc, 628 Expr *Default) { 629 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 630 QualType T = TInfo->getType(); 631 632 assert(S->isTemplateParamScope() && 633 "Non-type template parameter not in template parameter scope!"); 634 bool Invalid = false; 635 636 IdentifierInfo *ParamName = D.getIdentifier(); 637 if (ParamName) { 638 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 639 LookupOrdinaryName, 640 ForRedeclaration); 641 if (PrevDecl && PrevDecl->isTemplateParameter()) 642 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 643 PrevDecl); 644 } 645 646 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 647 if (T.isNull()) { 648 T = Context.IntTy; // Recover with an 'int' type. 649 Invalid = true; 650 } 651 652 bool IsParameterPack = D.hasEllipsis(); 653 NonTypeTemplateParmDecl *Param 654 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 655 D.getIdentifierLoc(), 656 Depth, Position, ParamName, T, 657 IsParameterPack, TInfo); 658 if (Invalid) 659 Param->setInvalidDecl(); 660 661 if (D.getIdentifier()) { 662 // Add the template parameter into the current scope. 663 S->AddDecl(Param); 664 IdResolver.AddDecl(Param); 665 } 666 667 // C++0x [temp.param]p9: 668 // A default template-argument may be specified for any kind of 669 // template-parameter that is not a template parameter pack. 670 if (Default && IsParameterPack) { 671 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 672 Default = 0; 673 } 674 675 // Check the well-formedness of the default template argument, if provided. 676 if (Default) { 677 // Check for unexpanded parameter packs. 678 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 679 return Param; 680 681 TemplateArgument Converted; 682 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 683 Param->setInvalidDecl(); 684 return Param; 685 } 686 687 Param->setDefaultArgument(Default, false); 688 } 689 690 return Param; 691} 692 693/// ActOnTemplateTemplateParameter - Called when a C++ template template 694/// parameter (e.g. T in template <template <typename> class T> class array) 695/// has been parsed. S is the current scope. 696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 697 SourceLocation TmpLoc, 698 TemplateParamsTy *Params, 699 SourceLocation EllipsisLoc, 700 IdentifierInfo *Name, 701 SourceLocation NameLoc, 702 unsigned Depth, 703 unsigned Position, 704 SourceLocation EqualLoc, 705 ParsedTemplateArgument Default) { 706 assert(S->isTemplateParamScope() && 707 "Template template parameter not in template parameter scope!"); 708 709 // Construct the parameter object. 710 bool IsParameterPack = EllipsisLoc.isValid(); 711 // FIXME: Pack-ness is dropped 712 TemplateTemplateParmDecl *Param = 713 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 714 NameLoc.isInvalid()? TmpLoc : NameLoc, 715 Depth, Position, IsParameterPack, 716 Name, Params); 717 718 // If the template template parameter has a name, then link the identifier 719 // into the scope and lookup mechanisms. 720 if (Name) { 721 S->AddDecl(Param); 722 IdResolver.AddDecl(Param); 723 } 724 725 if (Params->size() == 0) { 726 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 727 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 728 Param->setInvalidDecl(); 729 } 730 731 // C++0x [temp.param]p9: 732 // A default template-argument may be specified for any kind of 733 // template-parameter that is not a template parameter pack. 734 if (IsParameterPack && !Default.isInvalid()) { 735 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 736 Default = ParsedTemplateArgument(); 737 } 738 739 if (!Default.isInvalid()) { 740 // Check only that we have a template template argument. We don't want to 741 // try to check well-formedness now, because our template template parameter 742 // might have dependent types in its template parameters, which we wouldn't 743 // be able to match now. 744 // 745 // If none of the template template parameter's template arguments mention 746 // other template parameters, we could actually perform more checking here. 747 // However, it isn't worth doing. 748 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 749 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 750 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 751 << DefaultArg.getSourceRange(); 752 return Param; 753 } 754 755 // Check for unexpanded parameter packs. 756 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 757 DefaultArg.getArgument().getAsTemplate(), 758 UPPC_DefaultArgument)) 759 return Param; 760 761 Param->setDefaultArgument(DefaultArg, false); 762 } 763 764 return Param; 765} 766 767/// ActOnTemplateParameterList - Builds a TemplateParameterList that 768/// contains the template parameters in Params/NumParams. 769Sema::TemplateParamsTy * 770Sema::ActOnTemplateParameterList(unsigned Depth, 771 SourceLocation ExportLoc, 772 SourceLocation TemplateLoc, 773 SourceLocation LAngleLoc, 774 Decl **Params, unsigned NumParams, 775 SourceLocation RAngleLoc) { 776 if (ExportLoc.isValid()) 777 Diag(ExportLoc, diag::warn_template_export_unsupported); 778 779 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 780 (NamedDecl**)Params, NumParams, 781 RAngleLoc); 782} 783 784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 785 if (SS.isSet()) 786 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 787 SS.getRange()); 788} 789 790DeclResult 791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 792 SourceLocation KWLoc, CXXScopeSpec &SS, 793 IdentifierInfo *Name, SourceLocation NameLoc, 794 AttributeList *Attr, 795 TemplateParameterList *TemplateParams, 796 AccessSpecifier AS) { 797 assert(TemplateParams && TemplateParams->size() > 0 && 798 "No template parameters"); 799 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 800 bool Invalid = false; 801 802 // Check that we can declare a template here. 803 if (CheckTemplateDeclScope(S, TemplateParams)) 804 return true; 805 806 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 807 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 808 809 // There is no such thing as an unnamed class template. 810 if (!Name) { 811 Diag(KWLoc, diag::err_template_unnamed_class); 812 return true; 813 } 814 815 // Find any previous declaration with this name. 816 DeclContext *SemanticContext; 817 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 818 ForRedeclaration); 819 if (SS.isNotEmpty() && !SS.isInvalid()) { 820 SemanticContext = computeDeclContext(SS, true); 821 if (!SemanticContext) { 822 // FIXME: Produce a reasonable diagnostic here 823 return true; 824 } 825 826 if (RequireCompleteDeclContext(SS, SemanticContext)) 827 return true; 828 829 LookupQualifiedName(Previous, SemanticContext); 830 } else { 831 SemanticContext = CurContext; 832 LookupName(Previous, S); 833 } 834 835 if (Previous.isAmbiguous()) 836 return true; 837 838 NamedDecl *PrevDecl = 0; 839 if (Previous.begin() != Previous.end()) 840 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 841 842 // If there is a previous declaration with the same name, check 843 // whether this is a valid redeclaration. 844 ClassTemplateDecl *PrevClassTemplate 845 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 846 847 // We may have found the injected-class-name of a class template, 848 // class template partial specialization, or class template specialization. 849 // In these cases, grab the template that is being defined or specialized. 850 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 851 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 852 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 853 PrevClassTemplate 854 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 855 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 856 PrevClassTemplate 857 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 858 ->getSpecializedTemplate(); 859 } 860 } 861 862 if (TUK == TUK_Friend) { 863 // C++ [namespace.memdef]p3: 864 // [...] When looking for a prior declaration of a class or a function 865 // declared as a friend, and when the name of the friend class or 866 // function is neither a qualified name nor a template-id, scopes outside 867 // the innermost enclosing namespace scope are not considered. 868 if (!SS.isSet()) { 869 DeclContext *OutermostContext = CurContext; 870 while (!OutermostContext->isFileContext()) 871 OutermostContext = OutermostContext->getLookupParent(); 872 873 if (PrevDecl && 874 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 875 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 876 SemanticContext = PrevDecl->getDeclContext(); 877 } else { 878 // Declarations in outer scopes don't matter. However, the outermost 879 // context we computed is the semantic context for our new 880 // declaration. 881 PrevDecl = PrevClassTemplate = 0; 882 SemanticContext = OutermostContext; 883 } 884 } 885 886 if (CurContext->isDependentContext()) { 887 // If this is a dependent context, we don't want to link the friend 888 // class template to the template in scope, because that would perform 889 // checking of the template parameter lists that can't be performed 890 // until the outer context is instantiated. 891 PrevDecl = PrevClassTemplate = 0; 892 } 893 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 894 PrevDecl = PrevClassTemplate = 0; 895 896 if (PrevClassTemplate) { 897 // Ensure that the template parameter lists are compatible. 898 if (!TemplateParameterListsAreEqual(TemplateParams, 899 PrevClassTemplate->getTemplateParameters(), 900 /*Complain=*/true, 901 TPL_TemplateMatch)) 902 return true; 903 904 // C++ [temp.class]p4: 905 // In a redeclaration, partial specialization, explicit 906 // specialization or explicit instantiation of a class template, 907 // the class-key shall agree in kind with the original class 908 // template declaration (7.1.5.3). 909 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 910 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 911 Diag(KWLoc, diag::err_use_with_wrong_tag) 912 << Name 913 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 914 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 915 Kind = PrevRecordDecl->getTagKind(); 916 } 917 918 // Check for redefinition of this class template. 919 if (TUK == TUK_Definition) { 920 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 921 Diag(NameLoc, diag::err_redefinition) << Name; 922 Diag(Def->getLocation(), diag::note_previous_definition); 923 // FIXME: Would it make sense to try to "forget" the previous 924 // definition, as part of error recovery? 925 return true; 926 } 927 } 928 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 929 // Maybe we will complain about the shadowed template parameter. 930 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 931 // Just pretend that we didn't see the previous declaration. 932 PrevDecl = 0; 933 } else if (PrevDecl) { 934 // C++ [temp]p5: 935 // A class template shall not have the same name as any other 936 // template, class, function, object, enumeration, enumerator, 937 // namespace, or type in the same scope (3.3), except as specified 938 // in (14.5.4). 939 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 940 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 941 return true; 942 } 943 944 // Check the template parameter list of this declaration, possibly 945 // merging in the template parameter list from the previous class 946 // template declaration. 947 if (CheckTemplateParameterList(TemplateParams, 948 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 949 TPC_ClassTemplate)) 950 Invalid = true; 951 952 if (SS.isSet()) { 953 // If the name of the template was qualified, we must be defining the 954 // template out-of-line. 955 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 956 !(TUK == TUK_Friend && CurContext->isDependentContext())) 957 Diag(NameLoc, diag::err_member_def_does_not_match) 958 << Name << SemanticContext << SS.getRange(); 959 } 960 961 CXXRecordDecl *NewClass = 962 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 963 PrevClassTemplate? 964 PrevClassTemplate->getTemplatedDecl() : 0, 965 /*DelayTypeCreation=*/true); 966 SetNestedNameSpecifier(NewClass, SS); 967 968 ClassTemplateDecl *NewTemplate 969 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 970 DeclarationName(Name), TemplateParams, 971 NewClass, PrevClassTemplate); 972 NewClass->setDescribedClassTemplate(NewTemplate); 973 974 // Build the type for the class template declaration now. 975 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 976 T = Context.getInjectedClassNameType(NewClass, T); 977 assert(T->isDependentType() && "Class template type is not dependent?"); 978 (void)T; 979 980 // If we are providing an explicit specialization of a member that is a 981 // class template, make a note of that. 982 if (PrevClassTemplate && 983 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 984 PrevClassTemplate->setMemberSpecialization(); 985 986 // Set the access specifier. 987 if (!Invalid && TUK != TUK_Friend) 988 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 989 990 // Set the lexical context of these templates 991 NewClass->setLexicalDeclContext(CurContext); 992 NewTemplate->setLexicalDeclContext(CurContext); 993 994 if (TUK == TUK_Definition) 995 NewClass->startDefinition(); 996 997 if (Attr) 998 ProcessDeclAttributeList(S, NewClass, Attr); 999 1000 if (TUK != TUK_Friend) 1001 PushOnScopeChains(NewTemplate, S); 1002 else { 1003 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1004 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1005 NewClass->setAccess(PrevClassTemplate->getAccess()); 1006 } 1007 1008 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1009 PrevClassTemplate != NULL); 1010 1011 // Friend templates are visible in fairly strange ways. 1012 if (!CurContext->isDependentContext()) { 1013 DeclContext *DC = SemanticContext->getRedeclContext(); 1014 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1015 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1016 PushOnScopeChains(NewTemplate, EnclosingScope, 1017 /* AddToContext = */ false); 1018 } 1019 1020 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1021 NewClass->getLocation(), 1022 NewTemplate, 1023 /*FIXME:*/NewClass->getLocation()); 1024 Friend->setAccess(AS_public); 1025 CurContext->addDecl(Friend); 1026 } 1027 1028 if (Invalid) { 1029 NewTemplate->setInvalidDecl(); 1030 NewClass->setInvalidDecl(); 1031 } 1032 return NewTemplate; 1033} 1034 1035/// \brief Diagnose the presence of a default template argument on a 1036/// template parameter, which is ill-formed in certain contexts. 1037/// 1038/// \returns true if the default template argument should be dropped. 1039static bool DiagnoseDefaultTemplateArgument(Sema &S, 1040 Sema::TemplateParamListContext TPC, 1041 SourceLocation ParamLoc, 1042 SourceRange DefArgRange) { 1043 switch (TPC) { 1044 case Sema::TPC_ClassTemplate: 1045 return false; 1046 1047 case Sema::TPC_FunctionTemplate: 1048 // C++ [temp.param]p9: 1049 // A default template-argument shall not be specified in a 1050 // function template declaration or a function template 1051 // definition [...] 1052 // (This sentence is not in C++0x, per DR226). 1053 if (!S.getLangOptions().CPlusPlus0x) 1054 S.Diag(ParamLoc, 1055 diag::err_template_parameter_default_in_function_template) 1056 << DefArgRange; 1057 return false; 1058 1059 case Sema::TPC_ClassTemplateMember: 1060 // C++0x [temp.param]p9: 1061 // A default template-argument shall not be specified in the 1062 // template-parameter-lists of the definition of a member of a 1063 // class template that appears outside of the member's class. 1064 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1065 << DefArgRange; 1066 return true; 1067 1068 case Sema::TPC_FriendFunctionTemplate: 1069 // C++ [temp.param]p9: 1070 // A default template-argument shall not be specified in a 1071 // friend template declaration. 1072 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1073 << DefArgRange; 1074 return true; 1075 1076 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1077 // for friend function templates if there is only a single 1078 // declaration (and it is a definition). Strange! 1079 } 1080 1081 return false; 1082} 1083 1084/// \brief Check for unexpanded parameter packs within the template parameters 1085/// of a template template parameter, recursively. 1086bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){ 1087 TemplateParameterList *Params = TTP->getTemplateParameters(); 1088 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1089 NamedDecl *P = Params->getParam(I); 1090 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1091 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1092 NTTP->getTypeSourceInfo(), 1093 Sema::UPPC_NonTypeTemplateParameterType)) 1094 return true; 1095 1096 continue; 1097 } 1098 1099 if (TemplateTemplateParmDecl *InnerTTP 1100 = dyn_cast<TemplateTemplateParmDecl>(P)) 1101 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1102 return true; 1103 } 1104 1105 return false; 1106} 1107 1108/// \brief Checks the validity of a template parameter list, possibly 1109/// considering the template parameter list from a previous 1110/// declaration. 1111/// 1112/// If an "old" template parameter list is provided, it must be 1113/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1114/// template parameter list. 1115/// 1116/// \param NewParams Template parameter list for a new template 1117/// declaration. This template parameter list will be updated with any 1118/// default arguments that are carried through from the previous 1119/// template parameter list. 1120/// 1121/// \param OldParams If provided, template parameter list from a 1122/// previous declaration of the same template. Default template 1123/// arguments will be merged from the old template parameter list to 1124/// the new template parameter list. 1125/// 1126/// \param TPC Describes the context in which we are checking the given 1127/// template parameter list. 1128/// 1129/// \returns true if an error occurred, false otherwise. 1130bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1131 TemplateParameterList *OldParams, 1132 TemplateParamListContext TPC) { 1133 bool Invalid = false; 1134 1135 // C++ [temp.param]p10: 1136 // The set of default template-arguments available for use with a 1137 // template declaration or definition is obtained by merging the 1138 // default arguments from the definition (if in scope) and all 1139 // declarations in scope in the same way default function 1140 // arguments are (8.3.6). 1141 bool SawDefaultArgument = false; 1142 SourceLocation PreviousDefaultArgLoc; 1143 1144 bool SawParameterPack = false; 1145 SourceLocation ParameterPackLoc; 1146 1147 // Dummy initialization to avoid warnings. 1148 TemplateParameterList::iterator OldParam = NewParams->end(); 1149 if (OldParams) 1150 OldParam = OldParams->begin(); 1151 1152 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1153 NewParamEnd = NewParams->end(); 1154 NewParam != NewParamEnd; ++NewParam) { 1155 // Variables used to diagnose redundant default arguments 1156 bool RedundantDefaultArg = false; 1157 SourceLocation OldDefaultLoc; 1158 SourceLocation NewDefaultLoc; 1159 1160 // Variables used to diagnose missing default arguments 1161 bool MissingDefaultArg = false; 1162 1163 // C++0x [temp.param]p11: 1164 // If a template parameter of a primary class template is a template 1165 // parameter pack, it shall be the last template parameter. 1166 if (SawParameterPack && TPC == TPC_ClassTemplate) { 1167 Diag(ParameterPackLoc, 1168 diag::err_template_param_pack_must_be_last_template_parameter); 1169 Invalid = true; 1170 } 1171 1172 if (TemplateTypeParmDecl *NewTypeParm 1173 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1174 // Check the presence of a default argument here. 1175 if (NewTypeParm->hasDefaultArgument() && 1176 DiagnoseDefaultTemplateArgument(*this, TPC, 1177 NewTypeParm->getLocation(), 1178 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1179 .getSourceRange())) 1180 NewTypeParm->removeDefaultArgument(); 1181 1182 // Merge default arguments for template type parameters. 1183 TemplateTypeParmDecl *OldTypeParm 1184 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1185 1186 if (NewTypeParm->isParameterPack()) { 1187 assert(!NewTypeParm->hasDefaultArgument() && 1188 "Parameter packs can't have a default argument!"); 1189 SawParameterPack = true; 1190 ParameterPackLoc = NewTypeParm->getLocation(); 1191 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1192 NewTypeParm->hasDefaultArgument()) { 1193 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1194 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1195 SawDefaultArgument = true; 1196 RedundantDefaultArg = true; 1197 PreviousDefaultArgLoc = NewDefaultLoc; 1198 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1199 // Merge the default argument from the old declaration to the 1200 // new declaration. 1201 SawDefaultArgument = true; 1202 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1203 true); 1204 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1205 } else if (NewTypeParm->hasDefaultArgument()) { 1206 SawDefaultArgument = true; 1207 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1208 } else if (SawDefaultArgument) 1209 MissingDefaultArg = true; 1210 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1211 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1212 // Check for unexpanded parameter packs. 1213 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1214 NewNonTypeParm->getTypeSourceInfo(), 1215 UPPC_NonTypeTemplateParameterType)) { 1216 Invalid = true; 1217 continue; 1218 } 1219 1220 // Check the presence of a default argument here. 1221 if (NewNonTypeParm->hasDefaultArgument() && 1222 DiagnoseDefaultTemplateArgument(*this, TPC, 1223 NewNonTypeParm->getLocation(), 1224 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1225 NewNonTypeParm->removeDefaultArgument(); 1226 } 1227 1228 // Merge default arguments for non-type template parameters 1229 NonTypeTemplateParmDecl *OldNonTypeParm 1230 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1231 if (NewNonTypeParm->isParameterPack()) { 1232 assert(!NewNonTypeParm->hasDefaultArgument() && 1233 "Parameter packs can't have a default argument!"); 1234 SawParameterPack = true; 1235 ParameterPackLoc = NewNonTypeParm->getLocation(); 1236 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1237 NewNonTypeParm->hasDefaultArgument()) { 1238 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1239 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1240 SawDefaultArgument = true; 1241 RedundantDefaultArg = true; 1242 PreviousDefaultArgLoc = NewDefaultLoc; 1243 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1244 // Merge the default argument from the old declaration to the 1245 // new declaration. 1246 SawDefaultArgument = true; 1247 // FIXME: We need to create a new kind of "default argument" 1248 // expression that points to a previous non-type template 1249 // parameter. 1250 NewNonTypeParm->setDefaultArgument( 1251 OldNonTypeParm->getDefaultArgument(), 1252 /*Inherited=*/ true); 1253 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1254 } else if (NewNonTypeParm->hasDefaultArgument()) { 1255 SawDefaultArgument = true; 1256 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1257 } else if (SawDefaultArgument) 1258 MissingDefaultArg = true; 1259 } else { 1260 // Check the presence of a default argument here. 1261 TemplateTemplateParmDecl *NewTemplateParm 1262 = cast<TemplateTemplateParmDecl>(*NewParam); 1263 1264 // Check for unexpanded parameter packs, recursively. 1265 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1266 Invalid = true; 1267 continue; 1268 } 1269 1270 if (NewTemplateParm->hasDefaultArgument() && 1271 DiagnoseDefaultTemplateArgument(*this, TPC, 1272 NewTemplateParm->getLocation(), 1273 NewTemplateParm->getDefaultArgument().getSourceRange())) 1274 NewTemplateParm->removeDefaultArgument(); 1275 1276 // Merge default arguments for template template parameters 1277 TemplateTemplateParmDecl *OldTemplateParm 1278 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1279 if (NewTemplateParm->isParameterPack()) { 1280 assert(!NewTemplateParm->hasDefaultArgument() && 1281 "Parameter packs can't have a default argument!"); 1282 SawParameterPack = true; 1283 ParameterPackLoc = NewTemplateParm->getLocation(); 1284 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1285 NewTemplateParm->hasDefaultArgument()) { 1286 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1287 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1288 SawDefaultArgument = true; 1289 RedundantDefaultArg = true; 1290 PreviousDefaultArgLoc = NewDefaultLoc; 1291 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1292 // Merge the default argument from the old declaration to the 1293 // new declaration. 1294 SawDefaultArgument = true; 1295 // FIXME: We need to create a new kind of "default argument" expression 1296 // that points to a previous template template parameter. 1297 NewTemplateParm->setDefaultArgument( 1298 OldTemplateParm->getDefaultArgument(), 1299 /*Inherited=*/ true); 1300 PreviousDefaultArgLoc 1301 = OldTemplateParm->getDefaultArgument().getLocation(); 1302 } else if (NewTemplateParm->hasDefaultArgument()) { 1303 SawDefaultArgument = true; 1304 PreviousDefaultArgLoc 1305 = NewTemplateParm->getDefaultArgument().getLocation(); 1306 } else if (SawDefaultArgument) 1307 MissingDefaultArg = true; 1308 } 1309 1310 if (RedundantDefaultArg) { 1311 // C++ [temp.param]p12: 1312 // A template-parameter shall not be given default arguments 1313 // by two different declarations in the same scope. 1314 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1315 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1316 Invalid = true; 1317 } else if (MissingDefaultArg) { 1318 // C++ [temp.param]p11: 1319 // If a template-parameter of a class template has a default 1320 // template-argument, each subsequent template- parameter shall either 1321 // have a default template-argument supplied or be a template parameter 1322 // pack. 1323 Diag((*NewParam)->getLocation(), 1324 diag::err_template_param_default_arg_missing); 1325 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1326 Invalid = true; 1327 } 1328 1329 // If we have an old template parameter list that we're merging 1330 // in, move on to the next parameter. 1331 if (OldParams) 1332 ++OldParam; 1333 } 1334 1335 return Invalid; 1336} 1337 1338namespace { 1339 1340/// A class which looks for a use of a certain level of template 1341/// parameter. 1342struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1343 typedef RecursiveASTVisitor<DependencyChecker> super; 1344 1345 unsigned Depth; 1346 bool Match; 1347 1348 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1349 NamedDecl *ND = Params->getParam(0); 1350 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1351 Depth = PD->getDepth(); 1352 } else if (NonTypeTemplateParmDecl *PD = 1353 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1354 Depth = PD->getDepth(); 1355 } else { 1356 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1357 } 1358 } 1359 1360 bool Matches(unsigned ParmDepth) { 1361 if (ParmDepth >= Depth) { 1362 Match = true; 1363 return true; 1364 } 1365 return false; 1366 } 1367 1368 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1369 return !Matches(T->getDepth()); 1370 } 1371 1372 bool TraverseTemplateName(TemplateName N) { 1373 if (TemplateTemplateParmDecl *PD = 1374 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1375 if (Matches(PD->getDepth())) return false; 1376 return super::TraverseTemplateName(N); 1377 } 1378 1379 bool VisitDeclRefExpr(DeclRefExpr *E) { 1380 if (NonTypeTemplateParmDecl *PD = 1381 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1382 if (PD->getDepth() == Depth) { 1383 Match = true; 1384 return false; 1385 } 1386 } 1387 return super::VisitDeclRefExpr(E); 1388 } 1389}; 1390} 1391 1392/// Determines whether a template-id depends on the given parameter 1393/// list. 1394static bool 1395DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1396 TemplateParameterList *Params) { 1397 DependencyChecker Checker(Params); 1398 Checker.TraverseType(QualType(TemplateId, 0)); 1399 return Checker.Match; 1400} 1401 1402/// \brief Match the given template parameter lists to the given scope 1403/// specifier, returning the template parameter list that applies to the 1404/// name. 1405/// 1406/// \param DeclStartLoc the start of the declaration that has a scope 1407/// specifier or a template parameter list. 1408/// 1409/// \param SS the scope specifier that will be matched to the given template 1410/// parameter lists. This scope specifier precedes a qualified name that is 1411/// being declared. 1412/// 1413/// \param ParamLists the template parameter lists, from the outermost to the 1414/// innermost template parameter lists. 1415/// 1416/// \param NumParamLists the number of template parameter lists in ParamLists. 1417/// 1418/// \param IsFriend Whether to apply the slightly different rules for 1419/// matching template parameters to scope specifiers in friend 1420/// declarations. 1421/// 1422/// \param IsExplicitSpecialization will be set true if the entity being 1423/// declared is an explicit specialization, false otherwise. 1424/// 1425/// \returns the template parameter list, if any, that corresponds to the 1426/// name that is preceded by the scope specifier @p SS. This template 1427/// parameter list may be have template parameters (if we're declaring a 1428/// template) or may have no template parameters (if we're declaring a 1429/// template specialization), or may be NULL (if we were's declaring isn't 1430/// itself a template). 1431TemplateParameterList * 1432Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1433 const CXXScopeSpec &SS, 1434 TemplateParameterList **ParamLists, 1435 unsigned NumParamLists, 1436 bool IsFriend, 1437 bool &IsExplicitSpecialization, 1438 bool &Invalid) { 1439 IsExplicitSpecialization = false; 1440 1441 // Find the template-ids that occur within the nested-name-specifier. These 1442 // template-ids will match up with the template parameter lists. 1443 llvm::SmallVector<const TemplateSpecializationType *, 4> 1444 TemplateIdsInSpecifier; 1445 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1446 ExplicitSpecializationsInSpecifier; 1447 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1448 NNS; NNS = NNS->getPrefix()) { 1449 const Type *T = NNS->getAsType(); 1450 if (!T) break; 1451 1452 // C++0x [temp.expl.spec]p17: 1453 // A member or a member template may be nested within many 1454 // enclosing class templates. In an explicit specialization for 1455 // such a member, the member declaration shall be preceded by a 1456 // template<> for each enclosing class template that is 1457 // explicitly specialized. 1458 // 1459 // Following the existing practice of GNU and EDG, we allow a typedef of a 1460 // template specialization type. 1461 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1462 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1463 1464 if (const TemplateSpecializationType *SpecType 1465 = dyn_cast<TemplateSpecializationType>(T)) { 1466 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1467 if (!Template) 1468 continue; // FIXME: should this be an error? probably... 1469 1470 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1471 ClassTemplateSpecializationDecl *SpecDecl 1472 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1473 // If the nested name specifier refers to an explicit specialization, 1474 // we don't need a template<> header. 1475 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1476 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1477 continue; 1478 } 1479 } 1480 1481 TemplateIdsInSpecifier.push_back(SpecType); 1482 } 1483 } 1484 1485 // Reverse the list of template-ids in the scope specifier, so that we can 1486 // more easily match up the template-ids and the template parameter lists. 1487 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1488 1489 SourceLocation FirstTemplateLoc = DeclStartLoc; 1490 if (NumParamLists) 1491 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1492 1493 // Match the template-ids found in the specifier to the template parameter 1494 // lists. 1495 unsigned ParamIdx = 0, TemplateIdx = 0; 1496 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1497 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1498 const TemplateSpecializationType *TemplateId 1499 = TemplateIdsInSpecifier[TemplateIdx]; 1500 bool DependentTemplateId = TemplateId->isDependentType(); 1501 1502 // In friend declarations we can have template-ids which don't 1503 // depend on the corresponding template parameter lists. But 1504 // assume that empty parameter lists are supposed to match this 1505 // template-id. 1506 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1507 if (!DependentTemplateId || 1508 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1509 continue; 1510 } 1511 1512 if (ParamIdx >= NumParamLists) { 1513 // We have a template-id without a corresponding template parameter 1514 // list. 1515 1516 // ...which is fine if this is a friend declaration. 1517 if (IsFriend) { 1518 IsExplicitSpecialization = true; 1519 break; 1520 } 1521 1522 if (DependentTemplateId) { 1523 // FIXME: the location information here isn't great. 1524 Diag(SS.getRange().getBegin(), 1525 diag::err_template_spec_needs_template_parameters) 1526 << QualType(TemplateId, 0) 1527 << SS.getRange(); 1528 Invalid = true; 1529 } else { 1530 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1531 << SS.getRange() 1532 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1533 IsExplicitSpecialization = true; 1534 } 1535 return 0; 1536 } 1537 1538 // Check the template parameter list against its corresponding template-id. 1539 if (DependentTemplateId) { 1540 TemplateParameterList *ExpectedTemplateParams = 0; 1541 1542 // Are there cases in (e.g.) friends where this won't match? 1543 if (const InjectedClassNameType *Injected 1544 = TemplateId->getAs<InjectedClassNameType>()) { 1545 CXXRecordDecl *Record = Injected->getDecl(); 1546 if (ClassTemplatePartialSpecializationDecl *Partial = 1547 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1548 ExpectedTemplateParams = Partial->getTemplateParameters(); 1549 else 1550 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1551 ->getTemplateParameters(); 1552 } 1553 1554 if (ExpectedTemplateParams) 1555 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1556 ExpectedTemplateParams, 1557 true, TPL_TemplateMatch); 1558 1559 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1560 TPC_ClassTemplateMember); 1561 } else if (ParamLists[ParamIdx]->size() > 0) 1562 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1563 diag::err_template_param_list_matches_nontemplate) 1564 << TemplateId 1565 << ParamLists[ParamIdx]->getSourceRange(); 1566 else 1567 IsExplicitSpecialization = true; 1568 1569 ++ParamIdx; 1570 } 1571 1572 // If there were at least as many template-ids as there were template 1573 // parameter lists, then there are no template parameter lists remaining for 1574 // the declaration itself. 1575 if (ParamIdx >= NumParamLists) 1576 return 0; 1577 1578 // If there were too many template parameter lists, complain about that now. 1579 if (ParamIdx != NumParamLists - 1) { 1580 while (ParamIdx < NumParamLists - 1) { 1581 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1582 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1583 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1584 : diag::err_template_spec_extra_headers) 1585 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1586 ParamLists[ParamIdx]->getRAngleLoc()); 1587 1588 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1589 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1590 diag::note_explicit_template_spec_does_not_need_header) 1591 << ExplicitSpecializationsInSpecifier.back(); 1592 ExplicitSpecializationsInSpecifier.pop_back(); 1593 } 1594 1595 // We have a template parameter list with no corresponding scope, which 1596 // means that the resulting template declaration can't be instantiated 1597 // properly (we'll end up with dependent nodes when we shouldn't). 1598 if (!isExplicitSpecHeader) 1599 Invalid = true; 1600 1601 ++ParamIdx; 1602 } 1603 } 1604 1605 // Return the last template parameter list, which corresponds to the 1606 // entity being declared. 1607 return ParamLists[NumParamLists - 1]; 1608} 1609 1610QualType Sema::CheckTemplateIdType(TemplateName Name, 1611 SourceLocation TemplateLoc, 1612 const TemplateArgumentListInfo &TemplateArgs) { 1613 TemplateDecl *Template = Name.getAsTemplateDecl(); 1614 if (!Template) { 1615 // The template name does not resolve to a template, so we just 1616 // build a dependent template-id type. 1617 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1618 } 1619 1620 // Check that the template argument list is well-formed for this 1621 // template. 1622 llvm::SmallVector<TemplateArgument, 4> Converted; 1623 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1624 false, Converted)) 1625 return QualType(); 1626 1627 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1628 "Converted template argument list is too short!"); 1629 1630 QualType CanonType; 1631 1632 if (Name.isDependent() || 1633 TemplateSpecializationType::anyDependentTemplateArguments( 1634 TemplateArgs)) { 1635 // This class template specialization is a dependent 1636 // type. Therefore, its canonical type is another class template 1637 // specialization type that contains all of the converted 1638 // arguments in canonical form. This ensures that, e.g., A<T> and 1639 // A<T, T> have identical types when A is declared as: 1640 // 1641 // template<typename T, typename U = T> struct A; 1642 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1643 CanonType = Context.getTemplateSpecializationType(CanonName, 1644 Converted.data(), 1645 Converted.size()); 1646 1647 // FIXME: CanonType is not actually the canonical type, and unfortunately 1648 // it is a TemplateSpecializationType that we will never use again. 1649 // In the future, we need to teach getTemplateSpecializationType to only 1650 // build the canonical type and return that to us. 1651 CanonType = Context.getCanonicalType(CanonType); 1652 1653 // This might work out to be a current instantiation, in which 1654 // case the canonical type needs to be the InjectedClassNameType. 1655 // 1656 // TODO: in theory this could be a simple hashtable lookup; most 1657 // changes to CurContext don't change the set of current 1658 // instantiations. 1659 if (isa<ClassTemplateDecl>(Template)) { 1660 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1661 // If we get out to a namespace, we're done. 1662 if (Ctx->isFileContext()) break; 1663 1664 // If this isn't a record, keep looking. 1665 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1666 if (!Record) continue; 1667 1668 // Look for one of the two cases with InjectedClassNameTypes 1669 // and check whether it's the same template. 1670 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1671 !Record->getDescribedClassTemplate()) 1672 continue; 1673 1674 // Fetch the injected class name type and check whether its 1675 // injected type is equal to the type we just built. 1676 QualType ICNT = Context.getTypeDeclType(Record); 1677 QualType Injected = cast<InjectedClassNameType>(ICNT) 1678 ->getInjectedSpecializationType(); 1679 1680 if (CanonType != Injected->getCanonicalTypeInternal()) 1681 continue; 1682 1683 // If so, the canonical type of this TST is the injected 1684 // class name type of the record we just found. 1685 assert(ICNT.isCanonical()); 1686 CanonType = ICNT; 1687 break; 1688 } 1689 } 1690 } else if (ClassTemplateDecl *ClassTemplate 1691 = dyn_cast<ClassTemplateDecl>(Template)) { 1692 // Find the class template specialization declaration that 1693 // corresponds to these arguments. 1694 void *InsertPos = 0; 1695 ClassTemplateSpecializationDecl *Decl 1696 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1697 InsertPos); 1698 if (!Decl) { 1699 // This is the first time we have referenced this class template 1700 // specialization. Create the canonical declaration and add it to 1701 // the set of specializations. 1702 Decl = ClassTemplateSpecializationDecl::Create(Context, 1703 ClassTemplate->getTemplatedDecl()->getTagKind(), 1704 ClassTemplate->getDeclContext(), 1705 ClassTemplate->getLocation(), 1706 ClassTemplate, 1707 Converted.data(), 1708 Converted.size(), 0); 1709 ClassTemplate->AddSpecialization(Decl, InsertPos); 1710 Decl->setLexicalDeclContext(CurContext); 1711 } 1712 1713 CanonType = Context.getTypeDeclType(Decl); 1714 assert(isa<RecordType>(CanonType) && 1715 "type of non-dependent specialization is not a RecordType"); 1716 } 1717 1718 // Build the fully-sugared type for this class template 1719 // specialization, which refers back to the class template 1720 // specialization we created or found. 1721 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1722} 1723 1724TypeResult 1725Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1726 SourceLocation LAngleLoc, 1727 ASTTemplateArgsPtr TemplateArgsIn, 1728 SourceLocation RAngleLoc) { 1729 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1730 1731 // Translate the parser's template argument list in our AST format. 1732 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1733 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1734 1735 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1736 TemplateArgsIn.release(); 1737 1738 if (Result.isNull()) 1739 return true; 1740 1741 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1742 TemplateSpecializationTypeLoc TL 1743 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1744 TL.setTemplateNameLoc(TemplateLoc); 1745 TL.setLAngleLoc(LAngleLoc); 1746 TL.setRAngleLoc(RAngleLoc); 1747 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1748 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1749 1750 return CreateParsedType(Result, DI); 1751} 1752 1753TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1754 TypeResult TypeResult, 1755 TagUseKind TUK, 1756 TypeSpecifierType TagSpec, 1757 SourceLocation TagLoc) { 1758 if (TypeResult.isInvalid()) 1759 return ::TypeResult(); 1760 1761 TypeSourceInfo *DI; 1762 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1763 1764 // Verify the tag specifier. 1765 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1766 1767 if (const RecordType *RT = Type->getAs<RecordType>()) { 1768 RecordDecl *D = RT->getDecl(); 1769 1770 IdentifierInfo *Id = D->getIdentifier(); 1771 assert(Id && "templated class must have an identifier"); 1772 1773 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1774 Diag(TagLoc, diag::err_use_with_wrong_tag) 1775 << Type 1776 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1777 Diag(D->getLocation(), diag::note_previous_use); 1778 } 1779 } 1780 1781 ElaboratedTypeKeyword Keyword 1782 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1783 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1784 1785 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1786 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1787 TL.setKeywordLoc(TagLoc); 1788 TL.setQualifierRange(SS.getRange()); 1789 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1790 return CreateParsedType(ElabType, ElabDI); 1791} 1792 1793ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1794 LookupResult &R, 1795 bool RequiresADL, 1796 const TemplateArgumentListInfo &TemplateArgs) { 1797 // FIXME: Can we do any checking at this point? I guess we could check the 1798 // template arguments that we have against the template name, if the template 1799 // name refers to a single template. That's not a terribly common case, 1800 // though. 1801 1802 // These should be filtered out by our callers. 1803 assert(!R.empty() && "empty lookup results when building templateid"); 1804 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1805 1806 NestedNameSpecifier *Qualifier = 0; 1807 SourceRange QualifierRange; 1808 if (SS.isSet()) { 1809 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1810 QualifierRange = SS.getRange(); 1811 } 1812 1813 // We don't want lookup warnings at this point. 1814 R.suppressDiagnostics(); 1815 1816 UnresolvedLookupExpr *ULE 1817 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 1818 Qualifier, QualifierRange, 1819 R.getLookupNameInfo(), 1820 RequiresADL, TemplateArgs, 1821 R.begin(), R.end()); 1822 1823 return Owned(ULE); 1824} 1825 1826// We actually only call this from template instantiation. 1827ExprResult 1828Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1829 const DeclarationNameInfo &NameInfo, 1830 const TemplateArgumentListInfo &TemplateArgs) { 1831 DeclContext *DC; 1832 if (!(DC = computeDeclContext(SS, false)) || 1833 DC->isDependentContext() || 1834 RequireCompleteDeclContext(SS, DC)) 1835 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1836 1837 bool MemberOfUnknownSpecialization; 1838 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1839 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1840 MemberOfUnknownSpecialization); 1841 1842 if (R.isAmbiguous()) 1843 return ExprError(); 1844 1845 if (R.empty()) { 1846 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1847 << NameInfo.getName() << SS.getRange(); 1848 return ExprError(); 1849 } 1850 1851 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1852 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1853 << (NestedNameSpecifier*) SS.getScopeRep() 1854 << NameInfo.getName() << SS.getRange(); 1855 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1856 return ExprError(); 1857 } 1858 1859 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1860} 1861 1862/// \brief Form a dependent template name. 1863/// 1864/// This action forms a dependent template name given the template 1865/// name and its (presumably dependent) scope specifier. For 1866/// example, given "MetaFun::template apply", the scope specifier \p 1867/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1868/// of the "template" keyword, and "apply" is the \p Name. 1869TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1870 SourceLocation TemplateKWLoc, 1871 CXXScopeSpec &SS, 1872 UnqualifiedId &Name, 1873 ParsedType ObjectType, 1874 bool EnteringContext, 1875 TemplateTy &Result) { 1876 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1877 !getLangOptions().CPlusPlus0x) 1878 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1879 << FixItHint::CreateRemoval(TemplateKWLoc); 1880 1881 DeclContext *LookupCtx = 0; 1882 if (SS.isSet()) 1883 LookupCtx = computeDeclContext(SS, EnteringContext); 1884 if (!LookupCtx && ObjectType) 1885 LookupCtx = computeDeclContext(ObjectType.get()); 1886 if (LookupCtx) { 1887 // C++0x [temp.names]p5: 1888 // If a name prefixed by the keyword template is not the name of 1889 // a template, the program is ill-formed. [Note: the keyword 1890 // template may not be applied to non-template members of class 1891 // templates. -end note ] [ Note: as is the case with the 1892 // typename prefix, the template prefix is allowed in cases 1893 // where it is not strictly necessary; i.e., when the 1894 // nested-name-specifier or the expression on the left of the -> 1895 // or . is not dependent on a template-parameter, or the use 1896 // does not appear in the scope of a template. -end note] 1897 // 1898 // Note: C++03 was more strict here, because it banned the use of 1899 // the "template" keyword prior to a template-name that was not a 1900 // dependent name. C++ DR468 relaxed this requirement (the 1901 // "template" keyword is now permitted). We follow the C++0x 1902 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1903 bool MemberOfUnknownSpecialization; 1904 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1905 ObjectType, EnteringContext, Result, 1906 MemberOfUnknownSpecialization); 1907 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1908 isa<CXXRecordDecl>(LookupCtx) && 1909 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1910 // This is a dependent template. Handle it below. 1911 } else if (TNK == TNK_Non_template) { 1912 Diag(Name.getSourceRange().getBegin(), 1913 diag::err_template_kw_refers_to_non_template) 1914 << GetNameFromUnqualifiedId(Name).getName() 1915 << Name.getSourceRange() 1916 << TemplateKWLoc; 1917 return TNK_Non_template; 1918 } else { 1919 // We found something; return it. 1920 return TNK; 1921 } 1922 } 1923 1924 NestedNameSpecifier *Qualifier 1925 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1926 1927 switch (Name.getKind()) { 1928 case UnqualifiedId::IK_Identifier: 1929 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1930 Name.Identifier)); 1931 return TNK_Dependent_template_name; 1932 1933 case UnqualifiedId::IK_OperatorFunctionId: 1934 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1935 Name.OperatorFunctionId.Operator)); 1936 return TNK_Dependent_template_name; 1937 1938 case UnqualifiedId::IK_LiteralOperatorId: 1939 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1940 1941 default: 1942 break; 1943 } 1944 1945 Diag(Name.getSourceRange().getBegin(), 1946 diag::err_template_kw_refers_to_non_template) 1947 << GetNameFromUnqualifiedId(Name).getName() 1948 << Name.getSourceRange() 1949 << TemplateKWLoc; 1950 return TNK_Non_template; 1951} 1952 1953bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1954 const TemplateArgumentLoc &AL, 1955 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1956 const TemplateArgument &Arg = AL.getArgument(); 1957 1958 // Check template type parameter. 1959 switch(Arg.getKind()) { 1960 case TemplateArgument::Type: 1961 // C++ [temp.arg.type]p1: 1962 // A template-argument for a template-parameter which is a 1963 // type shall be a type-id. 1964 break; 1965 case TemplateArgument::Template: { 1966 // We have a template type parameter but the template argument 1967 // is a template without any arguments. 1968 SourceRange SR = AL.getSourceRange(); 1969 TemplateName Name = Arg.getAsTemplate(); 1970 Diag(SR.getBegin(), diag::err_template_missing_args) 1971 << Name << SR; 1972 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1973 Diag(Decl->getLocation(), diag::note_template_decl_here); 1974 1975 return true; 1976 } 1977 default: { 1978 // We have a template type parameter but the template argument 1979 // is not a type. 1980 SourceRange SR = AL.getSourceRange(); 1981 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1982 Diag(Param->getLocation(), diag::note_template_param_here); 1983 1984 return true; 1985 } 1986 } 1987 1988 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1989 return true; 1990 1991 // Add the converted template type argument. 1992 Converted.push_back( 1993 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1994 return false; 1995} 1996 1997/// \brief Substitute template arguments into the default template argument for 1998/// the given template type parameter. 1999/// 2000/// \param SemaRef the semantic analysis object for which we are performing 2001/// the substitution. 2002/// 2003/// \param Template the template that we are synthesizing template arguments 2004/// for. 2005/// 2006/// \param TemplateLoc the location of the template name that started the 2007/// template-id we are checking. 2008/// 2009/// \param RAngleLoc the location of the right angle bracket ('>') that 2010/// terminates the template-id. 2011/// 2012/// \param Param the template template parameter whose default we are 2013/// substituting into. 2014/// 2015/// \param Converted the list of template arguments provided for template 2016/// parameters that precede \p Param in the template parameter list. 2017/// 2018/// \returns the substituted template argument, or NULL if an error occurred. 2019static TypeSourceInfo * 2020SubstDefaultTemplateArgument(Sema &SemaRef, 2021 TemplateDecl *Template, 2022 SourceLocation TemplateLoc, 2023 SourceLocation RAngleLoc, 2024 TemplateTypeParmDecl *Param, 2025 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2026 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2027 2028 // If the argument type is dependent, instantiate it now based 2029 // on the previously-computed template arguments. 2030 if (ArgType->getType()->isDependentType()) { 2031 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2032 Converted.data(), Converted.size()); 2033 2034 MultiLevelTemplateArgumentList AllTemplateArgs 2035 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2036 2037 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2038 Template, Converted.data(), 2039 Converted.size(), 2040 SourceRange(TemplateLoc, RAngleLoc)); 2041 2042 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2043 Param->getDefaultArgumentLoc(), 2044 Param->getDeclName()); 2045 } 2046 2047 return ArgType; 2048} 2049 2050/// \brief Substitute template arguments into the default template argument for 2051/// the given non-type template parameter. 2052/// 2053/// \param SemaRef the semantic analysis object for which we are performing 2054/// the substitution. 2055/// 2056/// \param Template the template that we are synthesizing template arguments 2057/// for. 2058/// 2059/// \param TemplateLoc the location of the template name that started the 2060/// template-id we are checking. 2061/// 2062/// \param RAngleLoc the location of the right angle bracket ('>') that 2063/// terminates the template-id. 2064/// 2065/// \param Param the non-type template parameter whose default we are 2066/// substituting into. 2067/// 2068/// \param Converted the list of template arguments provided for template 2069/// parameters that precede \p Param in the template parameter list. 2070/// 2071/// \returns the substituted template argument, or NULL if an error occurred. 2072static ExprResult 2073SubstDefaultTemplateArgument(Sema &SemaRef, 2074 TemplateDecl *Template, 2075 SourceLocation TemplateLoc, 2076 SourceLocation RAngleLoc, 2077 NonTypeTemplateParmDecl *Param, 2078 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2079 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2080 Converted.data(), Converted.size()); 2081 2082 MultiLevelTemplateArgumentList AllTemplateArgs 2083 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2084 2085 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2086 Template, Converted.data(), 2087 Converted.size(), 2088 SourceRange(TemplateLoc, RAngleLoc)); 2089 2090 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2091} 2092 2093/// \brief Substitute template arguments into the default template argument for 2094/// the given template template parameter. 2095/// 2096/// \param SemaRef the semantic analysis object for which we are performing 2097/// the substitution. 2098/// 2099/// \param Template the template that we are synthesizing template arguments 2100/// for. 2101/// 2102/// \param TemplateLoc the location of the template name that started the 2103/// template-id we are checking. 2104/// 2105/// \param RAngleLoc the location of the right angle bracket ('>') that 2106/// terminates the template-id. 2107/// 2108/// \param Param the template template parameter whose default we are 2109/// substituting into. 2110/// 2111/// \param Converted the list of template arguments provided for template 2112/// parameters that precede \p Param in the template parameter list. 2113/// 2114/// \returns the substituted template argument, or NULL if an error occurred. 2115static TemplateName 2116SubstDefaultTemplateArgument(Sema &SemaRef, 2117 TemplateDecl *Template, 2118 SourceLocation TemplateLoc, 2119 SourceLocation RAngleLoc, 2120 TemplateTemplateParmDecl *Param, 2121 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2122 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2123 Converted.data(), Converted.size()); 2124 2125 MultiLevelTemplateArgumentList AllTemplateArgs 2126 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2127 2128 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2129 Template, Converted.data(), 2130 Converted.size(), 2131 SourceRange(TemplateLoc, RAngleLoc)); 2132 2133 return SemaRef.SubstTemplateName( 2134 Param->getDefaultArgument().getArgument().getAsTemplate(), 2135 Param->getDefaultArgument().getTemplateNameLoc(), 2136 AllTemplateArgs); 2137} 2138 2139/// \brief If the given template parameter has a default template 2140/// argument, substitute into that default template argument and 2141/// return the corresponding template argument. 2142TemplateArgumentLoc 2143Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2144 SourceLocation TemplateLoc, 2145 SourceLocation RAngleLoc, 2146 Decl *Param, 2147 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2148 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2149 if (!TypeParm->hasDefaultArgument()) 2150 return TemplateArgumentLoc(); 2151 2152 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2153 TemplateLoc, 2154 RAngleLoc, 2155 TypeParm, 2156 Converted); 2157 if (DI) 2158 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2159 2160 return TemplateArgumentLoc(); 2161 } 2162 2163 if (NonTypeTemplateParmDecl *NonTypeParm 2164 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2165 if (!NonTypeParm->hasDefaultArgument()) 2166 return TemplateArgumentLoc(); 2167 2168 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2169 TemplateLoc, 2170 RAngleLoc, 2171 NonTypeParm, 2172 Converted); 2173 if (Arg.isInvalid()) 2174 return TemplateArgumentLoc(); 2175 2176 Expr *ArgE = Arg.takeAs<Expr>(); 2177 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2178 } 2179 2180 TemplateTemplateParmDecl *TempTempParm 2181 = cast<TemplateTemplateParmDecl>(Param); 2182 if (!TempTempParm->hasDefaultArgument()) 2183 return TemplateArgumentLoc(); 2184 2185 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2186 TemplateLoc, 2187 RAngleLoc, 2188 TempTempParm, 2189 Converted); 2190 if (TName.isNull()) 2191 return TemplateArgumentLoc(); 2192 2193 return TemplateArgumentLoc(TemplateArgument(TName), 2194 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2195 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2196} 2197 2198/// \brief Check that the given template argument corresponds to the given 2199/// template parameter. 2200/// 2201/// \param Param The template parameter against which the argument will be 2202/// checked. 2203/// 2204/// \param Arg The template argument. 2205/// 2206/// \param Template The template in which the template argument resides. 2207/// 2208/// \param TemplateLoc The location of the template name for the template 2209/// whose argument list we're matching. 2210/// 2211/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2212/// the template argument list. 2213/// 2214/// \param ArgumentPackIndex The index into the argument pack where this 2215/// argument will be placed. Only valid if the parameter is a parameter pack. 2216/// 2217/// \param Converted The checked, converted argument will be added to the 2218/// end of this small vector. 2219/// 2220/// \param CTAK Describes how we arrived at this particular template argument: 2221/// explicitly written, deduced, etc. 2222/// 2223/// \returns true on error, false otherwise. 2224bool Sema::CheckTemplateArgument(NamedDecl *Param, 2225 const TemplateArgumentLoc &Arg, 2226 NamedDecl *Template, 2227 SourceLocation TemplateLoc, 2228 SourceLocation RAngleLoc, 2229 unsigned ArgumentPackIndex, 2230 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2231 CheckTemplateArgumentKind CTAK) { 2232 // Check template type parameters. 2233 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2234 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2235 2236 // Check non-type template parameters. 2237 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2238 // Do substitution on the type of the non-type template parameter 2239 // with the template arguments we've seen thus far. But if the 2240 // template has a dependent context then we cannot substitute yet. 2241 QualType NTTPType = NTTP->getType(); 2242 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2243 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2244 2245 if (NTTPType->isDependentType() && 2246 !isa<TemplateTemplateParmDecl>(Template) && 2247 !Template->getDeclContext()->isDependentContext()) { 2248 // Do substitution on the type of the non-type template parameter. 2249 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2250 NTTP, Converted.data(), Converted.size(), 2251 SourceRange(TemplateLoc, RAngleLoc)); 2252 2253 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2254 Converted.data(), Converted.size()); 2255 NTTPType = SubstType(NTTPType, 2256 MultiLevelTemplateArgumentList(TemplateArgs), 2257 NTTP->getLocation(), 2258 NTTP->getDeclName()); 2259 // If that worked, check the non-type template parameter type 2260 // for validity. 2261 if (!NTTPType.isNull()) 2262 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2263 NTTP->getLocation()); 2264 if (NTTPType.isNull()) 2265 return true; 2266 } 2267 2268 switch (Arg.getArgument().getKind()) { 2269 case TemplateArgument::Null: 2270 assert(false && "Should never see a NULL template argument here"); 2271 return true; 2272 2273 case TemplateArgument::Expression: { 2274 Expr *E = Arg.getArgument().getAsExpr(); 2275 TemplateArgument Result; 2276 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2277 return true; 2278 2279 Converted.push_back(Result); 2280 break; 2281 } 2282 2283 case TemplateArgument::Declaration: 2284 case TemplateArgument::Integral: 2285 // We've already checked this template argument, so just copy 2286 // it to the list of converted arguments. 2287 Converted.push_back(Arg.getArgument()); 2288 break; 2289 2290 case TemplateArgument::Template: 2291 case TemplateArgument::TemplateExpansion: 2292 // We were given a template template argument. It may not be ill-formed; 2293 // see below. 2294 if (DependentTemplateName *DTN 2295 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2296 .getAsDependentTemplateName()) { 2297 // We have a template argument such as \c T::template X, which we 2298 // parsed as a template template argument. However, since we now 2299 // know that we need a non-type template argument, convert this 2300 // template name into an expression. 2301 2302 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2303 Arg.getTemplateNameLoc()); 2304 2305 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2306 DTN->getQualifier(), 2307 Arg.getTemplateQualifierRange(), 2308 NameInfo); 2309 2310 // If we parsed the template argument as a pack expansion, create a 2311 // pack expansion expression. 2312 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2313 ExprResult Expansion = ActOnPackExpansion(E, 2314 Arg.getTemplateEllipsisLoc()); 2315 if (Expansion.isInvalid()) 2316 return true; 2317 2318 E = Expansion.get(); 2319 } 2320 2321 TemplateArgument Result; 2322 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2323 return true; 2324 2325 Converted.push_back(Result); 2326 break; 2327 } 2328 2329 // We have a template argument that actually does refer to a class 2330 // template, template alias, or template template parameter, and 2331 // therefore cannot be a non-type template argument. 2332 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2333 << Arg.getSourceRange(); 2334 2335 Diag(Param->getLocation(), diag::note_template_param_here); 2336 return true; 2337 2338 case TemplateArgument::Type: { 2339 // We have a non-type template parameter but the template 2340 // argument is a type. 2341 2342 // C++ [temp.arg]p2: 2343 // In a template-argument, an ambiguity between a type-id and 2344 // an expression is resolved to a type-id, regardless of the 2345 // form of the corresponding template-parameter. 2346 // 2347 // We warn specifically about this case, since it can be rather 2348 // confusing for users. 2349 QualType T = Arg.getArgument().getAsType(); 2350 SourceRange SR = Arg.getSourceRange(); 2351 if (T->isFunctionType()) 2352 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2353 else 2354 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2355 Diag(Param->getLocation(), diag::note_template_param_here); 2356 return true; 2357 } 2358 2359 case TemplateArgument::Pack: 2360 llvm_unreachable("Caller must expand template argument packs"); 2361 break; 2362 } 2363 2364 return false; 2365 } 2366 2367 2368 // Check template template parameters. 2369 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2370 2371 // Substitute into the template parameter list of the template 2372 // template parameter, since previously-supplied template arguments 2373 // may appear within the template template parameter. 2374 { 2375 // Set up a template instantiation context. 2376 LocalInstantiationScope Scope(*this); 2377 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2378 TempParm, Converted.data(), Converted.size(), 2379 SourceRange(TemplateLoc, RAngleLoc)); 2380 2381 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2382 Converted.data(), Converted.size()); 2383 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2384 SubstDecl(TempParm, CurContext, 2385 MultiLevelTemplateArgumentList(TemplateArgs))); 2386 if (!TempParm) 2387 return true; 2388 } 2389 2390 switch (Arg.getArgument().getKind()) { 2391 case TemplateArgument::Null: 2392 assert(false && "Should never see a NULL template argument here"); 2393 return true; 2394 2395 case TemplateArgument::Template: 2396 case TemplateArgument::TemplateExpansion: 2397 if (CheckTemplateArgument(TempParm, Arg)) 2398 return true; 2399 2400 Converted.push_back(Arg.getArgument()); 2401 break; 2402 2403 case TemplateArgument::Expression: 2404 case TemplateArgument::Type: 2405 // We have a template template parameter but the template 2406 // argument does not refer to a template. 2407 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2408 return true; 2409 2410 case TemplateArgument::Declaration: 2411 llvm_unreachable( 2412 "Declaration argument with template template parameter"); 2413 break; 2414 case TemplateArgument::Integral: 2415 llvm_unreachable( 2416 "Integral argument with template template parameter"); 2417 break; 2418 2419 case TemplateArgument::Pack: 2420 llvm_unreachable("Caller must expand template argument packs"); 2421 break; 2422 } 2423 2424 return false; 2425} 2426 2427/// \brief Check that the given template argument list is well-formed 2428/// for specializing the given template. 2429bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2430 SourceLocation TemplateLoc, 2431 const TemplateArgumentListInfo &TemplateArgs, 2432 bool PartialTemplateArgs, 2433 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2434 TemplateParameterList *Params = Template->getTemplateParameters(); 2435 unsigned NumParams = Params->size(); 2436 unsigned NumArgs = TemplateArgs.size(); 2437 bool Invalid = false; 2438 2439 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2440 2441 bool HasParameterPack = 2442 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2443 2444 if ((NumArgs > NumParams && !HasParameterPack) || 2445 (NumArgs < Params->getMinRequiredArguments() && 2446 !PartialTemplateArgs)) { 2447 // FIXME: point at either the first arg beyond what we can handle, 2448 // or the '>', depending on whether we have too many or too few 2449 // arguments. 2450 SourceRange Range; 2451 if (NumArgs > NumParams) 2452 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2453 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2454 << (NumArgs > NumParams) 2455 << (isa<ClassTemplateDecl>(Template)? 0 : 2456 isa<FunctionTemplateDecl>(Template)? 1 : 2457 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2458 << Template << Range; 2459 Diag(Template->getLocation(), diag::note_template_decl_here) 2460 << Params->getSourceRange(); 2461 Invalid = true; 2462 } 2463 2464 // C++ [temp.arg]p1: 2465 // [...] The type and form of each template-argument specified in 2466 // a template-id shall match the type and form specified for the 2467 // corresponding parameter declared by the template in its 2468 // template-parameter-list. 2469 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2470 TemplateParameterList::iterator Param = Params->begin(), 2471 ParamEnd = Params->end(); 2472 unsigned ArgIdx = 0; 2473 LocalInstantiationScope InstScope(*this, true); 2474 while (Param != ParamEnd) { 2475 if (ArgIdx > NumArgs && PartialTemplateArgs) 2476 break; 2477 2478 if (ArgIdx < NumArgs) { 2479 // If we have an expanded parameter pack, make sure we don't have too 2480 // many arguments. 2481 if (NonTypeTemplateParmDecl *NTTP 2482 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2483 if (NTTP->isExpandedParameterPack() && 2484 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2485 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2486 << true 2487 << (isa<ClassTemplateDecl>(Template)? 0 : 2488 isa<FunctionTemplateDecl>(Template)? 1 : 2489 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2490 << Template; 2491 Diag(Template->getLocation(), diag::note_template_decl_here) 2492 << Params->getSourceRange(); 2493 return true; 2494 } 2495 } 2496 2497 // Check the template argument we were given. 2498 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2499 TemplateLoc, RAngleLoc, 2500 ArgumentPack.size(), Converted)) 2501 return true; 2502 2503 if ((*Param)->isTemplateParameterPack()) { 2504 // The template parameter was a template parameter pack, so take the 2505 // deduced argument and place it on the argument pack. Note that we 2506 // stay on the same template parameter so that we can deduce more 2507 // arguments. 2508 ArgumentPack.push_back(Converted.back()); 2509 Converted.pop_back(); 2510 } else { 2511 // Move to the next template parameter. 2512 ++Param; 2513 } 2514 ++ArgIdx; 2515 continue; 2516 } 2517 2518 // If we have a template parameter pack with no more corresponding 2519 // arguments, just break out now and we'll fill in the argument pack below. 2520 if ((*Param)->isTemplateParameterPack()) 2521 break; 2522 2523 // We have a default template argument that we will use. 2524 TemplateArgumentLoc Arg; 2525 2526 // Retrieve the default template argument from the template 2527 // parameter. For each kind of template parameter, we substitute the 2528 // template arguments provided thus far and any "outer" template arguments 2529 // (when the template parameter was part of a nested template) into 2530 // the default argument. 2531 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2532 if (!TTP->hasDefaultArgument()) { 2533 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2534 break; 2535 } 2536 2537 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2538 Template, 2539 TemplateLoc, 2540 RAngleLoc, 2541 TTP, 2542 Converted); 2543 if (!ArgType) 2544 return true; 2545 2546 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2547 ArgType); 2548 } else if (NonTypeTemplateParmDecl *NTTP 2549 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2550 if (!NTTP->hasDefaultArgument()) { 2551 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2552 break; 2553 } 2554 2555 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2556 TemplateLoc, 2557 RAngleLoc, 2558 NTTP, 2559 Converted); 2560 if (E.isInvalid()) 2561 return true; 2562 2563 Expr *Ex = E.takeAs<Expr>(); 2564 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2565 } else { 2566 TemplateTemplateParmDecl *TempParm 2567 = cast<TemplateTemplateParmDecl>(*Param); 2568 2569 if (!TempParm->hasDefaultArgument()) { 2570 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2571 break; 2572 } 2573 2574 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2575 TemplateLoc, 2576 RAngleLoc, 2577 TempParm, 2578 Converted); 2579 if (Name.isNull()) 2580 return true; 2581 2582 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2583 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2584 TempParm->getDefaultArgument().getTemplateNameLoc()); 2585 } 2586 2587 // Introduce an instantiation record that describes where we are using 2588 // the default template argument. 2589 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2590 Converted.data(), Converted.size(), 2591 SourceRange(TemplateLoc, RAngleLoc)); 2592 2593 // Check the default template argument. 2594 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2595 RAngleLoc, 0, Converted)) 2596 return true; 2597 2598 // Move to the next template parameter and argument. 2599 ++Param; 2600 ++ArgIdx; 2601 } 2602 2603 // Form argument packs for each of the parameter packs remaining. 2604 while (Param != ParamEnd) { 2605 // If we're checking a partial list of template arguments, don't fill 2606 // in arguments for non-template parameter packs. 2607 2608 if ((*Param)->isTemplateParameterPack()) { 2609 if (PartialTemplateArgs && ArgumentPack.empty()) { 2610 Converted.push_back(TemplateArgument()); 2611 } else if (ArgumentPack.empty()) 2612 Converted.push_back(TemplateArgument(0, 0)); 2613 else { 2614 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2615 ArgumentPack.data(), 2616 ArgumentPack.size())); 2617 ArgumentPack.clear(); 2618 } 2619 } 2620 2621 ++Param; 2622 } 2623 2624 return Invalid; 2625} 2626 2627namespace { 2628 class UnnamedLocalNoLinkageFinder 2629 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2630 { 2631 Sema &S; 2632 SourceRange SR; 2633 2634 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2635 2636 public: 2637 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2638 2639 bool Visit(QualType T) { 2640 return inherited::Visit(T.getTypePtr()); 2641 } 2642 2643#define TYPE(Class, Parent) \ 2644 bool Visit##Class##Type(const Class##Type *); 2645#define ABSTRACT_TYPE(Class, Parent) \ 2646 bool Visit##Class##Type(const Class##Type *) { return false; } 2647#define NON_CANONICAL_TYPE(Class, Parent) \ 2648 bool Visit##Class##Type(const Class##Type *) { return false; } 2649#include "clang/AST/TypeNodes.def" 2650 2651 bool VisitTagDecl(const TagDecl *Tag); 2652 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2653 }; 2654} 2655 2656bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2657 return false; 2658} 2659 2660bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2661 return Visit(T->getElementType()); 2662} 2663 2664bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2665 return Visit(T->getPointeeType()); 2666} 2667 2668bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2669 const BlockPointerType* T) { 2670 return Visit(T->getPointeeType()); 2671} 2672 2673bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2674 const LValueReferenceType* T) { 2675 return Visit(T->getPointeeType()); 2676} 2677 2678bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2679 const RValueReferenceType* T) { 2680 return Visit(T->getPointeeType()); 2681} 2682 2683bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2684 const MemberPointerType* T) { 2685 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2686} 2687 2688bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2689 const ConstantArrayType* T) { 2690 return Visit(T->getElementType()); 2691} 2692 2693bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2694 const IncompleteArrayType* T) { 2695 return Visit(T->getElementType()); 2696} 2697 2698bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2699 const VariableArrayType* T) { 2700 return Visit(T->getElementType()); 2701} 2702 2703bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2704 const DependentSizedArrayType* T) { 2705 return Visit(T->getElementType()); 2706} 2707 2708bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2709 const DependentSizedExtVectorType* T) { 2710 return Visit(T->getElementType()); 2711} 2712 2713bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2714 return Visit(T->getElementType()); 2715} 2716 2717bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2718 return Visit(T->getElementType()); 2719} 2720 2721bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2722 const FunctionProtoType* T) { 2723 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2724 AEnd = T->arg_type_end(); 2725 A != AEnd; ++A) { 2726 if (Visit(*A)) 2727 return true; 2728 } 2729 2730 return Visit(T->getResultType()); 2731} 2732 2733bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2734 const FunctionNoProtoType* T) { 2735 return Visit(T->getResultType()); 2736} 2737 2738bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2739 const UnresolvedUsingType*) { 2740 return false; 2741} 2742 2743bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2744 return false; 2745} 2746 2747bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2748 return Visit(T->getUnderlyingType()); 2749} 2750 2751bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2752 return false; 2753} 2754 2755bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2756 return VisitTagDecl(T->getDecl()); 2757} 2758 2759bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2760 return VisitTagDecl(T->getDecl()); 2761} 2762 2763bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2764 const TemplateTypeParmType*) { 2765 return false; 2766} 2767 2768bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 2769 const SubstTemplateTypeParmPackType *) { 2770 return false; 2771} 2772 2773bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2774 const TemplateSpecializationType*) { 2775 return false; 2776} 2777 2778bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2779 const InjectedClassNameType* T) { 2780 return VisitTagDecl(T->getDecl()); 2781} 2782 2783bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2784 const DependentNameType* T) { 2785 return VisitNestedNameSpecifier(T->getQualifier()); 2786} 2787 2788bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2789 const DependentTemplateSpecializationType* T) { 2790 return VisitNestedNameSpecifier(T->getQualifier()); 2791} 2792 2793bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 2794 const PackExpansionType* T) { 2795 return Visit(T->getPattern()); 2796} 2797 2798bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2799 return false; 2800} 2801 2802bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2803 const ObjCInterfaceType *) { 2804 return false; 2805} 2806 2807bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2808 const ObjCObjectPointerType *) { 2809 return false; 2810} 2811 2812bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2813 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2814 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2815 << S.Context.getTypeDeclType(Tag) << SR; 2816 return true; 2817 } 2818 2819 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2820 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2821 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2822 return true; 2823 } 2824 2825 return false; 2826} 2827 2828bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2829 NestedNameSpecifier *NNS) { 2830 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2831 return true; 2832 2833 switch (NNS->getKind()) { 2834 case NestedNameSpecifier::Identifier: 2835 case NestedNameSpecifier::Namespace: 2836 case NestedNameSpecifier::Global: 2837 return false; 2838 2839 case NestedNameSpecifier::TypeSpec: 2840 case NestedNameSpecifier::TypeSpecWithTemplate: 2841 return Visit(QualType(NNS->getAsType(), 0)); 2842 } 2843 return false; 2844} 2845 2846 2847/// \brief Check a template argument against its corresponding 2848/// template type parameter. 2849/// 2850/// This routine implements the semantics of C++ [temp.arg.type]. It 2851/// returns true if an error occurred, and false otherwise. 2852bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2853 TypeSourceInfo *ArgInfo) { 2854 assert(ArgInfo && "invalid TypeSourceInfo"); 2855 QualType Arg = ArgInfo->getType(); 2856 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2857 2858 if (Arg->isVariablyModifiedType()) { 2859 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2860 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2861 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2862 } 2863 2864 // C++03 [temp.arg.type]p2: 2865 // A local type, a type with no linkage, an unnamed type or a type 2866 // compounded from any of these types shall not be used as a 2867 // template-argument for a template type-parameter. 2868 // 2869 // C++0x allows these, and even in C++03 we allow them as an extension with 2870 // a warning. 2871 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2872 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2873 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2874 } 2875 2876 return false; 2877} 2878 2879/// \brief Checks whether the given template argument is the address 2880/// of an object or function according to C++ [temp.arg.nontype]p1. 2881static bool 2882CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2883 NonTypeTemplateParmDecl *Param, 2884 QualType ParamType, 2885 Expr *ArgIn, 2886 TemplateArgument &Converted) { 2887 bool Invalid = false; 2888 Expr *Arg = ArgIn; 2889 QualType ArgType = Arg->getType(); 2890 2891 // See through any implicit casts we added to fix the type. 2892 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2893 Arg = Cast->getSubExpr(); 2894 2895 // C++ [temp.arg.nontype]p1: 2896 // 2897 // A template-argument for a non-type, non-template 2898 // template-parameter shall be one of: [...] 2899 // 2900 // -- the address of an object or function with external 2901 // linkage, including function templates and function 2902 // template-ids but excluding non-static class members, 2903 // expressed as & id-expression where the & is optional if 2904 // the name refers to a function or array, or if the 2905 // corresponding template-parameter is a reference; or 2906 DeclRefExpr *DRE = 0; 2907 2908 // In C++98/03 mode, give an extension warning on any extra parentheses. 2909 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2910 bool ExtraParens = false; 2911 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2912 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2913 S.Diag(Arg->getSourceRange().getBegin(), 2914 diag::ext_template_arg_extra_parens) 2915 << Arg->getSourceRange(); 2916 ExtraParens = true; 2917 } 2918 2919 Arg = Parens->getSubExpr(); 2920 } 2921 2922 bool AddressTaken = false; 2923 SourceLocation AddrOpLoc; 2924 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2925 if (UnOp->getOpcode() == UO_AddrOf) { 2926 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2927 AddressTaken = true; 2928 AddrOpLoc = UnOp->getOperatorLoc(); 2929 } 2930 } else 2931 DRE = dyn_cast<DeclRefExpr>(Arg); 2932 2933 if (!DRE) { 2934 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2935 << Arg->getSourceRange(); 2936 S.Diag(Param->getLocation(), diag::note_template_param_here); 2937 return true; 2938 } 2939 2940 // Stop checking the precise nature of the argument if it is value dependent, 2941 // it should be checked when instantiated. 2942 if (Arg->isValueDependent()) { 2943 Converted = TemplateArgument(ArgIn); 2944 return false; 2945 } 2946 2947 if (!isa<ValueDecl>(DRE->getDecl())) { 2948 S.Diag(Arg->getSourceRange().getBegin(), 2949 diag::err_template_arg_not_object_or_func_form) 2950 << Arg->getSourceRange(); 2951 S.Diag(Param->getLocation(), diag::note_template_param_here); 2952 return true; 2953 } 2954 2955 NamedDecl *Entity = 0; 2956 2957 // Cannot refer to non-static data members 2958 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2959 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2960 << Field << Arg->getSourceRange(); 2961 S.Diag(Param->getLocation(), diag::note_template_param_here); 2962 return true; 2963 } 2964 2965 // Cannot refer to non-static member functions 2966 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2967 if (!Method->isStatic()) { 2968 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2969 << Method << Arg->getSourceRange(); 2970 S.Diag(Param->getLocation(), diag::note_template_param_here); 2971 return true; 2972 } 2973 2974 // Functions must have external linkage. 2975 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2976 if (!isExternalLinkage(Func->getLinkage())) { 2977 S.Diag(Arg->getSourceRange().getBegin(), 2978 diag::err_template_arg_function_not_extern) 2979 << Func << Arg->getSourceRange(); 2980 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2981 << true; 2982 return true; 2983 } 2984 2985 // Okay: we've named a function with external linkage. 2986 Entity = Func; 2987 2988 // If the template parameter has pointer type, the function decays. 2989 if (ParamType->isPointerType() && !AddressTaken) 2990 ArgType = S.Context.getPointerType(Func->getType()); 2991 else if (AddressTaken && ParamType->isReferenceType()) { 2992 // If we originally had an address-of operator, but the 2993 // parameter has reference type, complain and (if things look 2994 // like they will work) drop the address-of operator. 2995 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2996 ParamType.getNonReferenceType())) { 2997 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2998 << ParamType; 2999 S.Diag(Param->getLocation(), diag::note_template_param_here); 3000 return true; 3001 } 3002 3003 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3004 << ParamType 3005 << FixItHint::CreateRemoval(AddrOpLoc); 3006 S.Diag(Param->getLocation(), diag::note_template_param_here); 3007 3008 ArgType = Func->getType(); 3009 } 3010 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3011 if (!isExternalLinkage(Var->getLinkage())) { 3012 S.Diag(Arg->getSourceRange().getBegin(), 3013 diag::err_template_arg_object_not_extern) 3014 << Var << Arg->getSourceRange(); 3015 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3016 << true; 3017 return true; 3018 } 3019 3020 // A value of reference type is not an object. 3021 if (Var->getType()->isReferenceType()) { 3022 S.Diag(Arg->getSourceRange().getBegin(), 3023 diag::err_template_arg_reference_var) 3024 << Var->getType() << Arg->getSourceRange(); 3025 S.Diag(Param->getLocation(), diag::note_template_param_here); 3026 return true; 3027 } 3028 3029 // Okay: we've named an object with external linkage 3030 Entity = Var; 3031 3032 // If the template parameter has pointer type, we must have taken 3033 // the address of this object. 3034 if (ParamType->isReferenceType()) { 3035 if (AddressTaken) { 3036 // If we originally had an address-of operator, but the 3037 // parameter has reference type, complain and (if things look 3038 // like they will work) drop the address-of operator. 3039 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3040 ParamType.getNonReferenceType())) { 3041 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3042 << ParamType; 3043 S.Diag(Param->getLocation(), diag::note_template_param_here); 3044 return true; 3045 } 3046 3047 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3048 << ParamType 3049 << FixItHint::CreateRemoval(AddrOpLoc); 3050 S.Diag(Param->getLocation(), diag::note_template_param_here); 3051 3052 ArgType = Var->getType(); 3053 } 3054 } else if (!AddressTaken && ParamType->isPointerType()) { 3055 if (Var->getType()->isArrayType()) { 3056 // Array-to-pointer decay. 3057 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3058 } else { 3059 // If the template parameter has pointer type but the address of 3060 // this object was not taken, complain and (possibly) recover by 3061 // taking the address of the entity. 3062 ArgType = S.Context.getPointerType(Var->getType()); 3063 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3064 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3065 << ParamType; 3066 S.Diag(Param->getLocation(), diag::note_template_param_here); 3067 return true; 3068 } 3069 3070 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3071 << ParamType 3072 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3073 3074 S.Diag(Param->getLocation(), diag::note_template_param_here); 3075 } 3076 } 3077 } else { 3078 // We found something else, but we don't know specifically what it is. 3079 S.Diag(Arg->getSourceRange().getBegin(), 3080 diag::err_template_arg_not_object_or_func) 3081 << Arg->getSourceRange(); 3082 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3083 return true; 3084 } 3085 3086 if (ParamType->isPointerType() && 3087 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3088 S.IsQualificationConversion(ArgType, ParamType)) { 3089 // For pointer-to-object types, qualification conversions are 3090 // permitted. 3091 } else { 3092 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3093 if (!ParamRef->getPointeeType()->isFunctionType()) { 3094 // C++ [temp.arg.nontype]p5b3: 3095 // For a non-type template-parameter of type reference to 3096 // object, no conversions apply. The type referred to by the 3097 // reference may be more cv-qualified than the (otherwise 3098 // identical) type of the template- argument. The 3099 // template-parameter is bound directly to the 3100 // template-argument, which shall be an lvalue. 3101 3102 // FIXME: Other qualifiers? 3103 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3104 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3105 3106 if ((ParamQuals | ArgQuals) != ParamQuals) { 3107 S.Diag(Arg->getSourceRange().getBegin(), 3108 diag::err_template_arg_ref_bind_ignores_quals) 3109 << ParamType << Arg->getType() 3110 << Arg->getSourceRange(); 3111 S.Diag(Param->getLocation(), diag::note_template_param_here); 3112 return true; 3113 } 3114 } 3115 } 3116 3117 // At this point, the template argument refers to an object or 3118 // function with external linkage. We now need to check whether the 3119 // argument and parameter types are compatible. 3120 if (!S.Context.hasSameUnqualifiedType(ArgType, 3121 ParamType.getNonReferenceType())) { 3122 // We can't perform this conversion or binding. 3123 if (ParamType->isReferenceType()) 3124 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3125 << ParamType << Arg->getType() << Arg->getSourceRange(); 3126 else 3127 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3128 << Arg->getType() << ParamType << Arg->getSourceRange(); 3129 S.Diag(Param->getLocation(), diag::note_template_param_here); 3130 return true; 3131 } 3132 } 3133 3134 // Create the template argument. 3135 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3136 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3137 return false; 3138} 3139 3140/// \brief Checks whether the given template argument is a pointer to 3141/// member constant according to C++ [temp.arg.nontype]p1. 3142bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3143 TemplateArgument &Converted) { 3144 bool Invalid = false; 3145 3146 // See through any implicit casts we added to fix the type. 3147 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3148 Arg = Cast->getSubExpr(); 3149 3150 // C++ [temp.arg.nontype]p1: 3151 // 3152 // A template-argument for a non-type, non-template 3153 // template-parameter shall be one of: [...] 3154 // 3155 // -- a pointer to member expressed as described in 5.3.1. 3156 DeclRefExpr *DRE = 0; 3157 3158 // In C++98/03 mode, give an extension warning on any extra parentheses. 3159 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3160 bool ExtraParens = false; 3161 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3162 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3163 Diag(Arg->getSourceRange().getBegin(), 3164 diag::ext_template_arg_extra_parens) 3165 << Arg->getSourceRange(); 3166 ExtraParens = true; 3167 } 3168 3169 Arg = Parens->getSubExpr(); 3170 } 3171 3172 // A pointer-to-member constant written &Class::member. 3173 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3174 if (UnOp->getOpcode() == UO_AddrOf) { 3175 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3176 if (DRE && !DRE->getQualifier()) 3177 DRE = 0; 3178 } 3179 } 3180 // A constant of pointer-to-member type. 3181 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3182 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3183 if (VD->getType()->isMemberPointerType()) { 3184 if (isa<NonTypeTemplateParmDecl>(VD) || 3185 (isa<VarDecl>(VD) && 3186 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3187 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3188 Converted = TemplateArgument(Arg); 3189 else 3190 Converted = TemplateArgument(VD->getCanonicalDecl()); 3191 return Invalid; 3192 } 3193 } 3194 } 3195 3196 DRE = 0; 3197 } 3198 3199 if (!DRE) 3200 return Diag(Arg->getSourceRange().getBegin(), 3201 diag::err_template_arg_not_pointer_to_member_form) 3202 << Arg->getSourceRange(); 3203 3204 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3205 assert((isa<FieldDecl>(DRE->getDecl()) || 3206 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3207 "Only non-static member pointers can make it here"); 3208 3209 // Okay: this is the address of a non-static member, and therefore 3210 // a member pointer constant. 3211 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3212 Converted = TemplateArgument(Arg); 3213 else 3214 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3215 return Invalid; 3216 } 3217 3218 // We found something else, but we don't know specifically what it is. 3219 Diag(Arg->getSourceRange().getBegin(), 3220 diag::err_template_arg_not_pointer_to_member_form) 3221 << Arg->getSourceRange(); 3222 Diag(DRE->getDecl()->getLocation(), 3223 diag::note_template_arg_refers_here); 3224 return true; 3225} 3226 3227/// \brief Check a template argument against its corresponding 3228/// non-type template parameter. 3229/// 3230/// This routine implements the semantics of C++ [temp.arg.nontype]. 3231/// It returns true if an error occurred, and false otherwise. \p 3232/// InstantiatedParamType is the type of the non-type template 3233/// parameter after it has been instantiated. 3234/// 3235/// If no error was detected, Converted receives the converted template argument. 3236bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3237 QualType InstantiatedParamType, Expr *&Arg, 3238 TemplateArgument &Converted, 3239 CheckTemplateArgumentKind CTAK) { 3240 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3241 3242 // If either the parameter has a dependent type or the argument is 3243 // type-dependent, there's nothing we can check now. 3244 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3245 // FIXME: Produce a cloned, canonical expression? 3246 Converted = TemplateArgument(Arg); 3247 return false; 3248 } 3249 3250 // C++ [temp.arg.nontype]p5: 3251 // The following conversions are performed on each expression used 3252 // as a non-type template-argument. If a non-type 3253 // template-argument cannot be converted to the type of the 3254 // corresponding template-parameter then the program is 3255 // ill-formed. 3256 // 3257 // -- for a non-type template-parameter of integral or 3258 // enumeration type, integral promotions (4.5) and integral 3259 // conversions (4.7) are applied. 3260 QualType ParamType = InstantiatedParamType; 3261 QualType ArgType = Arg->getType(); 3262 if (ParamType->isIntegralOrEnumerationType()) { 3263 // C++ [temp.arg.nontype]p1: 3264 // A template-argument for a non-type, non-template 3265 // template-parameter shall be one of: 3266 // 3267 // -- an integral constant-expression of integral or enumeration 3268 // type; or 3269 // -- the name of a non-type template-parameter; or 3270 SourceLocation NonConstantLoc; 3271 llvm::APSInt Value; 3272 if (!ArgType->isIntegralOrEnumerationType()) { 3273 Diag(Arg->getSourceRange().getBegin(), 3274 diag::err_template_arg_not_integral_or_enumeral) 3275 << ArgType << Arg->getSourceRange(); 3276 Diag(Param->getLocation(), diag::note_template_param_here); 3277 return true; 3278 } else if (!Arg->isValueDependent() && 3279 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3280 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3281 << ArgType << Arg->getSourceRange(); 3282 return true; 3283 } 3284 3285 // From here on out, all we care about are the unqualified forms 3286 // of the parameter and argument types. 3287 ParamType = ParamType.getUnqualifiedType(); 3288 ArgType = ArgType.getUnqualifiedType(); 3289 3290 // Try to convert the argument to the parameter's type. 3291 if (Context.hasSameType(ParamType, ArgType)) { 3292 // Okay: no conversion necessary 3293 } else if (CTAK == CTAK_Deduced) { 3294 // C++ [temp.deduct.type]p17: 3295 // If, in the declaration of a function template with a non-type 3296 // template-parameter, the non-type template- parameter is used 3297 // in an expression in the function parameter-list and, if the 3298 // corresponding template-argument is deduced, the 3299 // template-argument type shall match the type of the 3300 // template-parameter exactly, except that a template-argument 3301 // deduced from an array bound may be of any integral type. 3302 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3303 << ArgType << ParamType; 3304 Diag(Param->getLocation(), diag::note_template_param_here); 3305 return true; 3306 } else if (ParamType->isBooleanType()) { 3307 // This is an integral-to-boolean conversion. 3308 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3309 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3310 !ParamType->isEnumeralType()) { 3311 // This is an integral promotion or conversion. 3312 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3313 } else { 3314 // We can't perform this conversion. 3315 Diag(Arg->getSourceRange().getBegin(), 3316 diag::err_template_arg_not_convertible) 3317 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3318 Diag(Param->getLocation(), diag::note_template_param_here); 3319 return true; 3320 } 3321 3322 QualType IntegerType = Context.getCanonicalType(ParamType); 3323 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3324 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3325 3326 if (!Arg->isValueDependent()) { 3327 llvm::APSInt OldValue = Value; 3328 3329 // Coerce the template argument's value to the value it will have 3330 // based on the template parameter's type. 3331 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3332 if (Value.getBitWidth() != AllowedBits) 3333 Value = Value.extOrTrunc(AllowedBits); 3334 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3335 3336 // Complain if an unsigned parameter received a negative value. 3337 if (IntegerType->isUnsignedIntegerType() 3338 && (OldValue.isSigned() && OldValue.isNegative())) { 3339 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3340 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3341 << Arg->getSourceRange(); 3342 Diag(Param->getLocation(), diag::note_template_param_here); 3343 } 3344 3345 // Complain if we overflowed the template parameter's type. 3346 unsigned RequiredBits; 3347 if (IntegerType->isUnsignedIntegerType()) 3348 RequiredBits = OldValue.getActiveBits(); 3349 else if (OldValue.isUnsigned()) 3350 RequiredBits = OldValue.getActiveBits() + 1; 3351 else 3352 RequiredBits = OldValue.getMinSignedBits(); 3353 if (RequiredBits > AllowedBits) { 3354 Diag(Arg->getSourceRange().getBegin(), 3355 diag::warn_template_arg_too_large) 3356 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3357 << Arg->getSourceRange(); 3358 Diag(Param->getLocation(), diag::note_template_param_here); 3359 } 3360 } 3361 3362 // Add the value of this argument to the list of converted 3363 // arguments. We use the bitwidth and signedness of the template 3364 // parameter. 3365 if (Arg->isValueDependent()) { 3366 // The argument is value-dependent. Create a new 3367 // TemplateArgument with the converted expression. 3368 Converted = TemplateArgument(Arg); 3369 return false; 3370 } 3371 3372 Converted = TemplateArgument(Value, 3373 ParamType->isEnumeralType() ? ParamType 3374 : IntegerType); 3375 return false; 3376 } 3377 3378 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3379 3380 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3381 // from a template argument of type std::nullptr_t to a non-type 3382 // template parameter of type pointer to object, pointer to 3383 // function, or pointer-to-member, respectively. 3384 if (ArgType->isNullPtrType() && 3385 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3386 Converted = TemplateArgument((NamedDecl *)0); 3387 return false; 3388 } 3389 3390 // Handle pointer-to-function, reference-to-function, and 3391 // pointer-to-member-function all in (roughly) the same way. 3392 if (// -- For a non-type template-parameter of type pointer to 3393 // function, only the function-to-pointer conversion (4.3) is 3394 // applied. If the template-argument represents a set of 3395 // overloaded functions (or a pointer to such), the matching 3396 // function is selected from the set (13.4). 3397 (ParamType->isPointerType() && 3398 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3399 // -- For a non-type template-parameter of type reference to 3400 // function, no conversions apply. If the template-argument 3401 // represents a set of overloaded functions, the matching 3402 // function is selected from the set (13.4). 3403 (ParamType->isReferenceType() && 3404 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3405 // -- For a non-type template-parameter of type pointer to 3406 // member function, no conversions apply. If the 3407 // template-argument represents a set of overloaded member 3408 // functions, the matching member function is selected from 3409 // the set (13.4). 3410 (ParamType->isMemberPointerType() && 3411 ParamType->getAs<MemberPointerType>()->getPointeeType() 3412 ->isFunctionType())) { 3413 3414 if (Arg->getType() == Context.OverloadTy) { 3415 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3416 true, 3417 FoundResult)) { 3418 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3419 return true; 3420 3421 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3422 ArgType = Arg->getType(); 3423 } else 3424 return true; 3425 } 3426 3427 if (!ParamType->isMemberPointerType()) 3428 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3429 ParamType, 3430 Arg, Converted); 3431 3432 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 3433 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3434 } else if (!Context.hasSameUnqualifiedType(ArgType, 3435 ParamType.getNonReferenceType())) { 3436 // We can't perform this conversion. 3437 Diag(Arg->getSourceRange().getBegin(), 3438 diag::err_template_arg_not_convertible) 3439 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3440 Diag(Param->getLocation(), diag::note_template_param_here); 3441 return true; 3442 } 3443 3444 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3445 } 3446 3447 if (ParamType->isPointerType()) { 3448 // -- for a non-type template-parameter of type pointer to 3449 // object, qualification conversions (4.4) and the 3450 // array-to-pointer conversion (4.2) are applied. 3451 // C++0x also allows a value of std::nullptr_t. 3452 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3453 "Only object pointers allowed here"); 3454 3455 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3456 ParamType, 3457 Arg, Converted); 3458 } 3459 3460 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3461 // -- For a non-type template-parameter of type reference to 3462 // object, no conversions apply. The type referred to by the 3463 // reference may be more cv-qualified than the (otherwise 3464 // identical) type of the template-argument. The 3465 // template-parameter is bound directly to the 3466 // template-argument, which must be an lvalue. 3467 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3468 "Only object references allowed here"); 3469 3470 if (Arg->getType() == Context.OverloadTy) { 3471 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3472 ParamRefType->getPointeeType(), 3473 true, 3474 FoundResult)) { 3475 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3476 return true; 3477 3478 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3479 ArgType = Arg->getType(); 3480 } else 3481 return true; 3482 } 3483 3484 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3485 ParamType, 3486 Arg, Converted); 3487 } 3488 3489 // -- For a non-type template-parameter of type pointer to data 3490 // member, qualification conversions (4.4) are applied. 3491 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3492 3493 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3494 // Types match exactly: nothing more to do here. 3495 } else if (IsQualificationConversion(ArgType, ParamType)) { 3496 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3497 } else { 3498 // We can't perform this conversion. 3499 Diag(Arg->getSourceRange().getBegin(), 3500 diag::err_template_arg_not_convertible) 3501 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3502 Diag(Param->getLocation(), diag::note_template_param_here); 3503 return true; 3504 } 3505 3506 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3507} 3508 3509/// \brief Check a template argument against its corresponding 3510/// template template parameter. 3511/// 3512/// This routine implements the semantics of C++ [temp.arg.template]. 3513/// It returns true if an error occurred, and false otherwise. 3514bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3515 const TemplateArgumentLoc &Arg) { 3516 TemplateName Name = Arg.getArgument().getAsTemplate(); 3517 TemplateDecl *Template = Name.getAsTemplateDecl(); 3518 if (!Template) { 3519 // Any dependent template name is fine. 3520 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3521 return false; 3522 } 3523 3524 // C++ [temp.arg.template]p1: 3525 // A template-argument for a template template-parameter shall be 3526 // the name of a class template, expressed as id-expression. Only 3527 // primary class templates are considered when matching the 3528 // template template argument with the corresponding parameter; 3529 // partial specializations are not considered even if their 3530 // parameter lists match that of the template template parameter. 3531 // 3532 // Note that we also allow template template parameters here, which 3533 // will happen when we are dealing with, e.g., class template 3534 // partial specializations. 3535 if (!isa<ClassTemplateDecl>(Template) && 3536 !isa<TemplateTemplateParmDecl>(Template)) { 3537 assert(isa<FunctionTemplateDecl>(Template) && 3538 "Only function templates are possible here"); 3539 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3540 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3541 << Template; 3542 } 3543 3544 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3545 Param->getTemplateParameters(), 3546 true, 3547 TPL_TemplateTemplateArgumentMatch, 3548 Arg.getLocation()); 3549} 3550 3551/// \brief Given a non-type template argument that refers to a 3552/// declaration and the type of its corresponding non-type template 3553/// parameter, produce an expression that properly refers to that 3554/// declaration. 3555ExprResult 3556Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3557 QualType ParamType, 3558 SourceLocation Loc) { 3559 assert(Arg.getKind() == TemplateArgument::Declaration && 3560 "Only declaration template arguments permitted here"); 3561 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3562 3563 if (VD->getDeclContext()->isRecord() && 3564 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3565 // If the value is a class member, we might have a pointer-to-member. 3566 // Determine whether the non-type template template parameter is of 3567 // pointer-to-member type. If so, we need to build an appropriate 3568 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3569 // would refer to the member itself. 3570 if (ParamType->isMemberPointerType()) { 3571 QualType ClassType 3572 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3573 NestedNameSpecifier *Qualifier 3574 = NestedNameSpecifier::Create(Context, 0, false, 3575 ClassType.getTypePtr()); 3576 CXXScopeSpec SS; 3577 SS.setScopeRep(Qualifier); 3578 3579 // The actual value-ness of this is unimportant, but for 3580 // internal consistency's sake, references to instance methods 3581 // are r-values. 3582 ExprValueKind VK = VK_LValue; 3583 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3584 VK = VK_RValue; 3585 3586 ExprResult RefExpr = BuildDeclRefExpr(VD, 3587 VD->getType().getNonReferenceType(), 3588 VK, 3589 Loc, 3590 &SS); 3591 if (RefExpr.isInvalid()) 3592 return ExprError(); 3593 3594 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3595 3596 // We might need to perform a trailing qualification conversion, since 3597 // the element type on the parameter could be more qualified than the 3598 // element type in the expression we constructed. 3599 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3600 ParamType.getUnqualifiedType())) { 3601 Expr *RefE = RefExpr.takeAs<Expr>(); 3602 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3603 RefExpr = Owned(RefE); 3604 } 3605 3606 assert(!RefExpr.isInvalid() && 3607 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3608 ParamType.getUnqualifiedType())); 3609 return move(RefExpr); 3610 } 3611 } 3612 3613 QualType T = VD->getType().getNonReferenceType(); 3614 if (ParamType->isPointerType()) { 3615 // When the non-type template parameter is a pointer, take the 3616 // address of the declaration. 3617 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3618 if (RefExpr.isInvalid()) 3619 return ExprError(); 3620 3621 if (T->isFunctionType() || T->isArrayType()) { 3622 // Decay functions and arrays. 3623 Expr *RefE = (Expr *)RefExpr.get(); 3624 DefaultFunctionArrayConversion(RefE); 3625 if (RefE != RefExpr.get()) { 3626 RefExpr.release(); 3627 RefExpr = Owned(RefE); 3628 } 3629 3630 return move(RefExpr); 3631 } 3632 3633 // Take the address of everything else 3634 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3635 } 3636 3637 ExprValueKind VK = VK_RValue; 3638 3639 // If the non-type template parameter has reference type, qualify the 3640 // resulting declaration reference with the extra qualifiers on the 3641 // type that the reference refers to. 3642 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3643 VK = VK_LValue; 3644 T = Context.getQualifiedType(T, 3645 TargetRef->getPointeeType().getQualifiers()); 3646 } 3647 3648 return BuildDeclRefExpr(VD, T, VK, Loc); 3649} 3650 3651/// \brief Construct a new expression that refers to the given 3652/// integral template argument with the given source-location 3653/// information. 3654/// 3655/// This routine takes care of the mapping from an integral template 3656/// argument (which may have any integral type) to the appropriate 3657/// literal value. 3658ExprResult 3659Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3660 SourceLocation Loc) { 3661 assert(Arg.getKind() == TemplateArgument::Integral && 3662 "Operation is only valid for integral template arguments"); 3663 QualType T = Arg.getIntegralType(); 3664 if (T->isCharType() || T->isWideCharType()) 3665 return Owned(new (Context) CharacterLiteral( 3666 Arg.getAsIntegral()->getZExtValue(), 3667 T->isWideCharType(), 3668 T, 3669 Loc)); 3670 if (T->isBooleanType()) 3671 return Owned(new (Context) CXXBoolLiteralExpr( 3672 Arg.getAsIntegral()->getBoolValue(), 3673 T, 3674 Loc)); 3675 3676 QualType BT; 3677 if (const EnumType *ET = T->getAs<EnumType>()) 3678 BT = ET->getDecl()->getPromotionType(); 3679 else 3680 BT = T; 3681 3682 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 3683 ImpCastExprToType(E, T, CK_IntegralCast); 3684 3685 return Owned(E); 3686} 3687 3688/// \brief Match two template parameters within template parameter lists. 3689static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 3690 bool Complain, 3691 Sema::TemplateParameterListEqualKind Kind, 3692 SourceLocation TemplateArgLoc) { 3693 // Check the actual kind (type, non-type, template). 3694 if (Old->getKind() != New->getKind()) { 3695 if (Complain) { 3696 unsigned NextDiag = diag::err_template_param_different_kind; 3697 if (TemplateArgLoc.isValid()) { 3698 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3699 NextDiag = diag::note_template_param_different_kind; 3700 } 3701 S.Diag(New->getLocation(), NextDiag) 3702 << (Kind != Sema::TPL_TemplateMatch); 3703 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 3704 << (Kind != Sema::TPL_TemplateMatch); 3705 } 3706 3707 return false; 3708 } 3709 3710 // Check that both are parameter packs are neither are parameter packs. 3711 // However, if we are matching a template template argument to a 3712 // template template parameter, the template template parameter can have 3713 // a parameter pack where the template template argument does not. 3714 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 3715 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3716 Old->isTemplateParameterPack())) { 3717 if (Complain) { 3718 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3719 if (TemplateArgLoc.isValid()) { 3720 S.Diag(TemplateArgLoc, 3721 diag::err_template_arg_template_params_mismatch); 3722 NextDiag = diag::note_template_parameter_pack_non_pack; 3723 } 3724 3725 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 3726 : isa<NonTypeTemplateParmDecl>(New)? 1 3727 : 2; 3728 S.Diag(New->getLocation(), NextDiag) 3729 << ParamKind << New->isParameterPack(); 3730 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 3731 << ParamKind << Old->isParameterPack(); 3732 } 3733 3734 return false; 3735 } 3736 3737 // For non-type template parameters, check the type of the parameter. 3738 if (NonTypeTemplateParmDecl *OldNTTP 3739 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 3740 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 3741 3742 // If we are matching a template template argument to a template 3743 // template parameter and one of the non-type template parameter types 3744 // is dependent, then we must wait until template instantiation time 3745 // to actually compare the arguments. 3746 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3747 (OldNTTP->getType()->isDependentType() || 3748 NewNTTP->getType()->isDependentType())) 3749 return true; 3750 3751 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 3752 if (Complain) { 3753 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3754 if (TemplateArgLoc.isValid()) { 3755 S.Diag(TemplateArgLoc, 3756 diag::err_template_arg_template_params_mismatch); 3757 NextDiag = diag::note_template_nontype_parm_different_type; 3758 } 3759 S.Diag(NewNTTP->getLocation(), NextDiag) 3760 << NewNTTP->getType() 3761 << (Kind != Sema::TPL_TemplateMatch); 3762 S.Diag(OldNTTP->getLocation(), 3763 diag::note_template_nontype_parm_prev_declaration) 3764 << OldNTTP->getType(); 3765 } 3766 3767 return false; 3768 } 3769 3770 return true; 3771 } 3772 3773 // For template template parameters, check the template parameter types. 3774 // The template parameter lists of template template 3775 // parameters must agree. 3776 if (TemplateTemplateParmDecl *OldTTP 3777 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 3778 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 3779 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3780 OldTTP->getTemplateParameters(), 3781 Complain, 3782 (Kind == Sema::TPL_TemplateMatch 3783 ? Sema::TPL_TemplateTemplateParmMatch 3784 : Kind), 3785 TemplateArgLoc); 3786 } 3787 3788 return true; 3789} 3790 3791/// \brief Diagnose a known arity mismatch when comparing template argument 3792/// lists. 3793static 3794void DiagnoseTemplateParameterListArityMismatch(Sema &S, 3795 TemplateParameterList *New, 3796 TemplateParameterList *Old, 3797 Sema::TemplateParameterListEqualKind Kind, 3798 SourceLocation TemplateArgLoc) { 3799 unsigned NextDiag = diag::err_template_param_list_different_arity; 3800 if (TemplateArgLoc.isValid()) { 3801 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3802 NextDiag = diag::note_template_param_list_different_arity; 3803 } 3804 S.Diag(New->getTemplateLoc(), NextDiag) 3805 << (New->size() > Old->size()) 3806 << (Kind != Sema::TPL_TemplateMatch) 3807 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3808 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3809 << (Kind != Sema::TPL_TemplateMatch) 3810 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3811} 3812 3813/// \brief Determine whether the given template parameter lists are 3814/// equivalent. 3815/// 3816/// \param New The new template parameter list, typically written in the 3817/// source code as part of a new template declaration. 3818/// 3819/// \param Old The old template parameter list, typically found via 3820/// name lookup of the template declared with this template parameter 3821/// list. 3822/// 3823/// \param Complain If true, this routine will produce a diagnostic if 3824/// the template parameter lists are not equivalent. 3825/// 3826/// \param Kind describes how we are to match the template parameter lists. 3827/// 3828/// \param TemplateArgLoc If this source location is valid, then we 3829/// are actually checking the template parameter list of a template 3830/// argument (New) against the template parameter list of its 3831/// corresponding template template parameter (Old). We produce 3832/// slightly different diagnostics in this scenario. 3833/// 3834/// \returns True if the template parameter lists are equal, false 3835/// otherwise. 3836bool 3837Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3838 TemplateParameterList *Old, 3839 bool Complain, 3840 TemplateParameterListEqualKind Kind, 3841 SourceLocation TemplateArgLoc) { 3842 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 3843 if (Complain) 3844 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3845 TemplateArgLoc); 3846 3847 return false; 3848 } 3849 3850 // C++0x [temp.arg.template]p3: 3851 // A template-argument matches a template template-parameter (call it P) 3852 // when each of the template parameters in the template-parameter-list of 3853 // the template-argument’s corresponding class template or template alias 3854 // (call it A) matches the corresponding template parameter in the 3855 // template-parameter-list of P. [...] 3856 TemplateParameterList::iterator NewParm = New->begin(); 3857 TemplateParameterList::iterator NewParmEnd = New->end(); 3858 for (TemplateParameterList::iterator OldParm = Old->begin(), 3859 OldParmEnd = Old->end(); 3860 OldParm != OldParmEnd; ++OldParm) { 3861 if (Kind != TPL_TemplateTemplateArgumentMatch || 3862 !(*OldParm)->isTemplateParameterPack()) { 3863 if (NewParm == NewParmEnd) { 3864 if (Complain) 3865 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3866 TemplateArgLoc); 3867 3868 return false; 3869 } 3870 3871 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3872 Kind, TemplateArgLoc)) 3873 return false; 3874 3875 ++NewParm; 3876 continue; 3877 } 3878 3879 // C++0x [temp.arg.template]p3: 3880 // [...] When P’s template- parameter-list contains a template parameter 3881 // pack (14.5.3), the template parameter pack will match zero or more 3882 // template parameters or template parameter packs in the 3883 // template-parameter-list of A with the same type and form as the 3884 // template parameter pack in P (ignoring whether those template 3885 // parameters are template parameter packs). 3886 for (; NewParm != NewParmEnd; ++NewParm) { 3887 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3888 Kind, TemplateArgLoc)) 3889 return false; 3890 } 3891 } 3892 3893 // Make sure we exhausted all of the arguments. 3894 if (NewParm != NewParmEnd) { 3895 if (Complain) 3896 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3897 TemplateArgLoc); 3898 3899 return false; 3900 } 3901 3902 return true; 3903} 3904 3905/// \brief Check whether a template can be declared within this scope. 3906/// 3907/// If the template declaration is valid in this scope, returns 3908/// false. Otherwise, issues a diagnostic and returns true. 3909bool 3910Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3911 // Find the nearest enclosing declaration scope. 3912 while ((S->getFlags() & Scope::DeclScope) == 0 || 3913 (S->getFlags() & Scope::TemplateParamScope) != 0) 3914 S = S->getParent(); 3915 3916 // C++ [temp]p2: 3917 // A template-declaration can appear only as a namespace scope or 3918 // class scope declaration. 3919 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3920 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3921 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3922 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3923 << TemplateParams->getSourceRange(); 3924 3925 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3926 Ctx = Ctx->getParent(); 3927 3928 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3929 return false; 3930 3931 return Diag(TemplateParams->getTemplateLoc(), 3932 diag::err_template_outside_namespace_or_class_scope) 3933 << TemplateParams->getSourceRange(); 3934} 3935 3936/// \brief Determine what kind of template specialization the given declaration 3937/// is. 3938static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3939 if (!D) 3940 return TSK_Undeclared; 3941 3942 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3943 return Record->getTemplateSpecializationKind(); 3944 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3945 return Function->getTemplateSpecializationKind(); 3946 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3947 return Var->getTemplateSpecializationKind(); 3948 3949 return TSK_Undeclared; 3950} 3951 3952/// \brief Check whether a specialization is well-formed in the current 3953/// context. 3954/// 3955/// This routine determines whether a template specialization can be declared 3956/// in the current context (C++ [temp.expl.spec]p2). 3957/// 3958/// \param S the semantic analysis object for which this check is being 3959/// performed. 3960/// 3961/// \param Specialized the entity being specialized or instantiated, which 3962/// may be a kind of template (class template, function template, etc.) or 3963/// a member of a class template (member function, static data member, 3964/// member class). 3965/// 3966/// \param PrevDecl the previous declaration of this entity, if any. 3967/// 3968/// \param Loc the location of the explicit specialization or instantiation of 3969/// this entity. 3970/// 3971/// \param IsPartialSpecialization whether this is a partial specialization of 3972/// a class template. 3973/// 3974/// \returns true if there was an error that we cannot recover from, false 3975/// otherwise. 3976static bool CheckTemplateSpecializationScope(Sema &S, 3977 NamedDecl *Specialized, 3978 NamedDecl *PrevDecl, 3979 SourceLocation Loc, 3980 bool IsPartialSpecialization) { 3981 // Keep these "kind" numbers in sync with the %select statements in the 3982 // various diagnostics emitted by this routine. 3983 int EntityKind = 0; 3984 if (isa<ClassTemplateDecl>(Specialized)) 3985 EntityKind = IsPartialSpecialization? 1 : 0; 3986 else if (isa<FunctionTemplateDecl>(Specialized)) 3987 EntityKind = 2; 3988 else if (isa<CXXMethodDecl>(Specialized)) 3989 EntityKind = 3; 3990 else if (isa<VarDecl>(Specialized)) 3991 EntityKind = 4; 3992 else if (isa<RecordDecl>(Specialized)) 3993 EntityKind = 5; 3994 else { 3995 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3996 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3997 return true; 3998 } 3999 4000 // C++ [temp.expl.spec]p2: 4001 // An explicit specialization shall be declared in the namespace 4002 // of which the template is a member, or, for member templates, in 4003 // the namespace of which the enclosing class or enclosing class 4004 // template is a member. An explicit specialization of a member 4005 // function, member class or static data member of a class 4006 // template shall be declared in the namespace of which the class 4007 // template is a member. Such a declaration may also be a 4008 // definition. If the declaration is not a definition, the 4009 // specialization may be defined later in the name- space in which 4010 // the explicit specialization was declared, or in a namespace 4011 // that encloses the one in which the explicit specialization was 4012 // declared. 4013 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4014 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4015 << Specialized; 4016 return true; 4017 } 4018 4019 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4020 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4021 << Specialized; 4022 return true; 4023 } 4024 4025 // C++ [temp.class.spec]p6: 4026 // A class template partial specialization may be declared or redeclared 4027 // in any namespace scope in which its definition may be defined (14.5.1 4028 // and 14.5.2). 4029 bool ComplainedAboutScope = false; 4030 DeclContext *SpecializedContext 4031 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4032 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4033 if ((!PrevDecl || 4034 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4035 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4036 // C++ [temp.exp.spec]p2: 4037 // An explicit specialization shall be declared in the namespace of which 4038 // the template is a member, or, for member templates, in the namespace 4039 // of which the enclosing class or enclosing class template is a member. 4040 // An explicit specialization of a member function, member class or 4041 // static data member of a class template shall be declared in the 4042 // namespace of which the class template is a member. 4043 // 4044 // C++0x [temp.expl.spec]p2: 4045 // An explicit specialization shall be declared in a namespace enclosing 4046 // the specialized template. 4047 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4048 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4049 bool IsCPlusPlus0xExtension 4050 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4051 if (isa<TranslationUnitDecl>(SpecializedContext)) 4052 S.Diag(Loc, IsCPlusPlus0xExtension 4053 ? diag::ext_template_spec_decl_out_of_scope_global 4054 : diag::err_template_spec_decl_out_of_scope_global) 4055 << EntityKind << Specialized; 4056 else if (isa<NamespaceDecl>(SpecializedContext)) 4057 S.Diag(Loc, IsCPlusPlus0xExtension 4058 ? diag::ext_template_spec_decl_out_of_scope 4059 : diag::err_template_spec_decl_out_of_scope) 4060 << EntityKind << Specialized 4061 << cast<NamedDecl>(SpecializedContext); 4062 4063 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4064 ComplainedAboutScope = true; 4065 } 4066 } 4067 4068 // Make sure that this redeclaration (or definition) occurs in an enclosing 4069 // namespace. 4070 // Note that HandleDeclarator() performs this check for explicit 4071 // specializations of function templates, static data members, and member 4072 // functions, so we skip the check here for those kinds of entities. 4073 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4074 // Should we refactor that check, so that it occurs later? 4075 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4076 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4077 isa<FunctionDecl>(Specialized))) { 4078 if (isa<TranslationUnitDecl>(SpecializedContext)) 4079 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4080 << EntityKind << Specialized; 4081 else if (isa<NamespaceDecl>(SpecializedContext)) 4082 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4083 << EntityKind << Specialized 4084 << cast<NamedDecl>(SpecializedContext); 4085 4086 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4087 } 4088 4089 // FIXME: check for specialization-after-instantiation errors and such. 4090 4091 return false; 4092} 4093 4094/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4095/// that checks non-type template partial specialization arguments. 4096static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4097 NonTypeTemplateParmDecl *Param, 4098 const TemplateArgument *Args, 4099 unsigned NumArgs) { 4100 for (unsigned I = 0; I != NumArgs; ++I) { 4101 if (Args[I].getKind() == TemplateArgument::Pack) { 4102 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4103 Args[I].pack_begin(), 4104 Args[I].pack_size())) 4105 return true; 4106 4107 continue; 4108 } 4109 4110 Expr *ArgExpr = Args[I].getAsExpr(); 4111 if (!ArgExpr) { 4112 continue; 4113 } 4114 4115 // We can have a pack expansion of any of the bullets below. 4116 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4117 ArgExpr = Expansion->getPattern(); 4118 4119 // Strip off any implicit casts we added as part of type checking. 4120 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4121 ArgExpr = ICE->getSubExpr(); 4122 4123 // C++ [temp.class.spec]p8: 4124 // A non-type argument is non-specialized if it is the name of a 4125 // non-type parameter. All other non-type arguments are 4126 // specialized. 4127 // 4128 // Below, we check the two conditions that only apply to 4129 // specialized non-type arguments, so skip any non-specialized 4130 // arguments. 4131 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4132 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4133 continue; 4134 4135 // C++ [temp.class.spec]p9: 4136 // Within the argument list of a class template partial 4137 // specialization, the following restrictions apply: 4138 // -- A partially specialized non-type argument expression 4139 // shall not involve a template parameter of the partial 4140 // specialization except when the argument expression is a 4141 // simple identifier. 4142 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4143 S.Diag(ArgExpr->getLocStart(), 4144 diag::err_dependent_non_type_arg_in_partial_spec) 4145 << ArgExpr->getSourceRange(); 4146 return true; 4147 } 4148 4149 // -- The type of a template parameter corresponding to a 4150 // specialized non-type argument shall not be dependent on a 4151 // parameter of the specialization. 4152 if (Param->getType()->isDependentType()) { 4153 S.Diag(ArgExpr->getLocStart(), 4154 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4155 << Param->getType() 4156 << ArgExpr->getSourceRange(); 4157 S.Diag(Param->getLocation(), diag::note_template_param_here); 4158 return true; 4159 } 4160 } 4161 4162 return false; 4163} 4164 4165/// \brief Check the non-type template arguments of a class template 4166/// partial specialization according to C++ [temp.class.spec]p9. 4167/// 4168/// \param TemplateParams the template parameters of the primary class 4169/// template. 4170/// 4171/// \param TemplateArg the template arguments of the class template 4172/// partial specialization. 4173/// 4174/// \returns true if there was an error, false otherwise. 4175static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4176 TemplateParameterList *TemplateParams, 4177 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4178 const TemplateArgument *ArgList = TemplateArgs.data(); 4179 4180 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4181 NonTypeTemplateParmDecl *Param 4182 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4183 if (!Param) 4184 continue; 4185 4186 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4187 &ArgList[I], 1)) 4188 return true; 4189 } 4190 4191 return false; 4192} 4193 4194/// \brief Retrieve the previous declaration of the given declaration. 4195static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4196 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4197 return VD->getPreviousDeclaration(); 4198 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4199 return FD->getPreviousDeclaration(); 4200 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4201 return TD->getPreviousDeclaration(); 4202 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 4203 return TD->getPreviousDeclaration(); 4204 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4205 return FTD->getPreviousDeclaration(); 4206 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4207 return CTD->getPreviousDeclaration(); 4208 return 0; 4209} 4210 4211DeclResult 4212Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4213 TagUseKind TUK, 4214 SourceLocation KWLoc, 4215 CXXScopeSpec &SS, 4216 TemplateTy TemplateD, 4217 SourceLocation TemplateNameLoc, 4218 SourceLocation LAngleLoc, 4219 ASTTemplateArgsPtr TemplateArgsIn, 4220 SourceLocation RAngleLoc, 4221 AttributeList *Attr, 4222 MultiTemplateParamsArg TemplateParameterLists) { 4223 assert(TUK != TUK_Reference && "References are not specializations"); 4224 4225 // Find the class template we're specializing 4226 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4227 ClassTemplateDecl *ClassTemplate 4228 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4229 4230 if (!ClassTemplate) { 4231 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4232 << (Name.getAsTemplateDecl() && 4233 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4234 return true; 4235 } 4236 4237 bool isExplicitSpecialization = false; 4238 bool isPartialSpecialization = false; 4239 4240 // Check the validity of the template headers that introduce this 4241 // template. 4242 // FIXME: We probably shouldn't complain about these headers for 4243 // friend declarations. 4244 bool Invalid = false; 4245 TemplateParameterList *TemplateParams 4246 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 4247 (TemplateParameterList**)TemplateParameterLists.get(), 4248 TemplateParameterLists.size(), 4249 TUK == TUK_Friend, 4250 isExplicitSpecialization, 4251 Invalid); 4252 if (Invalid) 4253 return true; 4254 4255 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 4256 if (TemplateParams) 4257 --NumMatchedTemplateParamLists; 4258 4259 if (TemplateParams && TemplateParams->size() > 0) { 4260 isPartialSpecialization = true; 4261 4262 if (TUK == TUK_Friend) { 4263 Diag(KWLoc, diag::err_partial_specialization_friend) 4264 << SourceRange(LAngleLoc, RAngleLoc); 4265 return true; 4266 } 4267 4268 // C++ [temp.class.spec]p10: 4269 // The template parameter list of a specialization shall not 4270 // contain default template argument values. 4271 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4272 Decl *Param = TemplateParams->getParam(I); 4273 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4274 if (TTP->hasDefaultArgument()) { 4275 Diag(TTP->getDefaultArgumentLoc(), 4276 diag::err_default_arg_in_partial_spec); 4277 TTP->removeDefaultArgument(); 4278 } 4279 } else if (NonTypeTemplateParmDecl *NTTP 4280 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4281 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4282 Diag(NTTP->getDefaultArgumentLoc(), 4283 diag::err_default_arg_in_partial_spec) 4284 << DefArg->getSourceRange(); 4285 NTTP->removeDefaultArgument(); 4286 } 4287 } else { 4288 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4289 if (TTP->hasDefaultArgument()) { 4290 Diag(TTP->getDefaultArgument().getLocation(), 4291 diag::err_default_arg_in_partial_spec) 4292 << TTP->getDefaultArgument().getSourceRange(); 4293 TTP->removeDefaultArgument(); 4294 } 4295 } 4296 } 4297 } else if (TemplateParams) { 4298 if (TUK == TUK_Friend) 4299 Diag(KWLoc, diag::err_template_spec_friend) 4300 << FixItHint::CreateRemoval( 4301 SourceRange(TemplateParams->getTemplateLoc(), 4302 TemplateParams->getRAngleLoc())) 4303 << SourceRange(LAngleLoc, RAngleLoc); 4304 else 4305 isExplicitSpecialization = true; 4306 } else if (TUK != TUK_Friend) { 4307 Diag(KWLoc, diag::err_template_spec_needs_header) 4308 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4309 isExplicitSpecialization = true; 4310 } 4311 4312 // Check that the specialization uses the same tag kind as the 4313 // original template. 4314 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4315 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4316 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4317 Kind, KWLoc, 4318 *ClassTemplate->getIdentifier())) { 4319 Diag(KWLoc, diag::err_use_with_wrong_tag) 4320 << ClassTemplate 4321 << FixItHint::CreateReplacement(KWLoc, 4322 ClassTemplate->getTemplatedDecl()->getKindName()); 4323 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4324 diag::note_previous_use); 4325 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4326 } 4327 4328 // Translate the parser's template argument list in our AST format. 4329 TemplateArgumentListInfo TemplateArgs; 4330 TemplateArgs.setLAngleLoc(LAngleLoc); 4331 TemplateArgs.setRAngleLoc(RAngleLoc); 4332 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4333 4334 // Check for unexpanded parameter packs in any of the template arguments. 4335 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4336 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4337 UPPC_PartialSpecialization)) 4338 return true; 4339 4340 // Check that the template argument list is well-formed for this 4341 // template. 4342 llvm::SmallVector<TemplateArgument, 4> Converted; 4343 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4344 TemplateArgs, false, Converted)) 4345 return true; 4346 4347 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4348 "Converted template argument list is too short!"); 4349 4350 // Find the class template (partial) specialization declaration that 4351 // corresponds to these arguments. 4352 if (isPartialSpecialization) { 4353 if (CheckClassTemplatePartialSpecializationArgs(*this, 4354 ClassTemplate->getTemplateParameters(), 4355 Converted)) 4356 return true; 4357 4358 if (!Name.isDependent() && 4359 !TemplateSpecializationType::anyDependentTemplateArguments( 4360 TemplateArgs.getArgumentArray(), 4361 TemplateArgs.size())) { 4362 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4363 << ClassTemplate->getDeclName(); 4364 isPartialSpecialization = false; 4365 } 4366 } 4367 4368 void *InsertPos = 0; 4369 ClassTemplateSpecializationDecl *PrevDecl = 0; 4370 4371 if (isPartialSpecialization) 4372 // FIXME: Template parameter list matters, too 4373 PrevDecl 4374 = ClassTemplate->findPartialSpecialization(Converted.data(), 4375 Converted.size(), 4376 InsertPos); 4377 else 4378 PrevDecl 4379 = ClassTemplate->findSpecialization(Converted.data(), 4380 Converted.size(), InsertPos); 4381 4382 ClassTemplateSpecializationDecl *Specialization = 0; 4383 4384 // Check whether we can declare a class template specialization in 4385 // the current scope. 4386 if (TUK != TUK_Friend && 4387 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4388 TemplateNameLoc, 4389 isPartialSpecialization)) 4390 return true; 4391 4392 // The canonical type 4393 QualType CanonType; 4394 if (PrevDecl && 4395 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4396 TUK == TUK_Friend)) { 4397 // Since the only prior class template specialization with these 4398 // arguments was referenced but not declared, or we're only 4399 // referencing this specialization as a friend, reuse that 4400 // declaration node as our own, updating its source location to 4401 // reflect our new declaration. 4402 Specialization = PrevDecl; 4403 Specialization->setLocation(TemplateNameLoc); 4404 PrevDecl = 0; 4405 CanonType = Context.getTypeDeclType(Specialization); 4406 } else if (isPartialSpecialization) { 4407 // Build the canonical type that describes the converted template 4408 // arguments of the class template partial specialization. 4409 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4410 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4411 Converted.data(), 4412 Converted.size()); 4413 4414 if (Context.hasSameType(CanonType, 4415 ClassTemplate->getInjectedClassNameSpecialization())) { 4416 // C++ [temp.class.spec]p9b3: 4417 // 4418 // -- The argument list of the specialization shall not be identical 4419 // to the implicit argument list of the primary template. 4420 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4421 << (TUK == TUK_Definition) 4422 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4423 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4424 ClassTemplate->getIdentifier(), 4425 TemplateNameLoc, 4426 Attr, 4427 TemplateParams, 4428 AS_none); 4429 } 4430 4431 // Create a new class template partial specialization declaration node. 4432 ClassTemplatePartialSpecializationDecl *PrevPartial 4433 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4434 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4435 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4436 ClassTemplatePartialSpecializationDecl *Partial 4437 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4438 ClassTemplate->getDeclContext(), 4439 TemplateNameLoc, 4440 TemplateParams, 4441 ClassTemplate, 4442 Converted.data(), 4443 Converted.size(), 4444 TemplateArgs, 4445 CanonType, 4446 PrevPartial, 4447 SequenceNumber); 4448 SetNestedNameSpecifier(Partial, SS); 4449 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4450 Partial->setTemplateParameterListsInfo(Context, 4451 NumMatchedTemplateParamLists, 4452 (TemplateParameterList**) TemplateParameterLists.release()); 4453 } 4454 4455 if (!PrevPartial) 4456 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4457 Specialization = Partial; 4458 4459 // If we are providing an explicit specialization of a member class 4460 // template specialization, make a note of that. 4461 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4462 PrevPartial->setMemberSpecialization(); 4463 4464 // Check that all of the template parameters of the class template 4465 // partial specialization are deducible from the template 4466 // arguments. If not, this class template partial specialization 4467 // will never be used. 4468 llvm::SmallVector<bool, 8> DeducibleParams; 4469 DeducibleParams.resize(TemplateParams->size()); 4470 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4471 TemplateParams->getDepth(), 4472 DeducibleParams); 4473 unsigned NumNonDeducible = 0; 4474 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4475 if (!DeducibleParams[I]) 4476 ++NumNonDeducible; 4477 4478 if (NumNonDeducible) { 4479 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4480 << (NumNonDeducible > 1) 4481 << SourceRange(TemplateNameLoc, RAngleLoc); 4482 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4483 if (!DeducibleParams[I]) { 4484 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4485 if (Param->getDeclName()) 4486 Diag(Param->getLocation(), 4487 diag::note_partial_spec_unused_parameter) 4488 << Param->getDeclName(); 4489 else 4490 Diag(Param->getLocation(), 4491 diag::note_partial_spec_unused_parameter) 4492 << "<anonymous>"; 4493 } 4494 } 4495 } 4496 } else { 4497 // Create a new class template specialization declaration node for 4498 // this explicit specialization or friend declaration. 4499 Specialization 4500 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4501 ClassTemplate->getDeclContext(), 4502 TemplateNameLoc, 4503 ClassTemplate, 4504 Converted.data(), 4505 Converted.size(), 4506 PrevDecl); 4507 SetNestedNameSpecifier(Specialization, SS); 4508 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4509 Specialization->setTemplateParameterListsInfo(Context, 4510 NumMatchedTemplateParamLists, 4511 (TemplateParameterList**) TemplateParameterLists.release()); 4512 } 4513 4514 if (!PrevDecl) 4515 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4516 4517 CanonType = Context.getTypeDeclType(Specialization); 4518 } 4519 4520 // C++ [temp.expl.spec]p6: 4521 // If a template, a member template or the member of a class template is 4522 // explicitly specialized then that specialization shall be declared 4523 // before the first use of that specialization that would cause an implicit 4524 // instantiation to take place, in every translation unit in which such a 4525 // use occurs; no diagnostic is required. 4526 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4527 bool Okay = false; 4528 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4529 // Is there any previous explicit specialization declaration? 4530 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4531 Okay = true; 4532 break; 4533 } 4534 } 4535 4536 if (!Okay) { 4537 SourceRange Range(TemplateNameLoc, RAngleLoc); 4538 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4539 << Context.getTypeDeclType(Specialization) << Range; 4540 4541 Diag(PrevDecl->getPointOfInstantiation(), 4542 diag::note_instantiation_required_here) 4543 << (PrevDecl->getTemplateSpecializationKind() 4544 != TSK_ImplicitInstantiation); 4545 return true; 4546 } 4547 } 4548 4549 // If this is not a friend, note that this is an explicit specialization. 4550 if (TUK != TUK_Friend) 4551 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4552 4553 // Check that this isn't a redefinition of this specialization. 4554 if (TUK == TUK_Definition) { 4555 if (RecordDecl *Def = Specialization->getDefinition()) { 4556 SourceRange Range(TemplateNameLoc, RAngleLoc); 4557 Diag(TemplateNameLoc, diag::err_redefinition) 4558 << Context.getTypeDeclType(Specialization) << Range; 4559 Diag(Def->getLocation(), diag::note_previous_definition); 4560 Specialization->setInvalidDecl(); 4561 return true; 4562 } 4563 } 4564 4565 if (Attr) 4566 ProcessDeclAttributeList(S, Specialization, Attr); 4567 4568 // Build the fully-sugared type for this class template 4569 // specialization as the user wrote in the specialization 4570 // itself. This means that we'll pretty-print the type retrieved 4571 // from the specialization's declaration the way that the user 4572 // actually wrote the specialization, rather than formatting the 4573 // name based on the "canonical" representation used to store the 4574 // template arguments in the specialization. 4575 TypeSourceInfo *WrittenTy 4576 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4577 TemplateArgs, CanonType); 4578 if (TUK != TUK_Friend) { 4579 Specialization->setTypeAsWritten(WrittenTy); 4580 if (TemplateParams) 4581 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4582 } 4583 TemplateArgsIn.release(); 4584 4585 // C++ [temp.expl.spec]p9: 4586 // A template explicit specialization is in the scope of the 4587 // namespace in which the template was defined. 4588 // 4589 // We actually implement this paragraph where we set the semantic 4590 // context (in the creation of the ClassTemplateSpecializationDecl), 4591 // but we also maintain the lexical context where the actual 4592 // definition occurs. 4593 Specialization->setLexicalDeclContext(CurContext); 4594 4595 // We may be starting the definition of this specialization. 4596 if (TUK == TUK_Definition) 4597 Specialization->startDefinition(); 4598 4599 if (TUK == TUK_Friend) { 4600 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4601 TemplateNameLoc, 4602 WrittenTy, 4603 /*FIXME:*/KWLoc); 4604 Friend->setAccess(AS_public); 4605 CurContext->addDecl(Friend); 4606 } else { 4607 // Add the specialization into its lexical context, so that it can 4608 // be seen when iterating through the list of declarations in that 4609 // context. However, specializations are not found by name lookup. 4610 CurContext->addDecl(Specialization); 4611 } 4612 return Specialization; 4613} 4614 4615Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4616 MultiTemplateParamsArg TemplateParameterLists, 4617 Declarator &D) { 4618 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4619} 4620 4621Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4622 MultiTemplateParamsArg TemplateParameterLists, 4623 Declarator &D) { 4624 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4625 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4626 4627 if (FTI.hasPrototype) { 4628 // FIXME: Diagnose arguments without names in C. 4629 } 4630 4631 Scope *ParentScope = FnBodyScope->getParent(); 4632 4633 Decl *DP = HandleDeclarator(ParentScope, D, 4634 move(TemplateParameterLists), 4635 /*IsFunctionDefinition=*/true); 4636 if (FunctionTemplateDecl *FunctionTemplate 4637 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4638 return ActOnStartOfFunctionDef(FnBodyScope, 4639 FunctionTemplate->getTemplatedDecl()); 4640 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4641 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4642 return 0; 4643} 4644 4645/// \brief Strips various properties off an implicit instantiation 4646/// that has just been explicitly specialized. 4647static void StripImplicitInstantiation(NamedDecl *D) { 4648 D->dropAttrs(); 4649 4650 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4651 FD->setInlineSpecified(false); 4652 } 4653} 4654 4655/// \brief Diagnose cases where we have an explicit template specialization 4656/// before/after an explicit template instantiation, producing diagnostics 4657/// for those cases where they are required and determining whether the 4658/// new specialization/instantiation will have any effect. 4659/// 4660/// \param NewLoc the location of the new explicit specialization or 4661/// instantiation. 4662/// 4663/// \param NewTSK the kind of the new explicit specialization or instantiation. 4664/// 4665/// \param PrevDecl the previous declaration of the entity. 4666/// 4667/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4668/// 4669/// \param PrevPointOfInstantiation if valid, indicates where the previus 4670/// declaration was instantiated (either implicitly or explicitly). 4671/// 4672/// \param HasNoEffect will be set to true to indicate that the new 4673/// specialization or instantiation has no effect and should be ignored. 4674/// 4675/// \returns true if there was an error that should prevent the introduction of 4676/// the new declaration into the AST, false otherwise. 4677bool 4678Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4679 TemplateSpecializationKind NewTSK, 4680 NamedDecl *PrevDecl, 4681 TemplateSpecializationKind PrevTSK, 4682 SourceLocation PrevPointOfInstantiation, 4683 bool &HasNoEffect) { 4684 HasNoEffect = false; 4685 4686 switch (NewTSK) { 4687 case TSK_Undeclared: 4688 case TSK_ImplicitInstantiation: 4689 assert(false && "Don't check implicit instantiations here"); 4690 return false; 4691 4692 case TSK_ExplicitSpecialization: 4693 switch (PrevTSK) { 4694 case TSK_Undeclared: 4695 case TSK_ExplicitSpecialization: 4696 // Okay, we're just specializing something that is either already 4697 // explicitly specialized or has merely been mentioned without any 4698 // instantiation. 4699 return false; 4700 4701 case TSK_ImplicitInstantiation: 4702 if (PrevPointOfInstantiation.isInvalid()) { 4703 // The declaration itself has not actually been instantiated, so it is 4704 // still okay to specialize it. 4705 StripImplicitInstantiation(PrevDecl); 4706 return false; 4707 } 4708 // Fall through 4709 4710 case TSK_ExplicitInstantiationDeclaration: 4711 case TSK_ExplicitInstantiationDefinition: 4712 assert((PrevTSK == TSK_ImplicitInstantiation || 4713 PrevPointOfInstantiation.isValid()) && 4714 "Explicit instantiation without point of instantiation?"); 4715 4716 // C++ [temp.expl.spec]p6: 4717 // If a template, a member template or the member of a class template 4718 // is explicitly specialized then that specialization shall be declared 4719 // before the first use of that specialization that would cause an 4720 // implicit instantiation to take place, in every translation unit in 4721 // which such a use occurs; no diagnostic is required. 4722 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4723 // Is there any previous explicit specialization declaration? 4724 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4725 return false; 4726 } 4727 4728 Diag(NewLoc, diag::err_specialization_after_instantiation) 4729 << PrevDecl; 4730 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4731 << (PrevTSK != TSK_ImplicitInstantiation); 4732 4733 return true; 4734 } 4735 break; 4736 4737 case TSK_ExplicitInstantiationDeclaration: 4738 switch (PrevTSK) { 4739 case TSK_ExplicitInstantiationDeclaration: 4740 // This explicit instantiation declaration is redundant (that's okay). 4741 HasNoEffect = true; 4742 return false; 4743 4744 case TSK_Undeclared: 4745 case TSK_ImplicitInstantiation: 4746 // We're explicitly instantiating something that may have already been 4747 // implicitly instantiated; that's fine. 4748 return false; 4749 4750 case TSK_ExplicitSpecialization: 4751 // C++0x [temp.explicit]p4: 4752 // For a given set of template parameters, if an explicit instantiation 4753 // of a template appears after a declaration of an explicit 4754 // specialization for that template, the explicit instantiation has no 4755 // effect. 4756 HasNoEffect = true; 4757 return false; 4758 4759 case TSK_ExplicitInstantiationDefinition: 4760 // C++0x [temp.explicit]p10: 4761 // If an entity is the subject of both an explicit instantiation 4762 // declaration and an explicit instantiation definition in the same 4763 // translation unit, the definition shall follow the declaration. 4764 Diag(NewLoc, 4765 diag::err_explicit_instantiation_declaration_after_definition); 4766 Diag(PrevPointOfInstantiation, 4767 diag::note_explicit_instantiation_definition_here); 4768 assert(PrevPointOfInstantiation.isValid() && 4769 "Explicit instantiation without point of instantiation?"); 4770 HasNoEffect = true; 4771 return false; 4772 } 4773 break; 4774 4775 case TSK_ExplicitInstantiationDefinition: 4776 switch (PrevTSK) { 4777 case TSK_Undeclared: 4778 case TSK_ImplicitInstantiation: 4779 // We're explicitly instantiating something that may have already been 4780 // implicitly instantiated; that's fine. 4781 return false; 4782 4783 case TSK_ExplicitSpecialization: 4784 // C++ DR 259, C++0x [temp.explicit]p4: 4785 // For a given set of template parameters, if an explicit 4786 // instantiation of a template appears after a declaration of 4787 // an explicit specialization for that template, the explicit 4788 // instantiation has no effect. 4789 // 4790 // In C++98/03 mode, we only give an extension warning here, because it 4791 // is not harmful to try to explicitly instantiate something that 4792 // has been explicitly specialized. 4793 if (!getLangOptions().CPlusPlus0x) { 4794 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4795 << PrevDecl; 4796 Diag(PrevDecl->getLocation(), 4797 diag::note_previous_template_specialization); 4798 } 4799 HasNoEffect = true; 4800 return false; 4801 4802 case TSK_ExplicitInstantiationDeclaration: 4803 // We're explicity instantiating a definition for something for which we 4804 // were previously asked to suppress instantiations. That's fine. 4805 return false; 4806 4807 case TSK_ExplicitInstantiationDefinition: 4808 // C++0x [temp.spec]p5: 4809 // For a given template and a given set of template-arguments, 4810 // - an explicit instantiation definition shall appear at most once 4811 // in a program, 4812 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4813 << PrevDecl; 4814 Diag(PrevPointOfInstantiation, 4815 diag::note_previous_explicit_instantiation); 4816 HasNoEffect = true; 4817 return false; 4818 } 4819 break; 4820 } 4821 4822 assert(false && "Missing specialization/instantiation case?"); 4823 4824 return false; 4825} 4826 4827/// \brief Perform semantic analysis for the given dependent function 4828/// template specialization. The only possible way to get a dependent 4829/// function template specialization is with a friend declaration, 4830/// like so: 4831/// 4832/// template <class T> void foo(T); 4833/// template <class T> class A { 4834/// friend void foo<>(T); 4835/// }; 4836/// 4837/// There really isn't any useful analysis we can do here, so we 4838/// just store the information. 4839bool 4840Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4841 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4842 LookupResult &Previous) { 4843 // Remove anything from Previous that isn't a function template in 4844 // the correct context. 4845 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4846 LookupResult::Filter F = Previous.makeFilter(); 4847 while (F.hasNext()) { 4848 NamedDecl *D = F.next()->getUnderlyingDecl(); 4849 if (!isa<FunctionTemplateDecl>(D) || 4850 !FDLookupContext->InEnclosingNamespaceSetOf( 4851 D->getDeclContext()->getRedeclContext())) 4852 F.erase(); 4853 } 4854 F.done(); 4855 4856 // Should this be diagnosed here? 4857 if (Previous.empty()) return true; 4858 4859 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4860 ExplicitTemplateArgs); 4861 return false; 4862} 4863 4864/// \brief Perform semantic analysis for the given function template 4865/// specialization. 4866/// 4867/// This routine performs all of the semantic analysis required for an 4868/// explicit function template specialization. On successful completion, 4869/// the function declaration \p FD will become a function template 4870/// specialization. 4871/// 4872/// \param FD the function declaration, which will be updated to become a 4873/// function template specialization. 4874/// 4875/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4876/// if any. Note that this may be valid info even when 0 arguments are 4877/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4878/// as it anyway contains info on the angle brackets locations. 4879/// 4880/// \param PrevDecl the set of declarations that may be specialized by 4881/// this function specialization. 4882bool 4883Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4884 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4885 LookupResult &Previous) { 4886 // The set of function template specializations that could match this 4887 // explicit function template specialization. 4888 UnresolvedSet<8> Candidates; 4889 4890 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4891 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4892 I != E; ++I) { 4893 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4894 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4895 // Only consider templates found within the same semantic lookup scope as 4896 // FD. 4897 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4898 Ovl->getDeclContext()->getRedeclContext())) 4899 continue; 4900 4901 // C++ [temp.expl.spec]p11: 4902 // A trailing template-argument can be left unspecified in the 4903 // template-id naming an explicit function template specialization 4904 // provided it can be deduced from the function argument type. 4905 // Perform template argument deduction to determine whether we may be 4906 // specializing this template. 4907 // FIXME: It is somewhat wasteful to build 4908 TemplateDeductionInfo Info(Context, FD->getLocation()); 4909 FunctionDecl *Specialization = 0; 4910 if (TemplateDeductionResult TDK 4911 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4912 FD->getType(), 4913 Specialization, 4914 Info)) { 4915 // FIXME: Template argument deduction failed; record why it failed, so 4916 // that we can provide nifty diagnostics. 4917 (void)TDK; 4918 continue; 4919 } 4920 4921 // Record this candidate. 4922 Candidates.addDecl(Specialization, I.getAccess()); 4923 } 4924 } 4925 4926 // Find the most specialized function template. 4927 UnresolvedSetIterator Result 4928 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4929 TPOC_Other, 0, FD->getLocation(), 4930 PDiag(diag::err_function_template_spec_no_match) 4931 << FD->getDeclName(), 4932 PDiag(diag::err_function_template_spec_ambiguous) 4933 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4934 PDiag(diag::note_function_template_spec_matched)); 4935 if (Result == Candidates.end()) 4936 return true; 4937 4938 // Ignore access information; it doesn't figure into redeclaration checking. 4939 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4940 Specialization->setLocation(FD->getLocation()); 4941 4942 // FIXME: Check if the prior specialization has a point of instantiation. 4943 // If so, we have run afoul of . 4944 4945 // If this is a friend declaration, then we're not really declaring 4946 // an explicit specialization. 4947 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4948 4949 // Check the scope of this explicit specialization. 4950 if (!isFriend && 4951 CheckTemplateSpecializationScope(*this, 4952 Specialization->getPrimaryTemplate(), 4953 Specialization, FD->getLocation(), 4954 false)) 4955 return true; 4956 4957 // C++ [temp.expl.spec]p6: 4958 // If a template, a member template or the member of a class template is 4959 // explicitly specialized then that specialization shall be declared 4960 // before the first use of that specialization that would cause an implicit 4961 // instantiation to take place, in every translation unit in which such a 4962 // use occurs; no diagnostic is required. 4963 FunctionTemplateSpecializationInfo *SpecInfo 4964 = Specialization->getTemplateSpecializationInfo(); 4965 assert(SpecInfo && "Function template specialization info missing?"); 4966 4967 bool HasNoEffect = false; 4968 if (!isFriend && 4969 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4970 TSK_ExplicitSpecialization, 4971 Specialization, 4972 SpecInfo->getTemplateSpecializationKind(), 4973 SpecInfo->getPointOfInstantiation(), 4974 HasNoEffect)) 4975 return true; 4976 4977 // Mark the prior declaration as an explicit specialization, so that later 4978 // clients know that this is an explicit specialization. 4979 if (!isFriend) { 4980 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4981 MarkUnusedFileScopedDecl(Specialization); 4982 } 4983 4984 // Turn the given function declaration into a function template 4985 // specialization, with the template arguments from the previous 4986 // specialization. 4987 // Take copies of (semantic and syntactic) template argument lists. 4988 const TemplateArgumentList* TemplArgs = new (Context) 4989 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4990 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4991 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4992 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4993 TemplArgs, /*InsertPos=*/0, 4994 SpecInfo->getTemplateSpecializationKind(), 4995 TemplArgsAsWritten); 4996 4997 // The "previous declaration" for this function template specialization is 4998 // the prior function template specialization. 4999 Previous.clear(); 5000 Previous.addDecl(Specialization); 5001 return false; 5002} 5003 5004/// \brief Perform semantic analysis for the given non-template member 5005/// specialization. 5006/// 5007/// This routine performs all of the semantic analysis required for an 5008/// explicit member function specialization. On successful completion, 5009/// the function declaration \p FD will become a member function 5010/// specialization. 5011/// 5012/// \param Member the member declaration, which will be updated to become a 5013/// specialization. 5014/// 5015/// \param Previous the set of declarations, one of which may be specialized 5016/// by this function specialization; the set will be modified to contain the 5017/// redeclared member. 5018bool 5019Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5020 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5021 5022 // Try to find the member we are instantiating. 5023 NamedDecl *Instantiation = 0; 5024 NamedDecl *InstantiatedFrom = 0; 5025 MemberSpecializationInfo *MSInfo = 0; 5026 5027 if (Previous.empty()) { 5028 // Nowhere to look anyway. 5029 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5030 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5031 I != E; ++I) { 5032 NamedDecl *D = (*I)->getUnderlyingDecl(); 5033 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5034 if (Context.hasSameType(Function->getType(), Method->getType())) { 5035 Instantiation = Method; 5036 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5037 MSInfo = Method->getMemberSpecializationInfo(); 5038 break; 5039 } 5040 } 5041 } 5042 } else if (isa<VarDecl>(Member)) { 5043 VarDecl *PrevVar; 5044 if (Previous.isSingleResult() && 5045 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5046 if (PrevVar->isStaticDataMember()) { 5047 Instantiation = PrevVar; 5048 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5049 MSInfo = PrevVar->getMemberSpecializationInfo(); 5050 } 5051 } else if (isa<RecordDecl>(Member)) { 5052 CXXRecordDecl *PrevRecord; 5053 if (Previous.isSingleResult() && 5054 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5055 Instantiation = PrevRecord; 5056 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5057 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5058 } 5059 } 5060 5061 if (!Instantiation) { 5062 // There is no previous declaration that matches. Since member 5063 // specializations are always out-of-line, the caller will complain about 5064 // this mismatch later. 5065 return false; 5066 } 5067 5068 // If this is a friend, just bail out here before we start turning 5069 // things into explicit specializations. 5070 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5071 // Preserve instantiation information. 5072 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5073 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5074 cast<CXXMethodDecl>(InstantiatedFrom), 5075 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5076 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5077 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5078 cast<CXXRecordDecl>(InstantiatedFrom), 5079 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5080 } 5081 5082 Previous.clear(); 5083 Previous.addDecl(Instantiation); 5084 return false; 5085 } 5086 5087 // Make sure that this is a specialization of a member. 5088 if (!InstantiatedFrom) { 5089 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5090 << Member; 5091 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5092 return true; 5093 } 5094 5095 // C++ [temp.expl.spec]p6: 5096 // If a template, a member template or the member of a class template is 5097 // explicitly specialized then that spe- cialization shall be declared 5098 // before the first use of that specialization that would cause an implicit 5099 // instantiation to take place, in every translation unit in which such a 5100 // use occurs; no diagnostic is required. 5101 assert(MSInfo && "Member specialization info missing?"); 5102 5103 bool HasNoEffect = false; 5104 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5105 TSK_ExplicitSpecialization, 5106 Instantiation, 5107 MSInfo->getTemplateSpecializationKind(), 5108 MSInfo->getPointOfInstantiation(), 5109 HasNoEffect)) 5110 return true; 5111 5112 // Check the scope of this explicit specialization. 5113 if (CheckTemplateSpecializationScope(*this, 5114 InstantiatedFrom, 5115 Instantiation, Member->getLocation(), 5116 false)) 5117 return true; 5118 5119 // Note that this is an explicit instantiation of a member. 5120 // the original declaration to note that it is an explicit specialization 5121 // (if it was previously an implicit instantiation). This latter step 5122 // makes bookkeeping easier. 5123 if (isa<FunctionDecl>(Member)) { 5124 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5125 if (InstantiationFunction->getTemplateSpecializationKind() == 5126 TSK_ImplicitInstantiation) { 5127 InstantiationFunction->setTemplateSpecializationKind( 5128 TSK_ExplicitSpecialization); 5129 InstantiationFunction->setLocation(Member->getLocation()); 5130 } 5131 5132 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5133 cast<CXXMethodDecl>(InstantiatedFrom), 5134 TSK_ExplicitSpecialization); 5135 MarkUnusedFileScopedDecl(InstantiationFunction); 5136 } else if (isa<VarDecl>(Member)) { 5137 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5138 if (InstantiationVar->getTemplateSpecializationKind() == 5139 TSK_ImplicitInstantiation) { 5140 InstantiationVar->setTemplateSpecializationKind( 5141 TSK_ExplicitSpecialization); 5142 InstantiationVar->setLocation(Member->getLocation()); 5143 } 5144 5145 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5146 cast<VarDecl>(InstantiatedFrom), 5147 TSK_ExplicitSpecialization); 5148 MarkUnusedFileScopedDecl(InstantiationVar); 5149 } else { 5150 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5151 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5152 if (InstantiationClass->getTemplateSpecializationKind() == 5153 TSK_ImplicitInstantiation) { 5154 InstantiationClass->setTemplateSpecializationKind( 5155 TSK_ExplicitSpecialization); 5156 InstantiationClass->setLocation(Member->getLocation()); 5157 } 5158 5159 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5160 cast<CXXRecordDecl>(InstantiatedFrom), 5161 TSK_ExplicitSpecialization); 5162 } 5163 5164 // Save the caller the trouble of having to figure out which declaration 5165 // this specialization matches. 5166 Previous.clear(); 5167 Previous.addDecl(Instantiation); 5168 return false; 5169} 5170 5171/// \brief Check the scope of an explicit instantiation. 5172/// 5173/// \returns true if a serious error occurs, false otherwise. 5174static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5175 SourceLocation InstLoc, 5176 bool WasQualifiedName) { 5177 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5178 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5179 5180 if (CurContext->isRecord()) { 5181 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5182 << D; 5183 return true; 5184 } 5185 5186 // C++0x [temp.explicit]p2: 5187 // An explicit instantiation shall appear in an enclosing namespace of its 5188 // template. 5189 // 5190 // This is DR275, which we do not retroactively apply to C++98/03. 5191 if (S.getLangOptions().CPlusPlus0x && 5192 !CurContext->Encloses(OrigContext)) { 5193 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5194 S.Diag(InstLoc, 5195 S.getLangOptions().CPlusPlus0x? 5196 diag::err_explicit_instantiation_out_of_scope 5197 : diag::warn_explicit_instantiation_out_of_scope_0x) 5198 << D << NS; 5199 else 5200 S.Diag(InstLoc, 5201 S.getLangOptions().CPlusPlus0x? 5202 diag::err_explicit_instantiation_must_be_global 5203 : diag::warn_explicit_instantiation_out_of_scope_0x) 5204 << D; 5205 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5206 return false; 5207 } 5208 5209 // C++0x [temp.explicit]p2: 5210 // If the name declared in the explicit instantiation is an unqualified 5211 // name, the explicit instantiation shall appear in the namespace where 5212 // its template is declared or, if that namespace is inline (7.3.1), any 5213 // namespace from its enclosing namespace set. 5214 if (WasQualifiedName) 5215 return false; 5216 5217 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5218 return false; 5219 5220 S.Diag(InstLoc, 5221 S.getLangOptions().CPlusPlus0x? 5222 diag::err_explicit_instantiation_unqualified_wrong_namespace 5223 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5224 << D << OrigContext; 5225 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5226 return false; 5227} 5228 5229/// \brief Determine whether the given scope specifier has a template-id in it. 5230static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5231 if (!SS.isSet()) 5232 return false; 5233 5234 // C++0x [temp.explicit]p2: 5235 // If the explicit instantiation is for a member function, a member class 5236 // or a static data member of a class template specialization, the name of 5237 // the class template specialization in the qualified-id for the member 5238 // name shall be a simple-template-id. 5239 // 5240 // C++98 has the same restriction, just worded differently. 5241 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5242 NNS; NNS = NNS->getPrefix()) 5243 if (const Type *T = NNS->getAsType()) 5244 if (isa<TemplateSpecializationType>(T)) 5245 return true; 5246 5247 return false; 5248} 5249 5250// Explicit instantiation of a class template specialization 5251DeclResult 5252Sema::ActOnExplicitInstantiation(Scope *S, 5253 SourceLocation ExternLoc, 5254 SourceLocation TemplateLoc, 5255 unsigned TagSpec, 5256 SourceLocation KWLoc, 5257 const CXXScopeSpec &SS, 5258 TemplateTy TemplateD, 5259 SourceLocation TemplateNameLoc, 5260 SourceLocation LAngleLoc, 5261 ASTTemplateArgsPtr TemplateArgsIn, 5262 SourceLocation RAngleLoc, 5263 AttributeList *Attr) { 5264 // Find the class template we're specializing 5265 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5266 ClassTemplateDecl *ClassTemplate 5267 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5268 5269 // Check that the specialization uses the same tag kind as the 5270 // original template. 5271 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5272 assert(Kind != TTK_Enum && 5273 "Invalid enum tag in class template explicit instantiation!"); 5274 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5275 Kind, KWLoc, 5276 *ClassTemplate->getIdentifier())) { 5277 Diag(KWLoc, diag::err_use_with_wrong_tag) 5278 << ClassTemplate 5279 << FixItHint::CreateReplacement(KWLoc, 5280 ClassTemplate->getTemplatedDecl()->getKindName()); 5281 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5282 diag::note_previous_use); 5283 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5284 } 5285 5286 // C++0x [temp.explicit]p2: 5287 // There are two forms of explicit instantiation: an explicit instantiation 5288 // definition and an explicit instantiation declaration. An explicit 5289 // instantiation declaration begins with the extern keyword. [...] 5290 TemplateSpecializationKind TSK 5291 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5292 : TSK_ExplicitInstantiationDeclaration; 5293 5294 // Translate the parser's template argument list in our AST format. 5295 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5296 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5297 5298 // Check that the template argument list is well-formed for this 5299 // template. 5300 llvm::SmallVector<TemplateArgument, 4> Converted; 5301 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5302 TemplateArgs, false, Converted)) 5303 return true; 5304 5305 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5306 "Converted template argument list is too short!"); 5307 5308 // Find the class template specialization declaration that 5309 // corresponds to these arguments. 5310 void *InsertPos = 0; 5311 ClassTemplateSpecializationDecl *PrevDecl 5312 = ClassTemplate->findSpecialization(Converted.data(), 5313 Converted.size(), InsertPos); 5314 5315 TemplateSpecializationKind PrevDecl_TSK 5316 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5317 5318 // C++0x [temp.explicit]p2: 5319 // [...] An explicit instantiation shall appear in an enclosing 5320 // namespace of its template. [...] 5321 // 5322 // This is C++ DR 275. 5323 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5324 SS.isSet())) 5325 return true; 5326 5327 ClassTemplateSpecializationDecl *Specialization = 0; 5328 5329 bool HasNoEffect = false; 5330 if (PrevDecl) { 5331 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5332 PrevDecl, PrevDecl_TSK, 5333 PrevDecl->getPointOfInstantiation(), 5334 HasNoEffect)) 5335 return PrevDecl; 5336 5337 // Even though HasNoEffect == true means that this explicit instantiation 5338 // has no effect on semantics, we go on to put its syntax in the AST. 5339 5340 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5341 PrevDecl_TSK == TSK_Undeclared) { 5342 // Since the only prior class template specialization with these 5343 // arguments was referenced but not declared, reuse that 5344 // declaration node as our own, updating the source location 5345 // for the template name to reflect our new declaration. 5346 // (Other source locations will be updated later.) 5347 Specialization = PrevDecl; 5348 Specialization->setLocation(TemplateNameLoc); 5349 PrevDecl = 0; 5350 } 5351 } 5352 5353 if (!Specialization) { 5354 // Create a new class template specialization declaration node for 5355 // this explicit specialization. 5356 Specialization 5357 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5358 ClassTemplate->getDeclContext(), 5359 TemplateNameLoc, 5360 ClassTemplate, 5361 Converted.data(), 5362 Converted.size(), 5363 PrevDecl); 5364 SetNestedNameSpecifier(Specialization, SS); 5365 5366 if (!HasNoEffect && !PrevDecl) { 5367 // Insert the new specialization. 5368 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5369 } 5370 } 5371 5372 // Build the fully-sugared type for this explicit instantiation as 5373 // the user wrote in the explicit instantiation itself. This means 5374 // that we'll pretty-print the type retrieved from the 5375 // specialization's declaration the way that the user actually wrote 5376 // the explicit instantiation, rather than formatting the name based 5377 // on the "canonical" representation used to store the template 5378 // arguments in the specialization. 5379 TypeSourceInfo *WrittenTy 5380 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5381 TemplateArgs, 5382 Context.getTypeDeclType(Specialization)); 5383 Specialization->setTypeAsWritten(WrittenTy); 5384 TemplateArgsIn.release(); 5385 5386 // Set source locations for keywords. 5387 Specialization->setExternLoc(ExternLoc); 5388 Specialization->setTemplateKeywordLoc(TemplateLoc); 5389 5390 // Add the explicit instantiation into its lexical context. However, 5391 // since explicit instantiations are never found by name lookup, we 5392 // just put it into the declaration context directly. 5393 Specialization->setLexicalDeclContext(CurContext); 5394 CurContext->addDecl(Specialization); 5395 5396 // Syntax is now OK, so return if it has no other effect on semantics. 5397 if (HasNoEffect) { 5398 // Set the template specialization kind. 5399 Specialization->setTemplateSpecializationKind(TSK); 5400 return Specialization; 5401 } 5402 5403 // C++ [temp.explicit]p3: 5404 // A definition of a class template or class member template 5405 // shall be in scope at the point of the explicit instantiation of 5406 // the class template or class member template. 5407 // 5408 // This check comes when we actually try to perform the 5409 // instantiation. 5410 ClassTemplateSpecializationDecl *Def 5411 = cast_or_null<ClassTemplateSpecializationDecl>( 5412 Specialization->getDefinition()); 5413 if (!Def) 5414 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5415 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5416 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5417 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5418 } 5419 5420 // Instantiate the members of this class template specialization. 5421 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5422 Specialization->getDefinition()); 5423 if (Def) { 5424 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5425 5426 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5427 // TSK_ExplicitInstantiationDefinition 5428 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5429 TSK == TSK_ExplicitInstantiationDefinition) 5430 Def->setTemplateSpecializationKind(TSK); 5431 5432 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5433 } 5434 5435 // Set the template specialization kind. 5436 Specialization->setTemplateSpecializationKind(TSK); 5437 return Specialization; 5438} 5439 5440// Explicit instantiation of a member class of a class template. 5441DeclResult 5442Sema::ActOnExplicitInstantiation(Scope *S, 5443 SourceLocation ExternLoc, 5444 SourceLocation TemplateLoc, 5445 unsigned TagSpec, 5446 SourceLocation KWLoc, 5447 CXXScopeSpec &SS, 5448 IdentifierInfo *Name, 5449 SourceLocation NameLoc, 5450 AttributeList *Attr) { 5451 5452 bool Owned = false; 5453 bool IsDependent = false; 5454 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5455 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5456 MultiTemplateParamsArg(*this, 0, 0), 5457 Owned, IsDependent, false, false, 5458 TypeResult()); 5459 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5460 5461 if (!TagD) 5462 return true; 5463 5464 TagDecl *Tag = cast<TagDecl>(TagD); 5465 if (Tag->isEnum()) { 5466 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5467 << Context.getTypeDeclType(Tag); 5468 return true; 5469 } 5470 5471 if (Tag->isInvalidDecl()) 5472 return true; 5473 5474 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5475 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5476 if (!Pattern) { 5477 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5478 << Context.getTypeDeclType(Record); 5479 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5480 return true; 5481 } 5482 5483 // C++0x [temp.explicit]p2: 5484 // If the explicit instantiation is for a class or member class, the 5485 // elaborated-type-specifier in the declaration shall include a 5486 // simple-template-id. 5487 // 5488 // C++98 has the same restriction, just worded differently. 5489 if (!ScopeSpecifierHasTemplateId(SS)) 5490 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5491 << Record << SS.getRange(); 5492 5493 // C++0x [temp.explicit]p2: 5494 // There are two forms of explicit instantiation: an explicit instantiation 5495 // definition and an explicit instantiation declaration. An explicit 5496 // instantiation declaration begins with the extern keyword. [...] 5497 TemplateSpecializationKind TSK 5498 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5499 : TSK_ExplicitInstantiationDeclaration; 5500 5501 // C++0x [temp.explicit]p2: 5502 // [...] An explicit instantiation shall appear in an enclosing 5503 // namespace of its template. [...] 5504 // 5505 // This is C++ DR 275. 5506 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5507 5508 // Verify that it is okay to explicitly instantiate here. 5509 CXXRecordDecl *PrevDecl 5510 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5511 if (!PrevDecl && Record->getDefinition()) 5512 PrevDecl = Record; 5513 if (PrevDecl) { 5514 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5515 bool HasNoEffect = false; 5516 assert(MSInfo && "No member specialization information?"); 5517 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5518 PrevDecl, 5519 MSInfo->getTemplateSpecializationKind(), 5520 MSInfo->getPointOfInstantiation(), 5521 HasNoEffect)) 5522 return true; 5523 if (HasNoEffect) 5524 return TagD; 5525 } 5526 5527 CXXRecordDecl *RecordDef 5528 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5529 if (!RecordDef) { 5530 // C++ [temp.explicit]p3: 5531 // A definition of a member class of a class template shall be in scope 5532 // at the point of an explicit instantiation of the member class. 5533 CXXRecordDecl *Def 5534 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5535 if (!Def) { 5536 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5537 << 0 << Record->getDeclName() << Record->getDeclContext(); 5538 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5539 << Pattern; 5540 return true; 5541 } else { 5542 if (InstantiateClass(NameLoc, Record, Def, 5543 getTemplateInstantiationArgs(Record), 5544 TSK)) 5545 return true; 5546 5547 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5548 if (!RecordDef) 5549 return true; 5550 } 5551 } 5552 5553 // Instantiate all of the members of the class. 5554 InstantiateClassMembers(NameLoc, RecordDef, 5555 getTemplateInstantiationArgs(Record), TSK); 5556 5557 if (TSK == TSK_ExplicitInstantiationDefinition) 5558 MarkVTableUsed(NameLoc, RecordDef, true); 5559 5560 // FIXME: We don't have any representation for explicit instantiations of 5561 // member classes. Such a representation is not needed for compilation, but it 5562 // should be available for clients that want to see all of the declarations in 5563 // the source code. 5564 return TagD; 5565} 5566 5567DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5568 SourceLocation ExternLoc, 5569 SourceLocation TemplateLoc, 5570 Declarator &D) { 5571 // Explicit instantiations always require a name. 5572 // TODO: check if/when DNInfo should replace Name. 5573 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5574 DeclarationName Name = NameInfo.getName(); 5575 if (!Name) { 5576 if (!D.isInvalidType()) 5577 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5578 diag::err_explicit_instantiation_requires_name) 5579 << D.getDeclSpec().getSourceRange() 5580 << D.getSourceRange(); 5581 5582 return true; 5583 } 5584 5585 // The scope passed in may not be a decl scope. Zip up the scope tree until 5586 // we find one that is. 5587 while ((S->getFlags() & Scope::DeclScope) == 0 || 5588 (S->getFlags() & Scope::TemplateParamScope) != 0) 5589 S = S->getParent(); 5590 5591 // Determine the type of the declaration. 5592 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5593 QualType R = T->getType(); 5594 if (R.isNull()) 5595 return true; 5596 5597 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5598 // Cannot explicitly instantiate a typedef. 5599 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5600 << Name; 5601 return true; 5602 } 5603 5604 // C++0x [temp.explicit]p1: 5605 // [...] An explicit instantiation of a function template shall not use the 5606 // inline or constexpr specifiers. 5607 // Presumably, this also applies to member functions of class templates as 5608 // well. 5609 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5610 Diag(D.getDeclSpec().getInlineSpecLoc(), 5611 diag::err_explicit_instantiation_inline) 5612 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5613 5614 // FIXME: check for constexpr specifier. 5615 5616 // C++0x [temp.explicit]p2: 5617 // There are two forms of explicit instantiation: an explicit instantiation 5618 // definition and an explicit instantiation declaration. An explicit 5619 // instantiation declaration begins with the extern keyword. [...] 5620 TemplateSpecializationKind TSK 5621 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5622 : TSK_ExplicitInstantiationDeclaration; 5623 5624 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5625 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5626 5627 if (!R->isFunctionType()) { 5628 // C++ [temp.explicit]p1: 5629 // A [...] static data member of a class template can be explicitly 5630 // instantiated from the member definition associated with its class 5631 // template. 5632 if (Previous.isAmbiguous()) 5633 return true; 5634 5635 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5636 if (!Prev || !Prev->isStaticDataMember()) { 5637 // We expect to see a data data member here. 5638 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5639 << Name; 5640 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5641 P != PEnd; ++P) 5642 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5643 return true; 5644 } 5645 5646 if (!Prev->getInstantiatedFromStaticDataMember()) { 5647 // FIXME: Check for explicit specialization? 5648 Diag(D.getIdentifierLoc(), 5649 diag::err_explicit_instantiation_data_member_not_instantiated) 5650 << Prev; 5651 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5652 // FIXME: Can we provide a note showing where this was declared? 5653 return true; 5654 } 5655 5656 // C++0x [temp.explicit]p2: 5657 // If the explicit instantiation is for a member function, a member class 5658 // or a static data member of a class template specialization, the name of 5659 // the class template specialization in the qualified-id for the member 5660 // name shall be a simple-template-id. 5661 // 5662 // C++98 has the same restriction, just worded differently. 5663 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5664 Diag(D.getIdentifierLoc(), 5665 diag::ext_explicit_instantiation_without_qualified_id) 5666 << Prev << D.getCXXScopeSpec().getRange(); 5667 5668 // Check the scope of this explicit instantiation. 5669 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5670 5671 // Verify that it is okay to explicitly instantiate here. 5672 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5673 assert(MSInfo && "Missing static data member specialization info?"); 5674 bool HasNoEffect = false; 5675 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5676 MSInfo->getTemplateSpecializationKind(), 5677 MSInfo->getPointOfInstantiation(), 5678 HasNoEffect)) 5679 return true; 5680 if (HasNoEffect) 5681 return (Decl*) 0; 5682 5683 // Instantiate static data member. 5684 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5685 if (TSK == TSK_ExplicitInstantiationDefinition) 5686 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5687 5688 // FIXME: Create an ExplicitInstantiation node? 5689 return (Decl*) 0; 5690 } 5691 5692 // If the declarator is a template-id, translate the parser's template 5693 // argument list into our AST format. 5694 bool HasExplicitTemplateArgs = false; 5695 TemplateArgumentListInfo TemplateArgs; 5696 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5697 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5698 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5699 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5700 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5701 TemplateId->getTemplateArgs(), 5702 TemplateId->NumArgs); 5703 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5704 HasExplicitTemplateArgs = true; 5705 TemplateArgsPtr.release(); 5706 } 5707 5708 // C++ [temp.explicit]p1: 5709 // A [...] function [...] can be explicitly instantiated from its template. 5710 // A member function [...] of a class template can be explicitly 5711 // instantiated from the member definition associated with its class 5712 // template. 5713 UnresolvedSet<8> Matches; 5714 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5715 P != PEnd; ++P) { 5716 NamedDecl *Prev = *P; 5717 if (!HasExplicitTemplateArgs) { 5718 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5719 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5720 Matches.clear(); 5721 5722 Matches.addDecl(Method, P.getAccess()); 5723 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5724 break; 5725 } 5726 } 5727 } 5728 5729 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5730 if (!FunTmpl) 5731 continue; 5732 5733 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5734 FunctionDecl *Specialization = 0; 5735 if (TemplateDeductionResult TDK 5736 = DeduceTemplateArguments(FunTmpl, 5737 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5738 R, Specialization, Info)) { 5739 // FIXME: Keep track of almost-matches? 5740 (void)TDK; 5741 continue; 5742 } 5743 5744 Matches.addDecl(Specialization, P.getAccess()); 5745 } 5746 5747 // Find the most specialized function template specialization. 5748 UnresolvedSetIterator Result 5749 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 5750 D.getIdentifierLoc(), 5751 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5752 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5753 PDiag(diag::note_explicit_instantiation_candidate)); 5754 5755 if (Result == Matches.end()) 5756 return true; 5757 5758 // Ignore access control bits, we don't need them for redeclaration checking. 5759 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5760 5761 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5762 Diag(D.getIdentifierLoc(), 5763 diag::err_explicit_instantiation_member_function_not_instantiated) 5764 << Specialization 5765 << (Specialization->getTemplateSpecializationKind() == 5766 TSK_ExplicitSpecialization); 5767 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5768 return true; 5769 } 5770 5771 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5772 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5773 PrevDecl = Specialization; 5774 5775 if (PrevDecl) { 5776 bool HasNoEffect = false; 5777 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5778 PrevDecl, 5779 PrevDecl->getTemplateSpecializationKind(), 5780 PrevDecl->getPointOfInstantiation(), 5781 HasNoEffect)) 5782 return true; 5783 5784 // FIXME: We may still want to build some representation of this 5785 // explicit specialization. 5786 if (HasNoEffect) 5787 return (Decl*) 0; 5788 } 5789 5790 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5791 5792 if (TSK == TSK_ExplicitInstantiationDefinition) 5793 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5794 5795 // C++0x [temp.explicit]p2: 5796 // If the explicit instantiation is for a member function, a member class 5797 // or a static data member of a class template specialization, the name of 5798 // the class template specialization in the qualified-id for the member 5799 // name shall be a simple-template-id. 5800 // 5801 // C++98 has the same restriction, just worded differently. 5802 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5803 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5804 D.getCXXScopeSpec().isSet() && 5805 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5806 Diag(D.getIdentifierLoc(), 5807 diag::ext_explicit_instantiation_without_qualified_id) 5808 << Specialization << D.getCXXScopeSpec().getRange(); 5809 5810 CheckExplicitInstantiationScope(*this, 5811 FunTmpl? (NamedDecl *)FunTmpl 5812 : Specialization->getInstantiatedFromMemberFunction(), 5813 D.getIdentifierLoc(), 5814 D.getCXXScopeSpec().isSet()); 5815 5816 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5817 return (Decl*) 0; 5818} 5819 5820TypeResult 5821Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5822 const CXXScopeSpec &SS, IdentifierInfo *Name, 5823 SourceLocation TagLoc, SourceLocation NameLoc) { 5824 // This has to hold, because SS is expected to be defined. 5825 assert(Name && "Expected a name in a dependent tag"); 5826 5827 NestedNameSpecifier *NNS 5828 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5829 if (!NNS) 5830 return true; 5831 5832 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5833 5834 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5835 Diag(NameLoc, diag::err_dependent_tag_decl) 5836 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5837 return true; 5838 } 5839 5840 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5841 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5842} 5843 5844TypeResult 5845Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5846 const CXXScopeSpec &SS, const IdentifierInfo &II, 5847 SourceLocation IdLoc) { 5848 NestedNameSpecifier *NNS 5849 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5850 if (!NNS) 5851 return true; 5852 5853 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5854 !getLangOptions().CPlusPlus0x) 5855 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5856 << FixItHint::CreateRemoval(TypenameLoc); 5857 5858 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5859 TypenameLoc, SS.getRange(), IdLoc); 5860 if (T.isNull()) 5861 return true; 5862 5863 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5864 if (isa<DependentNameType>(T)) { 5865 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5866 TL.setKeywordLoc(TypenameLoc); 5867 TL.setQualifierRange(SS.getRange()); 5868 TL.setNameLoc(IdLoc); 5869 } else { 5870 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5871 TL.setKeywordLoc(TypenameLoc); 5872 TL.setQualifierRange(SS.getRange()); 5873 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5874 } 5875 5876 return CreateParsedType(T, TSI); 5877} 5878 5879TypeResult 5880Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5881 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5882 ParsedType Ty) { 5883 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5884 !getLangOptions().CPlusPlus0x) 5885 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5886 << FixItHint::CreateRemoval(TypenameLoc); 5887 5888 TypeSourceInfo *InnerTSI = 0; 5889 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5890 5891 assert(isa<TemplateSpecializationType>(T) && 5892 "Expected a template specialization type"); 5893 5894 if (computeDeclContext(SS, false)) { 5895 // If we can compute a declaration context, then the "typename" 5896 // keyword was superfluous. Just build an ElaboratedType to keep 5897 // track of the nested-name-specifier. 5898 5899 // Push the inner type, preserving its source locations if possible. 5900 TypeLocBuilder Builder; 5901 if (InnerTSI) 5902 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5903 else 5904 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(Context, 5905 TemplateLoc); 5906 5907 /* Note: NNS already embedded in template specialization type T. */ 5908 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5909 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5910 TL.setKeywordLoc(TypenameLoc); 5911 TL.setQualifierRange(SS.getRange()); 5912 5913 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5914 return CreateParsedType(T, TSI); 5915 } 5916 5917 // TODO: it's really silly that we make a template specialization 5918 // type earlier only to drop it again here. 5919 const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5920 DependentTemplateName *DTN = 5921 TST->getTemplateName().getAsDependentTemplateName(); 5922 assert(DTN && "dependent template has non-dependent name?"); 5923 assert(DTN->getQualifier() 5924 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5925 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5926 DTN->getQualifier(), 5927 DTN->getIdentifier(), 5928 TST->getNumArgs(), 5929 TST->getArgs()); 5930 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5931 DependentTemplateSpecializationTypeLoc TL = 5932 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5933 if (InnerTSI) { 5934 TemplateSpecializationTypeLoc TSTL = 5935 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5936 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5937 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5938 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5939 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5940 } else { 5941 // FIXME: Poor source-location information here. 5942 TL.initializeLocal(Context, TemplateLoc); 5943 } 5944 TL.setKeywordLoc(TypenameLoc); 5945 TL.setQualifierRange(SS.getRange()); 5946 return CreateParsedType(T, TSI); 5947} 5948 5949/// \brief Build the type that describes a C++ typename specifier, 5950/// e.g., "typename T::type". 5951QualType 5952Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5953 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5954 SourceLocation KeywordLoc, SourceRange NNSRange, 5955 SourceLocation IILoc) { 5956 CXXScopeSpec SS; 5957 SS.setScopeRep(NNS); 5958 SS.setRange(NNSRange); 5959 5960 DeclContext *Ctx = computeDeclContext(SS); 5961 if (!Ctx) { 5962 // If the nested-name-specifier is dependent and couldn't be 5963 // resolved to a type, build a typename type. 5964 assert(NNS->isDependent()); 5965 return Context.getDependentNameType(Keyword, NNS, &II); 5966 } 5967 5968 // If the nested-name-specifier refers to the current instantiation, 5969 // the "typename" keyword itself is superfluous. In C++03, the 5970 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5971 // allows such extraneous "typename" keywords, and we retroactively 5972 // apply this DR to C++03 code with only a warning. In any case we continue. 5973 5974 if (RequireCompleteDeclContext(SS, Ctx)) 5975 return QualType(); 5976 5977 DeclarationName Name(&II); 5978 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5979 LookupQualifiedName(Result, Ctx); 5980 unsigned DiagID = 0; 5981 Decl *Referenced = 0; 5982 switch (Result.getResultKind()) { 5983 case LookupResult::NotFound: 5984 DiagID = diag::err_typename_nested_not_found; 5985 break; 5986 5987 case LookupResult::FoundUnresolvedValue: { 5988 // We found a using declaration that is a value. Most likely, the using 5989 // declaration itself is meant to have the 'typename' keyword. 5990 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5991 IILoc); 5992 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 5993 << Name << Ctx << FullRange; 5994 if (UnresolvedUsingValueDecl *Using 5995 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 5996 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 5997 Diag(Loc, diag::note_using_value_decl_missing_typename) 5998 << FixItHint::CreateInsertion(Loc, "typename "); 5999 } 6000 } 6001 // Fall through to create a dependent typename type, from which we can recover 6002 // better. 6003 6004 case LookupResult::NotFoundInCurrentInstantiation: 6005 // Okay, it's a member of an unknown instantiation. 6006 return Context.getDependentNameType(Keyword, NNS, &II); 6007 6008 case LookupResult::Found: 6009 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6010 // We found a type. Build an ElaboratedType, since the 6011 // typename-specifier was just sugar. 6012 return Context.getElaboratedType(ETK_Typename, NNS, 6013 Context.getTypeDeclType(Type)); 6014 } 6015 6016 DiagID = diag::err_typename_nested_not_type; 6017 Referenced = Result.getFoundDecl(); 6018 break; 6019 6020 6021 llvm_unreachable("unresolved using decl in non-dependent context"); 6022 return QualType(); 6023 6024 case LookupResult::FoundOverloaded: 6025 DiagID = diag::err_typename_nested_not_type; 6026 Referenced = *Result.begin(); 6027 break; 6028 6029 case LookupResult::Ambiguous: 6030 return QualType(); 6031 } 6032 6033 // If we get here, it's because name lookup did not find a 6034 // type. Emit an appropriate diagnostic and return an error. 6035 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 6036 IILoc); 6037 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6038 if (Referenced) 6039 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6040 << Name; 6041 return QualType(); 6042} 6043 6044namespace { 6045 // See Sema::RebuildTypeInCurrentInstantiation 6046 class CurrentInstantiationRebuilder 6047 : public TreeTransform<CurrentInstantiationRebuilder> { 6048 SourceLocation Loc; 6049 DeclarationName Entity; 6050 6051 public: 6052 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6053 6054 CurrentInstantiationRebuilder(Sema &SemaRef, 6055 SourceLocation Loc, 6056 DeclarationName Entity) 6057 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6058 Loc(Loc), Entity(Entity) { } 6059 6060 /// \brief Determine whether the given type \p T has already been 6061 /// transformed. 6062 /// 6063 /// For the purposes of type reconstruction, a type has already been 6064 /// transformed if it is NULL or if it is not dependent. 6065 bool AlreadyTransformed(QualType T) { 6066 return T.isNull() || !T->isDependentType(); 6067 } 6068 6069 /// \brief Returns the location of the entity whose type is being 6070 /// rebuilt. 6071 SourceLocation getBaseLocation() { return Loc; } 6072 6073 /// \brief Returns the name of the entity whose type is being rebuilt. 6074 DeclarationName getBaseEntity() { return Entity; } 6075 6076 /// \brief Sets the "base" location and entity when that 6077 /// information is known based on another transformation. 6078 void setBase(SourceLocation Loc, DeclarationName Entity) { 6079 this->Loc = Loc; 6080 this->Entity = Entity; 6081 } 6082 }; 6083} 6084 6085/// \brief Rebuilds a type within the context of the current instantiation. 6086/// 6087/// The type \p T is part of the type of an out-of-line member definition of 6088/// a class template (or class template partial specialization) that was parsed 6089/// and constructed before we entered the scope of the class template (or 6090/// partial specialization thereof). This routine will rebuild that type now 6091/// that we have entered the declarator's scope, which may produce different 6092/// canonical types, e.g., 6093/// 6094/// \code 6095/// template<typename T> 6096/// struct X { 6097/// typedef T* pointer; 6098/// pointer data(); 6099/// }; 6100/// 6101/// template<typename T> 6102/// typename X<T>::pointer X<T>::data() { ... } 6103/// \endcode 6104/// 6105/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6106/// since we do not know that we can look into X<T> when we parsed the type. 6107/// This function will rebuild the type, performing the lookup of "pointer" 6108/// in X<T> and returning an ElaboratedType whose canonical type is the same 6109/// as the canonical type of T*, allowing the return types of the out-of-line 6110/// definition and the declaration to match. 6111TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6112 SourceLocation Loc, 6113 DeclarationName Name) { 6114 if (!T || !T->getType()->isDependentType()) 6115 return T; 6116 6117 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6118 return Rebuilder.TransformType(T); 6119} 6120 6121ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6122 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6123 DeclarationName()); 6124 return Rebuilder.TransformExpr(E); 6125} 6126 6127bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6128 if (SS.isInvalid()) return true; 6129 6130 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 6131 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6132 DeclarationName()); 6133 NestedNameSpecifier *Rebuilt = 6134 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 6135 if (!Rebuilt) return true; 6136 6137 SS.setScopeRep(Rebuilt); 6138 return false; 6139} 6140 6141/// \brief Produces a formatted string that describes the binding of 6142/// template parameters to template arguments. 6143std::string 6144Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6145 const TemplateArgumentList &Args) { 6146 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6147} 6148 6149std::string 6150Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6151 const TemplateArgument *Args, 6152 unsigned NumArgs) { 6153 llvm::SmallString<128> Str; 6154 llvm::raw_svector_ostream Out(Str); 6155 6156 if (!Params || Params->size() == 0 || NumArgs == 0) 6157 return std::string(); 6158 6159 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6160 if (I >= NumArgs) 6161 break; 6162 6163 if (I == 0) 6164 Out << "[with "; 6165 else 6166 Out << ", "; 6167 6168 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6169 Out << Id->getName(); 6170 } else { 6171 Out << '$' << I; 6172 } 6173 6174 Out << " = "; 6175 Args[I].print(Context.PrintingPolicy, Out); 6176 } 6177 6178 Out << ']'; 6179 return Out.str(); 6180} 6181