SemaTemplate.cpp revision c57c17dced5fb16a83a2ffb2b7e8c148df69ba5a
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  DeclContext *DC = getFunctionLevelDeclContext();
372
373  if (!isAddressOfOperand &&
374      isa<CXXMethodDecl>(DC) &&
375      cast<CXXMethodDecl>(DC)->isInstance()) {
376    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
377
378    // Since the 'this' expression is synthesized, we don't need to
379    // perform the double-lookup check.
380    NamedDecl *FirstQualifierInScope = 0;
381
382    return Owned(CXXDependentScopeMemberExpr::Create(Context,
383                                                     /*This*/ 0, ThisType,
384                                                     /*IsArrow*/ true,
385                                                     /*Op*/ SourceLocation(),
386                                               SS.getWithLocInContext(Context),
387                                                     FirstQualifierInScope,
388                                                     NameInfo,
389                                                     TemplateArgs));
390  }
391
392  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
393}
394
395ExprResult
396Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
397                                const DeclarationNameInfo &NameInfo,
398                                const TemplateArgumentListInfo *TemplateArgs) {
399  return Owned(DependentScopeDeclRefExpr::Create(Context,
400                                               SS.getWithLocInContext(Context),
401                                                 NameInfo,
402                                                 TemplateArgs));
403}
404
405/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
406/// that the template parameter 'PrevDecl' is being shadowed by a new
407/// declaration at location Loc. Returns true to indicate that this is
408/// an error, and false otherwise.
409bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
410  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
411
412  // Microsoft Visual C++ permits template parameters to be shadowed.
413  if (getLangOptions().Microsoft)
414    return false;
415
416  // C++ [temp.local]p4:
417  //   A template-parameter shall not be redeclared within its
418  //   scope (including nested scopes).
419  Diag(Loc, diag::err_template_param_shadow)
420    << cast<NamedDecl>(PrevDecl)->getDeclName();
421  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
422  return true;
423}
424
425/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
426/// the parameter D to reference the templated declaration and return a pointer
427/// to the template declaration. Otherwise, do nothing to D and return null.
428TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
429  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
430    D = Temp->getTemplatedDecl();
431    return Temp;
432  }
433  return 0;
434}
435
436ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
437                                             SourceLocation EllipsisLoc) const {
438  assert(Kind == Template &&
439         "Only template template arguments can be pack expansions here");
440  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
441         "Template template argument pack expansion without packs");
442  ParsedTemplateArgument Result(*this);
443  Result.EllipsisLoc = EllipsisLoc;
444  return Result;
445}
446
447static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
448                                            const ParsedTemplateArgument &Arg) {
449
450  switch (Arg.getKind()) {
451  case ParsedTemplateArgument::Type: {
452    TypeSourceInfo *DI;
453    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
454    if (!DI)
455      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
456    return TemplateArgumentLoc(TemplateArgument(T), DI);
457  }
458
459  case ParsedTemplateArgument::NonType: {
460    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
461    return TemplateArgumentLoc(TemplateArgument(E), E);
462  }
463
464  case ParsedTemplateArgument::Template: {
465    TemplateName Template = Arg.getAsTemplate().get();
466    TemplateArgument TArg;
467    if (Arg.getEllipsisLoc().isValid())
468      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
469    else
470      TArg = Template;
471    return TemplateArgumentLoc(TArg,
472                               Arg.getScopeSpec().getWithLocInContext(
473                                                              SemaRef.Context),
474                               Arg.getLocation(),
475                               Arg.getEllipsisLoc());
476  }
477  }
478
479  llvm_unreachable("Unhandled parsed template argument");
480  return TemplateArgumentLoc();
481}
482
483/// \brief Translates template arguments as provided by the parser
484/// into template arguments used by semantic analysis.
485void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
486                                      TemplateArgumentListInfo &TemplateArgs) {
487 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
488   TemplateArgs.addArgument(translateTemplateArgument(*this,
489                                                      TemplateArgsIn[I]));
490}
491
492/// ActOnTypeParameter - Called when a C++ template type parameter
493/// (e.g., "typename T") has been parsed. Typename specifies whether
494/// the keyword "typename" was used to declare the type parameter
495/// (otherwise, "class" was used), and KeyLoc is the location of the
496/// "class" or "typename" keyword. ParamName is the name of the
497/// parameter (NULL indicates an unnamed template parameter) and
498/// ParamName is the location of the parameter name (if any).
499/// If the type parameter has a default argument, it will be added
500/// later via ActOnTypeParameterDefault.
501Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
502                               SourceLocation EllipsisLoc,
503                               SourceLocation KeyLoc,
504                               IdentifierInfo *ParamName,
505                               SourceLocation ParamNameLoc,
506                               unsigned Depth, unsigned Position,
507                               SourceLocation EqualLoc,
508                               ParsedType DefaultArg) {
509  assert(S->isTemplateParamScope() &&
510         "Template type parameter not in template parameter scope!");
511  bool Invalid = false;
512
513  if (ParamName) {
514    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
515                                           LookupOrdinaryName,
516                                           ForRedeclaration);
517    if (PrevDecl && PrevDecl->isTemplateParameter())
518      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
519                                                           PrevDecl);
520  }
521
522  SourceLocation Loc = ParamNameLoc;
523  if (!ParamName)
524    Loc = KeyLoc;
525
526  TemplateTypeParmDecl *Param
527    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
528                                   KeyLoc, Loc, Depth, Position, ParamName,
529                                   Typename, Ellipsis);
530  Param->setAccess(AS_public);
531  if (Invalid)
532    Param->setInvalidDecl();
533
534  if (ParamName) {
535    // Add the template parameter into the current scope.
536    S->AddDecl(Param);
537    IdResolver.AddDecl(Param);
538  }
539
540  // C++0x [temp.param]p9:
541  //   A default template-argument may be specified for any kind of
542  //   template-parameter that is not a template parameter pack.
543  if (DefaultArg && Ellipsis) {
544    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
545    DefaultArg = ParsedType();
546  }
547
548  // Handle the default argument, if provided.
549  if (DefaultArg) {
550    TypeSourceInfo *DefaultTInfo;
551    GetTypeFromParser(DefaultArg, &DefaultTInfo);
552
553    assert(DefaultTInfo && "expected source information for type");
554
555    // Check for unexpanded parameter packs.
556    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
557                                        UPPC_DefaultArgument))
558      return Param;
559
560    // Check the template argument itself.
561    if (CheckTemplateArgument(Param, DefaultTInfo)) {
562      Param->setInvalidDecl();
563      return Param;
564    }
565
566    Param->setDefaultArgument(DefaultTInfo, false);
567  }
568
569  return Param;
570}
571
572/// \brief Check that the type of a non-type template parameter is
573/// well-formed.
574///
575/// \returns the (possibly-promoted) parameter type if valid;
576/// otherwise, produces a diagnostic and returns a NULL type.
577QualType
578Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
579  // We don't allow variably-modified types as the type of non-type template
580  // parameters.
581  if (T->isVariablyModifiedType()) {
582    Diag(Loc, diag::err_variably_modified_nontype_template_param)
583      << T;
584    return QualType();
585  }
586
587  // C++ [temp.param]p4:
588  //
589  // A non-type template-parameter shall have one of the following
590  // (optionally cv-qualified) types:
591  //
592  //       -- integral or enumeration type,
593  if (T->isIntegralOrEnumerationType() ||
594      //   -- pointer to object or pointer to function,
595      T->isPointerType() ||
596      //   -- reference to object or reference to function,
597      T->isReferenceType() ||
598      //   -- pointer to member.
599      T->isMemberPointerType() ||
600      // If T is a dependent type, we can't do the check now, so we
601      // assume that it is well-formed.
602      T->isDependentType())
603    return T;
604  // C++ [temp.param]p8:
605  //
606  //   A non-type template-parameter of type "array of T" or
607  //   "function returning T" is adjusted to be of type "pointer to
608  //   T" or "pointer to function returning T", respectively.
609  else if (T->isArrayType())
610    // FIXME: Keep the type prior to promotion?
611    return Context.getArrayDecayedType(T);
612  else if (T->isFunctionType())
613    // FIXME: Keep the type prior to promotion?
614    return Context.getPointerType(T);
615
616  Diag(Loc, diag::err_template_nontype_parm_bad_type)
617    << T;
618
619  return QualType();
620}
621
622Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
623                                          unsigned Depth,
624                                          unsigned Position,
625                                          SourceLocation EqualLoc,
626                                          Expr *Default) {
627  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
628  QualType T = TInfo->getType();
629
630  assert(S->isTemplateParamScope() &&
631         "Non-type template parameter not in template parameter scope!");
632  bool Invalid = false;
633
634  IdentifierInfo *ParamName = D.getIdentifier();
635  if (ParamName) {
636    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
637                                           LookupOrdinaryName,
638                                           ForRedeclaration);
639    if (PrevDecl && PrevDecl->isTemplateParameter())
640      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
641                                                           PrevDecl);
642  }
643
644  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
645  if (T.isNull()) {
646    T = Context.IntTy; // Recover with an 'int' type.
647    Invalid = true;
648  }
649
650  bool IsParameterPack = D.hasEllipsis();
651  NonTypeTemplateParmDecl *Param
652    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
653                                      D.getSourceRange().getBegin(),
654                                      D.getIdentifierLoc(),
655                                      Depth, Position, ParamName, T,
656                                      IsParameterPack, TInfo);
657  Param->setAccess(AS_public);
658
659  if (Invalid)
660    Param->setInvalidDecl();
661
662  if (D.getIdentifier()) {
663    // Add the template parameter into the current scope.
664    S->AddDecl(Param);
665    IdResolver.AddDecl(Param);
666  }
667
668  // C++0x [temp.param]p9:
669  //   A default template-argument may be specified for any kind of
670  //   template-parameter that is not a template parameter pack.
671  if (Default && IsParameterPack) {
672    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
673    Default = 0;
674  }
675
676  // Check the well-formedness of the default template argument, if provided.
677  if (Default) {
678    // Check for unexpanded parameter packs.
679    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
680      return Param;
681
682    TemplateArgument Converted;
683    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
684      Param->setInvalidDecl();
685      return Param;
686    }
687
688    Param->setDefaultArgument(Default, false);
689  }
690
691  return Param;
692}
693
694/// ActOnTemplateTemplateParameter - Called when a C++ template template
695/// parameter (e.g. T in template <template <typename> class T> class array)
696/// has been parsed. S is the current scope.
697Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
698                                           SourceLocation TmpLoc,
699                                           TemplateParamsTy *Params,
700                                           SourceLocation EllipsisLoc,
701                                           IdentifierInfo *Name,
702                                           SourceLocation NameLoc,
703                                           unsigned Depth,
704                                           unsigned Position,
705                                           SourceLocation EqualLoc,
706                                           ParsedTemplateArgument Default) {
707  assert(S->isTemplateParamScope() &&
708         "Template template parameter not in template parameter scope!");
709
710  // Construct the parameter object.
711  bool IsParameterPack = EllipsisLoc.isValid();
712  TemplateTemplateParmDecl *Param =
713    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
714                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
715                                     Depth, Position, IsParameterPack,
716                                     Name, Params);
717  Param->setAccess(AS_public);
718
719  // If the template template parameter has a name, then link the identifier
720  // into the scope and lookup mechanisms.
721  if (Name) {
722    S->AddDecl(Param);
723    IdResolver.AddDecl(Param);
724  }
725
726  if (Params->size() == 0) {
727    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
728    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
729    Param->setInvalidDecl();
730  }
731
732  // C++0x [temp.param]p9:
733  //   A default template-argument may be specified for any kind of
734  //   template-parameter that is not a template parameter pack.
735  if (IsParameterPack && !Default.isInvalid()) {
736    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
737    Default = ParsedTemplateArgument();
738  }
739
740  if (!Default.isInvalid()) {
741    // Check only that we have a template template argument. We don't want to
742    // try to check well-formedness now, because our template template parameter
743    // might have dependent types in its template parameters, which we wouldn't
744    // be able to match now.
745    //
746    // If none of the template template parameter's template arguments mention
747    // other template parameters, we could actually perform more checking here.
748    // However, it isn't worth doing.
749    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
750    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
751      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
752        << DefaultArg.getSourceRange();
753      return Param;
754    }
755
756    // Check for unexpanded parameter packs.
757    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
758                                        DefaultArg.getArgument().getAsTemplate(),
759                                        UPPC_DefaultArgument))
760      return Param;
761
762    Param->setDefaultArgument(DefaultArg, false);
763  }
764
765  return Param;
766}
767
768/// ActOnTemplateParameterList - Builds a TemplateParameterList that
769/// contains the template parameters in Params/NumParams.
770Sema::TemplateParamsTy *
771Sema::ActOnTemplateParameterList(unsigned Depth,
772                                 SourceLocation ExportLoc,
773                                 SourceLocation TemplateLoc,
774                                 SourceLocation LAngleLoc,
775                                 Decl **Params, unsigned NumParams,
776                                 SourceLocation RAngleLoc) {
777  if (ExportLoc.isValid())
778    Diag(ExportLoc, diag::warn_template_export_unsupported);
779
780  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
781                                       (NamedDecl**)Params, NumParams,
782                                       RAngleLoc);
783}
784
785static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
786  if (SS.isSet())
787    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
788}
789
790DeclResult
791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
792                         SourceLocation KWLoc, CXXScopeSpec &SS,
793                         IdentifierInfo *Name, SourceLocation NameLoc,
794                         AttributeList *Attr,
795                         TemplateParameterList *TemplateParams,
796                         AccessSpecifier AS,
797                         unsigned NumOuterTemplateParamLists,
798                         TemplateParameterList** OuterTemplateParamLists) {
799  assert(TemplateParams && TemplateParams->size() > 0 &&
800         "No template parameters");
801  assert(TUK != TUK_Reference && "Can only declare or define class templates");
802  bool Invalid = false;
803
804  // Check that we can declare a template here.
805  if (CheckTemplateDeclScope(S, TemplateParams))
806    return true;
807
808  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
809  assert(Kind != TTK_Enum && "can't build template of enumerated type");
810
811  // There is no such thing as an unnamed class template.
812  if (!Name) {
813    Diag(KWLoc, diag::err_template_unnamed_class);
814    return true;
815  }
816
817  // Find any previous declaration with this name.
818  DeclContext *SemanticContext;
819  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
820                        ForRedeclaration);
821  if (SS.isNotEmpty() && !SS.isInvalid()) {
822    SemanticContext = computeDeclContext(SS, true);
823    if (!SemanticContext) {
824      // FIXME: Produce a reasonable diagnostic here
825      return true;
826    }
827
828    if (RequireCompleteDeclContext(SS, SemanticContext))
829      return true;
830
831    LookupQualifiedName(Previous, SemanticContext);
832  } else {
833    SemanticContext = CurContext;
834    LookupName(Previous, S);
835  }
836
837  if (Previous.isAmbiguous())
838    return true;
839
840  NamedDecl *PrevDecl = 0;
841  if (Previous.begin() != Previous.end())
842    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
843
844  // If there is a previous declaration with the same name, check
845  // whether this is a valid redeclaration.
846  ClassTemplateDecl *PrevClassTemplate
847    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
848
849  // We may have found the injected-class-name of a class template,
850  // class template partial specialization, or class template specialization.
851  // In these cases, grab the template that is being defined or specialized.
852  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
853      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
854    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
855    PrevClassTemplate
856      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
857    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
858      PrevClassTemplate
859        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
860            ->getSpecializedTemplate();
861    }
862  }
863
864  if (TUK == TUK_Friend) {
865    // C++ [namespace.memdef]p3:
866    //   [...] When looking for a prior declaration of a class or a function
867    //   declared as a friend, and when the name of the friend class or
868    //   function is neither a qualified name nor a template-id, scopes outside
869    //   the innermost enclosing namespace scope are not considered.
870    if (!SS.isSet()) {
871      DeclContext *OutermostContext = CurContext;
872      while (!OutermostContext->isFileContext())
873        OutermostContext = OutermostContext->getLookupParent();
874
875      if (PrevDecl &&
876          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
877           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
878        SemanticContext = PrevDecl->getDeclContext();
879      } else {
880        // Declarations in outer scopes don't matter. However, the outermost
881        // context we computed is the semantic context for our new
882        // declaration.
883        PrevDecl = PrevClassTemplate = 0;
884        SemanticContext = OutermostContext;
885      }
886    }
887
888    if (CurContext->isDependentContext()) {
889      // If this is a dependent context, we don't want to link the friend
890      // class template to the template in scope, because that would perform
891      // checking of the template parameter lists that can't be performed
892      // until the outer context is instantiated.
893      PrevDecl = PrevClassTemplate = 0;
894    }
895  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
896    PrevDecl = PrevClassTemplate = 0;
897
898  if (PrevClassTemplate) {
899    // Ensure that the template parameter lists are compatible.
900    if (!TemplateParameterListsAreEqual(TemplateParams,
901                                   PrevClassTemplate->getTemplateParameters(),
902                                        /*Complain=*/true,
903                                        TPL_TemplateMatch))
904      return true;
905
906    // C++ [temp.class]p4:
907    //   In a redeclaration, partial specialization, explicit
908    //   specialization or explicit instantiation of a class template,
909    //   the class-key shall agree in kind with the original class
910    //   template declaration (7.1.5.3).
911    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
912    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
913      Diag(KWLoc, diag::err_use_with_wrong_tag)
914        << Name
915        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
916      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
917      Kind = PrevRecordDecl->getTagKind();
918    }
919
920    // Check for redefinition of this class template.
921    if (TUK == TUK_Definition) {
922      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
923        Diag(NameLoc, diag::err_redefinition) << Name;
924        Diag(Def->getLocation(), diag::note_previous_definition);
925        // FIXME: Would it make sense to try to "forget" the previous
926        // definition, as part of error recovery?
927        return true;
928      }
929    }
930  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
931    // Maybe we will complain about the shadowed template parameter.
932    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
933    // Just pretend that we didn't see the previous declaration.
934    PrevDecl = 0;
935  } else if (PrevDecl) {
936    // C++ [temp]p5:
937    //   A class template shall not have the same name as any other
938    //   template, class, function, object, enumeration, enumerator,
939    //   namespace, or type in the same scope (3.3), except as specified
940    //   in (14.5.4).
941    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
942    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
943    return true;
944  }
945
946  // Check the template parameter list of this declaration, possibly
947  // merging in the template parameter list from the previous class
948  // template declaration.
949  if (CheckTemplateParameterList(TemplateParams,
950            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
951                                 (SS.isSet() && SemanticContext &&
952                                  SemanticContext->isRecord() &&
953                                  SemanticContext->isDependentContext())
954                                   ? TPC_ClassTemplateMember
955                                   : TPC_ClassTemplate))
956    Invalid = true;
957
958  if (SS.isSet()) {
959    // If the name of the template was qualified, we must be defining the
960    // template out-of-line.
961    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
962        !(TUK == TUK_Friend && CurContext->isDependentContext()))
963      Diag(NameLoc, diag::err_member_def_does_not_match)
964        << Name << SemanticContext << SS.getRange();
965  }
966
967  CXXRecordDecl *NewClass =
968    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
969                          PrevClassTemplate?
970                            PrevClassTemplate->getTemplatedDecl() : 0,
971                          /*DelayTypeCreation=*/true);
972  SetNestedNameSpecifier(NewClass, SS);
973  if (NumOuterTemplateParamLists > 0)
974    NewClass->setTemplateParameterListsInfo(Context,
975                                            NumOuterTemplateParamLists,
976                                            OuterTemplateParamLists);
977
978  ClassTemplateDecl *NewTemplate
979    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
980                                DeclarationName(Name), TemplateParams,
981                                NewClass, PrevClassTemplate);
982  NewClass->setDescribedClassTemplate(NewTemplate);
983
984  // Build the type for the class template declaration now.
985  QualType T = NewTemplate->getInjectedClassNameSpecialization();
986  T = Context.getInjectedClassNameType(NewClass, T);
987  assert(T->isDependentType() && "Class template type is not dependent?");
988  (void)T;
989
990  // If we are providing an explicit specialization of a member that is a
991  // class template, make a note of that.
992  if (PrevClassTemplate &&
993      PrevClassTemplate->getInstantiatedFromMemberTemplate())
994    PrevClassTemplate->setMemberSpecialization();
995
996  // Set the access specifier.
997  if (!Invalid && TUK != TUK_Friend)
998    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
999
1000  // Set the lexical context of these templates
1001  NewClass->setLexicalDeclContext(CurContext);
1002  NewTemplate->setLexicalDeclContext(CurContext);
1003
1004  if (TUK == TUK_Definition)
1005    NewClass->startDefinition();
1006
1007  if (Attr)
1008    ProcessDeclAttributeList(S, NewClass, Attr);
1009
1010  if (TUK != TUK_Friend)
1011    PushOnScopeChains(NewTemplate, S);
1012  else {
1013    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1014      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1015      NewClass->setAccess(PrevClassTemplate->getAccess());
1016    }
1017
1018    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1019                                       PrevClassTemplate != NULL);
1020
1021    // Friend templates are visible in fairly strange ways.
1022    if (!CurContext->isDependentContext()) {
1023      DeclContext *DC = SemanticContext->getRedeclContext();
1024      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1025      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1026        PushOnScopeChains(NewTemplate, EnclosingScope,
1027                          /* AddToContext = */ false);
1028    }
1029
1030    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1031                                            NewClass->getLocation(),
1032                                            NewTemplate,
1033                                    /*FIXME:*/NewClass->getLocation());
1034    Friend->setAccess(AS_public);
1035    CurContext->addDecl(Friend);
1036  }
1037
1038  if (Invalid) {
1039    NewTemplate->setInvalidDecl();
1040    NewClass->setInvalidDecl();
1041  }
1042  return NewTemplate;
1043}
1044
1045/// \brief Diagnose the presence of a default template argument on a
1046/// template parameter, which is ill-formed in certain contexts.
1047///
1048/// \returns true if the default template argument should be dropped.
1049static bool DiagnoseDefaultTemplateArgument(Sema &S,
1050                                            Sema::TemplateParamListContext TPC,
1051                                            SourceLocation ParamLoc,
1052                                            SourceRange DefArgRange) {
1053  switch (TPC) {
1054  case Sema::TPC_ClassTemplate:
1055    return false;
1056
1057  case Sema::TPC_FunctionTemplate:
1058  case Sema::TPC_FriendFunctionTemplateDefinition:
1059    // C++ [temp.param]p9:
1060    //   A default template-argument shall not be specified in a
1061    //   function template declaration or a function template
1062    //   definition [...]
1063    //   If a friend function template declaration specifies a default
1064    //   template-argument, that declaration shall be a definition and shall be
1065    //   the only declaration of the function template in the translation unit.
1066    // (C++98/03 doesn't have this wording; see DR226).
1067    if (!S.getLangOptions().CPlusPlus0x)
1068      S.Diag(ParamLoc,
1069             diag::ext_template_parameter_default_in_function_template)
1070        << DefArgRange;
1071    return false;
1072
1073  case Sema::TPC_ClassTemplateMember:
1074    // C++0x [temp.param]p9:
1075    //   A default template-argument shall not be specified in the
1076    //   template-parameter-lists of the definition of a member of a
1077    //   class template that appears outside of the member's class.
1078    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1079      << DefArgRange;
1080    return true;
1081
1082  case Sema::TPC_FriendFunctionTemplate:
1083    // C++ [temp.param]p9:
1084    //   A default template-argument shall not be specified in a
1085    //   friend template declaration.
1086    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1087      << DefArgRange;
1088    return true;
1089
1090    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1091    // for friend function templates if there is only a single
1092    // declaration (and it is a definition). Strange!
1093  }
1094
1095  return false;
1096}
1097
1098/// \brief Check for unexpanded parameter packs within the template parameters
1099/// of a template template parameter, recursively.
1100bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1101  TemplateParameterList *Params = TTP->getTemplateParameters();
1102  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1103    NamedDecl *P = Params->getParam(I);
1104    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1105      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1106                                            NTTP->getTypeSourceInfo(),
1107                                      Sema::UPPC_NonTypeTemplateParameterType))
1108        return true;
1109
1110      continue;
1111    }
1112
1113    if (TemplateTemplateParmDecl *InnerTTP
1114                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1115      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1116        return true;
1117  }
1118
1119  return false;
1120}
1121
1122/// \brief Checks the validity of a template parameter list, possibly
1123/// considering the template parameter list from a previous
1124/// declaration.
1125///
1126/// If an "old" template parameter list is provided, it must be
1127/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1128/// template parameter list.
1129///
1130/// \param NewParams Template parameter list for a new template
1131/// declaration. This template parameter list will be updated with any
1132/// default arguments that are carried through from the previous
1133/// template parameter list.
1134///
1135/// \param OldParams If provided, template parameter list from a
1136/// previous declaration of the same template. Default template
1137/// arguments will be merged from the old template parameter list to
1138/// the new template parameter list.
1139///
1140/// \param TPC Describes the context in which we are checking the given
1141/// template parameter list.
1142///
1143/// \returns true if an error occurred, false otherwise.
1144bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1145                                      TemplateParameterList *OldParams,
1146                                      TemplateParamListContext TPC) {
1147  bool Invalid = false;
1148
1149  // C++ [temp.param]p10:
1150  //   The set of default template-arguments available for use with a
1151  //   template declaration or definition is obtained by merging the
1152  //   default arguments from the definition (if in scope) and all
1153  //   declarations in scope in the same way default function
1154  //   arguments are (8.3.6).
1155  bool SawDefaultArgument = false;
1156  SourceLocation PreviousDefaultArgLoc;
1157
1158  bool SawParameterPack = false;
1159  SourceLocation ParameterPackLoc;
1160
1161  // Dummy initialization to avoid warnings.
1162  TemplateParameterList::iterator OldParam = NewParams->end();
1163  if (OldParams)
1164    OldParam = OldParams->begin();
1165
1166  bool RemoveDefaultArguments = false;
1167  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1168                                    NewParamEnd = NewParams->end();
1169       NewParam != NewParamEnd; ++NewParam) {
1170    // Variables used to diagnose redundant default arguments
1171    bool RedundantDefaultArg = false;
1172    SourceLocation OldDefaultLoc;
1173    SourceLocation NewDefaultLoc;
1174
1175    // Variables used to diagnose missing default arguments
1176    bool MissingDefaultArg = false;
1177
1178    // C++0x [temp.param]p11:
1179    //   If a template parameter of a primary class template is a template
1180    //   parameter pack, it shall be the last template parameter.
1181    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1182      Diag(ParameterPackLoc,
1183           diag::err_template_param_pack_must_be_last_template_parameter);
1184      Invalid = true;
1185    }
1186
1187    if (TemplateTypeParmDecl *NewTypeParm
1188          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1189      // Check the presence of a default argument here.
1190      if (NewTypeParm->hasDefaultArgument() &&
1191          DiagnoseDefaultTemplateArgument(*this, TPC,
1192                                          NewTypeParm->getLocation(),
1193               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1194                                                       .getSourceRange()))
1195        NewTypeParm->removeDefaultArgument();
1196
1197      // Merge default arguments for template type parameters.
1198      TemplateTypeParmDecl *OldTypeParm
1199          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1200
1201      if (NewTypeParm->isParameterPack()) {
1202        assert(!NewTypeParm->hasDefaultArgument() &&
1203               "Parameter packs can't have a default argument!");
1204        SawParameterPack = true;
1205        ParameterPackLoc = NewTypeParm->getLocation();
1206      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1207                 NewTypeParm->hasDefaultArgument()) {
1208        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1209        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1210        SawDefaultArgument = true;
1211        RedundantDefaultArg = true;
1212        PreviousDefaultArgLoc = NewDefaultLoc;
1213      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1214        // Merge the default argument from the old declaration to the
1215        // new declaration.
1216        SawDefaultArgument = true;
1217        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1218                                        true);
1219        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1220      } else if (NewTypeParm->hasDefaultArgument()) {
1221        SawDefaultArgument = true;
1222        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1223      } else if (SawDefaultArgument)
1224        MissingDefaultArg = true;
1225    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1226               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1227      // Check for unexpanded parameter packs.
1228      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1229                                          NewNonTypeParm->getTypeSourceInfo(),
1230                                          UPPC_NonTypeTemplateParameterType)) {
1231        Invalid = true;
1232        continue;
1233      }
1234
1235      // Check the presence of a default argument here.
1236      if (NewNonTypeParm->hasDefaultArgument() &&
1237          DiagnoseDefaultTemplateArgument(*this, TPC,
1238                                          NewNonTypeParm->getLocation(),
1239                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1240        NewNonTypeParm->removeDefaultArgument();
1241      }
1242
1243      // Merge default arguments for non-type template parameters
1244      NonTypeTemplateParmDecl *OldNonTypeParm
1245        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1246      if (NewNonTypeParm->isParameterPack()) {
1247        assert(!NewNonTypeParm->hasDefaultArgument() &&
1248               "Parameter packs can't have a default argument!");
1249        SawParameterPack = true;
1250        ParameterPackLoc = NewNonTypeParm->getLocation();
1251      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1252          NewNonTypeParm->hasDefaultArgument()) {
1253        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1254        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1255        SawDefaultArgument = true;
1256        RedundantDefaultArg = true;
1257        PreviousDefaultArgLoc = NewDefaultLoc;
1258      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1259        // Merge the default argument from the old declaration to the
1260        // new declaration.
1261        SawDefaultArgument = true;
1262        // FIXME: We need to create a new kind of "default argument"
1263        // expression that points to a previous non-type template
1264        // parameter.
1265        NewNonTypeParm->setDefaultArgument(
1266                                         OldNonTypeParm->getDefaultArgument(),
1267                                         /*Inherited=*/ true);
1268        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1269      } else if (NewNonTypeParm->hasDefaultArgument()) {
1270        SawDefaultArgument = true;
1271        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1272      } else if (SawDefaultArgument)
1273        MissingDefaultArg = true;
1274    } else {
1275      // Check the presence of a default argument here.
1276      TemplateTemplateParmDecl *NewTemplateParm
1277        = cast<TemplateTemplateParmDecl>(*NewParam);
1278
1279      // Check for unexpanded parameter packs, recursively.
1280      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1281        Invalid = true;
1282        continue;
1283      }
1284
1285      if (NewTemplateParm->hasDefaultArgument() &&
1286          DiagnoseDefaultTemplateArgument(*this, TPC,
1287                                          NewTemplateParm->getLocation(),
1288                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1289        NewTemplateParm->removeDefaultArgument();
1290
1291      // Merge default arguments for template template parameters
1292      TemplateTemplateParmDecl *OldTemplateParm
1293        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1294      if (NewTemplateParm->isParameterPack()) {
1295        assert(!NewTemplateParm->hasDefaultArgument() &&
1296               "Parameter packs can't have a default argument!");
1297        SawParameterPack = true;
1298        ParameterPackLoc = NewTemplateParm->getLocation();
1299      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1300          NewTemplateParm->hasDefaultArgument()) {
1301        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1302        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1303        SawDefaultArgument = true;
1304        RedundantDefaultArg = true;
1305        PreviousDefaultArgLoc = NewDefaultLoc;
1306      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1307        // Merge the default argument from the old declaration to the
1308        // new declaration.
1309        SawDefaultArgument = true;
1310        // FIXME: We need to create a new kind of "default argument" expression
1311        // that points to a previous template template parameter.
1312        NewTemplateParm->setDefaultArgument(
1313                                          OldTemplateParm->getDefaultArgument(),
1314                                          /*Inherited=*/ true);
1315        PreviousDefaultArgLoc
1316          = OldTemplateParm->getDefaultArgument().getLocation();
1317      } else if (NewTemplateParm->hasDefaultArgument()) {
1318        SawDefaultArgument = true;
1319        PreviousDefaultArgLoc
1320          = NewTemplateParm->getDefaultArgument().getLocation();
1321      } else if (SawDefaultArgument)
1322        MissingDefaultArg = true;
1323    }
1324
1325    if (RedundantDefaultArg) {
1326      // C++ [temp.param]p12:
1327      //   A template-parameter shall not be given default arguments
1328      //   by two different declarations in the same scope.
1329      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1330      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1331      Invalid = true;
1332    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1333      // C++ [temp.param]p11:
1334      //   If a template-parameter of a class template has a default
1335      //   template-argument, each subsequent template-parameter shall either
1336      //   have a default template-argument supplied or be a template parameter
1337      //   pack.
1338      Diag((*NewParam)->getLocation(),
1339           diag::err_template_param_default_arg_missing);
1340      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1341      Invalid = true;
1342      RemoveDefaultArguments = true;
1343    }
1344
1345    // If we have an old template parameter list that we're merging
1346    // in, move on to the next parameter.
1347    if (OldParams)
1348      ++OldParam;
1349  }
1350
1351  // We were missing some default arguments at the end of the list, so remove
1352  // all of the default arguments.
1353  if (RemoveDefaultArguments) {
1354    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1355                                      NewParamEnd = NewParams->end();
1356         NewParam != NewParamEnd; ++NewParam) {
1357      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1358        TTP->removeDefaultArgument();
1359      else if (NonTypeTemplateParmDecl *NTTP
1360                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1361        NTTP->removeDefaultArgument();
1362      else
1363        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1364    }
1365  }
1366
1367  return Invalid;
1368}
1369
1370namespace {
1371
1372/// A class which looks for a use of a certain level of template
1373/// parameter.
1374struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1375  typedef RecursiveASTVisitor<DependencyChecker> super;
1376
1377  unsigned Depth;
1378  bool Match;
1379
1380  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1381    NamedDecl *ND = Params->getParam(0);
1382    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1383      Depth = PD->getDepth();
1384    } else if (NonTypeTemplateParmDecl *PD =
1385                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1386      Depth = PD->getDepth();
1387    } else {
1388      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1389    }
1390  }
1391
1392  bool Matches(unsigned ParmDepth) {
1393    if (ParmDepth >= Depth) {
1394      Match = true;
1395      return true;
1396    }
1397    return false;
1398  }
1399
1400  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1401    return !Matches(T->getDepth());
1402  }
1403
1404  bool TraverseTemplateName(TemplateName N) {
1405    if (TemplateTemplateParmDecl *PD =
1406          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1407      if (Matches(PD->getDepth())) return false;
1408    return super::TraverseTemplateName(N);
1409  }
1410
1411  bool VisitDeclRefExpr(DeclRefExpr *E) {
1412    if (NonTypeTemplateParmDecl *PD =
1413          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1414      if (PD->getDepth() == Depth) {
1415        Match = true;
1416        return false;
1417      }
1418    }
1419    return super::VisitDeclRefExpr(E);
1420  }
1421};
1422}
1423
1424/// Determines whether a template-id depends on the given parameter
1425/// list.
1426static bool
1427DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1428                            TemplateParameterList *Params) {
1429  DependencyChecker Checker(Params);
1430  Checker.TraverseType(QualType(TemplateId, 0));
1431  return Checker.Match;
1432}
1433
1434/// \brief Match the given template parameter lists to the given scope
1435/// specifier, returning the template parameter list that applies to the
1436/// name.
1437///
1438/// \param DeclStartLoc the start of the declaration that has a scope
1439/// specifier or a template parameter list.
1440///
1441/// \param SS the scope specifier that will be matched to the given template
1442/// parameter lists. This scope specifier precedes a qualified name that is
1443/// being declared.
1444///
1445/// \param ParamLists the template parameter lists, from the outermost to the
1446/// innermost template parameter lists.
1447///
1448/// \param NumParamLists the number of template parameter lists in ParamLists.
1449///
1450/// \param IsFriend Whether to apply the slightly different rules for
1451/// matching template parameters to scope specifiers in friend
1452/// declarations.
1453///
1454/// \param IsExplicitSpecialization will be set true if the entity being
1455/// declared is an explicit specialization, false otherwise.
1456///
1457/// \returns the template parameter list, if any, that corresponds to the
1458/// name that is preceded by the scope specifier @p SS. This template
1459/// parameter list may be have template parameters (if we're declaring a
1460/// template) or may have no template parameters (if we're declaring a
1461/// template specialization), or may be NULL (if we were's declaring isn't
1462/// itself a template).
1463TemplateParameterList *
1464Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1465                                              const CXXScopeSpec &SS,
1466                                          TemplateParameterList **ParamLists,
1467                                              unsigned NumParamLists,
1468                                              bool IsFriend,
1469                                              bool &IsExplicitSpecialization,
1470                                              bool &Invalid) {
1471  IsExplicitSpecialization = false;
1472
1473  // Find the template-ids that occur within the nested-name-specifier. These
1474  // template-ids will match up with the template parameter lists.
1475  llvm::SmallVector<const TemplateSpecializationType *, 4>
1476    TemplateIdsInSpecifier;
1477  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1478    ExplicitSpecializationsInSpecifier;
1479  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1480       NNS; NNS = NNS->getPrefix()) {
1481    const Type *T = NNS->getAsType();
1482    if (!T) break;
1483
1484    // C++0x [temp.expl.spec]p17:
1485    //   A member or a member template may be nested within many
1486    //   enclosing class templates. In an explicit specialization for
1487    //   such a member, the member declaration shall be preceded by a
1488    //   template<> for each enclosing class template that is
1489    //   explicitly specialized.
1490    //
1491    // Following the existing practice of GNU and EDG, we allow a typedef of a
1492    // template specialization type.
1493    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1494      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1495
1496    if (const TemplateSpecializationType *SpecType
1497                                  = dyn_cast<TemplateSpecializationType>(T)) {
1498      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1499      if (!Template)
1500        continue; // FIXME: should this be an error? probably...
1501
1502      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1503        ClassTemplateSpecializationDecl *SpecDecl
1504          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1505        // If the nested name specifier refers to an explicit specialization,
1506        // we don't need a template<> header.
1507        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1508          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1509          continue;
1510        }
1511      }
1512
1513      TemplateIdsInSpecifier.push_back(SpecType);
1514    }
1515  }
1516
1517  // Reverse the list of template-ids in the scope specifier, so that we can
1518  // more easily match up the template-ids and the template parameter lists.
1519  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1520
1521  SourceLocation FirstTemplateLoc = DeclStartLoc;
1522  if (NumParamLists)
1523    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1524
1525  // Match the template-ids found in the specifier to the template parameter
1526  // lists.
1527  unsigned ParamIdx = 0, TemplateIdx = 0;
1528  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1529       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1530    const TemplateSpecializationType *TemplateId
1531      = TemplateIdsInSpecifier[TemplateIdx];
1532    bool DependentTemplateId = TemplateId->isDependentType();
1533
1534    // In friend declarations we can have template-ids which don't
1535    // depend on the corresponding template parameter lists.  But
1536    // assume that empty parameter lists are supposed to match this
1537    // template-id.
1538    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1539      if (!DependentTemplateId ||
1540          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1541        continue;
1542    }
1543
1544    if (ParamIdx >= NumParamLists) {
1545      // We have a template-id without a corresponding template parameter
1546      // list.
1547
1548      // ...which is fine if this is a friend declaration.
1549      if (IsFriend) {
1550        IsExplicitSpecialization = true;
1551        break;
1552      }
1553
1554      if (DependentTemplateId) {
1555        // FIXME: the location information here isn't great.
1556        Diag(SS.getRange().getBegin(),
1557             diag::err_template_spec_needs_template_parameters)
1558          << QualType(TemplateId, 0)
1559          << SS.getRange();
1560        Invalid = true;
1561      } else {
1562        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1563          << SS.getRange()
1564          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1565        IsExplicitSpecialization = true;
1566      }
1567      return 0;
1568    }
1569
1570    // Check the template parameter list against its corresponding template-id.
1571    if (DependentTemplateId) {
1572      TemplateParameterList *ExpectedTemplateParams = 0;
1573
1574      // Are there cases in (e.g.) friends where this won't match?
1575      if (const InjectedClassNameType *Injected
1576            = TemplateId->getAs<InjectedClassNameType>()) {
1577        CXXRecordDecl *Record = Injected->getDecl();
1578        if (ClassTemplatePartialSpecializationDecl *Partial =
1579              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1580          ExpectedTemplateParams = Partial->getTemplateParameters();
1581        else
1582          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1583            ->getTemplateParameters();
1584      }
1585
1586      if (ExpectedTemplateParams)
1587        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1588                                       ExpectedTemplateParams,
1589                                       true, TPL_TemplateMatch);
1590
1591      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1592                                 TPC_ClassTemplateMember);
1593    } else if (ParamLists[ParamIdx]->size() > 0)
1594      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1595           diag::err_template_param_list_matches_nontemplate)
1596        << TemplateId
1597        << ParamLists[ParamIdx]->getSourceRange();
1598    else
1599      IsExplicitSpecialization = true;
1600
1601    ++ParamIdx;
1602  }
1603
1604  // If there were at least as many template-ids as there were template
1605  // parameter lists, then there are no template parameter lists remaining for
1606  // the declaration itself.
1607  if (ParamIdx >= NumParamLists)
1608    return 0;
1609
1610  // If there were too many template parameter lists, complain about that now.
1611  if (ParamIdx != NumParamLists - 1) {
1612    while (ParamIdx < NumParamLists - 1) {
1613      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1614      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1615           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1616                               : diag::err_template_spec_extra_headers)
1617        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1618                       ParamLists[ParamIdx]->getRAngleLoc());
1619
1620      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1621        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1622             diag::note_explicit_template_spec_does_not_need_header)
1623          << ExplicitSpecializationsInSpecifier.back();
1624        ExplicitSpecializationsInSpecifier.pop_back();
1625      }
1626
1627      // We have a template parameter list with no corresponding scope, which
1628      // means that the resulting template declaration can't be instantiated
1629      // properly (we'll end up with dependent nodes when we shouldn't).
1630      if (!isExplicitSpecHeader)
1631        Invalid = true;
1632
1633      ++ParamIdx;
1634    }
1635  }
1636
1637  // Return the last template parameter list, which corresponds to the
1638  // entity being declared.
1639  return ParamLists[NumParamLists - 1];
1640}
1641
1642void Sema::NoteAllFoundTemplates(TemplateName Name) {
1643  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1644    Diag(Template->getLocation(), diag::note_template_declared_here)
1645      << (isa<FunctionTemplateDecl>(Template)? 0
1646          : isa<ClassTemplateDecl>(Template)? 1
1647          : 2)
1648      << Template->getDeclName();
1649    return;
1650  }
1651
1652  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1653    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1654                                          IEnd = OST->end();
1655         I != IEnd; ++I)
1656      Diag((*I)->getLocation(), diag::note_template_declared_here)
1657        << 0 << (*I)->getDeclName();
1658
1659    return;
1660  }
1661}
1662
1663
1664QualType Sema::CheckTemplateIdType(TemplateName Name,
1665                                   SourceLocation TemplateLoc,
1666                                   TemplateArgumentListInfo &TemplateArgs) {
1667  TemplateDecl *Template = Name.getAsTemplateDecl();
1668  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1669    // We might have a substituted template template parameter pack. If so,
1670    // build a template specialization type for it.
1671    if (Name.getAsSubstTemplateTemplateParmPack())
1672      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1673
1674    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1675      << Name;
1676    NoteAllFoundTemplates(Name);
1677    return QualType();
1678  }
1679
1680  // Check that the template argument list is well-formed for this
1681  // template.
1682  llvm::SmallVector<TemplateArgument, 4> Converted;
1683  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1684                                false, Converted))
1685    return QualType();
1686
1687  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1688         "Converted template argument list is too short!");
1689
1690  QualType CanonType;
1691
1692  if (Name.isDependent() ||
1693      TemplateSpecializationType::anyDependentTemplateArguments(
1694                                                      TemplateArgs)) {
1695    // This class template specialization is a dependent
1696    // type. Therefore, its canonical type is another class template
1697    // specialization type that contains all of the converted
1698    // arguments in canonical form. This ensures that, e.g., A<T> and
1699    // A<T, T> have identical types when A is declared as:
1700    //
1701    //   template<typename T, typename U = T> struct A;
1702    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1703    CanonType = Context.getTemplateSpecializationType(CanonName,
1704                                                      Converted.data(),
1705                                                      Converted.size());
1706
1707    // FIXME: CanonType is not actually the canonical type, and unfortunately
1708    // it is a TemplateSpecializationType that we will never use again.
1709    // In the future, we need to teach getTemplateSpecializationType to only
1710    // build the canonical type and return that to us.
1711    CanonType = Context.getCanonicalType(CanonType);
1712
1713    // This might work out to be a current instantiation, in which
1714    // case the canonical type needs to be the InjectedClassNameType.
1715    //
1716    // TODO: in theory this could be a simple hashtable lookup; most
1717    // changes to CurContext don't change the set of current
1718    // instantiations.
1719    if (isa<ClassTemplateDecl>(Template)) {
1720      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1721        // If we get out to a namespace, we're done.
1722        if (Ctx->isFileContext()) break;
1723
1724        // If this isn't a record, keep looking.
1725        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1726        if (!Record) continue;
1727
1728        // Look for one of the two cases with InjectedClassNameTypes
1729        // and check whether it's the same template.
1730        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1731            !Record->getDescribedClassTemplate())
1732          continue;
1733
1734        // Fetch the injected class name type and check whether its
1735        // injected type is equal to the type we just built.
1736        QualType ICNT = Context.getTypeDeclType(Record);
1737        QualType Injected = cast<InjectedClassNameType>(ICNT)
1738          ->getInjectedSpecializationType();
1739
1740        if (CanonType != Injected->getCanonicalTypeInternal())
1741          continue;
1742
1743        // If so, the canonical type of this TST is the injected
1744        // class name type of the record we just found.
1745        assert(ICNT.isCanonical());
1746        CanonType = ICNT;
1747        break;
1748      }
1749    }
1750  } else if (ClassTemplateDecl *ClassTemplate
1751               = dyn_cast<ClassTemplateDecl>(Template)) {
1752    // Find the class template specialization declaration that
1753    // corresponds to these arguments.
1754    void *InsertPos = 0;
1755    ClassTemplateSpecializationDecl *Decl
1756      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1757                                          InsertPos);
1758    if (!Decl) {
1759      // This is the first time we have referenced this class template
1760      // specialization. Create the canonical declaration and add it to
1761      // the set of specializations.
1762      Decl = ClassTemplateSpecializationDecl::Create(Context,
1763                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1764                                                ClassTemplate->getDeclContext(),
1765                                                ClassTemplate->getLocation(),
1766                                                ClassTemplate->getLocation(),
1767                                                     ClassTemplate,
1768                                                     Converted.data(),
1769                                                     Converted.size(), 0);
1770      ClassTemplate->AddSpecialization(Decl, InsertPos);
1771      Decl->setLexicalDeclContext(CurContext);
1772    }
1773
1774    CanonType = Context.getTypeDeclType(Decl);
1775    assert(isa<RecordType>(CanonType) &&
1776           "type of non-dependent specialization is not a RecordType");
1777  }
1778
1779  // Build the fully-sugared type for this class template
1780  // specialization, which refers back to the class template
1781  // specialization we created or found.
1782  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1783}
1784
1785TypeResult
1786Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
1787                          TemplateTy TemplateD, SourceLocation TemplateLoc,
1788                          SourceLocation LAngleLoc,
1789                          ASTTemplateArgsPtr TemplateArgsIn,
1790                          SourceLocation RAngleLoc) {
1791  if (SS.isInvalid())
1792    return true;
1793
1794  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1795
1796  // Translate the parser's template argument list in our AST format.
1797  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1798  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1799
1800  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1801    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
1802                                                           DTN->getQualifier(),
1803                                                           DTN->getIdentifier(),
1804                                                                TemplateArgs);
1805
1806    // Build type-source information.
1807    TypeLocBuilder TLB;
1808    DependentTemplateSpecializationTypeLoc SpecTL
1809      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1810    SpecTL.setKeywordLoc(SourceLocation());
1811    SpecTL.setNameLoc(TemplateLoc);
1812    SpecTL.setLAngleLoc(LAngleLoc);
1813    SpecTL.setRAngleLoc(RAngleLoc);
1814    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
1815    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1816      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1817    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1818  }
1819
1820  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1821  TemplateArgsIn.release();
1822
1823  if (Result.isNull())
1824    return true;
1825
1826  // Build type-source information.
1827  TypeLocBuilder TLB;
1828  TemplateSpecializationTypeLoc SpecTL
1829    = TLB.push<TemplateSpecializationTypeLoc>(Result);
1830  SpecTL.setTemplateNameLoc(TemplateLoc);
1831  SpecTL.setLAngleLoc(LAngleLoc);
1832  SpecTL.setRAngleLoc(RAngleLoc);
1833  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
1834    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1835
1836  if (SS.isNotEmpty()) {
1837    // Create an elaborated-type-specifier containing the nested-name-specifier.
1838    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
1839    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
1840    ElabTL.setKeywordLoc(SourceLocation());
1841    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1842  }
1843
1844  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
1845}
1846
1847TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
1848                                        TypeSpecifierType TagSpec,
1849                                        SourceLocation TagLoc,
1850                                        CXXScopeSpec &SS,
1851                                        TemplateTy TemplateD,
1852                                        SourceLocation TemplateLoc,
1853                                        SourceLocation LAngleLoc,
1854                                        ASTTemplateArgsPtr TemplateArgsIn,
1855                                        SourceLocation RAngleLoc) {
1856  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1857
1858  // Translate the parser's template argument list in our AST format.
1859  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1860  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1861
1862  // Determine the tag kind
1863  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1864  ElaboratedTypeKeyword Keyword
1865    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1866
1867  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1868    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
1869                                                          DTN->getQualifier(),
1870                                                          DTN->getIdentifier(),
1871                                                                TemplateArgs);
1872
1873    // Build type-source information.
1874    TypeLocBuilder TLB;
1875    DependentTemplateSpecializationTypeLoc SpecTL
1876    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1877    SpecTL.setKeywordLoc(TagLoc);
1878    SpecTL.setNameLoc(TemplateLoc);
1879    SpecTL.setLAngleLoc(LAngleLoc);
1880    SpecTL.setRAngleLoc(RAngleLoc);
1881    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
1882    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1883      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1884    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1885  }
1886
1887  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1888  if (Result.isNull())
1889    return TypeResult();
1890
1891  // Check the tag kind
1892  if (const RecordType *RT = Result->getAs<RecordType>()) {
1893    RecordDecl *D = RT->getDecl();
1894
1895    IdentifierInfo *Id = D->getIdentifier();
1896    assert(Id && "templated class must have an identifier");
1897
1898    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1899      Diag(TagLoc, diag::err_use_with_wrong_tag)
1900        << Result
1901        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1902      Diag(D->getLocation(), diag::note_previous_use);
1903    }
1904  }
1905
1906  // Provide source-location information for the template specialization.
1907  TypeLocBuilder TLB;
1908  TemplateSpecializationTypeLoc SpecTL
1909    = TLB.push<TemplateSpecializationTypeLoc>(Result);
1910  SpecTL.setTemplateNameLoc(TemplateLoc);
1911  SpecTL.setLAngleLoc(LAngleLoc);
1912  SpecTL.setRAngleLoc(RAngleLoc);
1913  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
1914    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1915
1916  // Construct an elaborated type containing the nested-name-specifier (if any)
1917  // and keyword.
1918  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
1919  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
1920  ElabTL.setKeywordLoc(TagLoc);
1921  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1922  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
1923}
1924
1925ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1926                                     LookupResult &R,
1927                                     bool RequiresADL,
1928                                 const TemplateArgumentListInfo &TemplateArgs) {
1929  // FIXME: Can we do any checking at this point? I guess we could check the
1930  // template arguments that we have against the template name, if the template
1931  // name refers to a single template. That's not a terribly common case,
1932  // though.
1933  // foo<int> could identify a single function unambiguously
1934  // This approach does NOT work, since f<int>(1);
1935  // gets resolved prior to resorting to overload resolution
1936  // i.e., template<class T> void f(double);
1937  //       vs template<class T, class U> void f(U);
1938
1939  // These should be filtered out by our callers.
1940  assert(!R.empty() && "empty lookup results when building templateid");
1941  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1942
1943  // We don't want lookup warnings at this point.
1944  R.suppressDiagnostics();
1945
1946  UnresolvedLookupExpr *ULE
1947    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1948                                   SS.getWithLocInContext(Context),
1949                                   R.getLookupNameInfo(),
1950                                   RequiresADL, TemplateArgs,
1951                                   R.begin(), R.end());
1952
1953  return Owned(ULE);
1954}
1955
1956// We actually only call this from template instantiation.
1957ExprResult
1958Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1959                                   const DeclarationNameInfo &NameInfo,
1960                             const TemplateArgumentListInfo &TemplateArgs) {
1961  DeclContext *DC;
1962  if (!(DC = computeDeclContext(SS, false)) ||
1963      DC->isDependentContext() ||
1964      RequireCompleteDeclContext(SS, DC))
1965    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1966
1967  bool MemberOfUnknownSpecialization;
1968  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1969  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1970                     MemberOfUnknownSpecialization);
1971
1972  if (R.isAmbiguous())
1973    return ExprError();
1974
1975  if (R.empty()) {
1976    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1977      << NameInfo.getName() << SS.getRange();
1978    return ExprError();
1979  }
1980
1981  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1982    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1983      << (NestedNameSpecifier*) SS.getScopeRep()
1984      << NameInfo.getName() << SS.getRange();
1985    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1986    return ExprError();
1987  }
1988
1989  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1990}
1991
1992/// \brief Form a dependent template name.
1993///
1994/// This action forms a dependent template name given the template
1995/// name and its (presumably dependent) scope specifier. For
1996/// example, given "MetaFun::template apply", the scope specifier \p
1997/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1998/// of the "template" keyword, and "apply" is the \p Name.
1999TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2000                                                  SourceLocation TemplateKWLoc,
2001                                                  CXXScopeSpec &SS,
2002                                                  UnqualifiedId &Name,
2003                                                  ParsedType ObjectType,
2004                                                  bool EnteringContext,
2005                                                  TemplateTy &Result) {
2006  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2007      !getLangOptions().CPlusPlus0x)
2008    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2009      << FixItHint::CreateRemoval(TemplateKWLoc);
2010
2011  DeclContext *LookupCtx = 0;
2012  if (SS.isSet())
2013    LookupCtx = computeDeclContext(SS, EnteringContext);
2014  if (!LookupCtx && ObjectType)
2015    LookupCtx = computeDeclContext(ObjectType.get());
2016  if (LookupCtx) {
2017    // C++0x [temp.names]p5:
2018    //   If a name prefixed by the keyword template is not the name of
2019    //   a template, the program is ill-formed. [Note: the keyword
2020    //   template may not be applied to non-template members of class
2021    //   templates. -end note ] [ Note: as is the case with the
2022    //   typename prefix, the template prefix is allowed in cases
2023    //   where it is not strictly necessary; i.e., when the
2024    //   nested-name-specifier or the expression on the left of the ->
2025    //   or . is not dependent on a template-parameter, or the use
2026    //   does not appear in the scope of a template. -end note]
2027    //
2028    // Note: C++03 was more strict here, because it banned the use of
2029    // the "template" keyword prior to a template-name that was not a
2030    // dependent name. C++ DR468 relaxed this requirement (the
2031    // "template" keyword is now permitted). We follow the C++0x
2032    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2033    bool MemberOfUnknownSpecialization;
2034    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2035                                          ObjectType, EnteringContext, Result,
2036                                          MemberOfUnknownSpecialization);
2037    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2038        isa<CXXRecordDecl>(LookupCtx) &&
2039        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
2040      // This is a dependent template. Handle it below.
2041    } else if (TNK == TNK_Non_template) {
2042      Diag(Name.getSourceRange().getBegin(),
2043           diag::err_template_kw_refers_to_non_template)
2044        << GetNameFromUnqualifiedId(Name).getName()
2045        << Name.getSourceRange()
2046        << TemplateKWLoc;
2047      return TNK_Non_template;
2048    } else {
2049      // We found something; return it.
2050      return TNK;
2051    }
2052  }
2053
2054  NestedNameSpecifier *Qualifier
2055    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2056
2057  switch (Name.getKind()) {
2058  case UnqualifiedId::IK_Identifier:
2059    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2060                                                              Name.Identifier));
2061    return TNK_Dependent_template_name;
2062
2063  case UnqualifiedId::IK_OperatorFunctionId:
2064    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2065                                             Name.OperatorFunctionId.Operator));
2066    return TNK_Dependent_template_name;
2067
2068  case UnqualifiedId::IK_LiteralOperatorId:
2069    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2070
2071  default:
2072    break;
2073  }
2074
2075  Diag(Name.getSourceRange().getBegin(),
2076       diag::err_template_kw_refers_to_non_template)
2077    << GetNameFromUnqualifiedId(Name).getName()
2078    << Name.getSourceRange()
2079    << TemplateKWLoc;
2080  return TNK_Non_template;
2081}
2082
2083bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2084                                     const TemplateArgumentLoc &AL,
2085                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2086  const TemplateArgument &Arg = AL.getArgument();
2087
2088  // Check template type parameter.
2089  switch(Arg.getKind()) {
2090  case TemplateArgument::Type:
2091    // C++ [temp.arg.type]p1:
2092    //   A template-argument for a template-parameter which is a
2093    //   type shall be a type-id.
2094    break;
2095  case TemplateArgument::Template: {
2096    // We have a template type parameter but the template argument
2097    // is a template without any arguments.
2098    SourceRange SR = AL.getSourceRange();
2099    TemplateName Name = Arg.getAsTemplate();
2100    Diag(SR.getBegin(), diag::err_template_missing_args)
2101      << Name << SR;
2102    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2103      Diag(Decl->getLocation(), diag::note_template_decl_here);
2104
2105    return true;
2106  }
2107  default: {
2108    // We have a template type parameter but the template argument
2109    // is not a type.
2110    SourceRange SR = AL.getSourceRange();
2111    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2112    Diag(Param->getLocation(), diag::note_template_param_here);
2113
2114    return true;
2115  }
2116  }
2117
2118  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2119    return true;
2120
2121  // Add the converted template type argument.
2122  Converted.push_back(
2123                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2124  return false;
2125}
2126
2127/// \brief Substitute template arguments into the default template argument for
2128/// the given template type parameter.
2129///
2130/// \param SemaRef the semantic analysis object for which we are performing
2131/// the substitution.
2132///
2133/// \param Template the template that we are synthesizing template arguments
2134/// for.
2135///
2136/// \param TemplateLoc the location of the template name that started the
2137/// template-id we are checking.
2138///
2139/// \param RAngleLoc the location of the right angle bracket ('>') that
2140/// terminates the template-id.
2141///
2142/// \param Param the template template parameter whose default we are
2143/// substituting into.
2144///
2145/// \param Converted the list of template arguments provided for template
2146/// parameters that precede \p Param in the template parameter list.
2147/// \returns the substituted template argument, or NULL if an error occurred.
2148static TypeSourceInfo *
2149SubstDefaultTemplateArgument(Sema &SemaRef,
2150                             TemplateDecl *Template,
2151                             SourceLocation TemplateLoc,
2152                             SourceLocation RAngleLoc,
2153                             TemplateTypeParmDecl *Param,
2154                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2155  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2156
2157  // If the argument type is dependent, instantiate it now based
2158  // on the previously-computed template arguments.
2159  if (ArgType->getType()->isDependentType()) {
2160    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2161                                      Converted.data(), Converted.size());
2162
2163    MultiLevelTemplateArgumentList AllTemplateArgs
2164      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2165
2166    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2167                                     Template, Converted.data(),
2168                                     Converted.size(),
2169                                     SourceRange(TemplateLoc, RAngleLoc));
2170
2171    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2172                                Param->getDefaultArgumentLoc(),
2173                                Param->getDeclName());
2174  }
2175
2176  return ArgType;
2177}
2178
2179/// \brief Substitute template arguments into the default template argument for
2180/// the given non-type template parameter.
2181///
2182/// \param SemaRef the semantic analysis object for which we are performing
2183/// the substitution.
2184///
2185/// \param Template the template that we are synthesizing template arguments
2186/// for.
2187///
2188/// \param TemplateLoc the location of the template name that started the
2189/// template-id we are checking.
2190///
2191/// \param RAngleLoc the location of the right angle bracket ('>') that
2192/// terminates the template-id.
2193///
2194/// \param Param the non-type template parameter whose default we are
2195/// substituting into.
2196///
2197/// \param Converted the list of template arguments provided for template
2198/// parameters that precede \p Param in the template parameter list.
2199///
2200/// \returns the substituted template argument, or NULL if an error occurred.
2201static ExprResult
2202SubstDefaultTemplateArgument(Sema &SemaRef,
2203                             TemplateDecl *Template,
2204                             SourceLocation TemplateLoc,
2205                             SourceLocation RAngleLoc,
2206                             NonTypeTemplateParmDecl *Param,
2207                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2208  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2209                                    Converted.data(), Converted.size());
2210
2211  MultiLevelTemplateArgumentList AllTemplateArgs
2212    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2213
2214  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2215                                   Template, Converted.data(),
2216                                   Converted.size(),
2217                                   SourceRange(TemplateLoc, RAngleLoc));
2218
2219  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2220}
2221
2222/// \brief Substitute template arguments into the default template argument for
2223/// the given template template parameter.
2224///
2225/// \param SemaRef the semantic analysis object for which we are performing
2226/// the substitution.
2227///
2228/// \param Template the template that we are synthesizing template arguments
2229/// for.
2230///
2231/// \param TemplateLoc the location of the template name that started the
2232/// template-id we are checking.
2233///
2234/// \param RAngleLoc the location of the right angle bracket ('>') that
2235/// terminates the template-id.
2236///
2237/// \param Param the template template parameter whose default we are
2238/// substituting into.
2239///
2240/// \param Converted the list of template arguments provided for template
2241/// parameters that precede \p Param in the template parameter list.
2242///
2243/// \param QualifierLoc Will be set to the nested-name-specifier (with
2244/// source-location information) that precedes the template name.
2245///
2246/// \returns the substituted template argument, or NULL if an error occurred.
2247static TemplateName
2248SubstDefaultTemplateArgument(Sema &SemaRef,
2249                             TemplateDecl *Template,
2250                             SourceLocation TemplateLoc,
2251                             SourceLocation RAngleLoc,
2252                             TemplateTemplateParmDecl *Param,
2253                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2254                             NestedNameSpecifierLoc &QualifierLoc) {
2255  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2256                                    Converted.data(), Converted.size());
2257
2258  MultiLevelTemplateArgumentList AllTemplateArgs
2259    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2260
2261  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2262                                   Template, Converted.data(),
2263                                   Converted.size(),
2264                                   SourceRange(TemplateLoc, RAngleLoc));
2265
2266  // Substitute into the nested-name-specifier first,
2267  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2268  if (QualifierLoc) {
2269    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2270                                                       AllTemplateArgs);
2271    if (!QualifierLoc)
2272      return TemplateName();
2273  }
2274
2275  return SemaRef.SubstTemplateName(QualifierLoc,
2276                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2277                              Param->getDefaultArgument().getTemplateNameLoc(),
2278                                   AllTemplateArgs);
2279}
2280
2281/// \brief If the given template parameter has a default template
2282/// argument, substitute into that default template argument and
2283/// return the corresponding template argument.
2284TemplateArgumentLoc
2285Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2286                                              SourceLocation TemplateLoc,
2287                                              SourceLocation RAngleLoc,
2288                                              Decl *Param,
2289                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2290   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2291    if (!TypeParm->hasDefaultArgument())
2292      return TemplateArgumentLoc();
2293
2294    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2295                                                      TemplateLoc,
2296                                                      RAngleLoc,
2297                                                      TypeParm,
2298                                                      Converted);
2299    if (DI)
2300      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2301
2302    return TemplateArgumentLoc();
2303  }
2304
2305  if (NonTypeTemplateParmDecl *NonTypeParm
2306        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2307    if (!NonTypeParm->hasDefaultArgument())
2308      return TemplateArgumentLoc();
2309
2310    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2311                                                  TemplateLoc,
2312                                                  RAngleLoc,
2313                                                  NonTypeParm,
2314                                                  Converted);
2315    if (Arg.isInvalid())
2316      return TemplateArgumentLoc();
2317
2318    Expr *ArgE = Arg.takeAs<Expr>();
2319    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2320  }
2321
2322  TemplateTemplateParmDecl *TempTempParm
2323    = cast<TemplateTemplateParmDecl>(Param);
2324  if (!TempTempParm->hasDefaultArgument())
2325    return TemplateArgumentLoc();
2326
2327
2328  NestedNameSpecifierLoc QualifierLoc;
2329  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2330                                                    TemplateLoc,
2331                                                    RAngleLoc,
2332                                                    TempTempParm,
2333                                                    Converted,
2334                                                    QualifierLoc);
2335  if (TName.isNull())
2336    return TemplateArgumentLoc();
2337
2338  return TemplateArgumentLoc(TemplateArgument(TName),
2339                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2340                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2341}
2342
2343/// \brief Check that the given template argument corresponds to the given
2344/// template parameter.
2345///
2346/// \param Param The template parameter against which the argument will be
2347/// checked.
2348///
2349/// \param Arg The template argument.
2350///
2351/// \param Template The template in which the template argument resides.
2352///
2353/// \param TemplateLoc The location of the template name for the template
2354/// whose argument list we're matching.
2355///
2356/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2357/// the template argument list.
2358///
2359/// \param ArgumentPackIndex The index into the argument pack where this
2360/// argument will be placed. Only valid if the parameter is a parameter pack.
2361///
2362/// \param Converted The checked, converted argument will be added to the
2363/// end of this small vector.
2364///
2365/// \param CTAK Describes how we arrived at this particular template argument:
2366/// explicitly written, deduced, etc.
2367///
2368/// \returns true on error, false otherwise.
2369bool Sema::CheckTemplateArgument(NamedDecl *Param,
2370                                 const TemplateArgumentLoc &Arg,
2371                                 NamedDecl *Template,
2372                                 SourceLocation TemplateLoc,
2373                                 SourceLocation RAngleLoc,
2374                                 unsigned ArgumentPackIndex,
2375                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2376                                 CheckTemplateArgumentKind CTAK) {
2377  // Check template type parameters.
2378  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2379    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2380
2381  // Check non-type template parameters.
2382  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2383    // Do substitution on the type of the non-type template parameter
2384    // with the template arguments we've seen thus far.  But if the
2385    // template has a dependent context then we cannot substitute yet.
2386    QualType NTTPType = NTTP->getType();
2387    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2388      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2389
2390    if (NTTPType->isDependentType() &&
2391        !isa<TemplateTemplateParmDecl>(Template) &&
2392        !Template->getDeclContext()->isDependentContext()) {
2393      // Do substitution on the type of the non-type template parameter.
2394      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2395                                 NTTP, Converted.data(), Converted.size(),
2396                                 SourceRange(TemplateLoc, RAngleLoc));
2397
2398      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2399                                        Converted.data(), Converted.size());
2400      NTTPType = SubstType(NTTPType,
2401                           MultiLevelTemplateArgumentList(TemplateArgs),
2402                           NTTP->getLocation(),
2403                           NTTP->getDeclName());
2404      // If that worked, check the non-type template parameter type
2405      // for validity.
2406      if (!NTTPType.isNull())
2407        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2408                                                     NTTP->getLocation());
2409      if (NTTPType.isNull())
2410        return true;
2411    }
2412
2413    switch (Arg.getArgument().getKind()) {
2414    case TemplateArgument::Null:
2415      assert(false && "Should never see a NULL template argument here");
2416      return true;
2417
2418    case TemplateArgument::Expression: {
2419      Expr *E = Arg.getArgument().getAsExpr();
2420      TemplateArgument Result;
2421      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2422        return true;
2423
2424      Converted.push_back(Result);
2425      break;
2426    }
2427
2428    case TemplateArgument::Declaration:
2429    case TemplateArgument::Integral:
2430      // We've already checked this template argument, so just copy
2431      // it to the list of converted arguments.
2432      Converted.push_back(Arg.getArgument());
2433      break;
2434
2435    case TemplateArgument::Template:
2436    case TemplateArgument::TemplateExpansion:
2437      // We were given a template template argument. It may not be ill-formed;
2438      // see below.
2439      if (DependentTemplateName *DTN
2440            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2441                                              .getAsDependentTemplateName()) {
2442        // We have a template argument such as \c T::template X, which we
2443        // parsed as a template template argument. However, since we now
2444        // know that we need a non-type template argument, convert this
2445        // template name into an expression.
2446
2447        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2448                                     Arg.getTemplateNameLoc());
2449
2450        CXXScopeSpec SS;
2451        SS.Adopt(Arg.getTemplateQualifierLoc());
2452        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2453                                                SS.getWithLocInContext(Context),
2454                                                    NameInfo);
2455
2456        // If we parsed the template argument as a pack expansion, create a
2457        // pack expansion expression.
2458        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2459          ExprResult Expansion = ActOnPackExpansion(E,
2460                                                  Arg.getTemplateEllipsisLoc());
2461          if (Expansion.isInvalid())
2462            return true;
2463
2464          E = Expansion.get();
2465        }
2466
2467        TemplateArgument Result;
2468        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2469          return true;
2470
2471        Converted.push_back(Result);
2472        break;
2473      }
2474
2475      // We have a template argument that actually does refer to a class
2476      // template, template alias, or template template parameter, and
2477      // therefore cannot be a non-type template argument.
2478      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2479        << Arg.getSourceRange();
2480
2481      Diag(Param->getLocation(), diag::note_template_param_here);
2482      return true;
2483
2484    case TemplateArgument::Type: {
2485      // We have a non-type template parameter but the template
2486      // argument is a type.
2487
2488      // C++ [temp.arg]p2:
2489      //   In a template-argument, an ambiguity between a type-id and
2490      //   an expression is resolved to a type-id, regardless of the
2491      //   form of the corresponding template-parameter.
2492      //
2493      // We warn specifically about this case, since it can be rather
2494      // confusing for users.
2495      QualType T = Arg.getArgument().getAsType();
2496      SourceRange SR = Arg.getSourceRange();
2497      if (T->isFunctionType())
2498        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2499      else
2500        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2501      Diag(Param->getLocation(), diag::note_template_param_here);
2502      return true;
2503    }
2504
2505    case TemplateArgument::Pack:
2506      llvm_unreachable("Caller must expand template argument packs");
2507      break;
2508    }
2509
2510    return false;
2511  }
2512
2513
2514  // Check template template parameters.
2515  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2516
2517  // Substitute into the template parameter list of the template
2518  // template parameter, since previously-supplied template arguments
2519  // may appear within the template template parameter.
2520  {
2521    // Set up a template instantiation context.
2522    LocalInstantiationScope Scope(*this);
2523    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2524                               TempParm, Converted.data(), Converted.size(),
2525                               SourceRange(TemplateLoc, RAngleLoc));
2526
2527    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2528                                      Converted.data(), Converted.size());
2529    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2530                      SubstDecl(TempParm, CurContext,
2531                                MultiLevelTemplateArgumentList(TemplateArgs)));
2532    if (!TempParm)
2533      return true;
2534  }
2535
2536  switch (Arg.getArgument().getKind()) {
2537  case TemplateArgument::Null:
2538    assert(false && "Should never see a NULL template argument here");
2539    return true;
2540
2541  case TemplateArgument::Template:
2542  case TemplateArgument::TemplateExpansion:
2543    if (CheckTemplateArgument(TempParm, Arg))
2544      return true;
2545
2546    Converted.push_back(Arg.getArgument());
2547    break;
2548
2549  case TemplateArgument::Expression:
2550  case TemplateArgument::Type:
2551    // We have a template template parameter but the template
2552    // argument does not refer to a template.
2553    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2554    return true;
2555
2556  case TemplateArgument::Declaration:
2557    llvm_unreachable(
2558                       "Declaration argument with template template parameter");
2559    break;
2560  case TemplateArgument::Integral:
2561    llvm_unreachable(
2562                          "Integral argument with template template parameter");
2563    break;
2564
2565  case TemplateArgument::Pack:
2566    llvm_unreachable("Caller must expand template argument packs");
2567    break;
2568  }
2569
2570  return false;
2571}
2572
2573/// \brief Check that the given template argument list is well-formed
2574/// for specializing the given template.
2575bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2576                                     SourceLocation TemplateLoc,
2577                                     TemplateArgumentListInfo &TemplateArgs,
2578                                     bool PartialTemplateArgs,
2579                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2580  TemplateParameterList *Params = Template->getTemplateParameters();
2581  unsigned NumParams = Params->size();
2582  unsigned NumArgs = TemplateArgs.size();
2583  bool Invalid = false;
2584
2585  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2586
2587  bool HasParameterPack =
2588    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2589
2590  if ((NumArgs > NumParams && !HasParameterPack) ||
2591      (NumArgs < Params->getMinRequiredArguments() &&
2592       !PartialTemplateArgs)) {
2593    // FIXME: point at either the first arg beyond what we can handle,
2594    // or the '>', depending on whether we have too many or too few
2595    // arguments.
2596    SourceRange Range;
2597    if (NumArgs > NumParams)
2598      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2599    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2600      << (NumArgs > NumParams)
2601      << (isa<ClassTemplateDecl>(Template)? 0 :
2602          isa<FunctionTemplateDecl>(Template)? 1 :
2603          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2604      << Template << Range;
2605    Diag(Template->getLocation(), diag::note_template_decl_here)
2606      << Params->getSourceRange();
2607    Invalid = true;
2608  }
2609
2610  // C++ [temp.arg]p1:
2611  //   [...] The type and form of each template-argument specified in
2612  //   a template-id shall match the type and form specified for the
2613  //   corresponding parameter declared by the template in its
2614  //   template-parameter-list.
2615  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2616  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2617  TemplateParameterList::iterator Param = Params->begin(),
2618                               ParamEnd = Params->end();
2619  unsigned ArgIdx = 0;
2620  LocalInstantiationScope InstScope(*this, true);
2621  while (Param != ParamEnd) {
2622    if (ArgIdx > NumArgs && PartialTemplateArgs)
2623      break;
2624
2625    if (ArgIdx < NumArgs) {
2626      // If we have an expanded parameter pack, make sure we don't have too
2627      // many arguments.
2628      if (NonTypeTemplateParmDecl *NTTP
2629                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2630        if (NTTP->isExpandedParameterPack() &&
2631            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2632          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2633            << true
2634            << (isa<ClassTemplateDecl>(Template)? 0 :
2635                isa<FunctionTemplateDecl>(Template)? 1 :
2636                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2637            << Template;
2638          Diag(Template->getLocation(), diag::note_template_decl_here)
2639            << Params->getSourceRange();
2640          return true;
2641        }
2642      }
2643
2644      // Check the template argument we were given.
2645      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2646                                TemplateLoc, RAngleLoc,
2647                                ArgumentPack.size(), Converted))
2648        return true;
2649
2650      if ((*Param)->isTemplateParameterPack()) {
2651        // The template parameter was a template parameter pack, so take the
2652        // deduced argument and place it on the argument pack. Note that we
2653        // stay on the same template parameter so that we can deduce more
2654        // arguments.
2655        ArgumentPack.push_back(Converted.back());
2656        Converted.pop_back();
2657      } else {
2658        // Move to the next template parameter.
2659        ++Param;
2660      }
2661      ++ArgIdx;
2662      continue;
2663    }
2664
2665    // If we have a template parameter pack with no more corresponding
2666    // arguments, just break out now and we'll fill in the argument pack below.
2667    if ((*Param)->isTemplateParameterPack())
2668      break;
2669
2670    // We have a default template argument that we will use.
2671    TemplateArgumentLoc Arg;
2672
2673    // Retrieve the default template argument from the template
2674    // parameter. For each kind of template parameter, we substitute the
2675    // template arguments provided thus far and any "outer" template arguments
2676    // (when the template parameter was part of a nested template) into
2677    // the default argument.
2678    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2679      if (!TTP->hasDefaultArgument()) {
2680        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2681        break;
2682      }
2683
2684      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2685                                                             Template,
2686                                                             TemplateLoc,
2687                                                             RAngleLoc,
2688                                                             TTP,
2689                                                             Converted);
2690      if (!ArgType)
2691        return true;
2692
2693      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2694                                ArgType);
2695    } else if (NonTypeTemplateParmDecl *NTTP
2696                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2697      if (!NTTP->hasDefaultArgument()) {
2698        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2699        break;
2700      }
2701
2702      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2703                                                              TemplateLoc,
2704                                                              RAngleLoc,
2705                                                              NTTP,
2706                                                              Converted);
2707      if (E.isInvalid())
2708        return true;
2709
2710      Expr *Ex = E.takeAs<Expr>();
2711      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2712    } else {
2713      TemplateTemplateParmDecl *TempParm
2714        = cast<TemplateTemplateParmDecl>(*Param);
2715
2716      if (!TempParm->hasDefaultArgument()) {
2717        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2718        break;
2719      }
2720
2721      NestedNameSpecifierLoc QualifierLoc;
2722      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2723                                                       TemplateLoc,
2724                                                       RAngleLoc,
2725                                                       TempParm,
2726                                                       Converted,
2727                                                       QualifierLoc);
2728      if (Name.isNull())
2729        return true;
2730
2731      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2732                           TempParm->getDefaultArgument().getTemplateNameLoc());
2733    }
2734
2735    // Introduce an instantiation record that describes where we are using
2736    // the default template argument.
2737    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2738                                        Converted.data(), Converted.size(),
2739                                        SourceRange(TemplateLoc, RAngleLoc));
2740
2741    // Check the default template argument.
2742    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2743                              RAngleLoc, 0, Converted))
2744      return true;
2745
2746    // Core issue 150 (assumed resolution): if this is a template template
2747    // parameter, keep track of the default template arguments from the
2748    // template definition.
2749    if (isTemplateTemplateParameter)
2750      TemplateArgs.addArgument(Arg);
2751
2752    // Move to the next template parameter and argument.
2753    ++Param;
2754    ++ArgIdx;
2755  }
2756
2757  // Form argument packs for each of the parameter packs remaining.
2758  while (Param != ParamEnd) {
2759    // If we're checking a partial list of template arguments, don't fill
2760    // in arguments for non-template parameter packs.
2761
2762    if ((*Param)->isTemplateParameterPack()) {
2763      if (PartialTemplateArgs && ArgumentPack.empty()) {
2764        Converted.push_back(TemplateArgument());
2765      } else if (ArgumentPack.empty())
2766        Converted.push_back(TemplateArgument(0, 0));
2767      else {
2768        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2769                                                          ArgumentPack.data(),
2770                                                         ArgumentPack.size()));
2771        ArgumentPack.clear();
2772      }
2773    }
2774
2775    ++Param;
2776  }
2777
2778  return Invalid;
2779}
2780
2781namespace {
2782  class UnnamedLocalNoLinkageFinder
2783    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2784  {
2785    Sema &S;
2786    SourceRange SR;
2787
2788    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2789
2790  public:
2791    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2792
2793    bool Visit(QualType T) {
2794      return inherited::Visit(T.getTypePtr());
2795    }
2796
2797#define TYPE(Class, Parent) \
2798    bool Visit##Class##Type(const Class##Type *);
2799#define ABSTRACT_TYPE(Class, Parent) \
2800    bool Visit##Class##Type(const Class##Type *) { return false; }
2801#define NON_CANONICAL_TYPE(Class, Parent) \
2802    bool Visit##Class##Type(const Class##Type *) { return false; }
2803#include "clang/AST/TypeNodes.def"
2804
2805    bool VisitTagDecl(const TagDecl *Tag);
2806    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2807  };
2808}
2809
2810bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2811  return false;
2812}
2813
2814bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2815  return Visit(T->getElementType());
2816}
2817
2818bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2819  return Visit(T->getPointeeType());
2820}
2821
2822bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2823                                                    const BlockPointerType* T) {
2824  return Visit(T->getPointeeType());
2825}
2826
2827bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2828                                                const LValueReferenceType* T) {
2829  return Visit(T->getPointeeType());
2830}
2831
2832bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2833                                                const RValueReferenceType* T) {
2834  return Visit(T->getPointeeType());
2835}
2836
2837bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2838                                                  const MemberPointerType* T) {
2839  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2840}
2841
2842bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2843                                                  const ConstantArrayType* T) {
2844  return Visit(T->getElementType());
2845}
2846
2847bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2848                                                 const IncompleteArrayType* T) {
2849  return Visit(T->getElementType());
2850}
2851
2852bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2853                                                   const VariableArrayType* T) {
2854  return Visit(T->getElementType());
2855}
2856
2857bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2858                                            const DependentSizedArrayType* T) {
2859  return Visit(T->getElementType());
2860}
2861
2862bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2863                                         const DependentSizedExtVectorType* T) {
2864  return Visit(T->getElementType());
2865}
2866
2867bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2868  return Visit(T->getElementType());
2869}
2870
2871bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2872  return Visit(T->getElementType());
2873}
2874
2875bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2876                                                  const FunctionProtoType* T) {
2877  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2878                                         AEnd = T->arg_type_end();
2879       A != AEnd; ++A) {
2880    if (Visit(*A))
2881      return true;
2882  }
2883
2884  return Visit(T->getResultType());
2885}
2886
2887bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2888                                               const FunctionNoProtoType* T) {
2889  return Visit(T->getResultType());
2890}
2891
2892bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2893                                                  const UnresolvedUsingType*) {
2894  return false;
2895}
2896
2897bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2898  return false;
2899}
2900
2901bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2902  return Visit(T->getUnderlyingType());
2903}
2904
2905bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2906  return false;
2907}
2908
2909bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
2910  return Visit(T->getDeducedType());
2911}
2912
2913bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2914  return VisitTagDecl(T->getDecl());
2915}
2916
2917bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2918  return VisitTagDecl(T->getDecl());
2919}
2920
2921bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2922                                                 const TemplateTypeParmType*) {
2923  return false;
2924}
2925
2926bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2927                                        const SubstTemplateTypeParmPackType *) {
2928  return false;
2929}
2930
2931bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2932                                            const TemplateSpecializationType*) {
2933  return false;
2934}
2935
2936bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2937                                              const InjectedClassNameType* T) {
2938  return VisitTagDecl(T->getDecl());
2939}
2940
2941bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2942                                                   const DependentNameType* T) {
2943  return VisitNestedNameSpecifier(T->getQualifier());
2944}
2945
2946bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2947                                 const DependentTemplateSpecializationType* T) {
2948  return VisitNestedNameSpecifier(T->getQualifier());
2949}
2950
2951bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2952                                                   const PackExpansionType* T) {
2953  return Visit(T->getPattern());
2954}
2955
2956bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2957  return false;
2958}
2959
2960bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2961                                                   const ObjCInterfaceType *) {
2962  return false;
2963}
2964
2965bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2966                                                const ObjCObjectPointerType *) {
2967  return false;
2968}
2969
2970bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2971  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2972    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2973      << S.Context.getTypeDeclType(Tag) << SR;
2974    return true;
2975  }
2976
2977  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2978    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2979    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2980    return true;
2981  }
2982
2983  return false;
2984}
2985
2986bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2987                                                    NestedNameSpecifier *NNS) {
2988  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2989    return true;
2990
2991  switch (NNS->getKind()) {
2992  case NestedNameSpecifier::Identifier:
2993  case NestedNameSpecifier::Namespace:
2994  case NestedNameSpecifier::NamespaceAlias:
2995  case NestedNameSpecifier::Global:
2996    return false;
2997
2998  case NestedNameSpecifier::TypeSpec:
2999  case NestedNameSpecifier::TypeSpecWithTemplate:
3000    return Visit(QualType(NNS->getAsType(), 0));
3001  }
3002  return false;
3003}
3004
3005
3006/// \brief Check a template argument against its corresponding
3007/// template type parameter.
3008///
3009/// This routine implements the semantics of C++ [temp.arg.type]. It
3010/// returns true if an error occurred, and false otherwise.
3011bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3012                                 TypeSourceInfo *ArgInfo) {
3013  assert(ArgInfo && "invalid TypeSourceInfo");
3014  QualType Arg = ArgInfo->getType();
3015  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3016
3017  if (Arg->isVariablyModifiedType()) {
3018    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3019  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3020    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3021  }
3022
3023  // C++03 [temp.arg.type]p2:
3024  //   A local type, a type with no linkage, an unnamed type or a type
3025  //   compounded from any of these types shall not be used as a
3026  //   template-argument for a template type-parameter.
3027  //
3028  // C++0x allows these, and even in C++03 we allow them as an extension with
3029  // a warning.
3030  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3031    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3032    (void)Finder.Visit(Context.getCanonicalType(Arg));
3033  }
3034
3035  return false;
3036}
3037
3038/// \brief Checks whether the given template argument is the address
3039/// of an object or function according to C++ [temp.arg.nontype]p1.
3040static bool
3041CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3042                                               NonTypeTemplateParmDecl *Param,
3043                                               QualType ParamType,
3044                                               Expr *ArgIn,
3045                                               TemplateArgument &Converted) {
3046  bool Invalid = false;
3047  Expr *Arg = ArgIn;
3048  QualType ArgType = Arg->getType();
3049
3050  // See through any implicit casts we added to fix the type.
3051  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3052    Arg = Cast->getSubExpr();
3053
3054  // C++ [temp.arg.nontype]p1:
3055  //
3056  //   A template-argument for a non-type, non-template
3057  //   template-parameter shall be one of: [...]
3058  //
3059  //     -- the address of an object or function with external
3060  //        linkage, including function templates and function
3061  //        template-ids but excluding non-static class members,
3062  //        expressed as & id-expression where the & is optional if
3063  //        the name refers to a function or array, or if the
3064  //        corresponding template-parameter is a reference; or
3065  DeclRefExpr *DRE = 0;
3066
3067  // In C++98/03 mode, give an extension warning on any extra parentheses.
3068  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3069  bool ExtraParens = false;
3070  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3071    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3072      S.Diag(Arg->getSourceRange().getBegin(),
3073             diag::ext_template_arg_extra_parens)
3074        << Arg->getSourceRange();
3075      ExtraParens = true;
3076    }
3077
3078    Arg = Parens->getSubExpr();
3079  }
3080
3081  bool AddressTaken = false;
3082  SourceLocation AddrOpLoc;
3083  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3084    if (UnOp->getOpcode() == UO_AddrOf) {
3085      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3086      AddressTaken = true;
3087      AddrOpLoc = UnOp->getOperatorLoc();
3088    }
3089  } else
3090    DRE = dyn_cast<DeclRefExpr>(Arg);
3091
3092  if (!DRE) {
3093    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3094      << Arg->getSourceRange();
3095    S.Diag(Param->getLocation(), diag::note_template_param_here);
3096    return true;
3097  }
3098
3099  // Stop checking the precise nature of the argument if it is value dependent,
3100  // it should be checked when instantiated.
3101  if (Arg->isValueDependent()) {
3102    Converted = TemplateArgument(ArgIn);
3103    return false;
3104  }
3105
3106  if (!isa<ValueDecl>(DRE->getDecl())) {
3107    S.Diag(Arg->getSourceRange().getBegin(),
3108           diag::err_template_arg_not_object_or_func_form)
3109      << Arg->getSourceRange();
3110    S.Diag(Param->getLocation(), diag::note_template_param_here);
3111    return true;
3112  }
3113
3114  NamedDecl *Entity = 0;
3115
3116  // Cannot refer to non-static data members
3117  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3118    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3119      << Field << Arg->getSourceRange();
3120    S.Diag(Param->getLocation(), diag::note_template_param_here);
3121    return true;
3122  }
3123
3124  // Cannot refer to non-static member functions
3125  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3126    if (!Method->isStatic()) {
3127      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3128        << Method << Arg->getSourceRange();
3129      S.Diag(Param->getLocation(), diag::note_template_param_here);
3130      return true;
3131    }
3132
3133  // Functions must have external linkage.
3134  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3135    if (!isExternalLinkage(Func->getLinkage())) {
3136      S.Diag(Arg->getSourceRange().getBegin(),
3137             diag::err_template_arg_function_not_extern)
3138        << Func << Arg->getSourceRange();
3139      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3140        << true;
3141      return true;
3142    }
3143
3144    // Okay: we've named a function with external linkage.
3145    Entity = Func;
3146
3147    // If the template parameter has pointer type, the function decays.
3148    if (ParamType->isPointerType() && !AddressTaken)
3149      ArgType = S.Context.getPointerType(Func->getType());
3150    else if (AddressTaken && ParamType->isReferenceType()) {
3151      // If we originally had an address-of operator, but the
3152      // parameter has reference type, complain and (if things look
3153      // like they will work) drop the address-of operator.
3154      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3155                                            ParamType.getNonReferenceType())) {
3156        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3157          << ParamType;
3158        S.Diag(Param->getLocation(), diag::note_template_param_here);
3159        return true;
3160      }
3161
3162      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3163        << ParamType
3164        << FixItHint::CreateRemoval(AddrOpLoc);
3165      S.Diag(Param->getLocation(), diag::note_template_param_here);
3166
3167      ArgType = Func->getType();
3168    }
3169  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3170    if (!isExternalLinkage(Var->getLinkage())) {
3171      S.Diag(Arg->getSourceRange().getBegin(),
3172             diag::err_template_arg_object_not_extern)
3173        << Var << Arg->getSourceRange();
3174      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3175        << true;
3176      return true;
3177    }
3178
3179    // A value of reference type is not an object.
3180    if (Var->getType()->isReferenceType()) {
3181      S.Diag(Arg->getSourceRange().getBegin(),
3182             diag::err_template_arg_reference_var)
3183        << Var->getType() << Arg->getSourceRange();
3184      S.Diag(Param->getLocation(), diag::note_template_param_here);
3185      return true;
3186    }
3187
3188    // Okay: we've named an object with external linkage
3189    Entity = Var;
3190
3191    // If the template parameter has pointer type, we must have taken
3192    // the address of this object.
3193    if (ParamType->isReferenceType()) {
3194      if (AddressTaken) {
3195        // If we originally had an address-of operator, but the
3196        // parameter has reference type, complain and (if things look
3197        // like they will work) drop the address-of operator.
3198        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3199                                            ParamType.getNonReferenceType())) {
3200          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3201            << ParamType;
3202          S.Diag(Param->getLocation(), diag::note_template_param_here);
3203          return true;
3204        }
3205
3206        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3207          << ParamType
3208          << FixItHint::CreateRemoval(AddrOpLoc);
3209        S.Diag(Param->getLocation(), diag::note_template_param_here);
3210
3211        ArgType = Var->getType();
3212      }
3213    } else if (!AddressTaken && ParamType->isPointerType()) {
3214      if (Var->getType()->isArrayType()) {
3215        // Array-to-pointer decay.
3216        ArgType = S.Context.getArrayDecayedType(Var->getType());
3217      } else {
3218        // If the template parameter has pointer type but the address of
3219        // this object was not taken, complain and (possibly) recover by
3220        // taking the address of the entity.
3221        ArgType = S.Context.getPointerType(Var->getType());
3222        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3223          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3224            << ParamType;
3225          S.Diag(Param->getLocation(), diag::note_template_param_here);
3226          return true;
3227        }
3228
3229        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3230          << ParamType
3231          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3232
3233        S.Diag(Param->getLocation(), diag::note_template_param_here);
3234      }
3235    }
3236  } else {
3237    // We found something else, but we don't know specifically what it is.
3238    S.Diag(Arg->getSourceRange().getBegin(),
3239           diag::err_template_arg_not_object_or_func)
3240      << Arg->getSourceRange();
3241    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3242    return true;
3243  }
3244
3245  if (ParamType->isPointerType() &&
3246      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3247      S.IsQualificationConversion(ArgType, ParamType, false)) {
3248    // For pointer-to-object types, qualification conversions are
3249    // permitted.
3250  } else {
3251    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3252      if (!ParamRef->getPointeeType()->isFunctionType()) {
3253        // C++ [temp.arg.nontype]p5b3:
3254        //   For a non-type template-parameter of type reference to
3255        //   object, no conversions apply. The type referred to by the
3256        //   reference may be more cv-qualified than the (otherwise
3257        //   identical) type of the template- argument. The
3258        //   template-parameter is bound directly to the
3259        //   template-argument, which shall be an lvalue.
3260
3261        // FIXME: Other qualifiers?
3262        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3263        unsigned ArgQuals = ArgType.getCVRQualifiers();
3264
3265        if ((ParamQuals | ArgQuals) != ParamQuals) {
3266          S.Diag(Arg->getSourceRange().getBegin(),
3267                 diag::err_template_arg_ref_bind_ignores_quals)
3268            << ParamType << Arg->getType()
3269            << Arg->getSourceRange();
3270          S.Diag(Param->getLocation(), diag::note_template_param_here);
3271          return true;
3272        }
3273      }
3274    }
3275
3276    // At this point, the template argument refers to an object or
3277    // function with external linkage. We now need to check whether the
3278    // argument and parameter types are compatible.
3279    if (!S.Context.hasSameUnqualifiedType(ArgType,
3280                                          ParamType.getNonReferenceType())) {
3281      // We can't perform this conversion or binding.
3282      if (ParamType->isReferenceType())
3283        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3284          << ParamType << Arg->getType() << Arg->getSourceRange();
3285      else
3286        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3287          << Arg->getType() << ParamType << Arg->getSourceRange();
3288      S.Diag(Param->getLocation(), diag::note_template_param_here);
3289      return true;
3290    }
3291  }
3292
3293  // Create the template argument.
3294  Converted = TemplateArgument(Entity->getCanonicalDecl());
3295  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3296  return false;
3297}
3298
3299/// \brief Checks whether the given template argument is a pointer to
3300/// member constant according to C++ [temp.arg.nontype]p1.
3301bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3302                                                TemplateArgument &Converted) {
3303  bool Invalid = false;
3304
3305  // See through any implicit casts we added to fix the type.
3306  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3307    Arg = Cast->getSubExpr();
3308
3309  // C++ [temp.arg.nontype]p1:
3310  //
3311  //   A template-argument for a non-type, non-template
3312  //   template-parameter shall be one of: [...]
3313  //
3314  //     -- a pointer to member expressed as described in 5.3.1.
3315  DeclRefExpr *DRE = 0;
3316
3317  // In C++98/03 mode, give an extension warning on any extra parentheses.
3318  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3319  bool ExtraParens = false;
3320  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3321    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3322      Diag(Arg->getSourceRange().getBegin(),
3323           diag::ext_template_arg_extra_parens)
3324        << Arg->getSourceRange();
3325      ExtraParens = true;
3326    }
3327
3328    Arg = Parens->getSubExpr();
3329  }
3330
3331  // A pointer-to-member constant written &Class::member.
3332  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3333    if (UnOp->getOpcode() == UO_AddrOf) {
3334      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3335      if (DRE && !DRE->getQualifier())
3336        DRE = 0;
3337    }
3338  }
3339  // A constant of pointer-to-member type.
3340  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3341    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3342      if (VD->getType()->isMemberPointerType()) {
3343        if (isa<NonTypeTemplateParmDecl>(VD) ||
3344            (isa<VarDecl>(VD) &&
3345             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3346          if (Arg->isTypeDependent() || Arg->isValueDependent())
3347            Converted = TemplateArgument(Arg);
3348          else
3349            Converted = TemplateArgument(VD->getCanonicalDecl());
3350          return Invalid;
3351        }
3352      }
3353    }
3354
3355    DRE = 0;
3356  }
3357
3358  if (!DRE)
3359    return Diag(Arg->getSourceRange().getBegin(),
3360                diag::err_template_arg_not_pointer_to_member_form)
3361      << Arg->getSourceRange();
3362
3363  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3364    assert((isa<FieldDecl>(DRE->getDecl()) ||
3365            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3366           "Only non-static member pointers can make it here");
3367
3368    // Okay: this is the address of a non-static member, and therefore
3369    // a member pointer constant.
3370    if (Arg->isTypeDependent() || Arg->isValueDependent())
3371      Converted = TemplateArgument(Arg);
3372    else
3373      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3374    return Invalid;
3375  }
3376
3377  // We found something else, but we don't know specifically what it is.
3378  Diag(Arg->getSourceRange().getBegin(),
3379       diag::err_template_arg_not_pointer_to_member_form)
3380      << Arg->getSourceRange();
3381  Diag(DRE->getDecl()->getLocation(),
3382       diag::note_template_arg_refers_here);
3383  return true;
3384}
3385
3386/// \brief Check a template argument against its corresponding
3387/// non-type template parameter.
3388///
3389/// This routine implements the semantics of C++ [temp.arg.nontype].
3390/// It returns true if an error occurred, and false otherwise. \p
3391/// InstantiatedParamType is the type of the non-type template
3392/// parameter after it has been instantiated.
3393///
3394/// If no error was detected, Converted receives the converted template argument.
3395bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3396                                 QualType InstantiatedParamType, Expr *&Arg,
3397                                 TemplateArgument &Converted,
3398                                 CheckTemplateArgumentKind CTAK) {
3399  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3400
3401  // If either the parameter has a dependent type or the argument is
3402  // type-dependent, there's nothing we can check now.
3403  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3404    // FIXME: Produce a cloned, canonical expression?
3405    Converted = TemplateArgument(Arg);
3406    return false;
3407  }
3408
3409  // C++ [temp.arg.nontype]p5:
3410  //   The following conversions are performed on each expression used
3411  //   as a non-type template-argument. If a non-type
3412  //   template-argument cannot be converted to the type of the
3413  //   corresponding template-parameter then the program is
3414  //   ill-formed.
3415  //
3416  //     -- for a non-type template-parameter of integral or
3417  //        enumeration type, integral promotions (4.5) and integral
3418  //        conversions (4.7) are applied.
3419  QualType ParamType = InstantiatedParamType;
3420  QualType ArgType = Arg->getType();
3421  if (ParamType->isIntegralOrEnumerationType()) {
3422    // C++ [temp.arg.nontype]p1:
3423    //   A template-argument for a non-type, non-template
3424    //   template-parameter shall be one of:
3425    //
3426    //     -- an integral constant-expression of integral or enumeration
3427    //        type; or
3428    //     -- the name of a non-type template-parameter; or
3429    SourceLocation NonConstantLoc;
3430    llvm::APSInt Value;
3431    if (!ArgType->isIntegralOrEnumerationType()) {
3432      Diag(Arg->getSourceRange().getBegin(),
3433           diag::err_template_arg_not_integral_or_enumeral)
3434        << ArgType << Arg->getSourceRange();
3435      Diag(Param->getLocation(), diag::note_template_param_here);
3436      return true;
3437    } else if (!Arg->isValueDependent() &&
3438               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3439      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3440        << ArgType << Arg->getSourceRange();
3441      return true;
3442    }
3443
3444    // From here on out, all we care about are the unqualified forms
3445    // of the parameter and argument types.
3446    ParamType = ParamType.getUnqualifiedType();
3447    ArgType = ArgType.getUnqualifiedType();
3448
3449    // Try to convert the argument to the parameter's type.
3450    if (Context.hasSameType(ParamType, ArgType)) {
3451      // Okay: no conversion necessary
3452    } else if (CTAK == CTAK_Deduced) {
3453      // C++ [temp.deduct.type]p17:
3454      //   If, in the declaration of a function template with a non-type
3455      //   template-parameter, the non-type template- parameter is used
3456      //   in an expression in the function parameter-list and, if the
3457      //   corresponding template-argument is deduced, the
3458      //   template-argument type shall match the type of the
3459      //   template-parameter exactly, except that a template-argument
3460      //   deduced from an array bound may be of any integral type.
3461      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3462        << ArgType << ParamType;
3463      Diag(Param->getLocation(), diag::note_template_param_here);
3464      return true;
3465    } else if (ParamType->isBooleanType()) {
3466      // This is an integral-to-boolean conversion.
3467      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3468    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3469               !ParamType->isEnumeralType()) {
3470      // This is an integral promotion or conversion.
3471      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3472    } else {
3473      // We can't perform this conversion.
3474      Diag(Arg->getSourceRange().getBegin(),
3475           diag::err_template_arg_not_convertible)
3476        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3477      Diag(Param->getLocation(), diag::note_template_param_here);
3478      return true;
3479    }
3480
3481    QualType IntegerType = Context.getCanonicalType(ParamType);
3482    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3483      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3484
3485    if (!Arg->isValueDependent()) {
3486      llvm::APSInt OldValue = Value;
3487
3488      // Coerce the template argument's value to the value it will have
3489      // based on the template parameter's type.
3490      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3491      if (Value.getBitWidth() != AllowedBits)
3492        Value = Value.extOrTrunc(AllowedBits);
3493      Value.setIsSigned(IntegerType->isSignedIntegerType());
3494
3495      // Complain if an unsigned parameter received a negative value.
3496      if (IntegerType->isUnsignedIntegerType()
3497          && (OldValue.isSigned() && OldValue.isNegative())) {
3498        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3499          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3500          << Arg->getSourceRange();
3501        Diag(Param->getLocation(), diag::note_template_param_here);
3502      }
3503
3504      // Complain if we overflowed the template parameter's type.
3505      unsigned RequiredBits;
3506      if (IntegerType->isUnsignedIntegerType())
3507        RequiredBits = OldValue.getActiveBits();
3508      else if (OldValue.isUnsigned())
3509        RequiredBits = OldValue.getActiveBits() + 1;
3510      else
3511        RequiredBits = OldValue.getMinSignedBits();
3512      if (RequiredBits > AllowedBits) {
3513        Diag(Arg->getSourceRange().getBegin(),
3514             diag::warn_template_arg_too_large)
3515          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3516          << Arg->getSourceRange();
3517        Diag(Param->getLocation(), diag::note_template_param_here);
3518      }
3519    }
3520
3521    // Add the value of this argument to the list of converted
3522    // arguments. We use the bitwidth and signedness of the template
3523    // parameter.
3524    if (Arg->isValueDependent()) {
3525      // The argument is value-dependent. Create a new
3526      // TemplateArgument with the converted expression.
3527      Converted = TemplateArgument(Arg);
3528      return false;
3529    }
3530
3531    Converted = TemplateArgument(Value,
3532                                 ParamType->isEnumeralType() ? ParamType
3533                                                             : IntegerType);
3534    return false;
3535  }
3536
3537  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3538
3539  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3540  // from a template argument of type std::nullptr_t to a non-type
3541  // template parameter of type pointer to object, pointer to
3542  // function, or pointer-to-member, respectively.
3543  if (ArgType->isNullPtrType() &&
3544      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3545    Converted = TemplateArgument((NamedDecl *)0);
3546    return false;
3547  }
3548
3549  // Handle pointer-to-function, reference-to-function, and
3550  // pointer-to-member-function all in (roughly) the same way.
3551  if (// -- For a non-type template-parameter of type pointer to
3552      //    function, only the function-to-pointer conversion (4.3) is
3553      //    applied. If the template-argument represents a set of
3554      //    overloaded functions (or a pointer to such), the matching
3555      //    function is selected from the set (13.4).
3556      (ParamType->isPointerType() &&
3557       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3558      // -- For a non-type template-parameter of type reference to
3559      //    function, no conversions apply. If the template-argument
3560      //    represents a set of overloaded functions, the matching
3561      //    function is selected from the set (13.4).
3562      (ParamType->isReferenceType() &&
3563       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3564      // -- For a non-type template-parameter of type pointer to
3565      //    member function, no conversions apply. If the
3566      //    template-argument represents a set of overloaded member
3567      //    functions, the matching member function is selected from
3568      //    the set (13.4).
3569      (ParamType->isMemberPointerType() &&
3570       ParamType->getAs<MemberPointerType>()->getPointeeType()
3571         ->isFunctionType())) {
3572
3573    if (Arg->getType() == Context.OverloadTy) {
3574      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3575                                                                true,
3576                                                                FoundResult)) {
3577        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3578          return true;
3579
3580        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3581        ArgType = Arg->getType();
3582      } else
3583        return true;
3584    }
3585
3586    if (!ParamType->isMemberPointerType())
3587      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3588                                                            ParamType,
3589                                                            Arg, Converted);
3590
3591    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3592                                  false)) {
3593      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3594    } else if (!Context.hasSameUnqualifiedType(ArgType,
3595                                           ParamType.getNonReferenceType())) {
3596      // We can't perform this conversion.
3597      Diag(Arg->getSourceRange().getBegin(),
3598           diag::err_template_arg_not_convertible)
3599        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3600      Diag(Param->getLocation(), diag::note_template_param_here);
3601      return true;
3602    }
3603
3604    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3605  }
3606
3607  if (ParamType->isPointerType()) {
3608    //   -- for a non-type template-parameter of type pointer to
3609    //      object, qualification conversions (4.4) and the
3610    //      array-to-pointer conversion (4.2) are applied.
3611    // C++0x also allows a value of std::nullptr_t.
3612    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3613           "Only object pointers allowed here");
3614
3615    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3616                                                          ParamType,
3617                                                          Arg, Converted);
3618  }
3619
3620  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3621    //   -- For a non-type template-parameter of type reference to
3622    //      object, no conversions apply. The type referred to by the
3623    //      reference may be more cv-qualified than the (otherwise
3624    //      identical) type of the template-argument. The
3625    //      template-parameter is bound directly to the
3626    //      template-argument, which must be an lvalue.
3627    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3628           "Only object references allowed here");
3629
3630    if (Arg->getType() == Context.OverloadTy) {
3631      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3632                                                 ParamRefType->getPointeeType(),
3633                                                                true,
3634                                                                FoundResult)) {
3635        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3636          return true;
3637
3638        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3639        ArgType = Arg->getType();
3640      } else
3641        return true;
3642    }
3643
3644    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3645                                                          ParamType,
3646                                                          Arg, Converted);
3647  }
3648
3649  //     -- For a non-type template-parameter of type pointer to data
3650  //        member, qualification conversions (4.4) are applied.
3651  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3652
3653  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3654    // Types match exactly: nothing more to do here.
3655  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3656    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3657  } else {
3658    // We can't perform this conversion.
3659    Diag(Arg->getSourceRange().getBegin(),
3660         diag::err_template_arg_not_convertible)
3661      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3662    Diag(Param->getLocation(), diag::note_template_param_here);
3663    return true;
3664  }
3665
3666  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3667}
3668
3669/// \brief Check a template argument against its corresponding
3670/// template template parameter.
3671///
3672/// This routine implements the semantics of C++ [temp.arg.template].
3673/// It returns true if an error occurred, and false otherwise.
3674bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3675                                 const TemplateArgumentLoc &Arg) {
3676  TemplateName Name = Arg.getArgument().getAsTemplate();
3677  TemplateDecl *Template = Name.getAsTemplateDecl();
3678  if (!Template) {
3679    // Any dependent template name is fine.
3680    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3681    return false;
3682  }
3683
3684  // C++ [temp.arg.template]p1:
3685  //   A template-argument for a template template-parameter shall be
3686  //   the name of a class template, expressed as id-expression. Only
3687  //   primary class templates are considered when matching the
3688  //   template template argument with the corresponding parameter;
3689  //   partial specializations are not considered even if their
3690  //   parameter lists match that of the template template parameter.
3691  //
3692  // Note that we also allow template template parameters here, which
3693  // will happen when we are dealing with, e.g., class template
3694  // partial specializations.
3695  if (!isa<ClassTemplateDecl>(Template) &&
3696      !isa<TemplateTemplateParmDecl>(Template)) {
3697    assert(isa<FunctionTemplateDecl>(Template) &&
3698           "Only function templates are possible here");
3699    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3700    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3701      << Template;
3702  }
3703
3704  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3705                                         Param->getTemplateParameters(),
3706                                         true,
3707                                         TPL_TemplateTemplateArgumentMatch,
3708                                         Arg.getLocation());
3709}
3710
3711/// \brief Given a non-type template argument that refers to a
3712/// declaration and the type of its corresponding non-type template
3713/// parameter, produce an expression that properly refers to that
3714/// declaration.
3715ExprResult
3716Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3717                                              QualType ParamType,
3718                                              SourceLocation Loc) {
3719  assert(Arg.getKind() == TemplateArgument::Declaration &&
3720         "Only declaration template arguments permitted here");
3721  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3722
3723  if (VD->getDeclContext()->isRecord() &&
3724      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3725    // If the value is a class member, we might have a pointer-to-member.
3726    // Determine whether the non-type template template parameter is of
3727    // pointer-to-member type. If so, we need to build an appropriate
3728    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3729    // would refer to the member itself.
3730    if (ParamType->isMemberPointerType()) {
3731      QualType ClassType
3732        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3733      NestedNameSpecifier *Qualifier
3734        = NestedNameSpecifier::Create(Context, 0, false,
3735                                      ClassType.getTypePtr());
3736      CXXScopeSpec SS;
3737      SS.MakeTrivial(Context, Qualifier, Loc);
3738
3739      // The actual value-ness of this is unimportant, but for
3740      // internal consistency's sake, references to instance methods
3741      // are r-values.
3742      ExprValueKind VK = VK_LValue;
3743      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3744        VK = VK_RValue;
3745
3746      ExprResult RefExpr = BuildDeclRefExpr(VD,
3747                                            VD->getType().getNonReferenceType(),
3748                                            VK,
3749                                            Loc,
3750                                            &SS);
3751      if (RefExpr.isInvalid())
3752        return ExprError();
3753
3754      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3755
3756      // We might need to perform a trailing qualification conversion, since
3757      // the element type on the parameter could be more qualified than the
3758      // element type in the expression we constructed.
3759      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3760                                    ParamType.getUnqualifiedType(), false)) {
3761        Expr *RefE = RefExpr.takeAs<Expr>();
3762        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3763        RefExpr = Owned(RefE);
3764      }
3765
3766      assert(!RefExpr.isInvalid() &&
3767             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3768                                 ParamType.getUnqualifiedType()));
3769      return move(RefExpr);
3770    }
3771  }
3772
3773  QualType T = VD->getType().getNonReferenceType();
3774  if (ParamType->isPointerType()) {
3775    // When the non-type template parameter is a pointer, take the
3776    // address of the declaration.
3777    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3778    if (RefExpr.isInvalid())
3779      return ExprError();
3780
3781    if (T->isFunctionType() || T->isArrayType()) {
3782      // Decay functions and arrays.
3783      Expr *RefE = (Expr *)RefExpr.get();
3784      DefaultFunctionArrayConversion(RefE);
3785      if (RefE != RefExpr.get()) {
3786        RefExpr.release();
3787        RefExpr = Owned(RefE);
3788      }
3789
3790      return move(RefExpr);
3791    }
3792
3793    // Take the address of everything else
3794    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3795  }
3796
3797  ExprValueKind VK = VK_RValue;
3798
3799  // If the non-type template parameter has reference type, qualify the
3800  // resulting declaration reference with the extra qualifiers on the
3801  // type that the reference refers to.
3802  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3803    VK = VK_LValue;
3804    T = Context.getQualifiedType(T,
3805                              TargetRef->getPointeeType().getQualifiers());
3806  }
3807
3808  return BuildDeclRefExpr(VD, T, VK, Loc);
3809}
3810
3811/// \brief Construct a new expression that refers to the given
3812/// integral template argument with the given source-location
3813/// information.
3814///
3815/// This routine takes care of the mapping from an integral template
3816/// argument (which may have any integral type) to the appropriate
3817/// literal value.
3818ExprResult
3819Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3820                                                  SourceLocation Loc) {
3821  assert(Arg.getKind() == TemplateArgument::Integral &&
3822         "Operation is only valid for integral template arguments");
3823  QualType T = Arg.getIntegralType();
3824  if (T->isCharType() || T->isWideCharType())
3825    return Owned(new (Context) CharacterLiteral(
3826                                             Arg.getAsIntegral()->getZExtValue(),
3827                                             T->isWideCharType(),
3828                                             T,
3829                                             Loc));
3830  if (T->isBooleanType())
3831    return Owned(new (Context) CXXBoolLiteralExpr(
3832                                            Arg.getAsIntegral()->getBoolValue(),
3833                                            T,
3834                                            Loc));
3835
3836  QualType BT;
3837  if (const EnumType *ET = T->getAs<EnumType>())
3838    BT = ET->getDecl()->getPromotionType();
3839  else
3840    BT = T;
3841
3842  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3843  if (T->isEnumeralType()) {
3844    // FIXME: This is a hack. We need a better way to handle substituted
3845    // non-type template parameters.
3846    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast,
3847                                      E, 0,
3848                                      Context.getTrivialTypeSourceInfo(T, Loc),
3849                                      Loc, Loc);
3850  }
3851
3852  return Owned(E);
3853}
3854
3855/// \brief Match two template parameters within template parameter lists.
3856static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3857                                       bool Complain,
3858                                     Sema::TemplateParameterListEqualKind Kind,
3859                                       SourceLocation TemplateArgLoc) {
3860  // Check the actual kind (type, non-type, template).
3861  if (Old->getKind() != New->getKind()) {
3862    if (Complain) {
3863      unsigned NextDiag = diag::err_template_param_different_kind;
3864      if (TemplateArgLoc.isValid()) {
3865        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3866        NextDiag = diag::note_template_param_different_kind;
3867      }
3868      S.Diag(New->getLocation(), NextDiag)
3869        << (Kind != Sema::TPL_TemplateMatch);
3870      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3871        << (Kind != Sema::TPL_TemplateMatch);
3872    }
3873
3874    return false;
3875  }
3876
3877  // Check that both are parameter packs are neither are parameter packs.
3878  // However, if we are matching a template template argument to a
3879  // template template parameter, the template template parameter can have
3880  // a parameter pack where the template template argument does not.
3881  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3882      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3883        Old->isTemplateParameterPack())) {
3884    if (Complain) {
3885      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3886      if (TemplateArgLoc.isValid()) {
3887        S.Diag(TemplateArgLoc,
3888             diag::err_template_arg_template_params_mismatch);
3889        NextDiag = diag::note_template_parameter_pack_non_pack;
3890      }
3891
3892      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3893                      : isa<NonTypeTemplateParmDecl>(New)? 1
3894                      : 2;
3895      S.Diag(New->getLocation(), NextDiag)
3896        << ParamKind << New->isParameterPack();
3897      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3898        << ParamKind << Old->isParameterPack();
3899    }
3900
3901    return false;
3902  }
3903
3904  // For non-type template parameters, check the type of the parameter.
3905  if (NonTypeTemplateParmDecl *OldNTTP
3906                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3907    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3908
3909    // If we are matching a template template argument to a template
3910    // template parameter and one of the non-type template parameter types
3911    // is dependent, then we must wait until template instantiation time
3912    // to actually compare the arguments.
3913    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3914        (OldNTTP->getType()->isDependentType() ||
3915         NewNTTP->getType()->isDependentType()))
3916      return true;
3917
3918    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3919      if (Complain) {
3920        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3921        if (TemplateArgLoc.isValid()) {
3922          S.Diag(TemplateArgLoc,
3923                 diag::err_template_arg_template_params_mismatch);
3924          NextDiag = diag::note_template_nontype_parm_different_type;
3925        }
3926        S.Diag(NewNTTP->getLocation(), NextDiag)
3927          << NewNTTP->getType()
3928          << (Kind != Sema::TPL_TemplateMatch);
3929        S.Diag(OldNTTP->getLocation(),
3930               diag::note_template_nontype_parm_prev_declaration)
3931          << OldNTTP->getType();
3932      }
3933
3934      return false;
3935    }
3936
3937    return true;
3938  }
3939
3940  // For template template parameters, check the template parameter types.
3941  // The template parameter lists of template template
3942  // parameters must agree.
3943  if (TemplateTemplateParmDecl *OldTTP
3944                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3945    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3946    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3947                                            OldTTP->getTemplateParameters(),
3948                                            Complain,
3949                                        (Kind == Sema::TPL_TemplateMatch
3950                                           ? Sema::TPL_TemplateTemplateParmMatch
3951                                           : Kind),
3952                                            TemplateArgLoc);
3953  }
3954
3955  return true;
3956}
3957
3958/// \brief Diagnose a known arity mismatch when comparing template argument
3959/// lists.
3960static
3961void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3962                                                TemplateParameterList *New,
3963                                                TemplateParameterList *Old,
3964                                      Sema::TemplateParameterListEqualKind Kind,
3965                                                SourceLocation TemplateArgLoc) {
3966  unsigned NextDiag = diag::err_template_param_list_different_arity;
3967  if (TemplateArgLoc.isValid()) {
3968    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3969    NextDiag = diag::note_template_param_list_different_arity;
3970  }
3971  S.Diag(New->getTemplateLoc(), NextDiag)
3972    << (New->size() > Old->size())
3973    << (Kind != Sema::TPL_TemplateMatch)
3974    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3975  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3976    << (Kind != Sema::TPL_TemplateMatch)
3977    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3978}
3979
3980/// \brief Determine whether the given template parameter lists are
3981/// equivalent.
3982///
3983/// \param New  The new template parameter list, typically written in the
3984/// source code as part of a new template declaration.
3985///
3986/// \param Old  The old template parameter list, typically found via
3987/// name lookup of the template declared with this template parameter
3988/// list.
3989///
3990/// \param Complain  If true, this routine will produce a diagnostic if
3991/// the template parameter lists are not equivalent.
3992///
3993/// \param Kind describes how we are to match the template parameter lists.
3994///
3995/// \param TemplateArgLoc If this source location is valid, then we
3996/// are actually checking the template parameter list of a template
3997/// argument (New) against the template parameter list of its
3998/// corresponding template template parameter (Old). We produce
3999/// slightly different diagnostics in this scenario.
4000///
4001/// \returns True if the template parameter lists are equal, false
4002/// otherwise.
4003bool
4004Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4005                                     TemplateParameterList *Old,
4006                                     bool Complain,
4007                                     TemplateParameterListEqualKind Kind,
4008                                     SourceLocation TemplateArgLoc) {
4009  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4010    if (Complain)
4011      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4012                                                 TemplateArgLoc);
4013
4014    return false;
4015  }
4016
4017  // C++0x [temp.arg.template]p3:
4018  //   A template-argument matches a template template-parameter (call it P)
4019  //   when each of the template parameters in the template-parameter-list of
4020  //   the template-argument's corresponding class template or template alias
4021  //   (call it A) matches the corresponding template parameter in the
4022  //   template-parameter-list of P. [...]
4023  TemplateParameterList::iterator NewParm = New->begin();
4024  TemplateParameterList::iterator NewParmEnd = New->end();
4025  for (TemplateParameterList::iterator OldParm = Old->begin(),
4026                                    OldParmEnd = Old->end();
4027       OldParm != OldParmEnd; ++OldParm) {
4028    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4029        !(*OldParm)->isTemplateParameterPack()) {
4030      if (NewParm == NewParmEnd) {
4031        if (Complain)
4032          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4033                                                     TemplateArgLoc);
4034
4035        return false;
4036      }
4037
4038      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4039                                      Kind, TemplateArgLoc))
4040        return false;
4041
4042      ++NewParm;
4043      continue;
4044    }
4045
4046    // C++0x [temp.arg.template]p3:
4047    //   [...] When P's template- parameter-list contains a template parameter
4048    //   pack (14.5.3), the template parameter pack will match zero or more
4049    //   template parameters or template parameter packs in the
4050    //   template-parameter-list of A with the same type and form as the
4051    //   template parameter pack in P (ignoring whether those template
4052    //   parameters are template parameter packs).
4053    for (; NewParm != NewParmEnd; ++NewParm) {
4054      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4055                                      Kind, TemplateArgLoc))
4056        return false;
4057    }
4058  }
4059
4060  // Make sure we exhausted all of the arguments.
4061  if (NewParm != NewParmEnd) {
4062    if (Complain)
4063      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4064                                                 TemplateArgLoc);
4065
4066    return false;
4067  }
4068
4069  return true;
4070}
4071
4072/// \brief Check whether a template can be declared within this scope.
4073///
4074/// If the template declaration is valid in this scope, returns
4075/// false. Otherwise, issues a diagnostic and returns true.
4076bool
4077Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4078  // Find the nearest enclosing declaration scope.
4079  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4080         (S->getFlags() & Scope::TemplateParamScope) != 0)
4081    S = S->getParent();
4082
4083  // C++ [temp]p2:
4084  //   A template-declaration can appear only as a namespace scope or
4085  //   class scope declaration.
4086  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4087  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4088      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4089    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4090             << TemplateParams->getSourceRange();
4091
4092  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4093    Ctx = Ctx->getParent();
4094
4095  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4096    return false;
4097
4098  return Diag(TemplateParams->getTemplateLoc(),
4099              diag::err_template_outside_namespace_or_class_scope)
4100    << TemplateParams->getSourceRange();
4101}
4102
4103/// \brief Determine what kind of template specialization the given declaration
4104/// is.
4105static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4106  if (!D)
4107    return TSK_Undeclared;
4108
4109  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4110    return Record->getTemplateSpecializationKind();
4111  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4112    return Function->getTemplateSpecializationKind();
4113  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4114    return Var->getTemplateSpecializationKind();
4115
4116  return TSK_Undeclared;
4117}
4118
4119/// \brief Check whether a specialization is well-formed in the current
4120/// context.
4121///
4122/// This routine determines whether a template specialization can be declared
4123/// in the current context (C++ [temp.expl.spec]p2).
4124///
4125/// \param S the semantic analysis object for which this check is being
4126/// performed.
4127///
4128/// \param Specialized the entity being specialized or instantiated, which
4129/// may be a kind of template (class template, function template, etc.) or
4130/// a member of a class template (member function, static data member,
4131/// member class).
4132///
4133/// \param PrevDecl the previous declaration of this entity, if any.
4134///
4135/// \param Loc the location of the explicit specialization or instantiation of
4136/// this entity.
4137///
4138/// \param IsPartialSpecialization whether this is a partial specialization of
4139/// a class template.
4140///
4141/// \returns true if there was an error that we cannot recover from, false
4142/// otherwise.
4143static bool CheckTemplateSpecializationScope(Sema &S,
4144                                             NamedDecl *Specialized,
4145                                             NamedDecl *PrevDecl,
4146                                             SourceLocation Loc,
4147                                             bool IsPartialSpecialization) {
4148  // Keep these "kind" numbers in sync with the %select statements in the
4149  // various diagnostics emitted by this routine.
4150  int EntityKind = 0;
4151  if (isa<ClassTemplateDecl>(Specialized))
4152    EntityKind = IsPartialSpecialization? 1 : 0;
4153  else if (isa<FunctionTemplateDecl>(Specialized))
4154    EntityKind = 2;
4155  else if (isa<CXXMethodDecl>(Specialized))
4156    EntityKind = 3;
4157  else if (isa<VarDecl>(Specialized))
4158    EntityKind = 4;
4159  else if (isa<RecordDecl>(Specialized))
4160    EntityKind = 5;
4161  else {
4162    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4163    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4164    return true;
4165  }
4166
4167  // C++ [temp.expl.spec]p2:
4168  //   An explicit specialization shall be declared in the namespace
4169  //   of which the template is a member, or, for member templates, in
4170  //   the namespace of which the enclosing class or enclosing class
4171  //   template is a member. An explicit specialization of a member
4172  //   function, member class or static data member of a class
4173  //   template shall be declared in the namespace of which the class
4174  //   template is a member. Such a declaration may also be a
4175  //   definition. If the declaration is not a definition, the
4176  //   specialization may be defined later in the name- space in which
4177  //   the explicit specialization was declared, or in a namespace
4178  //   that encloses the one in which the explicit specialization was
4179  //   declared.
4180  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4181    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4182      << Specialized;
4183    return true;
4184  }
4185
4186  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4187    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4188      << Specialized;
4189    return true;
4190  }
4191
4192  // C++ [temp.class.spec]p6:
4193  //   A class template partial specialization may be declared or redeclared
4194  //   in any namespace scope in which its definition may be defined (14.5.1
4195  //   and 14.5.2).
4196  bool ComplainedAboutScope = false;
4197  DeclContext *SpecializedContext
4198    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4199  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4200  if ((!PrevDecl ||
4201       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4202       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4203    // C++ [temp.exp.spec]p2:
4204    //   An explicit specialization shall be declared in the namespace of which
4205    //   the template is a member, or, for member templates, in the namespace
4206    //   of which the enclosing class or enclosing class template is a member.
4207    //   An explicit specialization of a member function, member class or
4208    //   static data member of a class template shall be declared in the
4209    //   namespace of which the class template is a member.
4210    //
4211    // C++0x [temp.expl.spec]p2:
4212    //   An explicit specialization shall be declared in a namespace enclosing
4213    //   the specialized template.
4214    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4215        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4216      bool IsCPlusPlus0xExtension
4217        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4218      if (isa<TranslationUnitDecl>(SpecializedContext))
4219        S.Diag(Loc, IsCPlusPlus0xExtension
4220                      ? diag::ext_template_spec_decl_out_of_scope_global
4221                      : diag::err_template_spec_decl_out_of_scope_global)
4222          << EntityKind << Specialized;
4223      else if (isa<NamespaceDecl>(SpecializedContext))
4224        S.Diag(Loc, IsCPlusPlus0xExtension
4225                      ? diag::ext_template_spec_decl_out_of_scope
4226                      : diag::err_template_spec_decl_out_of_scope)
4227          << EntityKind << Specialized
4228          << cast<NamedDecl>(SpecializedContext);
4229
4230      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4231      ComplainedAboutScope = true;
4232    }
4233  }
4234
4235  // Make sure that this redeclaration (or definition) occurs in an enclosing
4236  // namespace.
4237  // Note that HandleDeclarator() performs this check for explicit
4238  // specializations of function templates, static data members, and member
4239  // functions, so we skip the check here for those kinds of entities.
4240  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4241  // Should we refactor that check, so that it occurs later?
4242  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4243      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4244        isa<FunctionDecl>(Specialized))) {
4245    if (isa<TranslationUnitDecl>(SpecializedContext))
4246      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4247        << EntityKind << Specialized;
4248    else if (isa<NamespaceDecl>(SpecializedContext))
4249      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4250        << EntityKind << Specialized
4251        << cast<NamedDecl>(SpecializedContext);
4252
4253    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4254  }
4255
4256  // FIXME: check for specialization-after-instantiation errors and such.
4257
4258  return false;
4259}
4260
4261/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4262/// that checks non-type template partial specialization arguments.
4263static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4264                                                NonTypeTemplateParmDecl *Param,
4265                                                  const TemplateArgument *Args,
4266                                                        unsigned NumArgs) {
4267  for (unsigned I = 0; I != NumArgs; ++I) {
4268    if (Args[I].getKind() == TemplateArgument::Pack) {
4269      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4270                                                           Args[I].pack_begin(),
4271                                                           Args[I].pack_size()))
4272        return true;
4273
4274      continue;
4275    }
4276
4277    Expr *ArgExpr = Args[I].getAsExpr();
4278    if (!ArgExpr) {
4279      continue;
4280    }
4281
4282    // We can have a pack expansion of any of the bullets below.
4283    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4284      ArgExpr = Expansion->getPattern();
4285
4286    // Strip off any implicit casts we added as part of type checking.
4287    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4288      ArgExpr = ICE->getSubExpr();
4289
4290    // C++ [temp.class.spec]p8:
4291    //   A non-type argument is non-specialized if it is the name of a
4292    //   non-type parameter. All other non-type arguments are
4293    //   specialized.
4294    //
4295    // Below, we check the two conditions that only apply to
4296    // specialized non-type arguments, so skip any non-specialized
4297    // arguments.
4298    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4299      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4300        continue;
4301
4302    // C++ [temp.class.spec]p9:
4303    //   Within the argument list of a class template partial
4304    //   specialization, the following restrictions apply:
4305    //     -- A partially specialized non-type argument expression
4306    //        shall not involve a template parameter of the partial
4307    //        specialization except when the argument expression is a
4308    //        simple identifier.
4309    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4310      S.Diag(ArgExpr->getLocStart(),
4311           diag::err_dependent_non_type_arg_in_partial_spec)
4312        << ArgExpr->getSourceRange();
4313      return true;
4314    }
4315
4316    //     -- The type of a template parameter corresponding to a
4317    //        specialized non-type argument shall not be dependent on a
4318    //        parameter of the specialization.
4319    if (Param->getType()->isDependentType()) {
4320      S.Diag(ArgExpr->getLocStart(),
4321           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4322        << Param->getType()
4323        << ArgExpr->getSourceRange();
4324      S.Diag(Param->getLocation(), diag::note_template_param_here);
4325      return true;
4326    }
4327  }
4328
4329  return false;
4330}
4331
4332/// \brief Check the non-type template arguments of a class template
4333/// partial specialization according to C++ [temp.class.spec]p9.
4334///
4335/// \param TemplateParams the template parameters of the primary class
4336/// template.
4337///
4338/// \param TemplateArg the template arguments of the class template
4339/// partial specialization.
4340///
4341/// \returns true if there was an error, false otherwise.
4342static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4343                                        TemplateParameterList *TemplateParams,
4344                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4345  const TemplateArgument *ArgList = TemplateArgs.data();
4346
4347  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4348    NonTypeTemplateParmDecl *Param
4349      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4350    if (!Param)
4351      continue;
4352
4353    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4354                                                           &ArgList[I], 1))
4355      return true;
4356  }
4357
4358  return false;
4359}
4360
4361/// \brief Retrieve the previous declaration of the given declaration.
4362static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4363  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4364    return VD->getPreviousDeclaration();
4365  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4366    return FD->getPreviousDeclaration();
4367  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4368    return TD->getPreviousDeclaration();
4369  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4370    return TD->getPreviousDeclaration();
4371  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4372    return FTD->getPreviousDeclaration();
4373  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4374    return CTD->getPreviousDeclaration();
4375  return 0;
4376}
4377
4378DeclResult
4379Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4380                                       TagUseKind TUK,
4381                                       SourceLocation KWLoc,
4382                                       CXXScopeSpec &SS,
4383                                       TemplateTy TemplateD,
4384                                       SourceLocation TemplateNameLoc,
4385                                       SourceLocation LAngleLoc,
4386                                       ASTTemplateArgsPtr TemplateArgsIn,
4387                                       SourceLocation RAngleLoc,
4388                                       AttributeList *Attr,
4389                               MultiTemplateParamsArg TemplateParameterLists) {
4390  assert(TUK != TUK_Reference && "References are not specializations");
4391
4392  // Find the class template we're specializing
4393  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4394  ClassTemplateDecl *ClassTemplate
4395    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4396
4397  if (!ClassTemplate) {
4398    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4399      << (Name.getAsTemplateDecl() &&
4400          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4401    return true;
4402  }
4403
4404  bool isExplicitSpecialization = false;
4405  bool isPartialSpecialization = false;
4406
4407  // Check the validity of the template headers that introduce this
4408  // template.
4409  // FIXME: We probably shouldn't complain about these headers for
4410  // friend declarations.
4411  bool Invalid = false;
4412  TemplateParameterList *TemplateParams
4413    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4414                        (TemplateParameterList**)TemplateParameterLists.get(),
4415                                              TemplateParameterLists.size(),
4416                                              TUK == TUK_Friend,
4417                                              isExplicitSpecialization,
4418                                              Invalid);
4419  if (Invalid)
4420    return true;
4421
4422  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4423  if (TemplateParams)
4424    --NumMatchedTemplateParamLists;
4425
4426  if (TemplateParams && TemplateParams->size() > 0) {
4427    isPartialSpecialization = true;
4428
4429    if (TUK == TUK_Friend) {
4430      Diag(KWLoc, diag::err_partial_specialization_friend)
4431        << SourceRange(LAngleLoc, RAngleLoc);
4432      return true;
4433    }
4434
4435    // C++ [temp.class.spec]p10:
4436    //   The template parameter list of a specialization shall not
4437    //   contain default template argument values.
4438    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4439      Decl *Param = TemplateParams->getParam(I);
4440      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4441        if (TTP->hasDefaultArgument()) {
4442          Diag(TTP->getDefaultArgumentLoc(),
4443               diag::err_default_arg_in_partial_spec);
4444          TTP->removeDefaultArgument();
4445        }
4446      } else if (NonTypeTemplateParmDecl *NTTP
4447                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4448        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4449          Diag(NTTP->getDefaultArgumentLoc(),
4450               diag::err_default_arg_in_partial_spec)
4451            << DefArg->getSourceRange();
4452          NTTP->removeDefaultArgument();
4453        }
4454      } else {
4455        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4456        if (TTP->hasDefaultArgument()) {
4457          Diag(TTP->getDefaultArgument().getLocation(),
4458               diag::err_default_arg_in_partial_spec)
4459            << TTP->getDefaultArgument().getSourceRange();
4460          TTP->removeDefaultArgument();
4461        }
4462      }
4463    }
4464  } else if (TemplateParams) {
4465    if (TUK == TUK_Friend)
4466      Diag(KWLoc, diag::err_template_spec_friend)
4467        << FixItHint::CreateRemoval(
4468                                SourceRange(TemplateParams->getTemplateLoc(),
4469                                            TemplateParams->getRAngleLoc()))
4470        << SourceRange(LAngleLoc, RAngleLoc);
4471    else
4472      isExplicitSpecialization = true;
4473  } else if (TUK != TUK_Friend) {
4474    Diag(KWLoc, diag::err_template_spec_needs_header)
4475      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4476    isExplicitSpecialization = true;
4477  }
4478
4479  // Check that the specialization uses the same tag kind as the
4480  // original template.
4481  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4482  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4483  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4484                                    Kind, KWLoc,
4485                                    *ClassTemplate->getIdentifier())) {
4486    Diag(KWLoc, diag::err_use_with_wrong_tag)
4487      << ClassTemplate
4488      << FixItHint::CreateReplacement(KWLoc,
4489                            ClassTemplate->getTemplatedDecl()->getKindName());
4490    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4491         diag::note_previous_use);
4492    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4493  }
4494
4495  // Translate the parser's template argument list in our AST format.
4496  TemplateArgumentListInfo TemplateArgs;
4497  TemplateArgs.setLAngleLoc(LAngleLoc);
4498  TemplateArgs.setRAngleLoc(RAngleLoc);
4499  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4500
4501  // Check for unexpanded parameter packs in any of the template arguments.
4502  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4503    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4504                                        UPPC_PartialSpecialization))
4505      return true;
4506
4507  // Check that the template argument list is well-formed for this
4508  // template.
4509  llvm::SmallVector<TemplateArgument, 4> Converted;
4510  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4511                                TemplateArgs, false, Converted))
4512    return true;
4513
4514  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4515         "Converted template argument list is too short!");
4516
4517  // Find the class template (partial) specialization declaration that
4518  // corresponds to these arguments.
4519  if (isPartialSpecialization) {
4520    if (CheckClassTemplatePartialSpecializationArgs(*this,
4521                                         ClassTemplate->getTemplateParameters(),
4522                                         Converted))
4523      return true;
4524
4525    if (!Name.isDependent() &&
4526        !TemplateSpecializationType::anyDependentTemplateArguments(
4527                                             TemplateArgs.getArgumentArray(),
4528                                                         TemplateArgs.size())) {
4529      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4530        << ClassTemplate->getDeclName();
4531      isPartialSpecialization = false;
4532    }
4533  }
4534
4535  void *InsertPos = 0;
4536  ClassTemplateSpecializationDecl *PrevDecl = 0;
4537
4538  if (isPartialSpecialization)
4539    // FIXME: Template parameter list matters, too
4540    PrevDecl
4541      = ClassTemplate->findPartialSpecialization(Converted.data(),
4542                                                 Converted.size(),
4543                                                 InsertPos);
4544  else
4545    PrevDecl
4546      = ClassTemplate->findSpecialization(Converted.data(),
4547                                          Converted.size(), InsertPos);
4548
4549  ClassTemplateSpecializationDecl *Specialization = 0;
4550
4551  // Check whether we can declare a class template specialization in
4552  // the current scope.
4553  if (TUK != TUK_Friend &&
4554      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4555                                       TemplateNameLoc,
4556                                       isPartialSpecialization))
4557    return true;
4558
4559  // The canonical type
4560  QualType CanonType;
4561  if (PrevDecl &&
4562      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4563               TUK == TUK_Friend)) {
4564    // Since the only prior class template specialization with these
4565    // arguments was referenced but not declared, or we're only
4566    // referencing this specialization as a friend, reuse that
4567    // declaration node as our own, updating its source location to
4568    // reflect our new declaration.
4569    Specialization = PrevDecl;
4570    Specialization->setLocation(TemplateNameLoc);
4571    PrevDecl = 0;
4572    CanonType = Context.getTypeDeclType(Specialization);
4573  } else if (isPartialSpecialization) {
4574    // Build the canonical type that describes the converted template
4575    // arguments of the class template partial specialization.
4576    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4577    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4578                                                      Converted.data(),
4579                                                      Converted.size());
4580
4581    if (Context.hasSameType(CanonType,
4582                        ClassTemplate->getInjectedClassNameSpecialization())) {
4583      // C++ [temp.class.spec]p9b3:
4584      //
4585      //   -- The argument list of the specialization shall not be identical
4586      //      to the implicit argument list of the primary template.
4587      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4588      << (TUK == TUK_Definition)
4589      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4590      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4591                                ClassTemplate->getIdentifier(),
4592                                TemplateNameLoc,
4593                                Attr,
4594                                TemplateParams,
4595                                AS_none,
4596                                NumMatchedTemplateParamLists,
4597                  (TemplateParameterList**) TemplateParameterLists.release());
4598    }
4599
4600    // Create a new class template partial specialization declaration node.
4601    ClassTemplatePartialSpecializationDecl *PrevPartial
4602      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4603    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4604                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4605    ClassTemplatePartialSpecializationDecl *Partial
4606      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4607                                             ClassTemplate->getDeclContext(),
4608                                                       KWLoc, TemplateNameLoc,
4609                                                       TemplateParams,
4610                                                       ClassTemplate,
4611                                                       Converted.data(),
4612                                                       Converted.size(),
4613                                                       TemplateArgs,
4614                                                       CanonType,
4615                                                       PrevPartial,
4616                                                       SequenceNumber);
4617    SetNestedNameSpecifier(Partial, SS);
4618    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4619      Partial->setTemplateParameterListsInfo(Context,
4620                                             NumMatchedTemplateParamLists,
4621                    (TemplateParameterList**) TemplateParameterLists.release());
4622    }
4623
4624    if (!PrevPartial)
4625      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4626    Specialization = Partial;
4627
4628    // If we are providing an explicit specialization of a member class
4629    // template specialization, make a note of that.
4630    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4631      PrevPartial->setMemberSpecialization();
4632
4633    // Check that all of the template parameters of the class template
4634    // partial specialization are deducible from the template
4635    // arguments. If not, this class template partial specialization
4636    // will never be used.
4637    llvm::SmallVector<bool, 8> DeducibleParams;
4638    DeducibleParams.resize(TemplateParams->size());
4639    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4640                               TemplateParams->getDepth(),
4641                               DeducibleParams);
4642    unsigned NumNonDeducible = 0;
4643    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4644      if (!DeducibleParams[I])
4645        ++NumNonDeducible;
4646
4647    if (NumNonDeducible) {
4648      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4649        << (NumNonDeducible > 1)
4650        << SourceRange(TemplateNameLoc, RAngleLoc);
4651      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4652        if (!DeducibleParams[I]) {
4653          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4654          if (Param->getDeclName())
4655            Diag(Param->getLocation(),
4656                 diag::note_partial_spec_unused_parameter)
4657              << Param->getDeclName();
4658          else
4659            Diag(Param->getLocation(),
4660                 diag::note_partial_spec_unused_parameter)
4661              << "<anonymous>";
4662        }
4663      }
4664    }
4665  } else {
4666    // Create a new class template specialization declaration node for
4667    // this explicit specialization or friend declaration.
4668    Specialization
4669      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4670                                             ClassTemplate->getDeclContext(),
4671                                                KWLoc, TemplateNameLoc,
4672                                                ClassTemplate,
4673                                                Converted.data(),
4674                                                Converted.size(),
4675                                                PrevDecl);
4676    SetNestedNameSpecifier(Specialization, SS);
4677    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4678      Specialization->setTemplateParameterListsInfo(Context,
4679                                                  NumMatchedTemplateParamLists,
4680                    (TemplateParameterList**) TemplateParameterLists.release());
4681    }
4682
4683    if (!PrevDecl)
4684      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4685
4686    CanonType = Context.getTypeDeclType(Specialization);
4687  }
4688
4689  // C++ [temp.expl.spec]p6:
4690  //   If a template, a member template or the member of a class template is
4691  //   explicitly specialized then that specialization shall be declared
4692  //   before the first use of that specialization that would cause an implicit
4693  //   instantiation to take place, in every translation unit in which such a
4694  //   use occurs; no diagnostic is required.
4695  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4696    bool Okay = false;
4697    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4698      // Is there any previous explicit specialization declaration?
4699      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4700        Okay = true;
4701        break;
4702      }
4703    }
4704
4705    if (!Okay) {
4706      SourceRange Range(TemplateNameLoc, RAngleLoc);
4707      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4708        << Context.getTypeDeclType(Specialization) << Range;
4709
4710      Diag(PrevDecl->getPointOfInstantiation(),
4711           diag::note_instantiation_required_here)
4712        << (PrevDecl->getTemplateSpecializationKind()
4713                                                != TSK_ImplicitInstantiation);
4714      return true;
4715    }
4716  }
4717
4718  // If this is not a friend, note that this is an explicit specialization.
4719  if (TUK != TUK_Friend)
4720    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4721
4722  // Check that this isn't a redefinition of this specialization.
4723  if (TUK == TUK_Definition) {
4724    if (RecordDecl *Def = Specialization->getDefinition()) {
4725      SourceRange Range(TemplateNameLoc, RAngleLoc);
4726      Diag(TemplateNameLoc, diag::err_redefinition)
4727        << Context.getTypeDeclType(Specialization) << Range;
4728      Diag(Def->getLocation(), diag::note_previous_definition);
4729      Specialization->setInvalidDecl();
4730      return true;
4731    }
4732  }
4733
4734  if (Attr)
4735    ProcessDeclAttributeList(S, Specialization, Attr);
4736
4737  // Build the fully-sugared type for this class template
4738  // specialization as the user wrote in the specialization
4739  // itself. This means that we'll pretty-print the type retrieved
4740  // from the specialization's declaration the way that the user
4741  // actually wrote the specialization, rather than formatting the
4742  // name based on the "canonical" representation used to store the
4743  // template arguments in the specialization.
4744  TypeSourceInfo *WrittenTy
4745    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4746                                                TemplateArgs, CanonType);
4747  if (TUK != TUK_Friend) {
4748    Specialization->setTypeAsWritten(WrittenTy);
4749    if (TemplateParams)
4750      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4751  }
4752  TemplateArgsIn.release();
4753
4754  // C++ [temp.expl.spec]p9:
4755  //   A template explicit specialization is in the scope of the
4756  //   namespace in which the template was defined.
4757  //
4758  // We actually implement this paragraph where we set the semantic
4759  // context (in the creation of the ClassTemplateSpecializationDecl),
4760  // but we also maintain the lexical context where the actual
4761  // definition occurs.
4762  Specialization->setLexicalDeclContext(CurContext);
4763
4764  // We may be starting the definition of this specialization.
4765  if (TUK == TUK_Definition)
4766    Specialization->startDefinition();
4767
4768  if (TUK == TUK_Friend) {
4769    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4770                                            TemplateNameLoc,
4771                                            WrittenTy,
4772                                            /*FIXME:*/KWLoc);
4773    Friend->setAccess(AS_public);
4774    CurContext->addDecl(Friend);
4775  } else {
4776    // Add the specialization into its lexical context, so that it can
4777    // be seen when iterating through the list of declarations in that
4778    // context. However, specializations are not found by name lookup.
4779    CurContext->addDecl(Specialization);
4780  }
4781  return Specialization;
4782}
4783
4784Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4785                              MultiTemplateParamsArg TemplateParameterLists,
4786                                    Declarator &D) {
4787  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4788}
4789
4790Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4791                               MultiTemplateParamsArg TemplateParameterLists,
4792                                            Declarator &D) {
4793  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4794  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4795
4796  if (FTI.hasPrototype) {
4797    // FIXME: Diagnose arguments without names in C.
4798  }
4799
4800  Scope *ParentScope = FnBodyScope->getParent();
4801
4802  Decl *DP = HandleDeclarator(ParentScope, D,
4803                              move(TemplateParameterLists),
4804                              /*IsFunctionDefinition=*/true);
4805  if (FunctionTemplateDecl *FunctionTemplate
4806        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4807    return ActOnStartOfFunctionDef(FnBodyScope,
4808                                   FunctionTemplate->getTemplatedDecl());
4809  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4810    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4811  return 0;
4812}
4813
4814/// \brief Strips various properties off an implicit instantiation
4815/// that has just been explicitly specialized.
4816static void StripImplicitInstantiation(NamedDecl *D) {
4817  D->dropAttrs();
4818
4819  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4820    FD->setInlineSpecified(false);
4821  }
4822}
4823
4824/// \brief Diagnose cases where we have an explicit template specialization
4825/// before/after an explicit template instantiation, producing diagnostics
4826/// for those cases where they are required and determining whether the
4827/// new specialization/instantiation will have any effect.
4828///
4829/// \param NewLoc the location of the new explicit specialization or
4830/// instantiation.
4831///
4832/// \param NewTSK the kind of the new explicit specialization or instantiation.
4833///
4834/// \param PrevDecl the previous declaration of the entity.
4835///
4836/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4837///
4838/// \param PrevPointOfInstantiation if valid, indicates where the previus
4839/// declaration was instantiated (either implicitly or explicitly).
4840///
4841/// \param HasNoEffect will be set to true to indicate that the new
4842/// specialization or instantiation has no effect and should be ignored.
4843///
4844/// \returns true if there was an error that should prevent the introduction of
4845/// the new declaration into the AST, false otherwise.
4846bool
4847Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4848                                             TemplateSpecializationKind NewTSK,
4849                                             NamedDecl *PrevDecl,
4850                                             TemplateSpecializationKind PrevTSK,
4851                                        SourceLocation PrevPointOfInstantiation,
4852                                             bool &HasNoEffect) {
4853  HasNoEffect = false;
4854
4855  switch (NewTSK) {
4856  case TSK_Undeclared:
4857  case TSK_ImplicitInstantiation:
4858    assert(false && "Don't check implicit instantiations here");
4859    return false;
4860
4861  case TSK_ExplicitSpecialization:
4862    switch (PrevTSK) {
4863    case TSK_Undeclared:
4864    case TSK_ExplicitSpecialization:
4865      // Okay, we're just specializing something that is either already
4866      // explicitly specialized or has merely been mentioned without any
4867      // instantiation.
4868      return false;
4869
4870    case TSK_ImplicitInstantiation:
4871      if (PrevPointOfInstantiation.isInvalid()) {
4872        // The declaration itself has not actually been instantiated, so it is
4873        // still okay to specialize it.
4874        StripImplicitInstantiation(PrevDecl);
4875        return false;
4876      }
4877      // Fall through
4878
4879    case TSK_ExplicitInstantiationDeclaration:
4880    case TSK_ExplicitInstantiationDefinition:
4881      assert((PrevTSK == TSK_ImplicitInstantiation ||
4882              PrevPointOfInstantiation.isValid()) &&
4883             "Explicit instantiation without point of instantiation?");
4884
4885      // C++ [temp.expl.spec]p6:
4886      //   If a template, a member template or the member of a class template
4887      //   is explicitly specialized then that specialization shall be declared
4888      //   before the first use of that specialization that would cause an
4889      //   implicit instantiation to take place, in every translation unit in
4890      //   which such a use occurs; no diagnostic is required.
4891      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4892        // Is there any previous explicit specialization declaration?
4893        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4894          return false;
4895      }
4896
4897      Diag(NewLoc, diag::err_specialization_after_instantiation)
4898        << PrevDecl;
4899      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4900        << (PrevTSK != TSK_ImplicitInstantiation);
4901
4902      return true;
4903    }
4904    break;
4905
4906  case TSK_ExplicitInstantiationDeclaration:
4907    switch (PrevTSK) {
4908    case TSK_ExplicitInstantiationDeclaration:
4909      // This explicit instantiation declaration is redundant (that's okay).
4910      HasNoEffect = true;
4911      return false;
4912
4913    case TSK_Undeclared:
4914    case TSK_ImplicitInstantiation:
4915      // We're explicitly instantiating something that may have already been
4916      // implicitly instantiated; that's fine.
4917      return false;
4918
4919    case TSK_ExplicitSpecialization:
4920      // C++0x [temp.explicit]p4:
4921      //   For a given set of template parameters, if an explicit instantiation
4922      //   of a template appears after a declaration of an explicit
4923      //   specialization for that template, the explicit instantiation has no
4924      //   effect.
4925      HasNoEffect = true;
4926      return false;
4927
4928    case TSK_ExplicitInstantiationDefinition:
4929      // C++0x [temp.explicit]p10:
4930      //   If an entity is the subject of both an explicit instantiation
4931      //   declaration and an explicit instantiation definition in the same
4932      //   translation unit, the definition shall follow the declaration.
4933      Diag(NewLoc,
4934           diag::err_explicit_instantiation_declaration_after_definition);
4935      Diag(PrevPointOfInstantiation,
4936           diag::note_explicit_instantiation_definition_here);
4937      assert(PrevPointOfInstantiation.isValid() &&
4938             "Explicit instantiation without point of instantiation?");
4939      HasNoEffect = true;
4940      return false;
4941    }
4942    break;
4943
4944  case TSK_ExplicitInstantiationDefinition:
4945    switch (PrevTSK) {
4946    case TSK_Undeclared:
4947    case TSK_ImplicitInstantiation:
4948      // We're explicitly instantiating something that may have already been
4949      // implicitly instantiated; that's fine.
4950      return false;
4951
4952    case TSK_ExplicitSpecialization:
4953      // C++ DR 259, C++0x [temp.explicit]p4:
4954      //   For a given set of template parameters, if an explicit
4955      //   instantiation of a template appears after a declaration of
4956      //   an explicit specialization for that template, the explicit
4957      //   instantiation has no effect.
4958      //
4959      // In C++98/03 mode, we only give an extension warning here, because it
4960      // is not harmful to try to explicitly instantiate something that
4961      // has been explicitly specialized.
4962      if (!getLangOptions().CPlusPlus0x) {
4963        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4964          << PrevDecl;
4965        Diag(PrevDecl->getLocation(),
4966             diag::note_previous_template_specialization);
4967      }
4968      HasNoEffect = true;
4969      return false;
4970
4971    case TSK_ExplicitInstantiationDeclaration:
4972      // We're explicity instantiating a definition for something for which we
4973      // were previously asked to suppress instantiations. That's fine.
4974      return false;
4975
4976    case TSK_ExplicitInstantiationDefinition:
4977      // C++0x [temp.spec]p5:
4978      //   For a given template and a given set of template-arguments,
4979      //     - an explicit instantiation definition shall appear at most once
4980      //       in a program,
4981      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4982        << PrevDecl;
4983      Diag(PrevPointOfInstantiation,
4984           diag::note_previous_explicit_instantiation);
4985      HasNoEffect = true;
4986      return false;
4987    }
4988    break;
4989  }
4990
4991  assert(false && "Missing specialization/instantiation case?");
4992
4993  return false;
4994}
4995
4996/// \brief Perform semantic analysis for the given dependent function
4997/// template specialization.  The only possible way to get a dependent
4998/// function template specialization is with a friend declaration,
4999/// like so:
5000///
5001///   template <class T> void foo(T);
5002///   template <class T> class A {
5003///     friend void foo<>(T);
5004///   };
5005///
5006/// There really isn't any useful analysis we can do here, so we
5007/// just store the information.
5008bool
5009Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5010                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5011                                                   LookupResult &Previous) {
5012  // Remove anything from Previous that isn't a function template in
5013  // the correct context.
5014  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5015  LookupResult::Filter F = Previous.makeFilter();
5016  while (F.hasNext()) {
5017    NamedDecl *D = F.next()->getUnderlyingDecl();
5018    if (!isa<FunctionTemplateDecl>(D) ||
5019        !FDLookupContext->InEnclosingNamespaceSetOf(
5020                              D->getDeclContext()->getRedeclContext()))
5021      F.erase();
5022  }
5023  F.done();
5024
5025  // Should this be diagnosed here?
5026  if (Previous.empty()) return true;
5027
5028  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5029                                         ExplicitTemplateArgs);
5030  return false;
5031}
5032
5033/// \brief Perform semantic analysis for the given function template
5034/// specialization.
5035///
5036/// This routine performs all of the semantic analysis required for an
5037/// explicit function template specialization. On successful completion,
5038/// the function declaration \p FD will become a function template
5039/// specialization.
5040///
5041/// \param FD the function declaration, which will be updated to become a
5042/// function template specialization.
5043///
5044/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5045/// if any. Note that this may be valid info even when 0 arguments are
5046/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5047/// as it anyway contains info on the angle brackets locations.
5048///
5049/// \param PrevDecl the set of declarations that may be specialized by
5050/// this function specialization.
5051bool
5052Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5053                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5054                                          LookupResult &Previous) {
5055  // The set of function template specializations that could match this
5056  // explicit function template specialization.
5057  UnresolvedSet<8> Candidates;
5058
5059  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5060  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5061         I != E; ++I) {
5062    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5063    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5064      // Only consider templates found within the same semantic lookup scope as
5065      // FD.
5066      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5067                                Ovl->getDeclContext()->getRedeclContext()))
5068        continue;
5069
5070      // C++ [temp.expl.spec]p11:
5071      //   A trailing template-argument can be left unspecified in the
5072      //   template-id naming an explicit function template specialization
5073      //   provided it can be deduced from the function argument type.
5074      // Perform template argument deduction to determine whether we may be
5075      // specializing this template.
5076      // FIXME: It is somewhat wasteful to build
5077      TemplateDeductionInfo Info(Context, FD->getLocation());
5078      FunctionDecl *Specialization = 0;
5079      if (TemplateDeductionResult TDK
5080            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5081                                      FD->getType(),
5082                                      Specialization,
5083                                      Info)) {
5084        // FIXME: Template argument deduction failed; record why it failed, so
5085        // that we can provide nifty diagnostics.
5086        (void)TDK;
5087        continue;
5088      }
5089
5090      // Record this candidate.
5091      Candidates.addDecl(Specialization, I.getAccess());
5092    }
5093  }
5094
5095  // Find the most specialized function template.
5096  UnresolvedSetIterator Result
5097    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5098                         TPOC_Other, 0, FD->getLocation(),
5099                  PDiag(diag::err_function_template_spec_no_match)
5100                    << FD->getDeclName(),
5101                  PDiag(diag::err_function_template_spec_ambiguous)
5102                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5103                  PDiag(diag::note_function_template_spec_matched));
5104  if (Result == Candidates.end())
5105    return true;
5106
5107  // Ignore access information;  it doesn't figure into redeclaration checking.
5108  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5109
5110  FunctionTemplateSpecializationInfo *SpecInfo
5111    = Specialization->getTemplateSpecializationInfo();
5112  assert(SpecInfo && "Function template specialization info missing?");
5113  {
5114    // Note: do not overwrite location info if previous template
5115    // specialization kind was explicit.
5116    TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5117    if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5118      Specialization->setLocation(FD->getLocation());
5119  }
5120
5121  // FIXME: Check if the prior specialization has a point of instantiation.
5122  // If so, we have run afoul of .
5123
5124  // If this is a friend declaration, then we're not really declaring
5125  // an explicit specialization.
5126  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5127
5128  // Check the scope of this explicit specialization.
5129  if (!isFriend &&
5130      CheckTemplateSpecializationScope(*this,
5131                                       Specialization->getPrimaryTemplate(),
5132                                       Specialization, FD->getLocation(),
5133                                       false))
5134    return true;
5135
5136  // C++ [temp.expl.spec]p6:
5137  //   If a template, a member template or the member of a class template is
5138  //   explicitly specialized then that specialization shall be declared
5139  //   before the first use of that specialization that would cause an implicit
5140  //   instantiation to take place, in every translation unit in which such a
5141  //   use occurs; no diagnostic is required.
5142  bool HasNoEffect = false;
5143  if (!isFriend &&
5144      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5145                                             TSK_ExplicitSpecialization,
5146                                             Specialization,
5147                                   SpecInfo->getTemplateSpecializationKind(),
5148                                         SpecInfo->getPointOfInstantiation(),
5149                                             HasNoEffect))
5150    return true;
5151
5152  // Mark the prior declaration as an explicit specialization, so that later
5153  // clients know that this is an explicit specialization.
5154  if (!isFriend) {
5155    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5156    MarkUnusedFileScopedDecl(Specialization);
5157  }
5158
5159  // Turn the given function declaration into a function template
5160  // specialization, with the template arguments from the previous
5161  // specialization.
5162  // Take copies of (semantic and syntactic) template argument lists.
5163  const TemplateArgumentList* TemplArgs = new (Context)
5164    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5165  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5166    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5167  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5168                                        TemplArgs, /*InsertPos=*/0,
5169                                    SpecInfo->getTemplateSpecializationKind(),
5170                                        TemplArgsAsWritten);
5171
5172  // The "previous declaration" for this function template specialization is
5173  // the prior function template specialization.
5174  Previous.clear();
5175  Previous.addDecl(Specialization);
5176  return false;
5177}
5178
5179/// \brief Perform semantic analysis for the given non-template member
5180/// specialization.
5181///
5182/// This routine performs all of the semantic analysis required for an
5183/// explicit member function specialization. On successful completion,
5184/// the function declaration \p FD will become a member function
5185/// specialization.
5186///
5187/// \param Member the member declaration, which will be updated to become a
5188/// specialization.
5189///
5190/// \param Previous the set of declarations, one of which may be specialized
5191/// by this function specialization;  the set will be modified to contain the
5192/// redeclared member.
5193bool
5194Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5195  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5196
5197  // Try to find the member we are instantiating.
5198  NamedDecl *Instantiation = 0;
5199  NamedDecl *InstantiatedFrom = 0;
5200  MemberSpecializationInfo *MSInfo = 0;
5201
5202  if (Previous.empty()) {
5203    // Nowhere to look anyway.
5204  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5205    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5206           I != E; ++I) {
5207      NamedDecl *D = (*I)->getUnderlyingDecl();
5208      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5209        if (Context.hasSameType(Function->getType(), Method->getType())) {
5210          Instantiation = Method;
5211          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5212          MSInfo = Method->getMemberSpecializationInfo();
5213          break;
5214        }
5215      }
5216    }
5217  } else if (isa<VarDecl>(Member)) {
5218    VarDecl *PrevVar;
5219    if (Previous.isSingleResult() &&
5220        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5221      if (PrevVar->isStaticDataMember()) {
5222        Instantiation = PrevVar;
5223        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5224        MSInfo = PrevVar->getMemberSpecializationInfo();
5225      }
5226  } else if (isa<RecordDecl>(Member)) {
5227    CXXRecordDecl *PrevRecord;
5228    if (Previous.isSingleResult() &&
5229        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5230      Instantiation = PrevRecord;
5231      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5232      MSInfo = PrevRecord->getMemberSpecializationInfo();
5233    }
5234  }
5235
5236  if (!Instantiation) {
5237    // There is no previous declaration that matches. Since member
5238    // specializations are always out-of-line, the caller will complain about
5239    // this mismatch later.
5240    return false;
5241  }
5242
5243  // If this is a friend, just bail out here before we start turning
5244  // things into explicit specializations.
5245  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5246    // Preserve instantiation information.
5247    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5248      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5249                                      cast<CXXMethodDecl>(InstantiatedFrom),
5250        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5251    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5252      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5253                                      cast<CXXRecordDecl>(InstantiatedFrom),
5254        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5255    }
5256
5257    Previous.clear();
5258    Previous.addDecl(Instantiation);
5259    return false;
5260  }
5261
5262  // Make sure that this is a specialization of a member.
5263  if (!InstantiatedFrom) {
5264    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5265      << Member;
5266    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5267    return true;
5268  }
5269
5270  // C++ [temp.expl.spec]p6:
5271  //   If a template, a member template or the member of a class template is
5272  //   explicitly specialized then that spe- cialization shall be declared
5273  //   before the first use of that specialization that would cause an implicit
5274  //   instantiation to take place, in every translation unit in which such a
5275  //   use occurs; no diagnostic is required.
5276  assert(MSInfo && "Member specialization info missing?");
5277
5278  bool HasNoEffect = false;
5279  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5280                                             TSK_ExplicitSpecialization,
5281                                             Instantiation,
5282                                     MSInfo->getTemplateSpecializationKind(),
5283                                           MSInfo->getPointOfInstantiation(),
5284                                             HasNoEffect))
5285    return true;
5286
5287  // Check the scope of this explicit specialization.
5288  if (CheckTemplateSpecializationScope(*this,
5289                                       InstantiatedFrom,
5290                                       Instantiation, Member->getLocation(),
5291                                       false))
5292    return true;
5293
5294  // Note that this is an explicit instantiation of a member.
5295  // the original declaration to note that it is an explicit specialization
5296  // (if it was previously an implicit instantiation). This latter step
5297  // makes bookkeeping easier.
5298  if (isa<FunctionDecl>(Member)) {
5299    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5300    if (InstantiationFunction->getTemplateSpecializationKind() ==
5301          TSK_ImplicitInstantiation) {
5302      InstantiationFunction->setTemplateSpecializationKind(
5303                                                  TSK_ExplicitSpecialization);
5304      InstantiationFunction->setLocation(Member->getLocation());
5305    }
5306
5307    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5308                                        cast<CXXMethodDecl>(InstantiatedFrom),
5309                                                  TSK_ExplicitSpecialization);
5310    MarkUnusedFileScopedDecl(InstantiationFunction);
5311  } else if (isa<VarDecl>(Member)) {
5312    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5313    if (InstantiationVar->getTemplateSpecializationKind() ==
5314          TSK_ImplicitInstantiation) {
5315      InstantiationVar->setTemplateSpecializationKind(
5316                                                  TSK_ExplicitSpecialization);
5317      InstantiationVar->setLocation(Member->getLocation());
5318    }
5319
5320    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5321                                                cast<VarDecl>(InstantiatedFrom),
5322                                                TSK_ExplicitSpecialization);
5323    MarkUnusedFileScopedDecl(InstantiationVar);
5324  } else {
5325    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5326    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5327    if (InstantiationClass->getTemplateSpecializationKind() ==
5328          TSK_ImplicitInstantiation) {
5329      InstantiationClass->setTemplateSpecializationKind(
5330                                                   TSK_ExplicitSpecialization);
5331      InstantiationClass->setLocation(Member->getLocation());
5332    }
5333
5334    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5335                                        cast<CXXRecordDecl>(InstantiatedFrom),
5336                                                   TSK_ExplicitSpecialization);
5337  }
5338
5339  // Save the caller the trouble of having to figure out which declaration
5340  // this specialization matches.
5341  Previous.clear();
5342  Previous.addDecl(Instantiation);
5343  return false;
5344}
5345
5346/// \brief Check the scope of an explicit instantiation.
5347///
5348/// \returns true if a serious error occurs, false otherwise.
5349static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5350                                            SourceLocation InstLoc,
5351                                            bool WasQualifiedName) {
5352  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5353  DeclContext *CurContext = S.CurContext->getRedeclContext();
5354
5355  if (CurContext->isRecord()) {
5356    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5357      << D;
5358    return true;
5359  }
5360
5361  // C++0x [temp.explicit]p2:
5362  //   An explicit instantiation shall appear in an enclosing namespace of its
5363  //   template.
5364  //
5365  // This is DR275, which we do not retroactively apply to C++98/03.
5366  if (S.getLangOptions().CPlusPlus0x &&
5367      !CurContext->Encloses(OrigContext)) {
5368    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5369      S.Diag(InstLoc,
5370             S.getLangOptions().CPlusPlus0x?
5371                 diag::err_explicit_instantiation_out_of_scope
5372               : diag::warn_explicit_instantiation_out_of_scope_0x)
5373        << D << NS;
5374    else
5375      S.Diag(InstLoc,
5376             S.getLangOptions().CPlusPlus0x?
5377                 diag::err_explicit_instantiation_must_be_global
5378               : diag::warn_explicit_instantiation_out_of_scope_0x)
5379        << D;
5380    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5381    return false;
5382  }
5383
5384  // C++0x [temp.explicit]p2:
5385  //   If the name declared in the explicit instantiation is an unqualified
5386  //   name, the explicit instantiation shall appear in the namespace where
5387  //   its template is declared or, if that namespace is inline (7.3.1), any
5388  //   namespace from its enclosing namespace set.
5389  if (WasQualifiedName)
5390    return false;
5391
5392  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5393    return false;
5394
5395  S.Diag(InstLoc,
5396         S.getLangOptions().CPlusPlus0x?
5397             diag::err_explicit_instantiation_unqualified_wrong_namespace
5398           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5399    << D << OrigContext;
5400  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5401  return false;
5402}
5403
5404/// \brief Determine whether the given scope specifier has a template-id in it.
5405static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5406  if (!SS.isSet())
5407    return false;
5408
5409  // C++0x [temp.explicit]p2:
5410  //   If the explicit instantiation is for a member function, a member class
5411  //   or a static data member of a class template specialization, the name of
5412  //   the class template specialization in the qualified-id for the member
5413  //   name shall be a simple-template-id.
5414  //
5415  // C++98 has the same restriction, just worded differently.
5416  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5417       NNS; NNS = NNS->getPrefix())
5418    if (const Type *T = NNS->getAsType())
5419      if (isa<TemplateSpecializationType>(T))
5420        return true;
5421
5422  return false;
5423}
5424
5425// Explicit instantiation of a class template specialization
5426DeclResult
5427Sema::ActOnExplicitInstantiation(Scope *S,
5428                                 SourceLocation ExternLoc,
5429                                 SourceLocation TemplateLoc,
5430                                 unsigned TagSpec,
5431                                 SourceLocation KWLoc,
5432                                 const CXXScopeSpec &SS,
5433                                 TemplateTy TemplateD,
5434                                 SourceLocation TemplateNameLoc,
5435                                 SourceLocation LAngleLoc,
5436                                 ASTTemplateArgsPtr TemplateArgsIn,
5437                                 SourceLocation RAngleLoc,
5438                                 AttributeList *Attr) {
5439  // Find the class template we're specializing
5440  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5441  ClassTemplateDecl *ClassTemplate
5442    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5443
5444  // Check that the specialization uses the same tag kind as the
5445  // original template.
5446  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5447  assert(Kind != TTK_Enum &&
5448         "Invalid enum tag in class template explicit instantiation!");
5449  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5450                                    Kind, KWLoc,
5451                                    *ClassTemplate->getIdentifier())) {
5452    Diag(KWLoc, diag::err_use_with_wrong_tag)
5453      << ClassTemplate
5454      << FixItHint::CreateReplacement(KWLoc,
5455                            ClassTemplate->getTemplatedDecl()->getKindName());
5456    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5457         diag::note_previous_use);
5458    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5459  }
5460
5461  // C++0x [temp.explicit]p2:
5462  //   There are two forms of explicit instantiation: an explicit instantiation
5463  //   definition and an explicit instantiation declaration. An explicit
5464  //   instantiation declaration begins with the extern keyword. [...]
5465  TemplateSpecializationKind TSK
5466    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5467                           : TSK_ExplicitInstantiationDeclaration;
5468
5469  // Translate the parser's template argument list in our AST format.
5470  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5471  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5472
5473  // Check that the template argument list is well-formed for this
5474  // template.
5475  llvm::SmallVector<TemplateArgument, 4> Converted;
5476  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5477                                TemplateArgs, false, Converted))
5478    return true;
5479
5480  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5481         "Converted template argument list is too short!");
5482
5483  // Find the class template specialization declaration that
5484  // corresponds to these arguments.
5485  void *InsertPos = 0;
5486  ClassTemplateSpecializationDecl *PrevDecl
5487    = ClassTemplate->findSpecialization(Converted.data(),
5488                                        Converted.size(), InsertPos);
5489
5490  TemplateSpecializationKind PrevDecl_TSK
5491    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5492
5493  // C++0x [temp.explicit]p2:
5494  //   [...] An explicit instantiation shall appear in an enclosing
5495  //   namespace of its template. [...]
5496  //
5497  // This is C++ DR 275.
5498  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5499                                      SS.isSet()))
5500    return true;
5501
5502  ClassTemplateSpecializationDecl *Specialization = 0;
5503
5504  bool HasNoEffect = false;
5505  if (PrevDecl) {
5506    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5507                                               PrevDecl, PrevDecl_TSK,
5508                                            PrevDecl->getPointOfInstantiation(),
5509                                               HasNoEffect))
5510      return PrevDecl;
5511
5512    // Even though HasNoEffect == true means that this explicit instantiation
5513    // has no effect on semantics, we go on to put its syntax in the AST.
5514
5515    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5516        PrevDecl_TSK == TSK_Undeclared) {
5517      // Since the only prior class template specialization with these
5518      // arguments was referenced but not declared, reuse that
5519      // declaration node as our own, updating the source location
5520      // for the template name to reflect our new declaration.
5521      // (Other source locations will be updated later.)
5522      Specialization = PrevDecl;
5523      Specialization->setLocation(TemplateNameLoc);
5524      PrevDecl = 0;
5525    }
5526  }
5527
5528  if (!Specialization) {
5529    // Create a new class template specialization declaration node for
5530    // this explicit specialization.
5531    Specialization
5532      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5533                                             ClassTemplate->getDeclContext(),
5534                                                KWLoc, TemplateNameLoc,
5535                                                ClassTemplate,
5536                                                Converted.data(),
5537                                                Converted.size(),
5538                                                PrevDecl);
5539    SetNestedNameSpecifier(Specialization, SS);
5540
5541    if (!HasNoEffect && !PrevDecl) {
5542      // Insert the new specialization.
5543      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5544    }
5545  }
5546
5547  // Build the fully-sugared type for this explicit instantiation as
5548  // the user wrote in the explicit instantiation itself. This means
5549  // that we'll pretty-print the type retrieved from the
5550  // specialization's declaration the way that the user actually wrote
5551  // the explicit instantiation, rather than formatting the name based
5552  // on the "canonical" representation used to store the template
5553  // arguments in the specialization.
5554  TypeSourceInfo *WrittenTy
5555    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5556                                                TemplateArgs,
5557                                  Context.getTypeDeclType(Specialization));
5558  Specialization->setTypeAsWritten(WrittenTy);
5559  TemplateArgsIn.release();
5560
5561  // Set source locations for keywords.
5562  Specialization->setExternLoc(ExternLoc);
5563  Specialization->setTemplateKeywordLoc(TemplateLoc);
5564
5565  // Add the explicit instantiation into its lexical context. However,
5566  // since explicit instantiations are never found by name lookup, we
5567  // just put it into the declaration context directly.
5568  Specialization->setLexicalDeclContext(CurContext);
5569  CurContext->addDecl(Specialization);
5570
5571  // Syntax is now OK, so return if it has no other effect on semantics.
5572  if (HasNoEffect) {
5573    // Set the template specialization kind.
5574    Specialization->setTemplateSpecializationKind(TSK);
5575    return Specialization;
5576  }
5577
5578  // C++ [temp.explicit]p3:
5579  //   A definition of a class template or class member template
5580  //   shall be in scope at the point of the explicit instantiation of
5581  //   the class template or class member template.
5582  //
5583  // This check comes when we actually try to perform the
5584  // instantiation.
5585  ClassTemplateSpecializationDecl *Def
5586    = cast_or_null<ClassTemplateSpecializationDecl>(
5587                                              Specialization->getDefinition());
5588  if (!Def)
5589    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5590  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5591    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5592    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5593  }
5594
5595  // Instantiate the members of this class template specialization.
5596  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5597                                       Specialization->getDefinition());
5598  if (Def) {
5599    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5600
5601    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5602    // TSK_ExplicitInstantiationDefinition
5603    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5604        TSK == TSK_ExplicitInstantiationDefinition)
5605      Def->setTemplateSpecializationKind(TSK);
5606
5607    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5608  }
5609
5610  // Set the template specialization kind.
5611  Specialization->setTemplateSpecializationKind(TSK);
5612  return Specialization;
5613}
5614
5615// Explicit instantiation of a member class of a class template.
5616DeclResult
5617Sema::ActOnExplicitInstantiation(Scope *S,
5618                                 SourceLocation ExternLoc,
5619                                 SourceLocation TemplateLoc,
5620                                 unsigned TagSpec,
5621                                 SourceLocation KWLoc,
5622                                 CXXScopeSpec &SS,
5623                                 IdentifierInfo *Name,
5624                                 SourceLocation NameLoc,
5625                                 AttributeList *Attr) {
5626
5627  bool Owned = false;
5628  bool IsDependent = false;
5629  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5630                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5631                        MultiTemplateParamsArg(*this, 0, 0),
5632                        Owned, IsDependent, false, false,
5633                        TypeResult());
5634  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5635
5636  if (!TagD)
5637    return true;
5638
5639  TagDecl *Tag = cast<TagDecl>(TagD);
5640  if (Tag->isEnum()) {
5641    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5642      << Context.getTypeDeclType(Tag);
5643    return true;
5644  }
5645
5646  if (Tag->isInvalidDecl())
5647    return true;
5648
5649  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5650  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5651  if (!Pattern) {
5652    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5653      << Context.getTypeDeclType(Record);
5654    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5655    return true;
5656  }
5657
5658  // C++0x [temp.explicit]p2:
5659  //   If the explicit instantiation is for a class or member class, the
5660  //   elaborated-type-specifier in the declaration shall include a
5661  //   simple-template-id.
5662  //
5663  // C++98 has the same restriction, just worded differently.
5664  if (!ScopeSpecifierHasTemplateId(SS))
5665    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5666      << Record << SS.getRange();
5667
5668  // C++0x [temp.explicit]p2:
5669  //   There are two forms of explicit instantiation: an explicit instantiation
5670  //   definition and an explicit instantiation declaration. An explicit
5671  //   instantiation declaration begins with the extern keyword. [...]
5672  TemplateSpecializationKind TSK
5673    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5674                           : TSK_ExplicitInstantiationDeclaration;
5675
5676  // C++0x [temp.explicit]p2:
5677  //   [...] An explicit instantiation shall appear in an enclosing
5678  //   namespace of its template. [...]
5679  //
5680  // This is C++ DR 275.
5681  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5682
5683  // Verify that it is okay to explicitly instantiate here.
5684  CXXRecordDecl *PrevDecl
5685    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5686  if (!PrevDecl && Record->getDefinition())
5687    PrevDecl = Record;
5688  if (PrevDecl) {
5689    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5690    bool HasNoEffect = false;
5691    assert(MSInfo && "No member specialization information?");
5692    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5693                                               PrevDecl,
5694                                        MSInfo->getTemplateSpecializationKind(),
5695                                             MSInfo->getPointOfInstantiation(),
5696                                               HasNoEffect))
5697      return true;
5698    if (HasNoEffect)
5699      return TagD;
5700  }
5701
5702  CXXRecordDecl *RecordDef
5703    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5704  if (!RecordDef) {
5705    // C++ [temp.explicit]p3:
5706    //   A definition of a member class of a class template shall be in scope
5707    //   at the point of an explicit instantiation of the member class.
5708    CXXRecordDecl *Def
5709      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5710    if (!Def) {
5711      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5712        << 0 << Record->getDeclName() << Record->getDeclContext();
5713      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5714        << Pattern;
5715      return true;
5716    } else {
5717      if (InstantiateClass(NameLoc, Record, Def,
5718                           getTemplateInstantiationArgs(Record),
5719                           TSK))
5720        return true;
5721
5722      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5723      if (!RecordDef)
5724        return true;
5725    }
5726  }
5727
5728  // Instantiate all of the members of the class.
5729  InstantiateClassMembers(NameLoc, RecordDef,
5730                          getTemplateInstantiationArgs(Record), TSK);
5731
5732  if (TSK == TSK_ExplicitInstantiationDefinition)
5733    MarkVTableUsed(NameLoc, RecordDef, true);
5734
5735  // FIXME: We don't have any representation for explicit instantiations of
5736  // member classes. Such a representation is not needed for compilation, but it
5737  // should be available for clients that want to see all of the declarations in
5738  // the source code.
5739  return TagD;
5740}
5741
5742DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5743                                            SourceLocation ExternLoc,
5744                                            SourceLocation TemplateLoc,
5745                                            Declarator &D) {
5746  // Explicit instantiations always require a name.
5747  // TODO: check if/when DNInfo should replace Name.
5748  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5749  DeclarationName Name = NameInfo.getName();
5750  if (!Name) {
5751    if (!D.isInvalidType())
5752      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5753           diag::err_explicit_instantiation_requires_name)
5754        << D.getDeclSpec().getSourceRange()
5755        << D.getSourceRange();
5756
5757    return true;
5758  }
5759
5760  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5761  // we find one that is.
5762  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5763         (S->getFlags() & Scope::TemplateParamScope) != 0)
5764    S = S->getParent();
5765
5766  // Determine the type of the declaration.
5767  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5768  QualType R = T->getType();
5769  if (R.isNull())
5770    return true;
5771
5772  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5773    // Cannot explicitly instantiate a typedef.
5774    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5775      << Name;
5776    return true;
5777  }
5778
5779  // C++0x [temp.explicit]p1:
5780  //   [...] An explicit instantiation of a function template shall not use the
5781  //   inline or constexpr specifiers.
5782  // Presumably, this also applies to member functions of class templates as
5783  // well.
5784  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5785    Diag(D.getDeclSpec().getInlineSpecLoc(),
5786         diag::err_explicit_instantiation_inline)
5787      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5788
5789  // FIXME: check for constexpr specifier.
5790
5791  // C++0x [temp.explicit]p2:
5792  //   There are two forms of explicit instantiation: an explicit instantiation
5793  //   definition and an explicit instantiation declaration. An explicit
5794  //   instantiation declaration begins with the extern keyword. [...]
5795  TemplateSpecializationKind TSK
5796    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5797                           : TSK_ExplicitInstantiationDeclaration;
5798
5799  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5800  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5801
5802  if (!R->isFunctionType()) {
5803    // C++ [temp.explicit]p1:
5804    //   A [...] static data member of a class template can be explicitly
5805    //   instantiated from the member definition associated with its class
5806    //   template.
5807    if (Previous.isAmbiguous())
5808      return true;
5809
5810    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5811    if (!Prev || !Prev->isStaticDataMember()) {
5812      // We expect to see a data data member here.
5813      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5814        << Name;
5815      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5816           P != PEnd; ++P)
5817        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5818      return true;
5819    }
5820
5821    if (!Prev->getInstantiatedFromStaticDataMember()) {
5822      // FIXME: Check for explicit specialization?
5823      Diag(D.getIdentifierLoc(),
5824           diag::err_explicit_instantiation_data_member_not_instantiated)
5825        << Prev;
5826      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5827      // FIXME: Can we provide a note showing where this was declared?
5828      return true;
5829    }
5830
5831    // C++0x [temp.explicit]p2:
5832    //   If the explicit instantiation is for a member function, a member class
5833    //   or a static data member of a class template specialization, the name of
5834    //   the class template specialization in the qualified-id for the member
5835    //   name shall be a simple-template-id.
5836    //
5837    // C++98 has the same restriction, just worded differently.
5838    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5839      Diag(D.getIdentifierLoc(),
5840           diag::ext_explicit_instantiation_without_qualified_id)
5841        << Prev << D.getCXXScopeSpec().getRange();
5842
5843    // Check the scope of this explicit instantiation.
5844    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5845
5846    // Verify that it is okay to explicitly instantiate here.
5847    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5848    assert(MSInfo && "Missing static data member specialization info?");
5849    bool HasNoEffect = false;
5850    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5851                                        MSInfo->getTemplateSpecializationKind(),
5852                                              MSInfo->getPointOfInstantiation(),
5853                                               HasNoEffect))
5854      return true;
5855    if (HasNoEffect)
5856      return (Decl*) 0;
5857
5858    // Instantiate static data member.
5859    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5860    if (TSK == TSK_ExplicitInstantiationDefinition)
5861      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5862
5863    // FIXME: Create an ExplicitInstantiation node?
5864    return (Decl*) 0;
5865  }
5866
5867  // If the declarator is a template-id, translate the parser's template
5868  // argument list into our AST format.
5869  bool HasExplicitTemplateArgs = false;
5870  TemplateArgumentListInfo TemplateArgs;
5871  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5872    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5873    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5874    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5875    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5876                                       TemplateId->getTemplateArgs(),
5877                                       TemplateId->NumArgs);
5878    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5879    HasExplicitTemplateArgs = true;
5880    TemplateArgsPtr.release();
5881  }
5882
5883  // C++ [temp.explicit]p1:
5884  //   A [...] function [...] can be explicitly instantiated from its template.
5885  //   A member function [...] of a class template can be explicitly
5886  //  instantiated from the member definition associated with its class
5887  //  template.
5888  UnresolvedSet<8> Matches;
5889  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5890       P != PEnd; ++P) {
5891    NamedDecl *Prev = *P;
5892    if (!HasExplicitTemplateArgs) {
5893      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5894        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5895          Matches.clear();
5896
5897          Matches.addDecl(Method, P.getAccess());
5898          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5899            break;
5900        }
5901      }
5902    }
5903
5904    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5905    if (!FunTmpl)
5906      continue;
5907
5908    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5909    FunctionDecl *Specialization = 0;
5910    if (TemplateDeductionResult TDK
5911          = DeduceTemplateArguments(FunTmpl,
5912                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5913                                    R, Specialization, Info)) {
5914      // FIXME: Keep track of almost-matches?
5915      (void)TDK;
5916      continue;
5917    }
5918
5919    Matches.addDecl(Specialization, P.getAccess());
5920  }
5921
5922  // Find the most specialized function template specialization.
5923  UnresolvedSetIterator Result
5924    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5925                         D.getIdentifierLoc(),
5926                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5927                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5928                         PDiag(diag::note_explicit_instantiation_candidate));
5929
5930  if (Result == Matches.end())
5931    return true;
5932
5933  // Ignore access control bits, we don't need them for redeclaration checking.
5934  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5935
5936  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5937    Diag(D.getIdentifierLoc(),
5938         diag::err_explicit_instantiation_member_function_not_instantiated)
5939      << Specialization
5940      << (Specialization->getTemplateSpecializationKind() ==
5941          TSK_ExplicitSpecialization);
5942    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5943    return true;
5944  }
5945
5946  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5947  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5948    PrevDecl = Specialization;
5949
5950  if (PrevDecl) {
5951    bool HasNoEffect = false;
5952    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5953                                               PrevDecl,
5954                                     PrevDecl->getTemplateSpecializationKind(),
5955                                          PrevDecl->getPointOfInstantiation(),
5956                                               HasNoEffect))
5957      return true;
5958
5959    // FIXME: We may still want to build some representation of this
5960    // explicit specialization.
5961    if (HasNoEffect)
5962      return (Decl*) 0;
5963  }
5964
5965  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5966
5967  if (TSK == TSK_ExplicitInstantiationDefinition)
5968    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5969
5970  // C++0x [temp.explicit]p2:
5971  //   If the explicit instantiation is for a member function, a member class
5972  //   or a static data member of a class template specialization, the name of
5973  //   the class template specialization in the qualified-id for the member
5974  //   name shall be a simple-template-id.
5975  //
5976  // C++98 has the same restriction, just worded differently.
5977  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5978  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5979      D.getCXXScopeSpec().isSet() &&
5980      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5981    Diag(D.getIdentifierLoc(),
5982         diag::ext_explicit_instantiation_without_qualified_id)
5983    << Specialization << D.getCXXScopeSpec().getRange();
5984
5985  CheckExplicitInstantiationScope(*this,
5986                   FunTmpl? (NamedDecl *)FunTmpl
5987                          : Specialization->getInstantiatedFromMemberFunction(),
5988                                  D.getIdentifierLoc(),
5989                                  D.getCXXScopeSpec().isSet());
5990
5991  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5992  return (Decl*) 0;
5993}
5994
5995TypeResult
5996Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5997                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5998                        SourceLocation TagLoc, SourceLocation NameLoc) {
5999  // This has to hold, because SS is expected to be defined.
6000  assert(Name && "Expected a name in a dependent tag");
6001
6002  NestedNameSpecifier *NNS
6003    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6004  if (!NNS)
6005    return true;
6006
6007  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6008
6009  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6010    Diag(NameLoc, diag::err_dependent_tag_decl)
6011      << (TUK == TUK_Definition) << Kind << SS.getRange();
6012    return true;
6013  }
6014
6015  // Create the resulting type.
6016  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6017  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6018
6019  // Create type-source location information for this type.
6020  TypeLocBuilder TLB;
6021  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6022  TL.setKeywordLoc(TagLoc);
6023  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6024  TL.setNameLoc(NameLoc);
6025  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6026}
6027
6028TypeResult
6029Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6030                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6031                        SourceLocation IdLoc) {
6032  if (SS.isInvalid())
6033    return true;
6034
6035  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6036      !getLangOptions().CPlusPlus0x)
6037    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6038      << FixItHint::CreateRemoval(TypenameLoc);
6039
6040  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6041  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6042                                 TypenameLoc, QualifierLoc, II, IdLoc);
6043  if (T.isNull())
6044    return true;
6045
6046  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6047  if (isa<DependentNameType>(T)) {
6048    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6049    TL.setKeywordLoc(TypenameLoc);
6050    TL.setQualifierLoc(QualifierLoc);
6051    TL.setNameLoc(IdLoc);
6052  } else {
6053    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6054    TL.setKeywordLoc(TypenameLoc);
6055    TL.setQualifierLoc(QualifierLoc);
6056    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6057  }
6058
6059  return CreateParsedType(T, TSI);
6060}
6061
6062TypeResult
6063Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6064                        const CXXScopeSpec &SS,
6065                        SourceLocation TemplateLoc,
6066                        TemplateTy TemplateIn,
6067                        SourceLocation TemplateNameLoc,
6068                        SourceLocation LAngleLoc,
6069                        ASTTemplateArgsPtr TemplateArgsIn,
6070                        SourceLocation RAngleLoc) {
6071  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6072      !getLangOptions().CPlusPlus0x)
6073    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6074    << FixItHint::CreateRemoval(TypenameLoc);
6075
6076  // Translate the parser's template argument list in our AST format.
6077  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6078  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6079
6080  TemplateName Template = TemplateIn.get();
6081  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6082    // Construct a dependent template specialization type.
6083    assert(DTN && "dependent template has non-dependent name?");
6084    assert(DTN->getQualifier()
6085           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6086    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6087                                                          DTN->getQualifier(),
6088                                                          DTN->getIdentifier(),
6089                                                                TemplateArgs);
6090
6091    // Create source-location information for this type.
6092    TypeLocBuilder Builder;
6093    DependentTemplateSpecializationTypeLoc SpecTL
6094    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6095    SpecTL.setLAngleLoc(LAngleLoc);
6096    SpecTL.setRAngleLoc(RAngleLoc);
6097    SpecTL.setKeywordLoc(TypenameLoc);
6098    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6099    SpecTL.setNameLoc(TemplateNameLoc);
6100    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6101      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6102    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6103  }
6104
6105  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6106  if (T.isNull())
6107    return true;
6108
6109  // Provide source-location information for the template specialization
6110  // type.
6111  TypeLocBuilder Builder;
6112  TemplateSpecializationTypeLoc SpecTL
6113    = Builder.push<TemplateSpecializationTypeLoc>(T);
6114
6115  // FIXME: No place to set the location of the 'template' keyword!
6116  SpecTL.setLAngleLoc(LAngleLoc);
6117  SpecTL.setRAngleLoc(RAngleLoc);
6118  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6119  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6120    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6121
6122  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6123  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6124  TL.setKeywordLoc(TypenameLoc);
6125  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6126
6127  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6128  return CreateParsedType(T, TSI);
6129}
6130
6131
6132/// \brief Build the type that describes a C++ typename specifier,
6133/// e.g., "typename T::type".
6134QualType
6135Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6136                        SourceLocation KeywordLoc,
6137                        NestedNameSpecifierLoc QualifierLoc,
6138                        const IdentifierInfo &II,
6139                        SourceLocation IILoc) {
6140  CXXScopeSpec SS;
6141  SS.Adopt(QualifierLoc);
6142
6143  DeclContext *Ctx = computeDeclContext(SS);
6144  if (!Ctx) {
6145    // If the nested-name-specifier is dependent and couldn't be
6146    // resolved to a type, build a typename type.
6147    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6148    return Context.getDependentNameType(Keyword,
6149                                        QualifierLoc.getNestedNameSpecifier(),
6150                                        &II);
6151  }
6152
6153  // If the nested-name-specifier refers to the current instantiation,
6154  // the "typename" keyword itself is superfluous. In C++03, the
6155  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6156  // allows such extraneous "typename" keywords, and we retroactively
6157  // apply this DR to C++03 code with only a warning. In any case we continue.
6158
6159  if (RequireCompleteDeclContext(SS, Ctx))
6160    return QualType();
6161
6162  DeclarationName Name(&II);
6163  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6164  LookupQualifiedName(Result, Ctx);
6165  unsigned DiagID = 0;
6166  Decl *Referenced = 0;
6167  switch (Result.getResultKind()) {
6168  case LookupResult::NotFound:
6169    DiagID = diag::err_typename_nested_not_found;
6170    break;
6171
6172  case LookupResult::FoundUnresolvedValue: {
6173    // We found a using declaration that is a value. Most likely, the using
6174    // declaration itself is meant to have the 'typename' keyword.
6175    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6176                          IILoc);
6177    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6178      << Name << Ctx << FullRange;
6179    if (UnresolvedUsingValueDecl *Using
6180          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6181      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6182      Diag(Loc, diag::note_using_value_decl_missing_typename)
6183        << FixItHint::CreateInsertion(Loc, "typename ");
6184    }
6185  }
6186  // Fall through to create a dependent typename type, from which we can recover
6187  // better.
6188
6189  case LookupResult::NotFoundInCurrentInstantiation:
6190    // Okay, it's a member of an unknown instantiation.
6191    return Context.getDependentNameType(Keyword,
6192                                        QualifierLoc.getNestedNameSpecifier(),
6193                                        &II);
6194
6195  case LookupResult::Found:
6196    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6197      // We found a type. Build an ElaboratedType, since the
6198      // typename-specifier was just sugar.
6199      return Context.getElaboratedType(ETK_Typename,
6200                                       QualifierLoc.getNestedNameSpecifier(),
6201                                       Context.getTypeDeclType(Type));
6202    }
6203
6204    DiagID = diag::err_typename_nested_not_type;
6205    Referenced = Result.getFoundDecl();
6206    break;
6207
6208
6209    llvm_unreachable("unresolved using decl in non-dependent context");
6210    return QualType();
6211
6212  case LookupResult::FoundOverloaded:
6213    DiagID = diag::err_typename_nested_not_type;
6214    Referenced = *Result.begin();
6215    break;
6216
6217  case LookupResult::Ambiguous:
6218    return QualType();
6219  }
6220
6221  // If we get here, it's because name lookup did not find a
6222  // type. Emit an appropriate diagnostic and return an error.
6223  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6224                        IILoc);
6225  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6226  if (Referenced)
6227    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6228      << Name;
6229  return QualType();
6230}
6231
6232namespace {
6233  // See Sema::RebuildTypeInCurrentInstantiation
6234  class CurrentInstantiationRebuilder
6235    : public TreeTransform<CurrentInstantiationRebuilder> {
6236    SourceLocation Loc;
6237    DeclarationName Entity;
6238
6239  public:
6240    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6241
6242    CurrentInstantiationRebuilder(Sema &SemaRef,
6243                                  SourceLocation Loc,
6244                                  DeclarationName Entity)
6245    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6246      Loc(Loc), Entity(Entity) { }
6247
6248    /// \brief Determine whether the given type \p T has already been
6249    /// transformed.
6250    ///
6251    /// For the purposes of type reconstruction, a type has already been
6252    /// transformed if it is NULL or if it is not dependent.
6253    bool AlreadyTransformed(QualType T) {
6254      return T.isNull() || !T->isDependentType();
6255    }
6256
6257    /// \brief Returns the location of the entity whose type is being
6258    /// rebuilt.
6259    SourceLocation getBaseLocation() { return Loc; }
6260
6261    /// \brief Returns the name of the entity whose type is being rebuilt.
6262    DeclarationName getBaseEntity() { return Entity; }
6263
6264    /// \brief Sets the "base" location and entity when that
6265    /// information is known based on another transformation.
6266    void setBase(SourceLocation Loc, DeclarationName Entity) {
6267      this->Loc = Loc;
6268      this->Entity = Entity;
6269    }
6270  };
6271}
6272
6273/// \brief Rebuilds a type within the context of the current instantiation.
6274///
6275/// The type \p T is part of the type of an out-of-line member definition of
6276/// a class template (or class template partial specialization) that was parsed
6277/// and constructed before we entered the scope of the class template (or
6278/// partial specialization thereof). This routine will rebuild that type now
6279/// that we have entered the declarator's scope, which may produce different
6280/// canonical types, e.g.,
6281///
6282/// \code
6283/// template<typename T>
6284/// struct X {
6285///   typedef T* pointer;
6286///   pointer data();
6287/// };
6288///
6289/// template<typename T>
6290/// typename X<T>::pointer X<T>::data() { ... }
6291/// \endcode
6292///
6293/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6294/// since we do not know that we can look into X<T> when we parsed the type.
6295/// This function will rebuild the type, performing the lookup of "pointer"
6296/// in X<T> and returning an ElaboratedType whose canonical type is the same
6297/// as the canonical type of T*, allowing the return types of the out-of-line
6298/// definition and the declaration to match.
6299TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6300                                                        SourceLocation Loc,
6301                                                        DeclarationName Name) {
6302  if (!T || !T->getType()->isDependentType())
6303    return T;
6304
6305  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6306  return Rebuilder.TransformType(T);
6307}
6308
6309ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6310  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6311                                          DeclarationName());
6312  return Rebuilder.TransformExpr(E);
6313}
6314
6315bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6316  if (SS.isInvalid())
6317    return true;
6318
6319  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6320  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6321                                          DeclarationName());
6322  NestedNameSpecifierLoc Rebuilt
6323    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6324  if (!Rebuilt)
6325    return true;
6326
6327  SS.Adopt(Rebuilt);
6328  return false;
6329}
6330
6331/// \brief Produces a formatted string that describes the binding of
6332/// template parameters to template arguments.
6333std::string
6334Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6335                                      const TemplateArgumentList &Args) {
6336  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6337}
6338
6339std::string
6340Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6341                                      const TemplateArgument *Args,
6342                                      unsigned NumArgs) {
6343  llvm::SmallString<128> Str;
6344  llvm::raw_svector_ostream Out(Str);
6345
6346  if (!Params || Params->size() == 0 || NumArgs == 0)
6347    return std::string();
6348
6349  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6350    if (I >= NumArgs)
6351      break;
6352
6353    if (I == 0)
6354      Out << "[with ";
6355    else
6356      Out << ", ";
6357
6358    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6359      Out << Id->getName();
6360    } else {
6361      Out << '$' << I;
6362    }
6363
6364    Out << " = ";
6365    Args[I].print(Context.PrintingPolicy, Out);
6366  }
6367
6368  Out << ']';
6369  return Out.str();
6370}
6371