SemaTemplate.cpp revision d8bba9c15230d2b1b3893e272106aa79efc50251
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252  } else if (SS.isSet()) {
253    // This nested-name-specifier occurs after another nested-name-specifier,
254    // so long into the context associated with the prior nested-name-specifier.
255    LookupCtx = computeDeclContext(SS, EnteringContext);
256    isDependent = isDependentScopeSpecifier(SS);
257
258    // The declaration context must be complete.
259    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
260      return;
261  }
262
263  bool ObjectTypeSearchedInScope = false;
264  if (LookupCtx) {
265    // Perform "qualified" name lookup into the declaration context we
266    // computed, which is either the type of the base of a member access
267    // expression or the declaration context associated with a prior
268    // nested-name-specifier.
269    LookupQualifiedName(Found, LookupCtx);
270
271    if (!ObjectType.isNull() && Found.empty()) {
272      // C++ [basic.lookup.classref]p1:
273      //   In a class member access expression (5.2.5), if the . or -> token is
274      //   immediately followed by an identifier followed by a <, the
275      //   identifier must be looked up to determine whether the < is the
276      //   beginning of a template argument list (14.2) or a less-than operator.
277      //   The identifier is first looked up in the class of the object
278      //   expression. If the identifier is not found, it is then looked up in
279      //   the context of the entire postfix-expression and shall name a class
280      //   or function template.
281      if (S) LookupName(Found, S);
282      ObjectTypeSearchedInScope = true;
283    }
284  } else if (isDependent && (!S || ObjectType.isNull())) {
285    // We cannot look into a dependent object type or nested nme
286    // specifier.
287    MemberOfUnknownSpecialization = true;
288    return;
289  } else {
290    // Perform unqualified name lookup in the current scope.
291    LookupName(Found, S);
292  }
293
294  if (Found.empty() && !isDependent) {
295    // If we did not find any names, attempt to correct any typos.
296    DeclarationName Name = Found.getLookupName();
297    Found.clear();
298    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
299                                               Found.getLookupKind(), S, &SS,
300                                               LookupCtx, false,
301                                               CTC_CXXCasts)) {
302      Found.setLookupName(Corrected.getCorrection());
303      if (Corrected.getCorrectionDecl())
304        Found.addDecl(Corrected.getCorrectionDecl());
305      FilterAcceptableTemplateNames(Found);
306      if (!Found.empty()) {
307        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
308        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
309        if (LookupCtx)
310          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
311            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
312            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
313        else
314          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
315            << Name << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
317        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
318          Diag(Template->getLocation(), diag::note_previous_decl)
319            << CorrectedQuotedStr;
320      }
321    } else {
322      Found.setLookupName(Name);
323    }
324  }
325
326  FilterAcceptableTemplateNames(Found);
327  if (Found.empty()) {
328    if (isDependent)
329      MemberOfUnknownSpecialization = true;
330    return;
331  }
332
333  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
334    // C++ [basic.lookup.classref]p1:
335    //   [...] If the lookup in the class of the object expression finds a
336    //   template, the name is also looked up in the context of the entire
337    //   postfix-expression and [...]
338    //
339    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
340                            LookupOrdinaryName);
341    LookupName(FoundOuter, S);
342    FilterAcceptableTemplateNames(FoundOuter);
343
344    if (FoundOuter.empty()) {
345      //   - if the name is not found, the name found in the class of the
346      //     object expression is used, otherwise
347    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
348      //   - if the name is found in the context of the entire
349      //     postfix-expression and does not name a class template, the name
350      //     found in the class of the object expression is used, otherwise
351    } else if (!Found.isSuppressingDiagnostics()) {
352      //   - if the name found is a class template, it must refer to the same
353      //     entity as the one found in the class of the object expression,
354      //     otherwise the program is ill-formed.
355      if (!Found.isSingleResult() ||
356          Found.getFoundDecl()->getCanonicalDecl()
357            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
358        Diag(Found.getNameLoc(),
359             diag::ext_nested_name_member_ref_lookup_ambiguous)
360          << Found.getLookupName()
361          << ObjectType;
362        Diag(Found.getRepresentativeDecl()->getLocation(),
363             diag::note_ambig_member_ref_object_type)
364          << ObjectType;
365        Diag(FoundOuter.getFoundDecl()->getLocation(),
366             diag::note_ambig_member_ref_scope);
367
368        // Recover by taking the template that we found in the object
369        // expression's type.
370      }
371    }
372  }
373}
374
375/// ActOnDependentIdExpression - Handle a dependent id-expression that
376/// was just parsed.  This is only possible with an explicit scope
377/// specifier naming a dependent type.
378ExprResult
379Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
380                                 const DeclarationNameInfo &NameInfo,
381                                 bool isAddressOfOperand,
382                           const TemplateArgumentListInfo *TemplateArgs) {
383  DeclContext *DC = getFunctionLevelDeclContext();
384
385  if (!isAddressOfOperand &&
386      isa<CXXMethodDecl>(DC) &&
387      cast<CXXMethodDecl>(DC)->isInstance()) {
388    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
389
390    // Since the 'this' expression is synthesized, we don't need to
391    // perform the double-lookup check.
392    NamedDecl *FirstQualifierInScope = 0;
393
394    return Owned(CXXDependentScopeMemberExpr::Create(Context,
395                                                     /*This*/ 0, ThisType,
396                                                     /*IsArrow*/ true,
397                                                     /*Op*/ SourceLocation(),
398                                               SS.getWithLocInContext(Context),
399                                                     FirstQualifierInScope,
400                                                     NameInfo,
401                                                     TemplateArgs));
402  }
403
404  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
405}
406
407ExprResult
408Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
409                                const DeclarationNameInfo &NameInfo,
410                                const TemplateArgumentListInfo *TemplateArgs) {
411  return Owned(DependentScopeDeclRefExpr::Create(Context,
412                                               SS.getWithLocInContext(Context),
413                                                 NameInfo,
414                                                 TemplateArgs));
415}
416
417/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
418/// that the template parameter 'PrevDecl' is being shadowed by a new
419/// declaration at location Loc. Returns true to indicate that this is
420/// an error, and false otherwise.
421bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
422  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
423
424  // Microsoft Visual C++ permits template parameters to be shadowed.
425  if (getLangOptions().Microsoft)
426    return false;
427
428  // C++ [temp.local]p4:
429  //   A template-parameter shall not be redeclared within its
430  //   scope (including nested scopes).
431  Diag(Loc, diag::err_template_param_shadow)
432    << cast<NamedDecl>(PrevDecl)->getDeclName();
433  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
434  return true;
435}
436
437/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
438/// the parameter D to reference the templated declaration and return a pointer
439/// to the template declaration. Otherwise, do nothing to D and return null.
440TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
441  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
442    D = Temp->getTemplatedDecl();
443    return Temp;
444  }
445  return 0;
446}
447
448ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
449                                             SourceLocation EllipsisLoc) const {
450  assert(Kind == Template &&
451         "Only template template arguments can be pack expansions here");
452  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
453         "Template template argument pack expansion without packs");
454  ParsedTemplateArgument Result(*this);
455  Result.EllipsisLoc = EllipsisLoc;
456  return Result;
457}
458
459static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
460                                            const ParsedTemplateArgument &Arg) {
461
462  switch (Arg.getKind()) {
463  case ParsedTemplateArgument::Type: {
464    TypeSourceInfo *DI;
465    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
466    if (!DI)
467      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
468    return TemplateArgumentLoc(TemplateArgument(T), DI);
469  }
470
471  case ParsedTemplateArgument::NonType: {
472    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
473    return TemplateArgumentLoc(TemplateArgument(E), E);
474  }
475
476  case ParsedTemplateArgument::Template: {
477    TemplateName Template = Arg.getAsTemplate().get();
478    TemplateArgument TArg;
479    if (Arg.getEllipsisLoc().isValid())
480      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
481    else
482      TArg = Template;
483    return TemplateArgumentLoc(TArg,
484                               Arg.getScopeSpec().getWithLocInContext(
485                                                              SemaRef.Context),
486                               Arg.getLocation(),
487                               Arg.getEllipsisLoc());
488  }
489  }
490
491  llvm_unreachable("Unhandled parsed template argument");
492  return TemplateArgumentLoc();
493}
494
495/// \brief Translates template arguments as provided by the parser
496/// into template arguments used by semantic analysis.
497void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
498                                      TemplateArgumentListInfo &TemplateArgs) {
499 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
500   TemplateArgs.addArgument(translateTemplateArgument(*this,
501                                                      TemplateArgsIn[I]));
502}
503
504/// ActOnTypeParameter - Called when a C++ template type parameter
505/// (e.g., "typename T") has been parsed. Typename specifies whether
506/// the keyword "typename" was used to declare the type parameter
507/// (otherwise, "class" was used), and KeyLoc is the location of the
508/// "class" or "typename" keyword. ParamName is the name of the
509/// parameter (NULL indicates an unnamed template parameter) and
510/// ParamNameLoc is the location of the parameter name (if any).
511/// If the type parameter has a default argument, it will be added
512/// later via ActOnTypeParameterDefault.
513Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
514                               SourceLocation EllipsisLoc,
515                               SourceLocation KeyLoc,
516                               IdentifierInfo *ParamName,
517                               SourceLocation ParamNameLoc,
518                               unsigned Depth, unsigned Position,
519                               SourceLocation EqualLoc,
520                               ParsedType DefaultArg) {
521  assert(S->isTemplateParamScope() &&
522         "Template type parameter not in template parameter scope!");
523  bool Invalid = false;
524
525  if (ParamName) {
526    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
527                                           LookupOrdinaryName,
528                                           ForRedeclaration);
529    if (PrevDecl && PrevDecl->isTemplateParameter())
530      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
531                                                           PrevDecl);
532  }
533
534  SourceLocation Loc = ParamNameLoc;
535  if (!ParamName)
536    Loc = KeyLoc;
537
538  TemplateTypeParmDecl *Param
539    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
540                                   KeyLoc, Loc, Depth, Position, ParamName,
541                                   Typename, Ellipsis);
542  Param->setAccess(AS_public);
543  if (Invalid)
544    Param->setInvalidDecl();
545
546  if (ParamName) {
547    // Add the template parameter into the current scope.
548    S->AddDecl(Param);
549    IdResolver.AddDecl(Param);
550  }
551
552  // C++0x [temp.param]p9:
553  //   A default template-argument may be specified for any kind of
554  //   template-parameter that is not a template parameter pack.
555  if (DefaultArg && Ellipsis) {
556    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
557    DefaultArg = ParsedType();
558  }
559
560  // Handle the default argument, if provided.
561  if (DefaultArg) {
562    TypeSourceInfo *DefaultTInfo;
563    GetTypeFromParser(DefaultArg, &DefaultTInfo);
564
565    assert(DefaultTInfo && "expected source information for type");
566
567    // Check for unexpanded parameter packs.
568    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
569                                        UPPC_DefaultArgument))
570      return Param;
571
572    // Check the template argument itself.
573    if (CheckTemplateArgument(Param, DefaultTInfo)) {
574      Param->setInvalidDecl();
575      return Param;
576    }
577
578    Param->setDefaultArgument(DefaultTInfo, false);
579  }
580
581  return Param;
582}
583
584/// \brief Check that the type of a non-type template parameter is
585/// well-formed.
586///
587/// \returns the (possibly-promoted) parameter type if valid;
588/// otherwise, produces a diagnostic and returns a NULL type.
589QualType
590Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
591  // We don't allow variably-modified types as the type of non-type template
592  // parameters.
593  if (T->isVariablyModifiedType()) {
594    Diag(Loc, diag::err_variably_modified_nontype_template_param)
595      << T;
596    return QualType();
597  }
598
599  // C++ [temp.param]p4:
600  //
601  // A non-type template-parameter shall have one of the following
602  // (optionally cv-qualified) types:
603  //
604  //       -- integral or enumeration type,
605  if (T->isIntegralOrEnumerationType() ||
606      //   -- pointer to object or pointer to function,
607      T->isPointerType() ||
608      //   -- reference to object or reference to function,
609      T->isReferenceType() ||
610      //   -- pointer to member,
611      T->isMemberPointerType() ||
612      //   -- std::nullptr_t.
613      T->isNullPtrType() ||
614      // If T is a dependent type, we can't do the check now, so we
615      // assume that it is well-formed.
616      T->isDependentType())
617    return T;
618  // C++ [temp.param]p8:
619  //
620  //   A non-type template-parameter of type "array of T" or
621  //   "function returning T" is adjusted to be of type "pointer to
622  //   T" or "pointer to function returning T", respectively.
623  else if (T->isArrayType())
624    // FIXME: Keep the type prior to promotion?
625    return Context.getArrayDecayedType(T);
626  else if (T->isFunctionType())
627    // FIXME: Keep the type prior to promotion?
628    return Context.getPointerType(T);
629
630  Diag(Loc, diag::err_template_nontype_parm_bad_type)
631    << T;
632
633  return QualType();
634}
635
636Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
637                                          unsigned Depth,
638                                          unsigned Position,
639                                          SourceLocation EqualLoc,
640                                          Expr *Default) {
641  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
642  QualType T = TInfo->getType();
643
644  assert(S->isTemplateParamScope() &&
645         "Non-type template parameter not in template parameter scope!");
646  bool Invalid = false;
647
648  IdentifierInfo *ParamName = D.getIdentifier();
649  if (ParamName) {
650    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
651                                           LookupOrdinaryName,
652                                           ForRedeclaration);
653    if (PrevDecl && PrevDecl->isTemplateParameter())
654      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
655                                                           PrevDecl);
656  }
657
658  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
659  if (T.isNull()) {
660    T = Context.IntTy; // Recover with an 'int' type.
661    Invalid = true;
662  }
663
664  bool IsParameterPack = D.hasEllipsis();
665  NonTypeTemplateParmDecl *Param
666    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
667                                      D.getSourceRange().getBegin(),
668                                      D.getIdentifierLoc(),
669                                      Depth, Position, ParamName, T,
670                                      IsParameterPack, TInfo);
671  Param->setAccess(AS_public);
672
673  if (Invalid)
674    Param->setInvalidDecl();
675
676  if (D.getIdentifier()) {
677    // Add the template parameter into the current scope.
678    S->AddDecl(Param);
679    IdResolver.AddDecl(Param);
680  }
681
682  // C++0x [temp.param]p9:
683  //   A default template-argument may be specified for any kind of
684  //   template-parameter that is not a template parameter pack.
685  if (Default && IsParameterPack) {
686    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
687    Default = 0;
688  }
689
690  // Check the well-formedness of the default template argument, if provided.
691  if (Default) {
692    // Check for unexpanded parameter packs.
693    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
694      return Param;
695
696    TemplateArgument Converted;
697    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
698    if (DefaultRes.isInvalid()) {
699      Param->setInvalidDecl();
700      return Param;
701    }
702    Default = DefaultRes.take();
703
704    Param->setDefaultArgument(Default, false);
705  }
706
707  return Param;
708}
709
710/// ActOnTemplateTemplateParameter - Called when a C++ template template
711/// parameter (e.g. T in template <template <typename> class T> class array)
712/// has been parsed. S is the current scope.
713Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
714                                           SourceLocation TmpLoc,
715                                           TemplateParamsTy *Params,
716                                           SourceLocation EllipsisLoc,
717                                           IdentifierInfo *Name,
718                                           SourceLocation NameLoc,
719                                           unsigned Depth,
720                                           unsigned Position,
721                                           SourceLocation EqualLoc,
722                                           ParsedTemplateArgument Default) {
723  assert(S->isTemplateParamScope() &&
724         "Template template parameter not in template parameter scope!");
725
726  // Construct the parameter object.
727  bool IsParameterPack = EllipsisLoc.isValid();
728  TemplateTemplateParmDecl *Param =
729    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
730                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
731                                     Depth, Position, IsParameterPack,
732                                     Name, Params);
733  Param->setAccess(AS_public);
734
735  // If the template template parameter has a name, then link the identifier
736  // into the scope and lookup mechanisms.
737  if (Name) {
738    S->AddDecl(Param);
739    IdResolver.AddDecl(Param);
740  }
741
742  if (Params->size() == 0) {
743    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
744    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
745    Param->setInvalidDecl();
746  }
747
748  // C++0x [temp.param]p9:
749  //   A default template-argument may be specified for any kind of
750  //   template-parameter that is not a template parameter pack.
751  if (IsParameterPack && !Default.isInvalid()) {
752    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
753    Default = ParsedTemplateArgument();
754  }
755
756  if (!Default.isInvalid()) {
757    // Check only that we have a template template argument. We don't want to
758    // try to check well-formedness now, because our template template parameter
759    // might have dependent types in its template parameters, which we wouldn't
760    // be able to match now.
761    //
762    // If none of the template template parameter's template arguments mention
763    // other template parameters, we could actually perform more checking here.
764    // However, it isn't worth doing.
765    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
766    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
767      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
768        << DefaultArg.getSourceRange();
769      return Param;
770    }
771
772    // Check for unexpanded parameter packs.
773    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
774                                        DefaultArg.getArgument().getAsTemplate(),
775                                        UPPC_DefaultArgument))
776      return Param;
777
778    Param->setDefaultArgument(DefaultArg, false);
779  }
780
781  return Param;
782}
783
784/// ActOnTemplateParameterList - Builds a TemplateParameterList that
785/// contains the template parameters in Params/NumParams.
786Sema::TemplateParamsTy *
787Sema::ActOnTemplateParameterList(unsigned Depth,
788                                 SourceLocation ExportLoc,
789                                 SourceLocation TemplateLoc,
790                                 SourceLocation LAngleLoc,
791                                 Decl **Params, unsigned NumParams,
792                                 SourceLocation RAngleLoc) {
793  if (ExportLoc.isValid())
794    Diag(ExportLoc, diag::warn_template_export_unsupported);
795
796  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
797                                       (NamedDecl**)Params, NumParams,
798                                       RAngleLoc);
799}
800
801static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
802  if (SS.isSet())
803    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
804}
805
806DeclResult
807Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
808                         SourceLocation KWLoc, CXXScopeSpec &SS,
809                         IdentifierInfo *Name, SourceLocation NameLoc,
810                         AttributeList *Attr,
811                         TemplateParameterList *TemplateParams,
812                         AccessSpecifier AS,
813                         unsigned NumOuterTemplateParamLists,
814                         TemplateParameterList** OuterTemplateParamLists) {
815  assert(TemplateParams && TemplateParams->size() > 0 &&
816         "No template parameters");
817  assert(TUK != TUK_Reference && "Can only declare or define class templates");
818  bool Invalid = false;
819
820  // Check that we can declare a template here.
821  if (CheckTemplateDeclScope(S, TemplateParams))
822    return true;
823
824  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
825  assert(Kind != TTK_Enum && "can't build template of enumerated type");
826
827  // There is no such thing as an unnamed class template.
828  if (!Name) {
829    Diag(KWLoc, diag::err_template_unnamed_class);
830    return true;
831  }
832
833  // Find any previous declaration with this name.
834  DeclContext *SemanticContext;
835  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
836                        ForRedeclaration);
837  if (SS.isNotEmpty() && !SS.isInvalid()) {
838    SemanticContext = computeDeclContext(SS, true);
839    if (!SemanticContext) {
840      // FIXME: Produce a reasonable diagnostic here
841      return true;
842    }
843
844    if (RequireCompleteDeclContext(SS, SemanticContext))
845      return true;
846
847    LookupQualifiedName(Previous, SemanticContext);
848  } else {
849    SemanticContext = CurContext;
850    LookupName(Previous, S);
851  }
852
853  if (Previous.isAmbiguous())
854    return true;
855
856  NamedDecl *PrevDecl = 0;
857  if (Previous.begin() != Previous.end())
858    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
859
860  // If there is a previous declaration with the same name, check
861  // whether this is a valid redeclaration.
862  ClassTemplateDecl *PrevClassTemplate
863    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
864
865  // We may have found the injected-class-name of a class template,
866  // class template partial specialization, or class template specialization.
867  // In these cases, grab the template that is being defined or specialized.
868  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
869      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
870    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
871    PrevClassTemplate
872      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
873    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
874      PrevClassTemplate
875        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
876            ->getSpecializedTemplate();
877    }
878  }
879
880  if (TUK == TUK_Friend) {
881    // C++ [namespace.memdef]p3:
882    //   [...] When looking for a prior declaration of a class or a function
883    //   declared as a friend, and when the name of the friend class or
884    //   function is neither a qualified name nor a template-id, scopes outside
885    //   the innermost enclosing namespace scope are not considered.
886    if (!SS.isSet()) {
887      DeclContext *OutermostContext = CurContext;
888      while (!OutermostContext->isFileContext())
889        OutermostContext = OutermostContext->getLookupParent();
890
891      if (PrevDecl &&
892          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
893           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
894        SemanticContext = PrevDecl->getDeclContext();
895      } else {
896        // Declarations in outer scopes don't matter. However, the outermost
897        // context we computed is the semantic context for our new
898        // declaration.
899        PrevDecl = PrevClassTemplate = 0;
900        SemanticContext = OutermostContext;
901      }
902    }
903
904    if (CurContext->isDependentContext()) {
905      // If this is a dependent context, we don't want to link the friend
906      // class template to the template in scope, because that would perform
907      // checking of the template parameter lists that can't be performed
908      // until the outer context is instantiated.
909      PrevDecl = PrevClassTemplate = 0;
910    }
911  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
912    PrevDecl = PrevClassTemplate = 0;
913
914  if (PrevClassTemplate) {
915    // Ensure that the template parameter lists are compatible.
916    if (!TemplateParameterListsAreEqual(TemplateParams,
917                                   PrevClassTemplate->getTemplateParameters(),
918                                        /*Complain=*/true,
919                                        TPL_TemplateMatch))
920      return true;
921
922    // C++ [temp.class]p4:
923    //   In a redeclaration, partial specialization, explicit
924    //   specialization or explicit instantiation of a class template,
925    //   the class-key shall agree in kind with the original class
926    //   template declaration (7.1.5.3).
927    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
928    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
929                                      TUK == TUK_Definition,  KWLoc, *Name)) {
930      Diag(KWLoc, diag::err_use_with_wrong_tag)
931        << Name
932        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
933      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
934      Kind = PrevRecordDecl->getTagKind();
935    }
936
937    // Check for redefinition of this class template.
938    if (TUK == TUK_Definition) {
939      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
940        Diag(NameLoc, diag::err_redefinition) << Name;
941        Diag(Def->getLocation(), diag::note_previous_definition);
942        // FIXME: Would it make sense to try to "forget" the previous
943        // definition, as part of error recovery?
944        return true;
945      }
946    }
947  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
948    // Maybe we will complain about the shadowed template parameter.
949    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
950    // Just pretend that we didn't see the previous declaration.
951    PrevDecl = 0;
952  } else if (PrevDecl) {
953    // C++ [temp]p5:
954    //   A class template shall not have the same name as any other
955    //   template, class, function, object, enumeration, enumerator,
956    //   namespace, or type in the same scope (3.3), except as specified
957    //   in (14.5.4).
958    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
959    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
960    return true;
961  }
962
963  // Check the template parameter list of this declaration, possibly
964  // merging in the template parameter list from the previous class
965  // template declaration.
966  if (CheckTemplateParameterList(TemplateParams,
967            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
968                                 (SS.isSet() && SemanticContext &&
969                                  SemanticContext->isRecord() &&
970                                  SemanticContext->isDependentContext())
971                                   ? TPC_ClassTemplateMember
972                                   : TPC_ClassTemplate))
973    Invalid = true;
974
975  if (SS.isSet()) {
976    // If the name of the template was qualified, we must be defining the
977    // template out-of-line.
978    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
979        !(TUK == TUK_Friend && CurContext->isDependentContext()))
980      Diag(NameLoc, diag::err_member_def_does_not_match)
981        << Name << SemanticContext << SS.getRange();
982  }
983
984  CXXRecordDecl *NewClass =
985    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
986                          PrevClassTemplate?
987                            PrevClassTemplate->getTemplatedDecl() : 0,
988                          /*DelayTypeCreation=*/true);
989  SetNestedNameSpecifier(NewClass, SS);
990  if (NumOuterTemplateParamLists > 0)
991    NewClass->setTemplateParameterListsInfo(Context,
992                                            NumOuterTemplateParamLists,
993                                            OuterTemplateParamLists);
994
995  ClassTemplateDecl *NewTemplate
996    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
997                                DeclarationName(Name), TemplateParams,
998                                NewClass, PrevClassTemplate);
999  NewClass->setDescribedClassTemplate(NewTemplate);
1000
1001  // Build the type for the class template declaration now.
1002  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1003  T = Context.getInjectedClassNameType(NewClass, T);
1004  assert(T->isDependentType() && "Class template type is not dependent?");
1005  (void)T;
1006
1007  // If we are providing an explicit specialization of a member that is a
1008  // class template, make a note of that.
1009  if (PrevClassTemplate &&
1010      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1011    PrevClassTemplate->setMemberSpecialization();
1012
1013  // Set the access specifier.
1014  if (!Invalid && TUK != TUK_Friend)
1015    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1016
1017  // Set the lexical context of these templates
1018  NewClass->setLexicalDeclContext(CurContext);
1019  NewTemplate->setLexicalDeclContext(CurContext);
1020
1021  if (TUK == TUK_Definition)
1022    NewClass->startDefinition();
1023
1024  if (Attr)
1025    ProcessDeclAttributeList(S, NewClass, Attr);
1026
1027  if (TUK != TUK_Friend)
1028    PushOnScopeChains(NewTemplate, S);
1029  else {
1030    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1031      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1032      NewClass->setAccess(PrevClassTemplate->getAccess());
1033    }
1034
1035    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1036                                       PrevClassTemplate != NULL);
1037
1038    // Friend templates are visible in fairly strange ways.
1039    if (!CurContext->isDependentContext()) {
1040      DeclContext *DC = SemanticContext->getRedeclContext();
1041      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1042      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1043        PushOnScopeChains(NewTemplate, EnclosingScope,
1044                          /* AddToContext = */ false);
1045    }
1046
1047    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1048                                            NewClass->getLocation(),
1049                                            NewTemplate,
1050                                    /*FIXME:*/NewClass->getLocation());
1051    Friend->setAccess(AS_public);
1052    CurContext->addDecl(Friend);
1053  }
1054
1055  if (Invalid) {
1056    NewTemplate->setInvalidDecl();
1057    NewClass->setInvalidDecl();
1058  }
1059  return NewTemplate;
1060}
1061
1062/// \brief Diagnose the presence of a default template argument on a
1063/// template parameter, which is ill-formed in certain contexts.
1064///
1065/// \returns true if the default template argument should be dropped.
1066static bool DiagnoseDefaultTemplateArgument(Sema &S,
1067                                            Sema::TemplateParamListContext TPC,
1068                                            SourceLocation ParamLoc,
1069                                            SourceRange DefArgRange) {
1070  switch (TPC) {
1071  case Sema::TPC_ClassTemplate:
1072  case Sema::TPC_TypeAliasTemplate:
1073    return false;
1074
1075  case Sema::TPC_FunctionTemplate:
1076  case Sema::TPC_FriendFunctionTemplateDefinition:
1077    // C++ [temp.param]p9:
1078    //   A default template-argument shall not be specified in a
1079    //   function template declaration or a function template
1080    //   definition [...]
1081    //   If a friend function template declaration specifies a default
1082    //   template-argument, that declaration shall be a definition and shall be
1083    //   the only declaration of the function template in the translation unit.
1084    // (C++98/03 doesn't have this wording; see DR226).
1085    if (!S.getLangOptions().CPlusPlus0x)
1086      S.Diag(ParamLoc,
1087             diag::ext_template_parameter_default_in_function_template)
1088        << DefArgRange;
1089    return false;
1090
1091  case Sema::TPC_ClassTemplateMember:
1092    // C++0x [temp.param]p9:
1093    //   A default template-argument shall not be specified in the
1094    //   template-parameter-lists of the definition of a member of a
1095    //   class template that appears outside of the member's class.
1096    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1097      << DefArgRange;
1098    return true;
1099
1100  case Sema::TPC_FriendFunctionTemplate:
1101    // C++ [temp.param]p9:
1102    //   A default template-argument shall not be specified in a
1103    //   friend template declaration.
1104    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1105      << DefArgRange;
1106    return true;
1107
1108    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1109    // for friend function templates if there is only a single
1110    // declaration (and it is a definition). Strange!
1111  }
1112
1113  return false;
1114}
1115
1116/// \brief Check for unexpanded parameter packs within the template parameters
1117/// of a template template parameter, recursively.
1118static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1119                                             TemplateTemplateParmDecl *TTP) {
1120  TemplateParameterList *Params = TTP->getTemplateParameters();
1121  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1122    NamedDecl *P = Params->getParam(I);
1123    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1124      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1125                                            NTTP->getTypeSourceInfo(),
1126                                      Sema::UPPC_NonTypeTemplateParameterType))
1127        return true;
1128
1129      continue;
1130    }
1131
1132    if (TemplateTemplateParmDecl *InnerTTP
1133                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1134      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1135        return true;
1136  }
1137
1138  return false;
1139}
1140
1141/// \brief Checks the validity of a template parameter list, possibly
1142/// considering the template parameter list from a previous
1143/// declaration.
1144///
1145/// If an "old" template parameter list is provided, it must be
1146/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1147/// template parameter list.
1148///
1149/// \param NewParams Template parameter list for a new template
1150/// declaration. This template parameter list will be updated with any
1151/// default arguments that are carried through from the previous
1152/// template parameter list.
1153///
1154/// \param OldParams If provided, template parameter list from a
1155/// previous declaration of the same template. Default template
1156/// arguments will be merged from the old template parameter list to
1157/// the new template parameter list.
1158///
1159/// \param TPC Describes the context in which we are checking the given
1160/// template parameter list.
1161///
1162/// \returns true if an error occurred, false otherwise.
1163bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1164                                      TemplateParameterList *OldParams,
1165                                      TemplateParamListContext TPC) {
1166  bool Invalid = false;
1167
1168  // C++ [temp.param]p10:
1169  //   The set of default template-arguments available for use with a
1170  //   template declaration or definition is obtained by merging the
1171  //   default arguments from the definition (if in scope) and all
1172  //   declarations in scope in the same way default function
1173  //   arguments are (8.3.6).
1174  bool SawDefaultArgument = false;
1175  SourceLocation PreviousDefaultArgLoc;
1176
1177  bool SawParameterPack = false;
1178  SourceLocation ParameterPackLoc;
1179
1180  // Dummy initialization to avoid warnings.
1181  TemplateParameterList::iterator OldParam = NewParams->end();
1182  if (OldParams)
1183    OldParam = OldParams->begin();
1184
1185  bool RemoveDefaultArguments = false;
1186  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1187                                    NewParamEnd = NewParams->end();
1188       NewParam != NewParamEnd; ++NewParam) {
1189    // Variables used to diagnose redundant default arguments
1190    bool RedundantDefaultArg = false;
1191    SourceLocation OldDefaultLoc;
1192    SourceLocation NewDefaultLoc;
1193
1194    // Variables used to diagnose missing default arguments
1195    bool MissingDefaultArg = false;
1196
1197    // C++0x [temp.param]p11:
1198    //   If a template parameter of a primary class template or alias template
1199    //   is a template parameter pack, it shall be the last template parameter.
1200    if (SawParameterPack &&
1201        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1202      Diag(ParameterPackLoc,
1203           diag::err_template_param_pack_must_be_last_template_parameter);
1204      Invalid = true;
1205    }
1206
1207    if (TemplateTypeParmDecl *NewTypeParm
1208          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1209      // Check the presence of a default argument here.
1210      if (NewTypeParm->hasDefaultArgument() &&
1211          DiagnoseDefaultTemplateArgument(*this, TPC,
1212                                          NewTypeParm->getLocation(),
1213               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1214                                                       .getSourceRange()))
1215        NewTypeParm->removeDefaultArgument();
1216
1217      // Merge default arguments for template type parameters.
1218      TemplateTypeParmDecl *OldTypeParm
1219          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1220
1221      if (NewTypeParm->isParameterPack()) {
1222        assert(!NewTypeParm->hasDefaultArgument() &&
1223               "Parameter packs can't have a default argument!");
1224        SawParameterPack = true;
1225        ParameterPackLoc = NewTypeParm->getLocation();
1226      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1227                 NewTypeParm->hasDefaultArgument()) {
1228        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1229        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1230        SawDefaultArgument = true;
1231        RedundantDefaultArg = true;
1232        PreviousDefaultArgLoc = NewDefaultLoc;
1233      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1234        // Merge the default argument from the old declaration to the
1235        // new declaration.
1236        SawDefaultArgument = true;
1237        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1238                                        true);
1239        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1240      } else if (NewTypeParm->hasDefaultArgument()) {
1241        SawDefaultArgument = true;
1242        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1243      } else if (SawDefaultArgument)
1244        MissingDefaultArg = true;
1245    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1246               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1247      // Check for unexpanded parameter packs.
1248      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1249                                          NewNonTypeParm->getTypeSourceInfo(),
1250                                          UPPC_NonTypeTemplateParameterType)) {
1251        Invalid = true;
1252        continue;
1253      }
1254
1255      // Check the presence of a default argument here.
1256      if (NewNonTypeParm->hasDefaultArgument() &&
1257          DiagnoseDefaultTemplateArgument(*this, TPC,
1258                                          NewNonTypeParm->getLocation(),
1259                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1260        NewNonTypeParm->removeDefaultArgument();
1261      }
1262
1263      // Merge default arguments for non-type template parameters
1264      NonTypeTemplateParmDecl *OldNonTypeParm
1265        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1266      if (NewNonTypeParm->isParameterPack()) {
1267        assert(!NewNonTypeParm->hasDefaultArgument() &&
1268               "Parameter packs can't have a default argument!");
1269        SawParameterPack = true;
1270        ParameterPackLoc = NewNonTypeParm->getLocation();
1271      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1272          NewNonTypeParm->hasDefaultArgument()) {
1273        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1274        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1275        SawDefaultArgument = true;
1276        RedundantDefaultArg = true;
1277        PreviousDefaultArgLoc = NewDefaultLoc;
1278      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1279        // Merge the default argument from the old declaration to the
1280        // new declaration.
1281        SawDefaultArgument = true;
1282        // FIXME: We need to create a new kind of "default argument"
1283        // expression that points to a previous non-type template
1284        // parameter.
1285        NewNonTypeParm->setDefaultArgument(
1286                                         OldNonTypeParm->getDefaultArgument(),
1287                                         /*Inherited=*/ true);
1288        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1289      } else if (NewNonTypeParm->hasDefaultArgument()) {
1290        SawDefaultArgument = true;
1291        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1292      } else if (SawDefaultArgument)
1293        MissingDefaultArg = true;
1294    } else {
1295      // Check the presence of a default argument here.
1296      TemplateTemplateParmDecl *NewTemplateParm
1297        = cast<TemplateTemplateParmDecl>(*NewParam);
1298
1299      // Check for unexpanded parameter packs, recursively.
1300      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1301        Invalid = true;
1302        continue;
1303      }
1304
1305      if (NewTemplateParm->hasDefaultArgument() &&
1306          DiagnoseDefaultTemplateArgument(*this, TPC,
1307                                          NewTemplateParm->getLocation(),
1308                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1309        NewTemplateParm->removeDefaultArgument();
1310
1311      // Merge default arguments for template template parameters
1312      TemplateTemplateParmDecl *OldTemplateParm
1313        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1314      if (NewTemplateParm->isParameterPack()) {
1315        assert(!NewTemplateParm->hasDefaultArgument() &&
1316               "Parameter packs can't have a default argument!");
1317        SawParameterPack = true;
1318        ParameterPackLoc = NewTemplateParm->getLocation();
1319      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1320          NewTemplateParm->hasDefaultArgument()) {
1321        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1322        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1323        SawDefaultArgument = true;
1324        RedundantDefaultArg = true;
1325        PreviousDefaultArgLoc = NewDefaultLoc;
1326      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1327        // Merge the default argument from the old declaration to the
1328        // new declaration.
1329        SawDefaultArgument = true;
1330        // FIXME: We need to create a new kind of "default argument" expression
1331        // that points to a previous template template parameter.
1332        NewTemplateParm->setDefaultArgument(
1333                                          OldTemplateParm->getDefaultArgument(),
1334                                          /*Inherited=*/ true);
1335        PreviousDefaultArgLoc
1336          = OldTemplateParm->getDefaultArgument().getLocation();
1337      } else if (NewTemplateParm->hasDefaultArgument()) {
1338        SawDefaultArgument = true;
1339        PreviousDefaultArgLoc
1340          = NewTemplateParm->getDefaultArgument().getLocation();
1341      } else if (SawDefaultArgument)
1342        MissingDefaultArg = true;
1343    }
1344
1345    if (RedundantDefaultArg) {
1346      // C++ [temp.param]p12:
1347      //   A template-parameter shall not be given default arguments
1348      //   by two different declarations in the same scope.
1349      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1350      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1351      Invalid = true;
1352    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1353      // C++ [temp.param]p11:
1354      //   If a template-parameter of a class template has a default
1355      //   template-argument, each subsequent template-parameter shall either
1356      //   have a default template-argument supplied or be a template parameter
1357      //   pack.
1358      Diag((*NewParam)->getLocation(),
1359           diag::err_template_param_default_arg_missing);
1360      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1361      Invalid = true;
1362      RemoveDefaultArguments = true;
1363    }
1364
1365    // If we have an old template parameter list that we're merging
1366    // in, move on to the next parameter.
1367    if (OldParams)
1368      ++OldParam;
1369  }
1370
1371  // We were missing some default arguments at the end of the list, so remove
1372  // all of the default arguments.
1373  if (RemoveDefaultArguments) {
1374    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1375                                      NewParamEnd = NewParams->end();
1376         NewParam != NewParamEnd; ++NewParam) {
1377      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1378        TTP->removeDefaultArgument();
1379      else if (NonTypeTemplateParmDecl *NTTP
1380                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1381        NTTP->removeDefaultArgument();
1382      else
1383        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1384    }
1385  }
1386
1387  return Invalid;
1388}
1389
1390namespace {
1391
1392/// A class which looks for a use of a certain level of template
1393/// parameter.
1394struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1395  typedef RecursiveASTVisitor<DependencyChecker> super;
1396
1397  unsigned Depth;
1398  bool Match;
1399
1400  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1401    NamedDecl *ND = Params->getParam(0);
1402    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1403      Depth = PD->getDepth();
1404    } else if (NonTypeTemplateParmDecl *PD =
1405                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1406      Depth = PD->getDepth();
1407    } else {
1408      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1409    }
1410  }
1411
1412  bool Matches(unsigned ParmDepth) {
1413    if (ParmDepth >= Depth) {
1414      Match = true;
1415      return true;
1416    }
1417    return false;
1418  }
1419
1420  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1421    return !Matches(T->getDepth());
1422  }
1423
1424  bool TraverseTemplateName(TemplateName N) {
1425    if (TemplateTemplateParmDecl *PD =
1426          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1427      if (Matches(PD->getDepth())) return false;
1428    return super::TraverseTemplateName(N);
1429  }
1430
1431  bool VisitDeclRefExpr(DeclRefExpr *E) {
1432    if (NonTypeTemplateParmDecl *PD =
1433          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1434      if (PD->getDepth() == Depth) {
1435        Match = true;
1436        return false;
1437      }
1438    }
1439    return super::VisitDeclRefExpr(E);
1440  }
1441
1442  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1443    return TraverseType(T->getInjectedSpecializationType());
1444  }
1445};
1446}
1447
1448/// Determines whether a given type depends on the given parameter
1449/// list.
1450static bool
1451DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1452  DependencyChecker Checker(Params);
1453  Checker.TraverseType(T);
1454  return Checker.Match;
1455}
1456
1457// Find the source range corresponding to the named type in the given
1458// nested-name-specifier, if any.
1459static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1460                                                       QualType T,
1461                                                       const CXXScopeSpec &SS) {
1462  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1463  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1464    if (const Type *CurType = NNS->getAsType()) {
1465      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1466        return NNSLoc.getTypeLoc().getSourceRange();
1467    } else
1468      break;
1469
1470    NNSLoc = NNSLoc.getPrefix();
1471  }
1472
1473  return SourceRange();
1474}
1475
1476/// \brief Match the given template parameter lists to the given scope
1477/// specifier, returning the template parameter list that applies to the
1478/// name.
1479///
1480/// \param DeclStartLoc the start of the declaration that has a scope
1481/// specifier or a template parameter list.
1482///
1483/// \param DeclLoc The location of the declaration itself.
1484///
1485/// \param SS the scope specifier that will be matched to the given template
1486/// parameter lists. This scope specifier precedes a qualified name that is
1487/// being declared.
1488///
1489/// \param ParamLists the template parameter lists, from the outermost to the
1490/// innermost template parameter lists.
1491///
1492/// \param NumParamLists the number of template parameter lists in ParamLists.
1493///
1494/// \param IsFriend Whether to apply the slightly different rules for
1495/// matching template parameters to scope specifiers in friend
1496/// declarations.
1497///
1498/// \param IsExplicitSpecialization will be set true if the entity being
1499/// declared is an explicit specialization, false otherwise.
1500///
1501/// \returns the template parameter list, if any, that corresponds to the
1502/// name that is preceded by the scope specifier @p SS. This template
1503/// parameter list may have template parameters (if we're declaring a
1504/// template) or may have no template parameters (if we're declaring a
1505/// template specialization), or may be NULL (if what we're declaring isn't
1506/// itself a template).
1507TemplateParameterList *
1508Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1509                                              SourceLocation DeclLoc,
1510                                              const CXXScopeSpec &SS,
1511                                          TemplateParameterList **ParamLists,
1512                                              unsigned NumParamLists,
1513                                              bool IsFriend,
1514                                              bool &IsExplicitSpecialization,
1515                                              bool &Invalid) {
1516  IsExplicitSpecialization = false;
1517  Invalid = false;
1518
1519  // The sequence of nested types to which we will match up the template
1520  // parameter lists. We first build this list by starting with the type named
1521  // by the nested-name-specifier and walking out until we run out of types.
1522  llvm::SmallVector<QualType, 4> NestedTypes;
1523  QualType T;
1524  if (SS.getScopeRep()) {
1525    if (CXXRecordDecl *Record
1526              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1527      T = Context.getTypeDeclType(Record);
1528    else
1529      T = QualType(SS.getScopeRep()->getAsType(), 0);
1530  }
1531
1532  // If we found an explicit specialization that prevents us from needing
1533  // 'template<>' headers, this will be set to the location of that
1534  // explicit specialization.
1535  SourceLocation ExplicitSpecLoc;
1536
1537  while (!T.isNull()) {
1538    NestedTypes.push_back(T);
1539
1540    // Retrieve the parent of a record type.
1541    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1542      // If this type is an explicit specialization, we're done.
1543      if (ClassTemplateSpecializationDecl *Spec
1544          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1545        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1546            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1547          ExplicitSpecLoc = Spec->getLocation();
1548          break;
1549        }
1550      } else if (Record->getTemplateSpecializationKind()
1551                                                == TSK_ExplicitSpecialization) {
1552        ExplicitSpecLoc = Record->getLocation();
1553        break;
1554      }
1555
1556      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1557        T = Context.getTypeDeclType(Parent);
1558      else
1559        T = QualType();
1560      continue;
1561    }
1562
1563    if (const TemplateSpecializationType *TST
1564                                     = T->getAs<TemplateSpecializationType>()) {
1565      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1566        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1567          T = Context.getTypeDeclType(Parent);
1568        else
1569          T = QualType();
1570        continue;
1571      }
1572    }
1573
1574    // Look one step prior in a dependent template specialization type.
1575    if (const DependentTemplateSpecializationType *DependentTST
1576                          = T->getAs<DependentTemplateSpecializationType>()) {
1577      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1578        T = QualType(NNS->getAsType(), 0);
1579      else
1580        T = QualType();
1581      continue;
1582    }
1583
1584    // Look one step prior in a dependent name type.
1585    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1586      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1587        T = QualType(NNS->getAsType(), 0);
1588      else
1589        T = QualType();
1590      continue;
1591    }
1592
1593    // Retrieve the parent of an enumeration type.
1594    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1595      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1596      // check here.
1597      EnumDecl *Enum = EnumT->getDecl();
1598
1599      // Get to the parent type.
1600      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1601        T = Context.getTypeDeclType(Parent);
1602      else
1603        T = QualType();
1604      continue;
1605    }
1606
1607    T = QualType();
1608  }
1609  // Reverse the nested types list, since we want to traverse from the outermost
1610  // to the innermost while checking template-parameter-lists.
1611  std::reverse(NestedTypes.begin(), NestedTypes.end());
1612
1613  // C++0x [temp.expl.spec]p17:
1614  //   A member or a member template may be nested within many
1615  //   enclosing class templates. In an explicit specialization for
1616  //   such a member, the member declaration shall be preceded by a
1617  //   template<> for each enclosing class template that is
1618  //   explicitly specialized.
1619  bool SawNonEmptyTemplateParameterList = false;
1620  unsigned ParamIdx = 0;
1621  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1622       ++TypeIdx) {
1623    T = NestedTypes[TypeIdx];
1624
1625    // Whether we expect a 'template<>' header.
1626    bool NeedEmptyTemplateHeader = false;
1627
1628    // Whether we expect a template header with parameters.
1629    bool NeedNonemptyTemplateHeader = false;
1630
1631    // For a dependent type, the set of template parameters that we
1632    // expect to see.
1633    TemplateParameterList *ExpectedTemplateParams = 0;
1634
1635    // C++0x [temp.expl.spec]p15:
1636    //   A member or a member template may be nested within many enclosing
1637    //   class templates. In an explicit specialization for such a member, the
1638    //   member declaration shall be preceded by a template<> for each
1639    //   enclosing class template that is explicitly specialized.
1640    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1641      if (ClassTemplatePartialSpecializationDecl *Partial
1642            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1643        ExpectedTemplateParams = Partial->getTemplateParameters();
1644        NeedNonemptyTemplateHeader = true;
1645      } else if (Record->isDependentType()) {
1646        if (Record->getDescribedClassTemplate()) {
1647          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1648                                                      ->getTemplateParameters();
1649          NeedNonemptyTemplateHeader = true;
1650        }
1651      } else if (ClassTemplateSpecializationDecl *Spec
1652                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1653        // C++0x [temp.expl.spec]p4:
1654        //   Members of an explicitly specialized class template are defined
1655        //   in the same manner as members of normal classes, and not using
1656        //   the template<> syntax.
1657        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1658          NeedEmptyTemplateHeader = true;
1659        else
1660          continue;
1661      } else if (Record->getTemplateSpecializationKind()) {
1662        if (Record->getTemplateSpecializationKind()
1663                                                != TSK_ExplicitSpecialization &&
1664            TypeIdx == NumTypes - 1)
1665          IsExplicitSpecialization = true;
1666
1667        continue;
1668      }
1669    } else if (const TemplateSpecializationType *TST
1670                                     = T->getAs<TemplateSpecializationType>()) {
1671      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1672        ExpectedTemplateParams = Template->getTemplateParameters();
1673        NeedNonemptyTemplateHeader = true;
1674      }
1675    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1676      // FIXME:  We actually could/should check the template arguments here
1677      // against the corresponding template parameter list.
1678      NeedNonemptyTemplateHeader = false;
1679    }
1680
1681    // C++ [temp.expl.spec]p16:
1682    //   In an explicit specialization declaration for a member of a class
1683    //   template or a member template that ap- pears in namespace scope, the
1684    //   member template and some of its enclosing class templates may remain
1685    //   unspecialized, except that the declaration shall not explicitly
1686    //   specialize a class member template if its en- closing class templates
1687    //   are not explicitly specialized as well.
1688    if (ParamIdx < NumParamLists) {
1689      if (ParamLists[ParamIdx]->size() == 0) {
1690        if (SawNonEmptyTemplateParameterList) {
1691          Diag(DeclLoc, diag::err_specialize_member_of_template)
1692            << ParamLists[ParamIdx]->getSourceRange();
1693          Invalid = true;
1694          IsExplicitSpecialization = false;
1695          return 0;
1696        }
1697      } else
1698        SawNonEmptyTemplateParameterList = true;
1699    }
1700
1701    if (NeedEmptyTemplateHeader) {
1702      // If we're on the last of the types, and we need a 'template<>' header
1703      // here, then it's an explicit specialization.
1704      if (TypeIdx == NumTypes - 1)
1705        IsExplicitSpecialization = true;
1706
1707      if (ParamIdx < NumParamLists) {
1708        if (ParamLists[ParamIdx]->size() > 0) {
1709          // The header has template parameters when it shouldn't. Complain.
1710          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1711               diag::err_template_param_list_matches_nontemplate)
1712            << T
1713            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1714                           ParamLists[ParamIdx]->getRAngleLoc())
1715            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1716          Invalid = true;
1717          return 0;
1718        }
1719
1720        // Consume this template header.
1721        ++ParamIdx;
1722        continue;
1723      }
1724
1725      if (!IsFriend) {
1726        // We don't have a template header, but we should.
1727        SourceLocation ExpectedTemplateLoc;
1728        if (NumParamLists > 0)
1729          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1730        else
1731          ExpectedTemplateLoc = DeclStartLoc;
1732
1733        Diag(DeclLoc, diag::err_template_spec_needs_header)
1734          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1735          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1736      }
1737
1738      continue;
1739    }
1740
1741    if (NeedNonemptyTemplateHeader) {
1742      // In friend declarations we can have template-ids which don't
1743      // depend on the corresponding template parameter lists.  But
1744      // assume that empty parameter lists are supposed to match this
1745      // template-id.
1746      if (IsFriend && T->isDependentType()) {
1747        if (ParamIdx < NumParamLists &&
1748            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1749          ExpectedTemplateParams = 0;
1750        else
1751          continue;
1752      }
1753
1754      if (ParamIdx < NumParamLists) {
1755        // Check the template parameter list, if we can.
1756        if (ExpectedTemplateParams &&
1757            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1758                                            ExpectedTemplateParams,
1759                                            true, TPL_TemplateMatch))
1760          Invalid = true;
1761
1762        if (!Invalid &&
1763            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1764                                       TPC_ClassTemplateMember))
1765          Invalid = true;
1766
1767        ++ParamIdx;
1768        continue;
1769      }
1770
1771      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1772        << T
1773        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1774      Invalid = true;
1775      continue;
1776    }
1777  }
1778
1779  // If there were at least as many template-ids as there were template
1780  // parameter lists, then there are no template parameter lists remaining for
1781  // the declaration itself.
1782  if (ParamIdx >= NumParamLists)
1783    return 0;
1784
1785  // If there were too many template parameter lists, complain about that now.
1786  if (ParamIdx < NumParamLists - 1) {
1787    bool HasAnyExplicitSpecHeader = false;
1788    bool AllExplicitSpecHeaders = true;
1789    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1790      if (ParamLists[I]->size() == 0)
1791        HasAnyExplicitSpecHeader = true;
1792      else
1793        AllExplicitSpecHeaders = false;
1794    }
1795
1796    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1797         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1798                               : diag::err_template_spec_extra_headers)
1799      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1800                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1801
1802    // If there was a specialization somewhere, such that 'template<>' is
1803    // not required, and there were any 'template<>' headers, note where the
1804    // specialization occurred.
1805    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1806      Diag(ExplicitSpecLoc,
1807           diag::note_explicit_template_spec_does_not_need_header)
1808        << NestedTypes.back();
1809
1810    // We have a template parameter list with no corresponding scope, which
1811    // means that the resulting template declaration can't be instantiated
1812    // properly (we'll end up with dependent nodes when we shouldn't).
1813    if (!AllExplicitSpecHeaders)
1814      Invalid = true;
1815  }
1816
1817  // C++ [temp.expl.spec]p16:
1818  //   In an explicit specialization declaration for a member of a class
1819  //   template or a member template that ap- pears in namespace scope, the
1820  //   member template and some of its enclosing class templates may remain
1821  //   unspecialized, except that the declaration shall not explicitly
1822  //   specialize a class member template if its en- closing class templates
1823  //   are not explicitly specialized as well.
1824  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1825      SawNonEmptyTemplateParameterList) {
1826    Diag(DeclLoc, diag::err_specialize_member_of_template)
1827      << ParamLists[ParamIdx]->getSourceRange();
1828    Invalid = true;
1829    IsExplicitSpecialization = false;
1830    return 0;
1831  }
1832
1833  // Return the last template parameter list, which corresponds to the
1834  // entity being declared.
1835  return ParamLists[NumParamLists - 1];
1836}
1837
1838void Sema::NoteAllFoundTemplates(TemplateName Name) {
1839  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1840    Diag(Template->getLocation(), diag::note_template_declared_here)
1841      << (isa<FunctionTemplateDecl>(Template)? 0
1842          : isa<ClassTemplateDecl>(Template)? 1
1843          : isa<TypeAliasTemplateDecl>(Template)? 2
1844          : 3)
1845      << Template->getDeclName();
1846    return;
1847  }
1848
1849  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1850    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1851                                          IEnd = OST->end();
1852         I != IEnd; ++I)
1853      Diag((*I)->getLocation(), diag::note_template_declared_here)
1854        << 0 << (*I)->getDeclName();
1855
1856    return;
1857  }
1858}
1859
1860
1861QualType Sema::CheckTemplateIdType(TemplateName Name,
1862                                   SourceLocation TemplateLoc,
1863                                   TemplateArgumentListInfo &TemplateArgs) {
1864  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1865  if (DTN && DTN->isIdentifier())
1866    // When building a template-id where the template-name is dependent,
1867    // assume the template is a type template. Either our assumption is
1868    // correct, or the code is ill-formed and will be diagnosed when the
1869    // dependent name is substituted.
1870    return Context.getDependentTemplateSpecializationType(ETK_None,
1871                                                          DTN->getQualifier(),
1872                                                          DTN->getIdentifier(),
1873                                                          TemplateArgs);
1874
1875  TemplateDecl *Template = Name.getAsTemplateDecl();
1876  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1877    // We might have a substituted template template parameter pack. If so,
1878    // build a template specialization type for it.
1879    if (Name.getAsSubstTemplateTemplateParmPack())
1880      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1881
1882    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1883      << Name;
1884    NoteAllFoundTemplates(Name);
1885    return QualType();
1886  }
1887
1888  // Check that the template argument list is well-formed for this
1889  // template.
1890  llvm::SmallVector<TemplateArgument, 4> Converted;
1891  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1892                                false, Converted))
1893    return QualType();
1894
1895  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1896         "Converted template argument list is too short!");
1897
1898  QualType CanonType;
1899
1900  if (TypeAliasTemplateDecl *AliasTemplate
1901        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1902    // Find the canonical type for this type alias template specialization.
1903    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1904    if (Pattern->isInvalidDecl())
1905      return QualType();
1906
1907    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1908                                      Converted.data(), Converted.size());
1909
1910    // Only substitute for the innermost template argument list.
1911    MultiLevelTemplateArgumentList TemplateArgLists;
1912    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1913    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1914    for (unsigned I = 0; I < Depth; ++I)
1915      TemplateArgLists.addOuterTemplateArguments(0, 0);
1916
1917    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1918    CanonType = SubstType(Pattern->getUnderlyingType(),
1919                          TemplateArgLists, AliasTemplate->getLocation(),
1920                          AliasTemplate->getDeclName());
1921    if (CanonType.isNull())
1922      return QualType();
1923  } else if (Name.isDependent() ||
1924             TemplateSpecializationType::anyDependentTemplateArguments(
1925               TemplateArgs)) {
1926    // This class template specialization is a dependent
1927    // type. Therefore, its canonical type is another class template
1928    // specialization type that contains all of the converted
1929    // arguments in canonical form. This ensures that, e.g., A<T> and
1930    // A<T, T> have identical types when A is declared as:
1931    //
1932    //   template<typename T, typename U = T> struct A;
1933    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1934    CanonType = Context.getTemplateSpecializationType(CanonName,
1935                                                      Converted.data(),
1936                                                      Converted.size());
1937
1938    // FIXME: CanonType is not actually the canonical type, and unfortunately
1939    // it is a TemplateSpecializationType that we will never use again.
1940    // In the future, we need to teach getTemplateSpecializationType to only
1941    // build the canonical type and return that to us.
1942    CanonType = Context.getCanonicalType(CanonType);
1943
1944    // This might work out to be a current instantiation, in which
1945    // case the canonical type needs to be the InjectedClassNameType.
1946    //
1947    // TODO: in theory this could be a simple hashtable lookup; most
1948    // changes to CurContext don't change the set of current
1949    // instantiations.
1950    if (isa<ClassTemplateDecl>(Template)) {
1951      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1952        // If we get out to a namespace, we're done.
1953        if (Ctx->isFileContext()) break;
1954
1955        // If this isn't a record, keep looking.
1956        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1957        if (!Record) continue;
1958
1959        // Look for one of the two cases with InjectedClassNameTypes
1960        // and check whether it's the same template.
1961        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1962            !Record->getDescribedClassTemplate())
1963          continue;
1964
1965        // Fetch the injected class name type and check whether its
1966        // injected type is equal to the type we just built.
1967        QualType ICNT = Context.getTypeDeclType(Record);
1968        QualType Injected = cast<InjectedClassNameType>(ICNT)
1969          ->getInjectedSpecializationType();
1970
1971        if (CanonType != Injected->getCanonicalTypeInternal())
1972          continue;
1973
1974        // If so, the canonical type of this TST is the injected
1975        // class name type of the record we just found.
1976        assert(ICNT.isCanonical());
1977        CanonType = ICNT;
1978        break;
1979      }
1980    }
1981  } else if (ClassTemplateDecl *ClassTemplate
1982               = dyn_cast<ClassTemplateDecl>(Template)) {
1983    // Find the class template specialization declaration that
1984    // corresponds to these arguments.
1985    void *InsertPos = 0;
1986    ClassTemplateSpecializationDecl *Decl
1987      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1988                                          InsertPos);
1989    if (!Decl) {
1990      // This is the first time we have referenced this class template
1991      // specialization. Create the canonical declaration and add it to
1992      // the set of specializations.
1993      Decl = ClassTemplateSpecializationDecl::Create(Context,
1994                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1995                                                ClassTemplate->getDeclContext(),
1996                                                ClassTemplate->getLocation(),
1997                                                ClassTemplate->getLocation(),
1998                                                     ClassTemplate,
1999                                                     Converted.data(),
2000                                                     Converted.size(), 0);
2001      ClassTemplate->AddSpecialization(Decl, InsertPos);
2002      Decl->setLexicalDeclContext(CurContext);
2003    }
2004
2005    CanonType = Context.getTypeDeclType(Decl);
2006    assert(isa<RecordType>(CanonType) &&
2007           "type of non-dependent specialization is not a RecordType");
2008  }
2009
2010  // Build the fully-sugared type for this class template
2011  // specialization, which refers back to the class template
2012  // specialization we created or found.
2013  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2014}
2015
2016TypeResult
2017Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2018                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2019                          SourceLocation LAngleLoc,
2020                          ASTTemplateArgsPtr TemplateArgsIn,
2021                          SourceLocation RAngleLoc) {
2022  if (SS.isInvalid())
2023    return true;
2024
2025  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2026
2027  // Translate the parser's template argument list in our AST format.
2028  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2029  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2030
2031  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2032    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
2033                                                           DTN->getQualifier(),
2034                                                           DTN->getIdentifier(),
2035                                                                TemplateArgs);
2036
2037    // Build type-source information.
2038    TypeLocBuilder TLB;
2039    DependentTemplateSpecializationTypeLoc SpecTL
2040      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2041    SpecTL.setKeywordLoc(SourceLocation());
2042    SpecTL.setNameLoc(TemplateLoc);
2043    SpecTL.setLAngleLoc(LAngleLoc);
2044    SpecTL.setRAngleLoc(RAngleLoc);
2045    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2046    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2047      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2048    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2049  }
2050
2051  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2052  TemplateArgsIn.release();
2053
2054  if (Result.isNull())
2055    return true;
2056
2057  // Build type-source information.
2058  TypeLocBuilder TLB;
2059  TemplateSpecializationTypeLoc SpecTL
2060    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2061  SpecTL.setTemplateNameLoc(TemplateLoc);
2062  SpecTL.setLAngleLoc(LAngleLoc);
2063  SpecTL.setRAngleLoc(RAngleLoc);
2064  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2065    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2066
2067  if (SS.isNotEmpty()) {
2068    // Create an elaborated-type-specifier containing the nested-name-specifier.
2069    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2070    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2071    ElabTL.setKeywordLoc(SourceLocation());
2072    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2073  }
2074
2075  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2076}
2077
2078TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2079                                        TypeSpecifierType TagSpec,
2080                                        SourceLocation TagLoc,
2081                                        CXXScopeSpec &SS,
2082                                        TemplateTy TemplateD,
2083                                        SourceLocation TemplateLoc,
2084                                        SourceLocation LAngleLoc,
2085                                        ASTTemplateArgsPtr TemplateArgsIn,
2086                                        SourceLocation RAngleLoc) {
2087  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2088
2089  // Translate the parser's template argument list in our AST format.
2090  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2091  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2092
2093  // Determine the tag kind
2094  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2095  ElaboratedTypeKeyword Keyword
2096    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2097
2098  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2099    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2100                                                          DTN->getQualifier(),
2101                                                          DTN->getIdentifier(),
2102                                                                TemplateArgs);
2103
2104    // Build type-source information.
2105    TypeLocBuilder TLB;
2106    DependentTemplateSpecializationTypeLoc SpecTL
2107    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2108    SpecTL.setKeywordLoc(TagLoc);
2109    SpecTL.setNameLoc(TemplateLoc);
2110    SpecTL.setLAngleLoc(LAngleLoc);
2111    SpecTL.setRAngleLoc(RAngleLoc);
2112    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2113    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2114      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2115    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2116  }
2117
2118  if (TypeAliasTemplateDecl *TAT =
2119        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2120    // C++0x [dcl.type.elab]p2:
2121    //   If the identifier resolves to a typedef-name or the simple-template-id
2122    //   resolves to an alias template specialization, the
2123    //   elaborated-type-specifier is ill-formed.
2124    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2125    Diag(TAT->getLocation(), diag::note_declared_at);
2126  }
2127
2128  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2129  if (Result.isNull())
2130    return TypeResult();
2131
2132  // Check the tag kind
2133  if (const RecordType *RT = Result->getAs<RecordType>()) {
2134    RecordDecl *D = RT->getDecl();
2135
2136    IdentifierInfo *Id = D->getIdentifier();
2137    assert(Id && "templated class must have an identifier");
2138
2139    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2140                                      TagLoc, *Id)) {
2141      Diag(TagLoc, diag::err_use_with_wrong_tag)
2142        << Result
2143        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2144      Diag(D->getLocation(), diag::note_previous_use);
2145    }
2146  }
2147
2148  // Provide source-location information for the template specialization.
2149  TypeLocBuilder TLB;
2150  TemplateSpecializationTypeLoc SpecTL
2151    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2152  SpecTL.setTemplateNameLoc(TemplateLoc);
2153  SpecTL.setLAngleLoc(LAngleLoc);
2154  SpecTL.setRAngleLoc(RAngleLoc);
2155  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2156    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2157
2158  // Construct an elaborated type containing the nested-name-specifier (if any)
2159  // and keyword.
2160  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2161  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2162  ElabTL.setKeywordLoc(TagLoc);
2163  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2164  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2165}
2166
2167ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2168                                     LookupResult &R,
2169                                     bool RequiresADL,
2170                                 const TemplateArgumentListInfo &TemplateArgs) {
2171  // FIXME: Can we do any checking at this point? I guess we could check the
2172  // template arguments that we have against the template name, if the template
2173  // name refers to a single template. That's not a terribly common case,
2174  // though.
2175  // foo<int> could identify a single function unambiguously
2176  // This approach does NOT work, since f<int>(1);
2177  // gets resolved prior to resorting to overload resolution
2178  // i.e., template<class T> void f(double);
2179  //       vs template<class T, class U> void f(U);
2180
2181  // These should be filtered out by our callers.
2182  assert(!R.empty() && "empty lookup results when building templateid");
2183  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2184
2185  // We don't want lookup warnings at this point.
2186  R.suppressDiagnostics();
2187
2188  UnresolvedLookupExpr *ULE
2189    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2190                                   SS.getWithLocInContext(Context),
2191                                   R.getLookupNameInfo(),
2192                                   RequiresADL, TemplateArgs,
2193                                   R.begin(), R.end());
2194
2195  return Owned(ULE);
2196}
2197
2198// We actually only call this from template instantiation.
2199ExprResult
2200Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2201                                   const DeclarationNameInfo &NameInfo,
2202                             const TemplateArgumentListInfo &TemplateArgs) {
2203  DeclContext *DC;
2204  if (!(DC = computeDeclContext(SS, false)) ||
2205      DC->isDependentContext() ||
2206      RequireCompleteDeclContext(SS, DC))
2207    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2208
2209  bool MemberOfUnknownSpecialization;
2210  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2211  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2212                     MemberOfUnknownSpecialization);
2213
2214  if (R.isAmbiguous())
2215    return ExprError();
2216
2217  if (R.empty()) {
2218    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2219      << NameInfo.getName() << SS.getRange();
2220    return ExprError();
2221  }
2222
2223  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2224    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2225      << (NestedNameSpecifier*) SS.getScopeRep()
2226      << NameInfo.getName() << SS.getRange();
2227    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2228    return ExprError();
2229  }
2230
2231  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2232}
2233
2234/// \brief Form a dependent template name.
2235///
2236/// This action forms a dependent template name given the template
2237/// name and its (presumably dependent) scope specifier. For
2238/// example, given "MetaFun::template apply", the scope specifier \p
2239/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2240/// of the "template" keyword, and "apply" is the \p Name.
2241TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2242                                                  SourceLocation TemplateKWLoc,
2243                                                  CXXScopeSpec &SS,
2244                                                  UnqualifiedId &Name,
2245                                                  ParsedType ObjectType,
2246                                                  bool EnteringContext,
2247                                                  TemplateTy &Result) {
2248  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2249      !getLangOptions().CPlusPlus0x)
2250    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2251      << FixItHint::CreateRemoval(TemplateKWLoc);
2252
2253  DeclContext *LookupCtx = 0;
2254  if (SS.isSet())
2255    LookupCtx = computeDeclContext(SS, EnteringContext);
2256  if (!LookupCtx && ObjectType)
2257    LookupCtx = computeDeclContext(ObjectType.get());
2258  if (LookupCtx) {
2259    // C++0x [temp.names]p5:
2260    //   If a name prefixed by the keyword template is not the name of
2261    //   a template, the program is ill-formed. [Note: the keyword
2262    //   template may not be applied to non-template members of class
2263    //   templates. -end note ] [ Note: as is the case with the
2264    //   typename prefix, the template prefix is allowed in cases
2265    //   where it is not strictly necessary; i.e., when the
2266    //   nested-name-specifier or the expression on the left of the ->
2267    //   or . is not dependent on a template-parameter, or the use
2268    //   does not appear in the scope of a template. -end note]
2269    //
2270    // Note: C++03 was more strict here, because it banned the use of
2271    // the "template" keyword prior to a template-name that was not a
2272    // dependent name. C++ DR468 relaxed this requirement (the
2273    // "template" keyword is now permitted). We follow the C++0x
2274    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2275    bool MemberOfUnknownSpecialization;
2276    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2277                                          ObjectType, EnteringContext, Result,
2278                                          MemberOfUnknownSpecialization);
2279    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2280        isa<CXXRecordDecl>(LookupCtx) &&
2281        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2282         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2283      // This is a dependent template. Handle it below.
2284    } else if (TNK == TNK_Non_template) {
2285      Diag(Name.getSourceRange().getBegin(),
2286           diag::err_template_kw_refers_to_non_template)
2287        << GetNameFromUnqualifiedId(Name).getName()
2288        << Name.getSourceRange()
2289        << TemplateKWLoc;
2290      return TNK_Non_template;
2291    } else {
2292      // We found something; return it.
2293      return TNK;
2294    }
2295  }
2296
2297  NestedNameSpecifier *Qualifier
2298    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2299
2300  switch (Name.getKind()) {
2301  case UnqualifiedId::IK_Identifier:
2302    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2303                                                              Name.Identifier));
2304    return TNK_Dependent_template_name;
2305
2306  case UnqualifiedId::IK_OperatorFunctionId:
2307    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2308                                             Name.OperatorFunctionId.Operator));
2309    return TNK_Dependent_template_name;
2310
2311  case UnqualifiedId::IK_LiteralOperatorId:
2312    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2313
2314  default:
2315    break;
2316  }
2317
2318  Diag(Name.getSourceRange().getBegin(),
2319       diag::err_template_kw_refers_to_non_template)
2320    << GetNameFromUnqualifiedId(Name).getName()
2321    << Name.getSourceRange()
2322    << TemplateKWLoc;
2323  return TNK_Non_template;
2324}
2325
2326bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2327                                     const TemplateArgumentLoc &AL,
2328                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2329  const TemplateArgument &Arg = AL.getArgument();
2330
2331  // Check template type parameter.
2332  switch(Arg.getKind()) {
2333  case TemplateArgument::Type:
2334    // C++ [temp.arg.type]p1:
2335    //   A template-argument for a template-parameter which is a
2336    //   type shall be a type-id.
2337    break;
2338  case TemplateArgument::Template: {
2339    // We have a template type parameter but the template argument
2340    // is a template without any arguments.
2341    SourceRange SR = AL.getSourceRange();
2342    TemplateName Name = Arg.getAsTemplate();
2343    Diag(SR.getBegin(), diag::err_template_missing_args)
2344      << Name << SR;
2345    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2346      Diag(Decl->getLocation(), diag::note_template_decl_here);
2347
2348    return true;
2349  }
2350  default: {
2351    // We have a template type parameter but the template argument
2352    // is not a type.
2353    SourceRange SR = AL.getSourceRange();
2354    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2355    Diag(Param->getLocation(), diag::note_template_param_here);
2356
2357    return true;
2358  }
2359  }
2360
2361  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2362    return true;
2363
2364  // Add the converted template type argument.
2365  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2366
2367  // Objective-C ARC:
2368  //   If an explicitly-specified template argument type is a lifetime type
2369  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2370  if (getLangOptions().ObjCAutoRefCount &&
2371      ArgType->isObjCLifetimeType() &&
2372      !ArgType.getObjCLifetime()) {
2373    Qualifiers Qs;
2374    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2375    ArgType = Context.getQualifiedType(ArgType, Qs);
2376  }
2377
2378  Converted.push_back(TemplateArgument(ArgType));
2379  return false;
2380}
2381
2382/// \brief Substitute template arguments into the default template argument for
2383/// the given template type parameter.
2384///
2385/// \param SemaRef the semantic analysis object for which we are performing
2386/// the substitution.
2387///
2388/// \param Template the template that we are synthesizing template arguments
2389/// for.
2390///
2391/// \param TemplateLoc the location of the template name that started the
2392/// template-id we are checking.
2393///
2394/// \param RAngleLoc the location of the right angle bracket ('>') that
2395/// terminates the template-id.
2396///
2397/// \param Param the template template parameter whose default we are
2398/// substituting into.
2399///
2400/// \param Converted the list of template arguments provided for template
2401/// parameters that precede \p Param in the template parameter list.
2402/// \returns the substituted template argument, or NULL if an error occurred.
2403static TypeSourceInfo *
2404SubstDefaultTemplateArgument(Sema &SemaRef,
2405                             TemplateDecl *Template,
2406                             SourceLocation TemplateLoc,
2407                             SourceLocation RAngleLoc,
2408                             TemplateTypeParmDecl *Param,
2409                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2410  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2411
2412  // If the argument type is dependent, instantiate it now based
2413  // on the previously-computed template arguments.
2414  if (ArgType->getType()->isDependentType()) {
2415    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2416                                      Converted.data(), Converted.size());
2417
2418    MultiLevelTemplateArgumentList AllTemplateArgs
2419      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2420
2421    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2422                                     Template, Converted.data(),
2423                                     Converted.size(),
2424                                     SourceRange(TemplateLoc, RAngleLoc));
2425
2426    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2427                                Param->getDefaultArgumentLoc(),
2428                                Param->getDeclName());
2429  }
2430
2431  return ArgType;
2432}
2433
2434/// \brief Substitute template arguments into the default template argument for
2435/// the given non-type template parameter.
2436///
2437/// \param SemaRef the semantic analysis object for which we are performing
2438/// the substitution.
2439///
2440/// \param Template the template that we are synthesizing template arguments
2441/// for.
2442///
2443/// \param TemplateLoc the location of the template name that started the
2444/// template-id we are checking.
2445///
2446/// \param RAngleLoc the location of the right angle bracket ('>') that
2447/// terminates the template-id.
2448///
2449/// \param Param the non-type template parameter whose default we are
2450/// substituting into.
2451///
2452/// \param Converted the list of template arguments provided for template
2453/// parameters that precede \p Param in the template parameter list.
2454///
2455/// \returns the substituted template argument, or NULL if an error occurred.
2456static ExprResult
2457SubstDefaultTemplateArgument(Sema &SemaRef,
2458                             TemplateDecl *Template,
2459                             SourceLocation TemplateLoc,
2460                             SourceLocation RAngleLoc,
2461                             NonTypeTemplateParmDecl *Param,
2462                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2463  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2464                                    Converted.data(), Converted.size());
2465
2466  MultiLevelTemplateArgumentList AllTemplateArgs
2467    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2468
2469  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2470                                   Template, Converted.data(),
2471                                   Converted.size(),
2472                                   SourceRange(TemplateLoc, RAngleLoc));
2473
2474  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2475}
2476
2477/// \brief Substitute template arguments into the default template argument for
2478/// the given template template parameter.
2479///
2480/// \param SemaRef the semantic analysis object for which we are performing
2481/// the substitution.
2482///
2483/// \param Template the template that we are synthesizing template arguments
2484/// for.
2485///
2486/// \param TemplateLoc the location of the template name that started the
2487/// template-id we are checking.
2488///
2489/// \param RAngleLoc the location of the right angle bracket ('>') that
2490/// terminates the template-id.
2491///
2492/// \param Param the template template parameter whose default we are
2493/// substituting into.
2494///
2495/// \param Converted the list of template arguments provided for template
2496/// parameters that precede \p Param in the template parameter list.
2497///
2498/// \param QualifierLoc Will be set to the nested-name-specifier (with
2499/// source-location information) that precedes the template name.
2500///
2501/// \returns the substituted template argument, or NULL if an error occurred.
2502static TemplateName
2503SubstDefaultTemplateArgument(Sema &SemaRef,
2504                             TemplateDecl *Template,
2505                             SourceLocation TemplateLoc,
2506                             SourceLocation RAngleLoc,
2507                             TemplateTemplateParmDecl *Param,
2508                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2509                             NestedNameSpecifierLoc &QualifierLoc) {
2510  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2511                                    Converted.data(), Converted.size());
2512
2513  MultiLevelTemplateArgumentList AllTemplateArgs
2514    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2515
2516  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2517                                   Template, Converted.data(),
2518                                   Converted.size(),
2519                                   SourceRange(TemplateLoc, RAngleLoc));
2520
2521  // Substitute into the nested-name-specifier first,
2522  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2523  if (QualifierLoc) {
2524    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2525                                                       AllTemplateArgs);
2526    if (!QualifierLoc)
2527      return TemplateName();
2528  }
2529
2530  return SemaRef.SubstTemplateName(QualifierLoc,
2531                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2532                              Param->getDefaultArgument().getTemplateNameLoc(),
2533                                   AllTemplateArgs);
2534}
2535
2536/// \brief If the given template parameter has a default template
2537/// argument, substitute into that default template argument and
2538/// return the corresponding template argument.
2539TemplateArgumentLoc
2540Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2541                                              SourceLocation TemplateLoc,
2542                                              SourceLocation RAngleLoc,
2543                                              Decl *Param,
2544                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2545   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2546    if (!TypeParm->hasDefaultArgument())
2547      return TemplateArgumentLoc();
2548
2549    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2550                                                      TemplateLoc,
2551                                                      RAngleLoc,
2552                                                      TypeParm,
2553                                                      Converted);
2554    if (DI)
2555      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2556
2557    return TemplateArgumentLoc();
2558  }
2559
2560  if (NonTypeTemplateParmDecl *NonTypeParm
2561        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2562    if (!NonTypeParm->hasDefaultArgument())
2563      return TemplateArgumentLoc();
2564
2565    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2566                                                  TemplateLoc,
2567                                                  RAngleLoc,
2568                                                  NonTypeParm,
2569                                                  Converted);
2570    if (Arg.isInvalid())
2571      return TemplateArgumentLoc();
2572
2573    Expr *ArgE = Arg.takeAs<Expr>();
2574    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2575  }
2576
2577  TemplateTemplateParmDecl *TempTempParm
2578    = cast<TemplateTemplateParmDecl>(Param);
2579  if (!TempTempParm->hasDefaultArgument())
2580    return TemplateArgumentLoc();
2581
2582
2583  NestedNameSpecifierLoc QualifierLoc;
2584  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2585                                                    TemplateLoc,
2586                                                    RAngleLoc,
2587                                                    TempTempParm,
2588                                                    Converted,
2589                                                    QualifierLoc);
2590  if (TName.isNull())
2591    return TemplateArgumentLoc();
2592
2593  return TemplateArgumentLoc(TemplateArgument(TName),
2594                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2595                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2596}
2597
2598/// \brief Check that the given template argument corresponds to the given
2599/// template parameter.
2600///
2601/// \param Param The template parameter against which the argument will be
2602/// checked.
2603///
2604/// \param Arg The template argument.
2605///
2606/// \param Template The template in which the template argument resides.
2607///
2608/// \param TemplateLoc The location of the template name for the template
2609/// whose argument list we're matching.
2610///
2611/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2612/// the template argument list.
2613///
2614/// \param ArgumentPackIndex The index into the argument pack where this
2615/// argument will be placed. Only valid if the parameter is a parameter pack.
2616///
2617/// \param Converted The checked, converted argument will be added to the
2618/// end of this small vector.
2619///
2620/// \param CTAK Describes how we arrived at this particular template argument:
2621/// explicitly written, deduced, etc.
2622///
2623/// \returns true on error, false otherwise.
2624bool Sema::CheckTemplateArgument(NamedDecl *Param,
2625                                 const TemplateArgumentLoc &Arg,
2626                                 NamedDecl *Template,
2627                                 SourceLocation TemplateLoc,
2628                                 SourceLocation RAngleLoc,
2629                                 unsigned ArgumentPackIndex,
2630                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2631                                 CheckTemplateArgumentKind CTAK) {
2632  // Check template type parameters.
2633  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2634    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2635
2636  // Check non-type template parameters.
2637  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2638    // Do substitution on the type of the non-type template parameter
2639    // with the template arguments we've seen thus far.  But if the
2640    // template has a dependent context then we cannot substitute yet.
2641    QualType NTTPType = NTTP->getType();
2642    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2643      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2644
2645    if (NTTPType->isDependentType() &&
2646        !isa<TemplateTemplateParmDecl>(Template) &&
2647        !Template->getDeclContext()->isDependentContext()) {
2648      // Do substitution on the type of the non-type template parameter.
2649      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2650                                 NTTP, Converted.data(), Converted.size(),
2651                                 SourceRange(TemplateLoc, RAngleLoc));
2652
2653      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2654                                        Converted.data(), Converted.size());
2655      NTTPType = SubstType(NTTPType,
2656                           MultiLevelTemplateArgumentList(TemplateArgs),
2657                           NTTP->getLocation(),
2658                           NTTP->getDeclName());
2659      // If that worked, check the non-type template parameter type
2660      // for validity.
2661      if (!NTTPType.isNull())
2662        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2663                                                     NTTP->getLocation());
2664      if (NTTPType.isNull())
2665        return true;
2666    }
2667
2668    switch (Arg.getArgument().getKind()) {
2669    case TemplateArgument::Null:
2670      assert(false && "Should never see a NULL template argument here");
2671      return true;
2672
2673    case TemplateArgument::Expression: {
2674      TemplateArgument Result;
2675      ExprResult Res =
2676        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2677                              Result, CTAK);
2678      if (Res.isInvalid())
2679        return true;
2680
2681      Converted.push_back(Result);
2682      break;
2683    }
2684
2685    case TemplateArgument::Declaration:
2686    case TemplateArgument::Integral:
2687      // We've already checked this template argument, so just copy
2688      // it to the list of converted arguments.
2689      Converted.push_back(Arg.getArgument());
2690      break;
2691
2692    case TemplateArgument::Template:
2693    case TemplateArgument::TemplateExpansion:
2694      // We were given a template template argument. It may not be ill-formed;
2695      // see below.
2696      if (DependentTemplateName *DTN
2697            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2698                                              .getAsDependentTemplateName()) {
2699        // We have a template argument such as \c T::template X, which we
2700        // parsed as a template template argument. However, since we now
2701        // know that we need a non-type template argument, convert this
2702        // template name into an expression.
2703
2704        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2705                                     Arg.getTemplateNameLoc());
2706
2707        CXXScopeSpec SS;
2708        SS.Adopt(Arg.getTemplateQualifierLoc());
2709        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2710                                                SS.getWithLocInContext(Context),
2711                                                    NameInfo));
2712
2713        // If we parsed the template argument as a pack expansion, create a
2714        // pack expansion expression.
2715        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2716          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2717          if (E.isInvalid())
2718            return true;
2719        }
2720
2721        TemplateArgument Result;
2722        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2723        if (E.isInvalid())
2724          return true;
2725
2726        Converted.push_back(Result);
2727        break;
2728      }
2729
2730      // We have a template argument that actually does refer to a class
2731      // template, alias template, or template template parameter, and
2732      // therefore cannot be a non-type template argument.
2733      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2734        << Arg.getSourceRange();
2735
2736      Diag(Param->getLocation(), diag::note_template_param_here);
2737      return true;
2738
2739    case TemplateArgument::Type: {
2740      // We have a non-type template parameter but the template
2741      // argument is a type.
2742
2743      // C++ [temp.arg]p2:
2744      //   In a template-argument, an ambiguity between a type-id and
2745      //   an expression is resolved to a type-id, regardless of the
2746      //   form of the corresponding template-parameter.
2747      //
2748      // We warn specifically about this case, since it can be rather
2749      // confusing for users.
2750      QualType T = Arg.getArgument().getAsType();
2751      SourceRange SR = Arg.getSourceRange();
2752      if (T->isFunctionType())
2753        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2754      else
2755        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2756      Diag(Param->getLocation(), diag::note_template_param_here);
2757      return true;
2758    }
2759
2760    case TemplateArgument::Pack:
2761      llvm_unreachable("Caller must expand template argument packs");
2762      break;
2763    }
2764
2765    return false;
2766  }
2767
2768
2769  // Check template template parameters.
2770  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2771
2772  // Substitute into the template parameter list of the template
2773  // template parameter, since previously-supplied template arguments
2774  // may appear within the template template parameter.
2775  {
2776    // Set up a template instantiation context.
2777    LocalInstantiationScope Scope(*this);
2778    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2779                               TempParm, Converted.data(), Converted.size(),
2780                               SourceRange(TemplateLoc, RAngleLoc));
2781
2782    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2783                                      Converted.data(), Converted.size());
2784    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2785                      SubstDecl(TempParm, CurContext,
2786                                MultiLevelTemplateArgumentList(TemplateArgs)));
2787    if (!TempParm)
2788      return true;
2789  }
2790
2791  switch (Arg.getArgument().getKind()) {
2792  case TemplateArgument::Null:
2793    assert(false && "Should never see a NULL template argument here");
2794    return true;
2795
2796  case TemplateArgument::Template:
2797  case TemplateArgument::TemplateExpansion:
2798    if (CheckTemplateArgument(TempParm, Arg))
2799      return true;
2800
2801    Converted.push_back(Arg.getArgument());
2802    break;
2803
2804  case TemplateArgument::Expression:
2805  case TemplateArgument::Type:
2806    // We have a template template parameter but the template
2807    // argument does not refer to a template.
2808    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2809      << getLangOptions().CPlusPlus0x;
2810    return true;
2811
2812  case TemplateArgument::Declaration:
2813    llvm_unreachable(
2814                       "Declaration argument with template template parameter");
2815    break;
2816  case TemplateArgument::Integral:
2817    llvm_unreachable(
2818                          "Integral argument with template template parameter");
2819    break;
2820
2821  case TemplateArgument::Pack:
2822    llvm_unreachable("Caller must expand template argument packs");
2823    break;
2824  }
2825
2826  return false;
2827}
2828
2829/// \brief Check that the given template argument list is well-formed
2830/// for specializing the given template.
2831bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2832                                     SourceLocation TemplateLoc,
2833                                     TemplateArgumentListInfo &TemplateArgs,
2834                                     bool PartialTemplateArgs,
2835                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2836  TemplateParameterList *Params = Template->getTemplateParameters();
2837  unsigned NumParams = Params->size();
2838  unsigned NumArgs = TemplateArgs.size();
2839  bool Invalid = false;
2840
2841  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2842
2843  bool HasParameterPack =
2844    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2845
2846  if ((NumArgs > NumParams && !HasParameterPack) ||
2847      (NumArgs < Params->getMinRequiredArguments() &&
2848       !PartialTemplateArgs)) {
2849    // FIXME: point at either the first arg beyond what we can handle,
2850    // or the '>', depending on whether we have too many or too few
2851    // arguments.
2852    SourceRange Range;
2853    if (NumArgs > NumParams)
2854      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2855    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2856      << (NumArgs > NumParams)
2857      << (isa<ClassTemplateDecl>(Template)? 0 :
2858          isa<FunctionTemplateDecl>(Template)? 1 :
2859          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2860      << Template << Range;
2861    Diag(Template->getLocation(), diag::note_template_decl_here)
2862      << Params->getSourceRange();
2863    Invalid = true;
2864  }
2865
2866  // C++ [temp.arg]p1:
2867  //   [...] The type and form of each template-argument specified in
2868  //   a template-id shall match the type and form specified for the
2869  //   corresponding parameter declared by the template in its
2870  //   template-parameter-list.
2871  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2872  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2873  TemplateParameterList::iterator Param = Params->begin(),
2874                               ParamEnd = Params->end();
2875  unsigned ArgIdx = 0;
2876  LocalInstantiationScope InstScope(*this, true);
2877  while (Param != ParamEnd) {
2878    if (ArgIdx < NumArgs) {
2879      // If we have an expanded parameter pack, make sure we don't have too
2880      // many arguments.
2881      if (NonTypeTemplateParmDecl *NTTP
2882                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2883        if (NTTP->isExpandedParameterPack() &&
2884            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2885          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2886            << true
2887            << (isa<ClassTemplateDecl>(Template)? 0 :
2888                isa<FunctionTemplateDecl>(Template)? 1 :
2889                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2890            << Template;
2891          Diag(Template->getLocation(), diag::note_template_decl_here)
2892            << Params->getSourceRange();
2893          return true;
2894        }
2895      }
2896
2897      // Check the template argument we were given.
2898      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2899                                TemplateLoc, RAngleLoc,
2900                                ArgumentPack.size(), Converted))
2901        return true;
2902
2903      if ((*Param)->isTemplateParameterPack()) {
2904        // The template parameter was a template parameter pack, so take the
2905        // deduced argument and place it on the argument pack. Note that we
2906        // stay on the same template parameter so that we can deduce more
2907        // arguments.
2908        ArgumentPack.push_back(Converted.back());
2909        Converted.pop_back();
2910      } else {
2911        // Move to the next template parameter.
2912        ++Param;
2913      }
2914      ++ArgIdx;
2915      continue;
2916    }
2917
2918    // If we're checking a partial template argument list, we're done.
2919    if (PartialTemplateArgs) {
2920      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2921        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2922                                                         ArgumentPack.data(),
2923                                                         ArgumentPack.size()));
2924
2925      return Invalid;
2926    }
2927
2928    // If we have a template parameter pack with no more corresponding
2929    // arguments, just break out now and we'll fill in the argument pack below.
2930    if ((*Param)->isTemplateParameterPack())
2931      break;
2932
2933    // We have a default template argument that we will use.
2934    TemplateArgumentLoc Arg;
2935
2936    // Retrieve the default template argument from the template
2937    // parameter. For each kind of template parameter, we substitute the
2938    // template arguments provided thus far and any "outer" template arguments
2939    // (when the template parameter was part of a nested template) into
2940    // the default argument.
2941    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2942      if (!TTP->hasDefaultArgument()) {
2943        assert(Invalid && "Missing default argument");
2944        break;
2945      }
2946
2947      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2948                                                             Template,
2949                                                             TemplateLoc,
2950                                                             RAngleLoc,
2951                                                             TTP,
2952                                                             Converted);
2953      if (!ArgType)
2954        return true;
2955
2956      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2957                                ArgType);
2958    } else if (NonTypeTemplateParmDecl *NTTP
2959                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2960      if (!NTTP->hasDefaultArgument()) {
2961        assert(Invalid && "Missing default argument");
2962        break;
2963      }
2964
2965      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2966                                                              TemplateLoc,
2967                                                              RAngleLoc,
2968                                                              NTTP,
2969                                                              Converted);
2970      if (E.isInvalid())
2971        return true;
2972
2973      Expr *Ex = E.takeAs<Expr>();
2974      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2975    } else {
2976      TemplateTemplateParmDecl *TempParm
2977        = cast<TemplateTemplateParmDecl>(*Param);
2978
2979      if (!TempParm->hasDefaultArgument()) {
2980        assert(Invalid && "Missing default argument");
2981        break;
2982      }
2983
2984      NestedNameSpecifierLoc QualifierLoc;
2985      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2986                                                       TemplateLoc,
2987                                                       RAngleLoc,
2988                                                       TempParm,
2989                                                       Converted,
2990                                                       QualifierLoc);
2991      if (Name.isNull())
2992        return true;
2993
2994      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2995                           TempParm->getDefaultArgument().getTemplateNameLoc());
2996    }
2997
2998    // Introduce an instantiation record that describes where we are using
2999    // the default template argument.
3000    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3001                                        Converted.data(), Converted.size(),
3002                                        SourceRange(TemplateLoc, RAngleLoc));
3003
3004    // Check the default template argument.
3005    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3006                              RAngleLoc, 0, Converted))
3007      return true;
3008
3009    // Core issue 150 (assumed resolution): if this is a template template
3010    // parameter, keep track of the default template arguments from the
3011    // template definition.
3012    if (isTemplateTemplateParameter)
3013      TemplateArgs.addArgument(Arg);
3014
3015    // Move to the next template parameter and argument.
3016    ++Param;
3017    ++ArgIdx;
3018  }
3019
3020  // Form argument packs for each of the parameter packs remaining.
3021  while (Param != ParamEnd) {
3022    // If we're checking a partial list of template arguments, don't fill
3023    // in arguments for non-template parameter packs.
3024
3025    if ((*Param)->isTemplateParameterPack()) {
3026      if (ArgumentPack.empty())
3027        Converted.push_back(TemplateArgument(0, 0));
3028      else {
3029        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3030                                                          ArgumentPack.data(),
3031                                                         ArgumentPack.size()));
3032        ArgumentPack.clear();
3033      }
3034    }
3035
3036    ++Param;
3037  }
3038
3039  return Invalid;
3040}
3041
3042namespace {
3043  class UnnamedLocalNoLinkageFinder
3044    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3045  {
3046    Sema &S;
3047    SourceRange SR;
3048
3049    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3050
3051  public:
3052    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3053
3054    bool Visit(QualType T) {
3055      return inherited::Visit(T.getTypePtr());
3056    }
3057
3058#define TYPE(Class, Parent) \
3059    bool Visit##Class##Type(const Class##Type *);
3060#define ABSTRACT_TYPE(Class, Parent) \
3061    bool Visit##Class##Type(const Class##Type *) { return false; }
3062#define NON_CANONICAL_TYPE(Class, Parent) \
3063    bool Visit##Class##Type(const Class##Type *) { return false; }
3064#include "clang/AST/TypeNodes.def"
3065
3066    bool VisitTagDecl(const TagDecl *Tag);
3067    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3068  };
3069}
3070
3071bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3072  return false;
3073}
3074
3075bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3076  return Visit(T->getElementType());
3077}
3078
3079bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3080  return Visit(T->getPointeeType());
3081}
3082
3083bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3084                                                    const BlockPointerType* T) {
3085  return Visit(T->getPointeeType());
3086}
3087
3088bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3089                                                const LValueReferenceType* T) {
3090  return Visit(T->getPointeeType());
3091}
3092
3093bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3094                                                const RValueReferenceType* T) {
3095  return Visit(T->getPointeeType());
3096}
3097
3098bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3099                                                  const MemberPointerType* T) {
3100  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3101}
3102
3103bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3104                                                  const ConstantArrayType* T) {
3105  return Visit(T->getElementType());
3106}
3107
3108bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3109                                                 const IncompleteArrayType* T) {
3110  return Visit(T->getElementType());
3111}
3112
3113bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3114                                                   const VariableArrayType* T) {
3115  return Visit(T->getElementType());
3116}
3117
3118bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3119                                            const DependentSizedArrayType* T) {
3120  return Visit(T->getElementType());
3121}
3122
3123bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3124                                         const DependentSizedExtVectorType* T) {
3125  return Visit(T->getElementType());
3126}
3127
3128bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3129  return Visit(T->getElementType());
3130}
3131
3132bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3133  return Visit(T->getElementType());
3134}
3135
3136bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3137                                                  const FunctionProtoType* T) {
3138  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3139                                         AEnd = T->arg_type_end();
3140       A != AEnd; ++A) {
3141    if (Visit(*A))
3142      return true;
3143  }
3144
3145  return Visit(T->getResultType());
3146}
3147
3148bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3149                                               const FunctionNoProtoType* T) {
3150  return Visit(T->getResultType());
3151}
3152
3153bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3154                                                  const UnresolvedUsingType*) {
3155  return false;
3156}
3157
3158bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3159  return false;
3160}
3161
3162bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3163  return Visit(T->getUnderlyingType());
3164}
3165
3166bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3167  return false;
3168}
3169
3170bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3171                                                    const UnaryTransformType*) {
3172  return false;
3173}
3174
3175bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3176  return Visit(T->getDeducedType());
3177}
3178
3179bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3180  return VisitTagDecl(T->getDecl());
3181}
3182
3183bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3184  return VisitTagDecl(T->getDecl());
3185}
3186
3187bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3188                                                 const TemplateTypeParmType*) {
3189  return false;
3190}
3191
3192bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3193                                        const SubstTemplateTypeParmPackType *) {
3194  return false;
3195}
3196
3197bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3198                                            const TemplateSpecializationType*) {
3199  return false;
3200}
3201
3202bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3203                                              const InjectedClassNameType* T) {
3204  return VisitTagDecl(T->getDecl());
3205}
3206
3207bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3208                                                   const DependentNameType* T) {
3209  return VisitNestedNameSpecifier(T->getQualifier());
3210}
3211
3212bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3213                                 const DependentTemplateSpecializationType* T) {
3214  return VisitNestedNameSpecifier(T->getQualifier());
3215}
3216
3217bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3218                                                   const PackExpansionType* T) {
3219  return Visit(T->getPattern());
3220}
3221
3222bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3223  return false;
3224}
3225
3226bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3227                                                   const ObjCInterfaceType *) {
3228  return false;
3229}
3230
3231bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3232                                                const ObjCObjectPointerType *) {
3233  return false;
3234}
3235
3236bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3237  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3238    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
3239      << S.Context.getTypeDeclType(Tag) << SR;
3240    return true;
3241  }
3242
3243  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3244    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
3245    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3246    return true;
3247  }
3248
3249  return false;
3250}
3251
3252bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3253                                                    NestedNameSpecifier *NNS) {
3254  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3255    return true;
3256
3257  switch (NNS->getKind()) {
3258  case NestedNameSpecifier::Identifier:
3259  case NestedNameSpecifier::Namespace:
3260  case NestedNameSpecifier::NamespaceAlias:
3261  case NestedNameSpecifier::Global:
3262    return false;
3263
3264  case NestedNameSpecifier::TypeSpec:
3265  case NestedNameSpecifier::TypeSpecWithTemplate:
3266    return Visit(QualType(NNS->getAsType(), 0));
3267  }
3268  return false;
3269}
3270
3271
3272/// \brief Check a template argument against its corresponding
3273/// template type parameter.
3274///
3275/// This routine implements the semantics of C++ [temp.arg.type]. It
3276/// returns true if an error occurred, and false otherwise.
3277bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3278                                 TypeSourceInfo *ArgInfo) {
3279  assert(ArgInfo && "invalid TypeSourceInfo");
3280  QualType Arg = ArgInfo->getType();
3281  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3282
3283  if (Arg->isVariablyModifiedType()) {
3284    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3285  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3286    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3287  }
3288
3289  // C++03 [temp.arg.type]p2:
3290  //   A local type, a type with no linkage, an unnamed type or a type
3291  //   compounded from any of these types shall not be used as a
3292  //   template-argument for a template type-parameter.
3293  //
3294  // C++0x allows these, and even in C++03 we allow them as an extension with
3295  // a warning.
3296  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3297    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3298    (void)Finder.Visit(Context.getCanonicalType(Arg));
3299  }
3300
3301  return false;
3302}
3303
3304/// \brief Checks whether the given template argument is the address
3305/// of an object or function according to C++ [temp.arg.nontype]p1.
3306static bool
3307CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3308                                               NonTypeTemplateParmDecl *Param,
3309                                               QualType ParamType,
3310                                               Expr *ArgIn,
3311                                               TemplateArgument &Converted) {
3312  bool Invalid = false;
3313  Expr *Arg = ArgIn;
3314  QualType ArgType = Arg->getType();
3315
3316  // See through any implicit casts we added to fix the type.
3317  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3318    Arg = Cast->getSubExpr();
3319
3320  // C++ [temp.arg.nontype]p1:
3321  //
3322  //   A template-argument for a non-type, non-template
3323  //   template-parameter shall be one of: [...]
3324  //
3325  //     -- the address of an object or function with external
3326  //        linkage, including function templates and function
3327  //        template-ids but excluding non-static class members,
3328  //        expressed as & id-expression where the & is optional if
3329  //        the name refers to a function or array, or if the
3330  //        corresponding template-parameter is a reference; or
3331  DeclRefExpr *DRE = 0;
3332
3333  // In C++98/03 mode, give an extension warning on any extra parentheses.
3334  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3335  bool ExtraParens = false;
3336  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3337    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3338      S.Diag(Arg->getSourceRange().getBegin(),
3339             diag::ext_template_arg_extra_parens)
3340        << Arg->getSourceRange();
3341      ExtraParens = true;
3342    }
3343
3344    Arg = Parens->getSubExpr();
3345  }
3346
3347  bool AddressTaken = false;
3348  SourceLocation AddrOpLoc;
3349  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3350    if (UnOp->getOpcode() == UO_AddrOf) {
3351      // Support &__uuidof(class_with_uuid) as a non-type template argument.
3352      // Very common in Microsoft COM headers.
3353      if (S.getLangOptions().Microsoft &&
3354        isa<CXXUuidofExpr>(UnOp->getSubExpr())) {
3355        Converted = TemplateArgument(ArgIn);
3356        return false;
3357      }
3358
3359      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3360      AddressTaken = true;
3361      AddrOpLoc = UnOp->getOperatorLoc();
3362    }
3363  } else {
3364    if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) {
3365      Converted = TemplateArgument(ArgIn);
3366      return false;
3367    }
3368    DRE = dyn_cast<DeclRefExpr>(Arg);
3369  }
3370  if (!DRE) {
3371    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3372      << Arg->getSourceRange();
3373    S.Diag(Param->getLocation(), diag::note_template_param_here);
3374    return true;
3375  }
3376
3377  // Stop checking the precise nature of the argument if it is value dependent,
3378  // it should be checked when instantiated.
3379  if (Arg->isValueDependent()) {
3380    Converted = TemplateArgument(ArgIn);
3381    return false;
3382  }
3383
3384  if (!isa<ValueDecl>(DRE->getDecl())) {
3385    S.Diag(Arg->getSourceRange().getBegin(),
3386           diag::err_template_arg_not_object_or_func_form)
3387      << Arg->getSourceRange();
3388    S.Diag(Param->getLocation(), diag::note_template_param_here);
3389    return true;
3390  }
3391
3392  NamedDecl *Entity = 0;
3393
3394  // Cannot refer to non-static data members
3395  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3396    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3397      << Field << Arg->getSourceRange();
3398    S.Diag(Param->getLocation(), diag::note_template_param_here);
3399    return true;
3400  }
3401
3402  // Cannot refer to non-static member functions
3403  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3404    if (!Method->isStatic()) {
3405      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3406        << Method << Arg->getSourceRange();
3407      S.Diag(Param->getLocation(), diag::note_template_param_here);
3408      return true;
3409    }
3410
3411  // Functions must have external linkage.
3412  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3413    if (!isExternalLinkage(Func->getLinkage())) {
3414      S.Diag(Arg->getSourceRange().getBegin(),
3415             diag::err_template_arg_function_not_extern)
3416        << Func << Arg->getSourceRange();
3417      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3418        << true;
3419      return true;
3420    }
3421
3422    // Okay: we've named a function with external linkage.
3423    Entity = Func;
3424
3425    // If the template parameter has pointer type, the function decays.
3426    if (ParamType->isPointerType() && !AddressTaken)
3427      ArgType = S.Context.getPointerType(Func->getType());
3428    else if (AddressTaken && ParamType->isReferenceType()) {
3429      // If we originally had an address-of operator, but the
3430      // parameter has reference type, complain and (if things look
3431      // like they will work) drop the address-of operator.
3432      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3433                                            ParamType.getNonReferenceType())) {
3434        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3435          << ParamType;
3436        S.Diag(Param->getLocation(), diag::note_template_param_here);
3437        return true;
3438      }
3439
3440      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3441        << ParamType
3442        << FixItHint::CreateRemoval(AddrOpLoc);
3443      S.Diag(Param->getLocation(), diag::note_template_param_here);
3444
3445      ArgType = Func->getType();
3446    }
3447  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3448    if (!isExternalLinkage(Var->getLinkage())) {
3449      S.Diag(Arg->getSourceRange().getBegin(),
3450             diag::err_template_arg_object_not_extern)
3451        << Var << Arg->getSourceRange();
3452      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3453        << true;
3454      return true;
3455    }
3456
3457    // A value of reference type is not an object.
3458    if (Var->getType()->isReferenceType()) {
3459      S.Diag(Arg->getSourceRange().getBegin(),
3460             diag::err_template_arg_reference_var)
3461        << Var->getType() << Arg->getSourceRange();
3462      S.Diag(Param->getLocation(), diag::note_template_param_here);
3463      return true;
3464    }
3465
3466    // Okay: we've named an object with external linkage
3467    Entity = Var;
3468
3469    // If the template parameter has pointer type, we must have taken
3470    // the address of this object.
3471    if (ParamType->isReferenceType()) {
3472      if (AddressTaken) {
3473        // If we originally had an address-of operator, but the
3474        // parameter has reference type, complain and (if things look
3475        // like they will work) drop the address-of operator.
3476        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3477                                            ParamType.getNonReferenceType())) {
3478          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3479            << ParamType;
3480          S.Diag(Param->getLocation(), diag::note_template_param_here);
3481          return true;
3482        }
3483
3484        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3485          << ParamType
3486          << FixItHint::CreateRemoval(AddrOpLoc);
3487        S.Diag(Param->getLocation(), diag::note_template_param_here);
3488
3489        ArgType = Var->getType();
3490      }
3491    } else if (!AddressTaken && ParamType->isPointerType()) {
3492      if (Var->getType()->isArrayType()) {
3493        // Array-to-pointer decay.
3494        ArgType = S.Context.getArrayDecayedType(Var->getType());
3495      } else {
3496        // If the template parameter has pointer type but the address of
3497        // this object was not taken, complain and (possibly) recover by
3498        // taking the address of the entity.
3499        ArgType = S.Context.getPointerType(Var->getType());
3500        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3501          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3502            << ParamType;
3503          S.Diag(Param->getLocation(), diag::note_template_param_here);
3504          return true;
3505        }
3506
3507        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3508          << ParamType
3509          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3510
3511        S.Diag(Param->getLocation(), diag::note_template_param_here);
3512      }
3513    }
3514  } else {
3515    // We found something else, but we don't know specifically what it is.
3516    S.Diag(Arg->getSourceRange().getBegin(),
3517           diag::err_template_arg_not_object_or_func)
3518      << Arg->getSourceRange();
3519    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3520    return true;
3521  }
3522
3523  bool ObjCLifetimeConversion;
3524  if (ParamType->isPointerType() &&
3525      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3526      S.IsQualificationConversion(ArgType, ParamType, false,
3527                                  ObjCLifetimeConversion)) {
3528    // For pointer-to-object types, qualification conversions are
3529    // permitted.
3530  } else {
3531    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3532      if (!ParamRef->getPointeeType()->isFunctionType()) {
3533        // C++ [temp.arg.nontype]p5b3:
3534        //   For a non-type template-parameter of type reference to
3535        //   object, no conversions apply. The type referred to by the
3536        //   reference may be more cv-qualified than the (otherwise
3537        //   identical) type of the template- argument. The
3538        //   template-parameter is bound directly to the
3539        //   template-argument, which shall be an lvalue.
3540
3541        // FIXME: Other qualifiers?
3542        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3543        unsigned ArgQuals = ArgType.getCVRQualifiers();
3544
3545        if ((ParamQuals | ArgQuals) != ParamQuals) {
3546          S.Diag(Arg->getSourceRange().getBegin(),
3547                 diag::err_template_arg_ref_bind_ignores_quals)
3548            << ParamType << Arg->getType()
3549            << Arg->getSourceRange();
3550          S.Diag(Param->getLocation(), diag::note_template_param_here);
3551          return true;
3552        }
3553      }
3554    }
3555
3556    // At this point, the template argument refers to an object or
3557    // function with external linkage. We now need to check whether the
3558    // argument and parameter types are compatible.
3559    if (!S.Context.hasSameUnqualifiedType(ArgType,
3560                                          ParamType.getNonReferenceType())) {
3561      // We can't perform this conversion or binding.
3562      if (ParamType->isReferenceType())
3563        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3564          << ParamType << Arg->getType() << Arg->getSourceRange();
3565      else
3566        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3567          << Arg->getType() << ParamType << Arg->getSourceRange();
3568      S.Diag(Param->getLocation(), diag::note_template_param_here);
3569      return true;
3570    }
3571  }
3572
3573  // Create the template argument.
3574  Converted = TemplateArgument(Entity->getCanonicalDecl());
3575  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3576  return false;
3577}
3578
3579/// \brief Checks whether the given template argument is a pointer to
3580/// member constant according to C++ [temp.arg.nontype]p1.
3581bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3582                                                TemplateArgument &Converted) {
3583  bool Invalid = false;
3584
3585  // See through any implicit casts we added to fix the type.
3586  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3587    Arg = Cast->getSubExpr();
3588
3589  // C++ [temp.arg.nontype]p1:
3590  //
3591  //   A template-argument for a non-type, non-template
3592  //   template-parameter shall be one of: [...]
3593  //
3594  //     -- a pointer to member expressed as described in 5.3.1.
3595  DeclRefExpr *DRE = 0;
3596
3597  // In C++98/03 mode, give an extension warning on any extra parentheses.
3598  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3599  bool ExtraParens = false;
3600  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3601    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3602      Diag(Arg->getSourceRange().getBegin(),
3603           diag::ext_template_arg_extra_parens)
3604        << Arg->getSourceRange();
3605      ExtraParens = true;
3606    }
3607
3608    Arg = Parens->getSubExpr();
3609  }
3610
3611  // A pointer-to-member constant written &Class::member.
3612  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3613    if (UnOp->getOpcode() == UO_AddrOf) {
3614      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3615      if (DRE && !DRE->getQualifier())
3616        DRE = 0;
3617    }
3618  }
3619  // A constant of pointer-to-member type.
3620  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3621    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3622      if (VD->getType()->isMemberPointerType()) {
3623        if (isa<NonTypeTemplateParmDecl>(VD) ||
3624            (isa<VarDecl>(VD) &&
3625             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3626          if (Arg->isTypeDependent() || Arg->isValueDependent())
3627            Converted = TemplateArgument(Arg);
3628          else
3629            Converted = TemplateArgument(VD->getCanonicalDecl());
3630          return Invalid;
3631        }
3632      }
3633    }
3634
3635    DRE = 0;
3636  }
3637
3638  if (!DRE)
3639    return Diag(Arg->getSourceRange().getBegin(),
3640                diag::err_template_arg_not_pointer_to_member_form)
3641      << Arg->getSourceRange();
3642
3643  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3644    assert((isa<FieldDecl>(DRE->getDecl()) ||
3645            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3646           "Only non-static member pointers can make it here");
3647
3648    // Okay: this is the address of a non-static member, and therefore
3649    // a member pointer constant.
3650    if (Arg->isTypeDependent() || Arg->isValueDependent())
3651      Converted = TemplateArgument(Arg);
3652    else
3653      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3654    return Invalid;
3655  }
3656
3657  // We found something else, but we don't know specifically what it is.
3658  Diag(Arg->getSourceRange().getBegin(),
3659       diag::err_template_arg_not_pointer_to_member_form)
3660      << Arg->getSourceRange();
3661  Diag(DRE->getDecl()->getLocation(),
3662       diag::note_template_arg_refers_here);
3663  return true;
3664}
3665
3666/// \brief Check a template argument against its corresponding
3667/// non-type template parameter.
3668///
3669/// This routine implements the semantics of C++ [temp.arg.nontype].
3670/// If an error occurred, it returns ExprError(); otherwise, it
3671/// returns the converted template argument. \p
3672/// InstantiatedParamType is the type of the non-type template
3673/// parameter after it has been instantiated.
3674ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3675                                       QualType InstantiatedParamType, Expr *Arg,
3676                                       TemplateArgument &Converted,
3677                                       CheckTemplateArgumentKind CTAK) {
3678  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3679
3680  // If either the parameter has a dependent type or the argument is
3681  // type-dependent, there's nothing we can check now.
3682  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3683    // FIXME: Produce a cloned, canonical expression?
3684    Converted = TemplateArgument(Arg);
3685    return Owned(Arg);
3686  }
3687
3688  // C++ [temp.arg.nontype]p5:
3689  //   The following conversions are performed on each expression used
3690  //   as a non-type template-argument. If a non-type
3691  //   template-argument cannot be converted to the type of the
3692  //   corresponding template-parameter then the program is
3693  //   ill-formed.
3694  //
3695  //     -- for a non-type template-parameter of integral or
3696  //        enumeration type, integral promotions (4.5) and integral
3697  //        conversions (4.7) are applied.
3698  QualType ParamType = InstantiatedParamType;
3699  QualType ArgType = Arg->getType();
3700  if (ParamType->isIntegralOrEnumerationType()) {
3701    // C++ [temp.arg.nontype]p1:
3702    //   A template-argument for a non-type, non-template
3703    //   template-parameter shall be one of:
3704    //
3705    //     -- an integral constant-expression of integral or enumeration
3706    //        type; or
3707    //     -- the name of a non-type template-parameter; or
3708    SourceLocation NonConstantLoc;
3709    llvm::APSInt Value;
3710    if (!ArgType->isIntegralOrEnumerationType()) {
3711      Diag(Arg->getSourceRange().getBegin(),
3712           diag::err_template_arg_not_integral_or_enumeral)
3713        << ArgType << Arg->getSourceRange();
3714      Diag(Param->getLocation(), diag::note_template_param_here);
3715      return ExprError();
3716    } else if (!Arg->isValueDependent() &&
3717               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3718      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3719        << ArgType << Arg->getSourceRange();
3720      return ExprError();
3721    }
3722
3723    // From here on out, all we care about are the unqualified forms
3724    // of the parameter and argument types.
3725    ParamType = ParamType.getUnqualifiedType();
3726    ArgType = ArgType.getUnqualifiedType();
3727
3728    // Try to convert the argument to the parameter's type.
3729    if (Context.hasSameType(ParamType, ArgType)) {
3730      // Okay: no conversion necessary
3731    } else if (CTAK == CTAK_Deduced) {
3732      // C++ [temp.deduct.type]p17:
3733      //   If, in the declaration of a function template with a non-type
3734      //   template-parameter, the non-type template- parameter is used
3735      //   in an expression in the function parameter-list and, if the
3736      //   corresponding template-argument is deduced, the
3737      //   template-argument type shall match the type of the
3738      //   template-parameter exactly, except that a template-argument
3739      //   deduced from an array bound may be of any integral type.
3740      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3741        << ArgType << ParamType;
3742      Diag(Param->getLocation(), diag::note_template_param_here);
3743      return ExprError();
3744    } else if (ParamType->isBooleanType()) {
3745      // This is an integral-to-boolean conversion.
3746      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3747    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3748               !ParamType->isEnumeralType()) {
3749      // This is an integral promotion or conversion.
3750      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3751    } else {
3752      // We can't perform this conversion.
3753      Diag(Arg->getSourceRange().getBegin(),
3754           diag::err_template_arg_not_convertible)
3755        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3756      Diag(Param->getLocation(), diag::note_template_param_here);
3757      return ExprError();
3758    }
3759
3760    // Add the value of this argument to the list of converted
3761    // arguments. We use the bitwidth and signedness of the template
3762    // parameter.
3763    if (Arg->isValueDependent()) {
3764      // The argument is value-dependent. Create a new
3765      // TemplateArgument with the converted expression.
3766      Converted = TemplateArgument(Arg);
3767      return Owned(Arg);
3768    }
3769
3770    QualType IntegerType = Context.getCanonicalType(ParamType);
3771    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3772      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3773
3774    if (ParamType->isBooleanType()) {
3775      // Value must be zero or one.
3776      Value = Value != 0;
3777      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3778      if (Value.getBitWidth() != AllowedBits)
3779        Value = Value.extOrTrunc(AllowedBits);
3780      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3781    } else {
3782      llvm::APSInt OldValue = Value;
3783
3784      // Coerce the template argument's value to the value it will have
3785      // based on the template parameter's type.
3786      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3787      if (Value.getBitWidth() != AllowedBits)
3788        Value = Value.extOrTrunc(AllowedBits);
3789      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3790
3791      // Complain if an unsigned parameter received a negative value.
3792      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3793               && (OldValue.isSigned() && OldValue.isNegative())) {
3794        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3795          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3796          << Arg->getSourceRange();
3797        Diag(Param->getLocation(), diag::note_template_param_here);
3798      }
3799
3800      // Complain if we overflowed the template parameter's type.
3801      unsigned RequiredBits;
3802      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3803        RequiredBits = OldValue.getActiveBits();
3804      else if (OldValue.isUnsigned())
3805        RequiredBits = OldValue.getActiveBits() + 1;
3806      else
3807        RequiredBits = OldValue.getMinSignedBits();
3808      if (RequiredBits > AllowedBits) {
3809        Diag(Arg->getSourceRange().getBegin(),
3810             diag::warn_template_arg_too_large)
3811          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3812          << Arg->getSourceRange();
3813        Diag(Param->getLocation(), diag::note_template_param_here);
3814      }
3815    }
3816
3817    Converted = TemplateArgument(Value,
3818                                 ParamType->isEnumeralType() ? ParamType
3819                                                             : IntegerType);
3820    return Owned(Arg);
3821  }
3822
3823  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3824
3825  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3826  // from a template argument of type std::nullptr_t to a non-type
3827  // template parameter of type pointer to object, pointer to
3828  // function, or pointer-to-member, respectively.
3829  if (ArgType->isNullPtrType()) {
3830    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3831      Converted = TemplateArgument((NamedDecl *)0);
3832      return Owned(Arg);
3833    }
3834
3835    if (ParamType->isNullPtrType()) {
3836      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3837      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3838      return Owned(Arg);
3839    }
3840  }
3841
3842  // Handle pointer-to-function, reference-to-function, and
3843  // pointer-to-member-function all in (roughly) the same way.
3844  if (// -- For a non-type template-parameter of type pointer to
3845      //    function, only the function-to-pointer conversion (4.3) is
3846      //    applied. If the template-argument represents a set of
3847      //    overloaded functions (or a pointer to such), the matching
3848      //    function is selected from the set (13.4).
3849      (ParamType->isPointerType() &&
3850       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3851      // -- For a non-type template-parameter of type reference to
3852      //    function, no conversions apply. If the template-argument
3853      //    represents a set of overloaded functions, the matching
3854      //    function is selected from the set (13.4).
3855      (ParamType->isReferenceType() &&
3856       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3857      // -- For a non-type template-parameter of type pointer to
3858      //    member function, no conversions apply. If the
3859      //    template-argument represents a set of overloaded member
3860      //    functions, the matching member function is selected from
3861      //    the set (13.4).
3862      (ParamType->isMemberPointerType() &&
3863       ParamType->getAs<MemberPointerType>()->getPointeeType()
3864         ->isFunctionType())) {
3865
3866    if (Arg->getType() == Context.OverloadTy) {
3867      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3868                                                                true,
3869                                                                FoundResult)) {
3870        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3871          return ExprError();
3872
3873        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3874        ArgType = Arg->getType();
3875      } else
3876        return ExprError();
3877    }
3878
3879    if (!ParamType->isMemberPointerType()) {
3880      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3881                                                         ParamType,
3882                                                         Arg, Converted))
3883        return ExprError();
3884      return Owned(Arg);
3885    }
3886
3887    bool ObjCLifetimeConversion;
3888    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3889                                  false, ObjCLifetimeConversion)) {
3890      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3891    } else if (!Context.hasSameUnqualifiedType(ArgType,
3892                                           ParamType.getNonReferenceType())) {
3893      // We can't perform this conversion.
3894      Diag(Arg->getSourceRange().getBegin(),
3895           diag::err_template_arg_not_convertible)
3896        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3897      Diag(Param->getLocation(), diag::note_template_param_here);
3898      return ExprError();
3899    }
3900
3901    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3902      return ExprError();
3903    return Owned(Arg);
3904  }
3905
3906  if (ParamType->isPointerType()) {
3907    //   -- for a non-type template-parameter of type pointer to
3908    //      object, qualification conversions (4.4) and the
3909    //      array-to-pointer conversion (4.2) are applied.
3910    // C++0x also allows a value of std::nullptr_t.
3911    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3912           "Only object pointers allowed here");
3913
3914    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3915                                                       ParamType,
3916                                                       Arg, Converted))
3917      return ExprError();
3918    return Owned(Arg);
3919  }
3920
3921  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3922    //   -- For a non-type template-parameter of type reference to
3923    //      object, no conversions apply. The type referred to by the
3924    //      reference may be more cv-qualified than the (otherwise
3925    //      identical) type of the template-argument. The
3926    //      template-parameter is bound directly to the
3927    //      template-argument, which must be an lvalue.
3928    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3929           "Only object references allowed here");
3930
3931    if (Arg->getType() == Context.OverloadTy) {
3932      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3933                                                 ParamRefType->getPointeeType(),
3934                                                                true,
3935                                                                FoundResult)) {
3936        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3937          return ExprError();
3938
3939        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3940        ArgType = Arg->getType();
3941      } else
3942        return ExprError();
3943    }
3944
3945    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3946                                                       ParamType,
3947                                                       Arg, Converted))
3948      return ExprError();
3949    return Owned(Arg);
3950  }
3951
3952  //     -- For a non-type template-parameter of type pointer to data
3953  //        member, qualification conversions (4.4) are applied.
3954  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3955
3956  bool ObjCLifetimeConversion;
3957  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3958    // Types match exactly: nothing more to do here.
3959  } else if (IsQualificationConversion(ArgType, ParamType, false,
3960                                       ObjCLifetimeConversion)) {
3961    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3962  } else {
3963    // We can't perform this conversion.
3964    Diag(Arg->getSourceRange().getBegin(),
3965         diag::err_template_arg_not_convertible)
3966      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3967    Diag(Param->getLocation(), diag::note_template_param_here);
3968    return ExprError();
3969  }
3970
3971  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3972    return ExprError();
3973  return Owned(Arg);
3974}
3975
3976/// \brief Check a template argument against its corresponding
3977/// template template parameter.
3978///
3979/// This routine implements the semantics of C++ [temp.arg.template].
3980/// It returns true if an error occurred, and false otherwise.
3981bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3982                                 const TemplateArgumentLoc &Arg) {
3983  TemplateName Name = Arg.getArgument().getAsTemplate();
3984  TemplateDecl *Template = Name.getAsTemplateDecl();
3985  if (!Template) {
3986    // Any dependent template name is fine.
3987    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3988    return false;
3989  }
3990
3991  // C++0x [temp.arg.template]p1:
3992  //   A template-argument for a template template-parameter shall be
3993  //   the name of a class template or an alias template, expressed as an
3994  //   id-expression. When the template-argument names a class template, only
3995  //   primary class templates are considered when matching the
3996  //   template template argument with the corresponding parameter;
3997  //   partial specializations are not considered even if their
3998  //   parameter lists match that of the template template parameter.
3999  //
4000  // Note that we also allow template template parameters here, which
4001  // will happen when we are dealing with, e.g., class template
4002  // partial specializations.
4003  if (!isa<ClassTemplateDecl>(Template) &&
4004      !isa<TemplateTemplateParmDecl>(Template) &&
4005      !isa<TypeAliasTemplateDecl>(Template)) {
4006    assert(isa<FunctionTemplateDecl>(Template) &&
4007           "Only function templates are possible here");
4008    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4009    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4010      << Template;
4011  }
4012
4013  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4014                                         Param->getTemplateParameters(),
4015                                         true,
4016                                         TPL_TemplateTemplateArgumentMatch,
4017                                         Arg.getLocation());
4018}
4019
4020/// \brief Given a non-type template argument that refers to a
4021/// declaration and the type of its corresponding non-type template
4022/// parameter, produce an expression that properly refers to that
4023/// declaration.
4024ExprResult
4025Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4026                                              QualType ParamType,
4027                                              SourceLocation Loc) {
4028  assert(Arg.getKind() == TemplateArgument::Declaration &&
4029         "Only declaration template arguments permitted here");
4030  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4031
4032  if (VD->getDeclContext()->isRecord() &&
4033      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4034    // If the value is a class member, we might have a pointer-to-member.
4035    // Determine whether the non-type template template parameter is of
4036    // pointer-to-member type. If so, we need to build an appropriate
4037    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4038    // would refer to the member itself.
4039    if (ParamType->isMemberPointerType()) {
4040      QualType ClassType
4041        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4042      NestedNameSpecifier *Qualifier
4043        = NestedNameSpecifier::Create(Context, 0, false,
4044                                      ClassType.getTypePtr());
4045      CXXScopeSpec SS;
4046      SS.MakeTrivial(Context, Qualifier, Loc);
4047
4048      // The actual value-ness of this is unimportant, but for
4049      // internal consistency's sake, references to instance methods
4050      // are r-values.
4051      ExprValueKind VK = VK_LValue;
4052      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4053        VK = VK_RValue;
4054
4055      ExprResult RefExpr = BuildDeclRefExpr(VD,
4056                                            VD->getType().getNonReferenceType(),
4057                                            VK,
4058                                            Loc,
4059                                            &SS);
4060      if (RefExpr.isInvalid())
4061        return ExprError();
4062
4063      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4064
4065      // We might need to perform a trailing qualification conversion, since
4066      // the element type on the parameter could be more qualified than the
4067      // element type in the expression we constructed.
4068      bool ObjCLifetimeConversion;
4069      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4070                                    ParamType.getUnqualifiedType(), false,
4071                                    ObjCLifetimeConversion))
4072        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4073
4074      assert(!RefExpr.isInvalid() &&
4075             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4076                                 ParamType.getUnqualifiedType()));
4077      return move(RefExpr);
4078    }
4079  }
4080
4081  QualType T = VD->getType().getNonReferenceType();
4082  if (ParamType->isPointerType()) {
4083    // When the non-type template parameter is a pointer, take the
4084    // address of the declaration.
4085    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4086    if (RefExpr.isInvalid())
4087      return ExprError();
4088
4089    if (T->isFunctionType() || T->isArrayType()) {
4090      // Decay functions and arrays.
4091      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4092      if (RefExpr.isInvalid())
4093        return ExprError();
4094
4095      return move(RefExpr);
4096    }
4097
4098    // Take the address of everything else
4099    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4100  }
4101
4102  ExprValueKind VK = VK_RValue;
4103
4104  // If the non-type template parameter has reference type, qualify the
4105  // resulting declaration reference with the extra qualifiers on the
4106  // type that the reference refers to.
4107  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4108    VK = VK_LValue;
4109    T = Context.getQualifiedType(T,
4110                              TargetRef->getPointeeType().getQualifiers());
4111  }
4112
4113  return BuildDeclRefExpr(VD, T, VK, Loc);
4114}
4115
4116/// \brief Construct a new expression that refers to the given
4117/// integral template argument with the given source-location
4118/// information.
4119///
4120/// This routine takes care of the mapping from an integral template
4121/// argument (which may have any integral type) to the appropriate
4122/// literal value.
4123ExprResult
4124Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4125                                                  SourceLocation Loc) {
4126  assert(Arg.getKind() == TemplateArgument::Integral &&
4127         "Operation is only valid for integral template arguments");
4128  QualType T = Arg.getIntegralType();
4129  if (T->isCharType() || T->isWideCharType())
4130    return Owned(new (Context) CharacterLiteral(
4131                                             Arg.getAsIntegral()->getZExtValue(),
4132                                             T->isWideCharType(), T, Loc));
4133  if (T->isBooleanType())
4134    return Owned(new (Context) CXXBoolLiteralExpr(
4135                                            Arg.getAsIntegral()->getBoolValue(),
4136                                            T, Loc));
4137
4138  if (T->isNullPtrType())
4139    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4140
4141  // If this is an enum type that we're instantiating, we need to use an integer
4142  // type the same size as the enumerator.  We don't want to build an
4143  // IntegerLiteral with enum type.
4144  QualType BT;
4145  if (const EnumType *ET = T->getAs<EnumType>())
4146    BT = ET->getDecl()->getIntegerType();
4147  else
4148    BT = T;
4149
4150  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4151  if (T->isEnumeralType()) {
4152    // FIXME: This is a hack. We need a better way to handle substituted
4153    // non-type template parameters.
4154    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4155                               Context.getTrivialTypeSourceInfo(T, Loc),
4156                               Loc, Loc);
4157  }
4158
4159  return Owned(E);
4160}
4161
4162/// \brief Match two template parameters within template parameter lists.
4163static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4164                                       bool Complain,
4165                                     Sema::TemplateParameterListEqualKind Kind,
4166                                       SourceLocation TemplateArgLoc) {
4167  // Check the actual kind (type, non-type, template).
4168  if (Old->getKind() != New->getKind()) {
4169    if (Complain) {
4170      unsigned NextDiag = diag::err_template_param_different_kind;
4171      if (TemplateArgLoc.isValid()) {
4172        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4173        NextDiag = diag::note_template_param_different_kind;
4174      }
4175      S.Diag(New->getLocation(), NextDiag)
4176        << (Kind != Sema::TPL_TemplateMatch);
4177      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4178        << (Kind != Sema::TPL_TemplateMatch);
4179    }
4180
4181    return false;
4182  }
4183
4184  // Check that both are parameter packs are neither are parameter packs.
4185  // However, if we are matching a template template argument to a
4186  // template template parameter, the template template parameter can have
4187  // a parameter pack where the template template argument does not.
4188  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4189      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4190        Old->isTemplateParameterPack())) {
4191    if (Complain) {
4192      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4193      if (TemplateArgLoc.isValid()) {
4194        S.Diag(TemplateArgLoc,
4195             diag::err_template_arg_template_params_mismatch);
4196        NextDiag = diag::note_template_parameter_pack_non_pack;
4197      }
4198
4199      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4200                      : isa<NonTypeTemplateParmDecl>(New)? 1
4201                      : 2;
4202      S.Diag(New->getLocation(), NextDiag)
4203        << ParamKind << New->isParameterPack();
4204      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4205        << ParamKind << Old->isParameterPack();
4206    }
4207
4208    return false;
4209  }
4210
4211  // For non-type template parameters, check the type of the parameter.
4212  if (NonTypeTemplateParmDecl *OldNTTP
4213                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4214    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4215
4216    // If we are matching a template template argument to a template
4217    // template parameter and one of the non-type template parameter types
4218    // is dependent, then we must wait until template instantiation time
4219    // to actually compare the arguments.
4220    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4221        (OldNTTP->getType()->isDependentType() ||
4222         NewNTTP->getType()->isDependentType()))
4223      return true;
4224
4225    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4226      if (Complain) {
4227        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4228        if (TemplateArgLoc.isValid()) {
4229          S.Diag(TemplateArgLoc,
4230                 diag::err_template_arg_template_params_mismatch);
4231          NextDiag = diag::note_template_nontype_parm_different_type;
4232        }
4233        S.Diag(NewNTTP->getLocation(), NextDiag)
4234          << NewNTTP->getType()
4235          << (Kind != Sema::TPL_TemplateMatch);
4236        S.Diag(OldNTTP->getLocation(),
4237               diag::note_template_nontype_parm_prev_declaration)
4238          << OldNTTP->getType();
4239      }
4240
4241      return false;
4242    }
4243
4244    return true;
4245  }
4246
4247  // For template template parameters, check the template parameter types.
4248  // The template parameter lists of template template
4249  // parameters must agree.
4250  if (TemplateTemplateParmDecl *OldTTP
4251                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4252    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4253    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4254                                            OldTTP->getTemplateParameters(),
4255                                            Complain,
4256                                        (Kind == Sema::TPL_TemplateMatch
4257                                           ? Sema::TPL_TemplateTemplateParmMatch
4258                                           : Kind),
4259                                            TemplateArgLoc);
4260  }
4261
4262  return true;
4263}
4264
4265/// \brief Diagnose a known arity mismatch when comparing template argument
4266/// lists.
4267static
4268void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4269                                                TemplateParameterList *New,
4270                                                TemplateParameterList *Old,
4271                                      Sema::TemplateParameterListEqualKind Kind,
4272                                                SourceLocation TemplateArgLoc) {
4273  unsigned NextDiag = diag::err_template_param_list_different_arity;
4274  if (TemplateArgLoc.isValid()) {
4275    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4276    NextDiag = diag::note_template_param_list_different_arity;
4277  }
4278  S.Diag(New->getTemplateLoc(), NextDiag)
4279    << (New->size() > Old->size())
4280    << (Kind != Sema::TPL_TemplateMatch)
4281    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4282  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4283    << (Kind != Sema::TPL_TemplateMatch)
4284    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4285}
4286
4287/// \brief Determine whether the given template parameter lists are
4288/// equivalent.
4289///
4290/// \param New  The new template parameter list, typically written in the
4291/// source code as part of a new template declaration.
4292///
4293/// \param Old  The old template parameter list, typically found via
4294/// name lookup of the template declared with this template parameter
4295/// list.
4296///
4297/// \param Complain  If true, this routine will produce a diagnostic if
4298/// the template parameter lists are not equivalent.
4299///
4300/// \param Kind describes how we are to match the template parameter lists.
4301///
4302/// \param TemplateArgLoc If this source location is valid, then we
4303/// are actually checking the template parameter list of a template
4304/// argument (New) against the template parameter list of its
4305/// corresponding template template parameter (Old). We produce
4306/// slightly different diagnostics in this scenario.
4307///
4308/// \returns True if the template parameter lists are equal, false
4309/// otherwise.
4310bool
4311Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4312                                     TemplateParameterList *Old,
4313                                     bool Complain,
4314                                     TemplateParameterListEqualKind Kind,
4315                                     SourceLocation TemplateArgLoc) {
4316  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4317    if (Complain)
4318      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4319                                                 TemplateArgLoc);
4320
4321    return false;
4322  }
4323
4324  // C++0x [temp.arg.template]p3:
4325  //   A template-argument matches a template template-parameter (call it P)
4326  //   when each of the template parameters in the template-parameter-list of
4327  //   the template-argument's corresponding class template or alias template
4328  //   (call it A) matches the corresponding template parameter in the
4329  //   template-parameter-list of P. [...]
4330  TemplateParameterList::iterator NewParm = New->begin();
4331  TemplateParameterList::iterator NewParmEnd = New->end();
4332  for (TemplateParameterList::iterator OldParm = Old->begin(),
4333                                    OldParmEnd = Old->end();
4334       OldParm != OldParmEnd; ++OldParm) {
4335    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4336        !(*OldParm)->isTemplateParameterPack()) {
4337      if (NewParm == NewParmEnd) {
4338        if (Complain)
4339          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4340                                                     TemplateArgLoc);
4341
4342        return false;
4343      }
4344
4345      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4346                                      Kind, TemplateArgLoc))
4347        return false;
4348
4349      ++NewParm;
4350      continue;
4351    }
4352
4353    // C++0x [temp.arg.template]p3:
4354    //   [...] When P's template- parameter-list contains a template parameter
4355    //   pack (14.5.3), the template parameter pack will match zero or more
4356    //   template parameters or template parameter packs in the
4357    //   template-parameter-list of A with the same type and form as the
4358    //   template parameter pack in P (ignoring whether those template
4359    //   parameters are template parameter packs).
4360    for (; NewParm != NewParmEnd; ++NewParm) {
4361      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4362                                      Kind, TemplateArgLoc))
4363        return false;
4364    }
4365  }
4366
4367  // Make sure we exhausted all of the arguments.
4368  if (NewParm != NewParmEnd) {
4369    if (Complain)
4370      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4371                                                 TemplateArgLoc);
4372
4373    return false;
4374  }
4375
4376  return true;
4377}
4378
4379/// \brief Check whether a template can be declared within this scope.
4380///
4381/// If the template declaration is valid in this scope, returns
4382/// false. Otherwise, issues a diagnostic and returns true.
4383bool
4384Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4385  // Find the nearest enclosing declaration scope.
4386  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4387         (S->getFlags() & Scope::TemplateParamScope) != 0)
4388    S = S->getParent();
4389
4390  // C++ [temp]p2:
4391  //   A template-declaration can appear only as a namespace scope or
4392  //   class scope declaration.
4393  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4394  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4395      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4396    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4397             << TemplateParams->getSourceRange();
4398
4399  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4400    Ctx = Ctx->getParent();
4401
4402  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4403    return false;
4404
4405  return Diag(TemplateParams->getTemplateLoc(),
4406              diag::err_template_outside_namespace_or_class_scope)
4407    << TemplateParams->getSourceRange();
4408}
4409
4410/// \brief Determine what kind of template specialization the given declaration
4411/// is.
4412static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4413  if (!D)
4414    return TSK_Undeclared;
4415
4416  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4417    return Record->getTemplateSpecializationKind();
4418  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4419    return Function->getTemplateSpecializationKind();
4420  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4421    return Var->getTemplateSpecializationKind();
4422
4423  return TSK_Undeclared;
4424}
4425
4426/// \brief Check whether a specialization is well-formed in the current
4427/// context.
4428///
4429/// This routine determines whether a template specialization can be declared
4430/// in the current context (C++ [temp.expl.spec]p2).
4431///
4432/// \param S the semantic analysis object for which this check is being
4433/// performed.
4434///
4435/// \param Specialized the entity being specialized or instantiated, which
4436/// may be a kind of template (class template, function template, etc.) or
4437/// a member of a class template (member function, static data member,
4438/// member class).
4439///
4440/// \param PrevDecl the previous declaration of this entity, if any.
4441///
4442/// \param Loc the location of the explicit specialization or instantiation of
4443/// this entity.
4444///
4445/// \param IsPartialSpecialization whether this is a partial specialization of
4446/// a class template.
4447///
4448/// \returns true if there was an error that we cannot recover from, false
4449/// otherwise.
4450static bool CheckTemplateSpecializationScope(Sema &S,
4451                                             NamedDecl *Specialized,
4452                                             NamedDecl *PrevDecl,
4453                                             SourceLocation Loc,
4454                                             bool IsPartialSpecialization) {
4455  // Keep these "kind" numbers in sync with the %select statements in the
4456  // various diagnostics emitted by this routine.
4457  int EntityKind = 0;
4458  if (isa<ClassTemplateDecl>(Specialized))
4459    EntityKind = IsPartialSpecialization? 1 : 0;
4460  else if (isa<FunctionTemplateDecl>(Specialized))
4461    EntityKind = 2;
4462  else if (isa<CXXMethodDecl>(Specialized))
4463    EntityKind = 3;
4464  else if (isa<VarDecl>(Specialized))
4465    EntityKind = 4;
4466  else if (isa<RecordDecl>(Specialized))
4467    EntityKind = 5;
4468  else {
4469    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4470    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4471    return true;
4472  }
4473
4474  // C++ [temp.expl.spec]p2:
4475  //   An explicit specialization shall be declared in the namespace
4476  //   of which the template is a member, or, for member templates, in
4477  //   the namespace of which the enclosing class or enclosing class
4478  //   template is a member. An explicit specialization of a member
4479  //   function, member class or static data member of a class
4480  //   template shall be declared in the namespace of which the class
4481  //   template is a member. Such a declaration may also be a
4482  //   definition. If the declaration is not a definition, the
4483  //   specialization may be defined later in the name- space in which
4484  //   the explicit specialization was declared, or in a namespace
4485  //   that encloses the one in which the explicit specialization was
4486  //   declared.
4487  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4488    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4489      << Specialized;
4490    return true;
4491  }
4492
4493  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4494    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4495      << Specialized;
4496    return true;
4497  }
4498
4499  // C++ [temp.class.spec]p6:
4500  //   A class template partial specialization may be declared or redeclared
4501  //   in any namespace scope in which its definition may be defined (14.5.1
4502  //   and 14.5.2).
4503  bool ComplainedAboutScope = false;
4504  DeclContext *SpecializedContext
4505    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4506  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4507  if ((!PrevDecl ||
4508       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4509       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4510    // C++ [temp.exp.spec]p2:
4511    //   An explicit specialization shall be declared in the namespace of which
4512    //   the template is a member, or, for member templates, in the namespace
4513    //   of which the enclosing class or enclosing class template is a member.
4514    //   An explicit specialization of a member function, member class or
4515    //   static data member of a class template shall be declared in the
4516    //   namespace of which the class template is a member.
4517    //
4518    // C++0x [temp.expl.spec]p2:
4519    //   An explicit specialization shall be declared in a namespace enclosing
4520    //   the specialized template.
4521    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4522        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4523      bool IsCPlusPlus0xExtension
4524        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4525      if (isa<TranslationUnitDecl>(SpecializedContext))
4526        S.Diag(Loc, IsCPlusPlus0xExtension
4527                      ? diag::ext_template_spec_decl_out_of_scope_global
4528                      : diag::err_template_spec_decl_out_of_scope_global)
4529          << EntityKind << Specialized;
4530      else if (isa<NamespaceDecl>(SpecializedContext))
4531        S.Diag(Loc, IsCPlusPlus0xExtension
4532                      ? diag::ext_template_spec_decl_out_of_scope
4533                      : diag::err_template_spec_decl_out_of_scope)
4534          << EntityKind << Specialized
4535          << cast<NamedDecl>(SpecializedContext);
4536
4537      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4538      ComplainedAboutScope = true;
4539    }
4540  }
4541
4542  // Make sure that this redeclaration (or definition) occurs in an enclosing
4543  // namespace.
4544  // Note that HandleDeclarator() performs this check for explicit
4545  // specializations of function templates, static data members, and member
4546  // functions, so we skip the check here for those kinds of entities.
4547  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4548  // Should we refactor that check, so that it occurs later?
4549  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4550      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4551        isa<FunctionDecl>(Specialized))) {
4552    if (isa<TranslationUnitDecl>(SpecializedContext))
4553      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4554        << EntityKind << Specialized;
4555    else if (isa<NamespaceDecl>(SpecializedContext))
4556      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4557        << EntityKind << Specialized
4558        << cast<NamedDecl>(SpecializedContext);
4559
4560    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4561  }
4562
4563  // FIXME: check for specialization-after-instantiation errors and such.
4564
4565  return false;
4566}
4567
4568/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4569/// that checks non-type template partial specialization arguments.
4570static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4571                                                NonTypeTemplateParmDecl *Param,
4572                                                  const TemplateArgument *Args,
4573                                                        unsigned NumArgs) {
4574  for (unsigned I = 0; I != NumArgs; ++I) {
4575    if (Args[I].getKind() == TemplateArgument::Pack) {
4576      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4577                                                           Args[I].pack_begin(),
4578                                                           Args[I].pack_size()))
4579        return true;
4580
4581      continue;
4582    }
4583
4584    Expr *ArgExpr = Args[I].getAsExpr();
4585    if (!ArgExpr) {
4586      continue;
4587    }
4588
4589    // We can have a pack expansion of any of the bullets below.
4590    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4591      ArgExpr = Expansion->getPattern();
4592
4593    // Strip off any implicit casts we added as part of type checking.
4594    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4595      ArgExpr = ICE->getSubExpr();
4596
4597    // C++ [temp.class.spec]p8:
4598    //   A non-type argument is non-specialized if it is the name of a
4599    //   non-type parameter. All other non-type arguments are
4600    //   specialized.
4601    //
4602    // Below, we check the two conditions that only apply to
4603    // specialized non-type arguments, so skip any non-specialized
4604    // arguments.
4605    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4606      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4607        continue;
4608
4609    // C++ [temp.class.spec]p9:
4610    //   Within the argument list of a class template partial
4611    //   specialization, the following restrictions apply:
4612    //     -- A partially specialized non-type argument expression
4613    //        shall not involve a template parameter of the partial
4614    //        specialization except when the argument expression is a
4615    //        simple identifier.
4616    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4617      S.Diag(ArgExpr->getLocStart(),
4618           diag::err_dependent_non_type_arg_in_partial_spec)
4619        << ArgExpr->getSourceRange();
4620      return true;
4621    }
4622
4623    //     -- The type of a template parameter corresponding to a
4624    //        specialized non-type argument shall not be dependent on a
4625    //        parameter of the specialization.
4626    if (Param->getType()->isDependentType()) {
4627      S.Diag(ArgExpr->getLocStart(),
4628           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4629        << Param->getType()
4630        << ArgExpr->getSourceRange();
4631      S.Diag(Param->getLocation(), diag::note_template_param_here);
4632      return true;
4633    }
4634  }
4635
4636  return false;
4637}
4638
4639/// \brief Check the non-type template arguments of a class template
4640/// partial specialization according to C++ [temp.class.spec]p9.
4641///
4642/// \param TemplateParams the template parameters of the primary class
4643/// template.
4644///
4645/// \param TemplateArg the template arguments of the class template
4646/// partial specialization.
4647///
4648/// \returns true if there was an error, false otherwise.
4649static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4650                                        TemplateParameterList *TemplateParams,
4651                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4652  const TemplateArgument *ArgList = TemplateArgs.data();
4653
4654  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4655    NonTypeTemplateParmDecl *Param
4656      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4657    if (!Param)
4658      continue;
4659
4660    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4661                                                           &ArgList[I], 1))
4662      return true;
4663  }
4664
4665  return false;
4666}
4667
4668/// \brief Retrieve the previous declaration of the given declaration.
4669static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4670  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4671    return VD->getPreviousDeclaration();
4672  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4673    return FD->getPreviousDeclaration();
4674  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4675    return TD->getPreviousDeclaration();
4676  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4677    return TD->getPreviousDeclaration();
4678  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4679    return FTD->getPreviousDeclaration();
4680  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4681    return CTD->getPreviousDeclaration();
4682  return 0;
4683}
4684
4685DeclResult
4686Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4687                                       TagUseKind TUK,
4688                                       SourceLocation KWLoc,
4689                                       CXXScopeSpec &SS,
4690                                       TemplateTy TemplateD,
4691                                       SourceLocation TemplateNameLoc,
4692                                       SourceLocation LAngleLoc,
4693                                       ASTTemplateArgsPtr TemplateArgsIn,
4694                                       SourceLocation RAngleLoc,
4695                                       AttributeList *Attr,
4696                               MultiTemplateParamsArg TemplateParameterLists) {
4697  assert(TUK != TUK_Reference && "References are not specializations");
4698
4699  // NOTE: KWLoc is the location of the tag keyword. This will instead
4700  // store the location of the outermost template keyword in the declaration.
4701  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4702    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4703
4704  // Find the class template we're specializing
4705  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4706  ClassTemplateDecl *ClassTemplate
4707    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4708
4709  if (!ClassTemplate) {
4710    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4711      << (Name.getAsTemplateDecl() &&
4712          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4713    return true;
4714  }
4715
4716  bool isExplicitSpecialization = false;
4717  bool isPartialSpecialization = false;
4718
4719  // Check the validity of the template headers that introduce this
4720  // template.
4721  // FIXME: We probably shouldn't complain about these headers for
4722  // friend declarations.
4723  bool Invalid = false;
4724  TemplateParameterList *TemplateParams
4725    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4726                                              TemplateNameLoc,
4727                                              SS,
4728                        (TemplateParameterList**)TemplateParameterLists.get(),
4729                                              TemplateParameterLists.size(),
4730                                              TUK == TUK_Friend,
4731                                              isExplicitSpecialization,
4732                                              Invalid);
4733  if (Invalid)
4734    return true;
4735
4736  if (TemplateParams && TemplateParams->size() > 0) {
4737    isPartialSpecialization = true;
4738
4739    if (TUK == TUK_Friend) {
4740      Diag(KWLoc, diag::err_partial_specialization_friend)
4741        << SourceRange(LAngleLoc, RAngleLoc);
4742      return true;
4743    }
4744
4745    // C++ [temp.class.spec]p10:
4746    //   The template parameter list of a specialization shall not
4747    //   contain default template argument values.
4748    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4749      Decl *Param = TemplateParams->getParam(I);
4750      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4751        if (TTP->hasDefaultArgument()) {
4752          Diag(TTP->getDefaultArgumentLoc(),
4753               diag::err_default_arg_in_partial_spec);
4754          TTP->removeDefaultArgument();
4755        }
4756      } else if (NonTypeTemplateParmDecl *NTTP
4757                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4758        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4759          Diag(NTTP->getDefaultArgumentLoc(),
4760               diag::err_default_arg_in_partial_spec)
4761            << DefArg->getSourceRange();
4762          NTTP->removeDefaultArgument();
4763        }
4764      } else {
4765        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4766        if (TTP->hasDefaultArgument()) {
4767          Diag(TTP->getDefaultArgument().getLocation(),
4768               diag::err_default_arg_in_partial_spec)
4769            << TTP->getDefaultArgument().getSourceRange();
4770          TTP->removeDefaultArgument();
4771        }
4772      }
4773    }
4774  } else if (TemplateParams) {
4775    if (TUK == TUK_Friend)
4776      Diag(KWLoc, diag::err_template_spec_friend)
4777        << FixItHint::CreateRemoval(
4778                                SourceRange(TemplateParams->getTemplateLoc(),
4779                                            TemplateParams->getRAngleLoc()))
4780        << SourceRange(LAngleLoc, RAngleLoc);
4781    else
4782      isExplicitSpecialization = true;
4783  } else if (TUK != TUK_Friend) {
4784    Diag(KWLoc, diag::err_template_spec_needs_header)
4785      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4786    isExplicitSpecialization = true;
4787  }
4788
4789  // Check that the specialization uses the same tag kind as the
4790  // original template.
4791  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4792  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4793  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4794                                    Kind, TUK == TUK_Definition, KWLoc,
4795                                    *ClassTemplate->getIdentifier())) {
4796    Diag(KWLoc, diag::err_use_with_wrong_tag)
4797      << ClassTemplate
4798      << FixItHint::CreateReplacement(KWLoc,
4799                            ClassTemplate->getTemplatedDecl()->getKindName());
4800    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4801         diag::note_previous_use);
4802    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4803  }
4804
4805  // Translate the parser's template argument list in our AST format.
4806  TemplateArgumentListInfo TemplateArgs;
4807  TemplateArgs.setLAngleLoc(LAngleLoc);
4808  TemplateArgs.setRAngleLoc(RAngleLoc);
4809  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4810
4811  // Check for unexpanded parameter packs in any of the template arguments.
4812  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4813    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4814                                        UPPC_PartialSpecialization))
4815      return true;
4816
4817  // Check that the template argument list is well-formed for this
4818  // template.
4819  llvm::SmallVector<TemplateArgument, 4> Converted;
4820  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4821                                TemplateArgs, false, Converted))
4822    return true;
4823
4824  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4825         "Converted template argument list is too short!");
4826
4827  // Find the class template (partial) specialization declaration that
4828  // corresponds to these arguments.
4829  if (isPartialSpecialization) {
4830    if (CheckClassTemplatePartialSpecializationArgs(*this,
4831                                         ClassTemplate->getTemplateParameters(),
4832                                         Converted))
4833      return true;
4834
4835    if (!Name.isDependent() &&
4836        !TemplateSpecializationType::anyDependentTemplateArguments(
4837                                             TemplateArgs.getArgumentArray(),
4838                                                         TemplateArgs.size())) {
4839      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4840        << ClassTemplate->getDeclName();
4841      isPartialSpecialization = false;
4842    }
4843  }
4844
4845  void *InsertPos = 0;
4846  ClassTemplateSpecializationDecl *PrevDecl = 0;
4847
4848  if (isPartialSpecialization)
4849    // FIXME: Template parameter list matters, too
4850    PrevDecl
4851      = ClassTemplate->findPartialSpecialization(Converted.data(),
4852                                                 Converted.size(),
4853                                                 InsertPos);
4854  else
4855    PrevDecl
4856      = ClassTemplate->findSpecialization(Converted.data(),
4857                                          Converted.size(), InsertPos);
4858
4859  ClassTemplateSpecializationDecl *Specialization = 0;
4860
4861  // Check whether we can declare a class template specialization in
4862  // the current scope.
4863  if (TUK != TUK_Friend &&
4864      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4865                                       TemplateNameLoc,
4866                                       isPartialSpecialization))
4867    return true;
4868
4869  // The canonical type
4870  QualType CanonType;
4871  if (PrevDecl &&
4872      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4873               TUK == TUK_Friend)) {
4874    // Since the only prior class template specialization with these
4875    // arguments was referenced but not declared, or we're only
4876    // referencing this specialization as a friend, reuse that
4877    // declaration node as our own, updating its source location and
4878    // the list of outer template parameters to reflect our new declaration.
4879    Specialization = PrevDecl;
4880    Specialization->setLocation(TemplateNameLoc);
4881    if (TemplateParameterLists.size() > 0) {
4882      Specialization->setTemplateParameterListsInfo(Context,
4883                                              TemplateParameterLists.size(),
4884                    (TemplateParameterList**) TemplateParameterLists.release());
4885    }
4886    PrevDecl = 0;
4887    CanonType = Context.getTypeDeclType(Specialization);
4888  } else if (isPartialSpecialization) {
4889    // Build the canonical type that describes the converted template
4890    // arguments of the class template partial specialization.
4891    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4892    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4893                                                      Converted.data(),
4894                                                      Converted.size());
4895
4896    if (Context.hasSameType(CanonType,
4897                        ClassTemplate->getInjectedClassNameSpecialization())) {
4898      // C++ [temp.class.spec]p9b3:
4899      //
4900      //   -- The argument list of the specialization shall not be identical
4901      //      to the implicit argument list of the primary template.
4902      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4903      << (TUK == TUK_Definition)
4904      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4905      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4906                                ClassTemplate->getIdentifier(),
4907                                TemplateNameLoc,
4908                                Attr,
4909                                TemplateParams,
4910                                AS_none,
4911                                TemplateParameterLists.size() - 1,
4912                  (TemplateParameterList**) TemplateParameterLists.release());
4913    }
4914
4915    // Create a new class template partial specialization declaration node.
4916    ClassTemplatePartialSpecializationDecl *PrevPartial
4917      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4918    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4919                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4920    ClassTemplatePartialSpecializationDecl *Partial
4921      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4922                                             ClassTemplate->getDeclContext(),
4923                                                       KWLoc, TemplateNameLoc,
4924                                                       TemplateParams,
4925                                                       ClassTemplate,
4926                                                       Converted.data(),
4927                                                       Converted.size(),
4928                                                       TemplateArgs,
4929                                                       CanonType,
4930                                                       PrevPartial,
4931                                                       SequenceNumber);
4932    SetNestedNameSpecifier(Partial, SS);
4933    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
4934      Partial->setTemplateParameterListsInfo(Context,
4935                                             TemplateParameterLists.size() - 1,
4936                    (TemplateParameterList**) TemplateParameterLists.release());
4937    }
4938
4939    if (!PrevPartial)
4940      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4941    Specialization = Partial;
4942
4943    // If we are providing an explicit specialization of a member class
4944    // template specialization, make a note of that.
4945    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4946      PrevPartial->setMemberSpecialization();
4947
4948    // Check that all of the template parameters of the class template
4949    // partial specialization are deducible from the template
4950    // arguments. If not, this class template partial specialization
4951    // will never be used.
4952    llvm::SmallVector<bool, 8> DeducibleParams;
4953    DeducibleParams.resize(TemplateParams->size());
4954    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4955                               TemplateParams->getDepth(),
4956                               DeducibleParams);
4957    unsigned NumNonDeducible = 0;
4958    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4959      if (!DeducibleParams[I])
4960        ++NumNonDeducible;
4961
4962    if (NumNonDeducible) {
4963      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4964        << (NumNonDeducible > 1)
4965        << SourceRange(TemplateNameLoc, RAngleLoc);
4966      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4967        if (!DeducibleParams[I]) {
4968          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4969          if (Param->getDeclName())
4970            Diag(Param->getLocation(),
4971                 diag::note_partial_spec_unused_parameter)
4972              << Param->getDeclName();
4973          else
4974            Diag(Param->getLocation(),
4975                 diag::note_partial_spec_unused_parameter)
4976              << "<anonymous>";
4977        }
4978      }
4979    }
4980  } else {
4981    // Create a new class template specialization declaration node for
4982    // this explicit specialization or friend declaration.
4983    Specialization
4984      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4985                                             ClassTemplate->getDeclContext(),
4986                                                KWLoc, TemplateNameLoc,
4987                                                ClassTemplate,
4988                                                Converted.data(),
4989                                                Converted.size(),
4990                                                PrevDecl);
4991    SetNestedNameSpecifier(Specialization, SS);
4992    if (TemplateParameterLists.size() > 0) {
4993      Specialization->setTemplateParameterListsInfo(Context,
4994                                              TemplateParameterLists.size(),
4995                    (TemplateParameterList**) TemplateParameterLists.release());
4996    }
4997
4998    if (!PrevDecl)
4999      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5000
5001    CanonType = Context.getTypeDeclType(Specialization);
5002  }
5003
5004  // C++ [temp.expl.spec]p6:
5005  //   If a template, a member template or the member of a class template is
5006  //   explicitly specialized then that specialization shall be declared
5007  //   before the first use of that specialization that would cause an implicit
5008  //   instantiation to take place, in every translation unit in which such a
5009  //   use occurs; no diagnostic is required.
5010  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5011    bool Okay = false;
5012    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5013      // Is there any previous explicit specialization declaration?
5014      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5015        Okay = true;
5016        break;
5017      }
5018    }
5019
5020    if (!Okay) {
5021      SourceRange Range(TemplateNameLoc, RAngleLoc);
5022      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5023        << Context.getTypeDeclType(Specialization) << Range;
5024
5025      Diag(PrevDecl->getPointOfInstantiation(),
5026           diag::note_instantiation_required_here)
5027        << (PrevDecl->getTemplateSpecializationKind()
5028                                                != TSK_ImplicitInstantiation);
5029      return true;
5030    }
5031  }
5032
5033  // If this is not a friend, note that this is an explicit specialization.
5034  if (TUK != TUK_Friend)
5035    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5036
5037  // Check that this isn't a redefinition of this specialization.
5038  if (TUK == TUK_Definition) {
5039    if (RecordDecl *Def = Specialization->getDefinition()) {
5040      SourceRange Range(TemplateNameLoc, RAngleLoc);
5041      Diag(TemplateNameLoc, diag::err_redefinition)
5042        << Context.getTypeDeclType(Specialization) << Range;
5043      Diag(Def->getLocation(), diag::note_previous_definition);
5044      Specialization->setInvalidDecl();
5045      return true;
5046    }
5047  }
5048
5049  if (Attr)
5050    ProcessDeclAttributeList(S, Specialization, Attr);
5051
5052  // Build the fully-sugared type for this class template
5053  // specialization as the user wrote in the specialization
5054  // itself. This means that we'll pretty-print the type retrieved
5055  // from the specialization's declaration the way that the user
5056  // actually wrote the specialization, rather than formatting the
5057  // name based on the "canonical" representation used to store the
5058  // template arguments in the specialization.
5059  TypeSourceInfo *WrittenTy
5060    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5061                                                TemplateArgs, CanonType);
5062  if (TUK != TUK_Friend) {
5063    Specialization->setTypeAsWritten(WrittenTy);
5064    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5065  }
5066  TemplateArgsIn.release();
5067
5068  // C++ [temp.expl.spec]p9:
5069  //   A template explicit specialization is in the scope of the
5070  //   namespace in which the template was defined.
5071  //
5072  // We actually implement this paragraph where we set the semantic
5073  // context (in the creation of the ClassTemplateSpecializationDecl),
5074  // but we also maintain the lexical context where the actual
5075  // definition occurs.
5076  Specialization->setLexicalDeclContext(CurContext);
5077
5078  // We may be starting the definition of this specialization.
5079  if (TUK == TUK_Definition)
5080    Specialization->startDefinition();
5081
5082  if (TUK == TUK_Friend) {
5083    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5084                                            TemplateNameLoc,
5085                                            WrittenTy,
5086                                            /*FIXME:*/KWLoc);
5087    Friend->setAccess(AS_public);
5088    CurContext->addDecl(Friend);
5089  } else {
5090    // Add the specialization into its lexical context, so that it can
5091    // be seen when iterating through the list of declarations in that
5092    // context. However, specializations are not found by name lookup.
5093    CurContext->addDecl(Specialization);
5094  }
5095  return Specialization;
5096}
5097
5098Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5099                              MultiTemplateParamsArg TemplateParameterLists,
5100                                    Declarator &D) {
5101  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
5102}
5103
5104Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5105                               MultiTemplateParamsArg TemplateParameterLists,
5106                                            Declarator &D) {
5107  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5108  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5109
5110  if (FTI.hasPrototype) {
5111    // FIXME: Diagnose arguments without names in C.
5112  }
5113
5114  Scope *ParentScope = FnBodyScope->getParent();
5115
5116  Decl *DP = HandleDeclarator(ParentScope, D,
5117                              move(TemplateParameterLists),
5118                              /*IsFunctionDefinition=*/true);
5119  if (FunctionTemplateDecl *FunctionTemplate
5120        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5121    return ActOnStartOfFunctionDef(FnBodyScope,
5122                                   FunctionTemplate->getTemplatedDecl());
5123  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5124    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5125  return 0;
5126}
5127
5128/// \brief Strips various properties off an implicit instantiation
5129/// that has just been explicitly specialized.
5130static void StripImplicitInstantiation(NamedDecl *D) {
5131  D->dropAttrs();
5132
5133  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5134    FD->setInlineSpecified(false);
5135  }
5136}
5137
5138/// \brief Diagnose cases where we have an explicit template specialization
5139/// before/after an explicit template instantiation, producing diagnostics
5140/// for those cases where they are required and determining whether the
5141/// new specialization/instantiation will have any effect.
5142///
5143/// \param NewLoc the location of the new explicit specialization or
5144/// instantiation.
5145///
5146/// \param NewTSK the kind of the new explicit specialization or instantiation.
5147///
5148/// \param PrevDecl the previous declaration of the entity.
5149///
5150/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5151///
5152/// \param PrevPointOfInstantiation if valid, indicates where the previus
5153/// declaration was instantiated (either implicitly or explicitly).
5154///
5155/// \param HasNoEffect will be set to true to indicate that the new
5156/// specialization or instantiation has no effect and should be ignored.
5157///
5158/// \returns true if there was an error that should prevent the introduction of
5159/// the new declaration into the AST, false otherwise.
5160bool
5161Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5162                                             TemplateSpecializationKind NewTSK,
5163                                             NamedDecl *PrevDecl,
5164                                             TemplateSpecializationKind PrevTSK,
5165                                        SourceLocation PrevPointOfInstantiation,
5166                                             bool &HasNoEffect) {
5167  HasNoEffect = false;
5168
5169  switch (NewTSK) {
5170  case TSK_Undeclared:
5171  case TSK_ImplicitInstantiation:
5172    assert(false && "Don't check implicit instantiations here");
5173    return false;
5174
5175  case TSK_ExplicitSpecialization:
5176    switch (PrevTSK) {
5177    case TSK_Undeclared:
5178    case TSK_ExplicitSpecialization:
5179      // Okay, we're just specializing something that is either already
5180      // explicitly specialized or has merely been mentioned without any
5181      // instantiation.
5182      return false;
5183
5184    case TSK_ImplicitInstantiation:
5185      if (PrevPointOfInstantiation.isInvalid()) {
5186        // The declaration itself has not actually been instantiated, so it is
5187        // still okay to specialize it.
5188        StripImplicitInstantiation(PrevDecl);
5189        return false;
5190      }
5191      // Fall through
5192
5193    case TSK_ExplicitInstantiationDeclaration:
5194    case TSK_ExplicitInstantiationDefinition:
5195      assert((PrevTSK == TSK_ImplicitInstantiation ||
5196              PrevPointOfInstantiation.isValid()) &&
5197             "Explicit instantiation without point of instantiation?");
5198
5199      // C++ [temp.expl.spec]p6:
5200      //   If a template, a member template or the member of a class template
5201      //   is explicitly specialized then that specialization shall be declared
5202      //   before the first use of that specialization that would cause an
5203      //   implicit instantiation to take place, in every translation unit in
5204      //   which such a use occurs; no diagnostic is required.
5205      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5206        // Is there any previous explicit specialization declaration?
5207        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5208          return false;
5209      }
5210
5211      Diag(NewLoc, diag::err_specialization_after_instantiation)
5212        << PrevDecl;
5213      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5214        << (PrevTSK != TSK_ImplicitInstantiation);
5215
5216      return true;
5217    }
5218    break;
5219
5220  case TSK_ExplicitInstantiationDeclaration:
5221    switch (PrevTSK) {
5222    case TSK_ExplicitInstantiationDeclaration:
5223      // This explicit instantiation declaration is redundant (that's okay).
5224      HasNoEffect = true;
5225      return false;
5226
5227    case TSK_Undeclared:
5228    case TSK_ImplicitInstantiation:
5229      // We're explicitly instantiating something that may have already been
5230      // implicitly instantiated; that's fine.
5231      return false;
5232
5233    case TSK_ExplicitSpecialization:
5234      // C++0x [temp.explicit]p4:
5235      //   For a given set of template parameters, if an explicit instantiation
5236      //   of a template appears after a declaration of an explicit
5237      //   specialization for that template, the explicit instantiation has no
5238      //   effect.
5239      HasNoEffect = true;
5240      return false;
5241
5242    case TSK_ExplicitInstantiationDefinition:
5243      // C++0x [temp.explicit]p10:
5244      //   If an entity is the subject of both an explicit instantiation
5245      //   declaration and an explicit instantiation definition in the same
5246      //   translation unit, the definition shall follow the declaration.
5247      Diag(NewLoc,
5248           diag::err_explicit_instantiation_declaration_after_definition);
5249      Diag(PrevPointOfInstantiation,
5250           diag::note_explicit_instantiation_definition_here);
5251      assert(PrevPointOfInstantiation.isValid() &&
5252             "Explicit instantiation without point of instantiation?");
5253      HasNoEffect = true;
5254      return false;
5255    }
5256    break;
5257
5258  case TSK_ExplicitInstantiationDefinition:
5259    switch (PrevTSK) {
5260    case TSK_Undeclared:
5261    case TSK_ImplicitInstantiation:
5262      // We're explicitly instantiating something that may have already been
5263      // implicitly instantiated; that's fine.
5264      return false;
5265
5266    case TSK_ExplicitSpecialization:
5267      // C++ DR 259, C++0x [temp.explicit]p4:
5268      //   For a given set of template parameters, if an explicit
5269      //   instantiation of a template appears after a declaration of
5270      //   an explicit specialization for that template, the explicit
5271      //   instantiation has no effect.
5272      //
5273      // In C++98/03 mode, we only give an extension warning here, because it
5274      // is not harmful to try to explicitly instantiate something that
5275      // has been explicitly specialized.
5276      if (!getLangOptions().CPlusPlus0x) {
5277        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
5278          << PrevDecl;
5279        Diag(PrevDecl->getLocation(),
5280             diag::note_previous_template_specialization);
5281      }
5282      HasNoEffect = true;
5283      return false;
5284
5285    case TSK_ExplicitInstantiationDeclaration:
5286      // We're explicity instantiating a definition for something for which we
5287      // were previously asked to suppress instantiations. That's fine.
5288      return false;
5289
5290    case TSK_ExplicitInstantiationDefinition:
5291      // C++0x [temp.spec]p5:
5292      //   For a given template and a given set of template-arguments,
5293      //     - an explicit instantiation definition shall appear at most once
5294      //       in a program,
5295      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5296        << PrevDecl;
5297      Diag(PrevPointOfInstantiation,
5298           diag::note_previous_explicit_instantiation);
5299      HasNoEffect = true;
5300      return false;
5301    }
5302    break;
5303  }
5304
5305  assert(false && "Missing specialization/instantiation case?");
5306
5307  return false;
5308}
5309
5310/// \brief Perform semantic analysis for the given dependent function
5311/// template specialization.  The only possible way to get a dependent
5312/// function template specialization is with a friend declaration,
5313/// like so:
5314///
5315///   template <class T> void foo(T);
5316///   template <class T> class A {
5317///     friend void foo<>(T);
5318///   };
5319///
5320/// There really isn't any useful analysis we can do here, so we
5321/// just store the information.
5322bool
5323Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5324                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5325                                                   LookupResult &Previous) {
5326  // Remove anything from Previous that isn't a function template in
5327  // the correct context.
5328  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5329  LookupResult::Filter F = Previous.makeFilter();
5330  while (F.hasNext()) {
5331    NamedDecl *D = F.next()->getUnderlyingDecl();
5332    if (!isa<FunctionTemplateDecl>(D) ||
5333        !FDLookupContext->InEnclosingNamespaceSetOf(
5334                              D->getDeclContext()->getRedeclContext()))
5335      F.erase();
5336  }
5337  F.done();
5338
5339  // Should this be diagnosed here?
5340  if (Previous.empty()) return true;
5341
5342  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5343                                         ExplicitTemplateArgs);
5344  return false;
5345}
5346
5347/// \brief Perform semantic analysis for the given function template
5348/// specialization.
5349///
5350/// This routine performs all of the semantic analysis required for an
5351/// explicit function template specialization. On successful completion,
5352/// the function declaration \p FD will become a function template
5353/// specialization.
5354///
5355/// \param FD the function declaration, which will be updated to become a
5356/// function template specialization.
5357///
5358/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5359/// if any. Note that this may be valid info even when 0 arguments are
5360/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5361/// as it anyway contains info on the angle brackets locations.
5362///
5363/// \param PrevDecl the set of declarations that may be specialized by
5364/// this function specialization.
5365bool
5366Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5367                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5368                                          LookupResult &Previous) {
5369  // The set of function template specializations that could match this
5370  // explicit function template specialization.
5371  UnresolvedSet<8> Candidates;
5372
5373  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5374  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5375         I != E; ++I) {
5376    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5377    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5378      // Only consider templates found within the same semantic lookup scope as
5379      // FD.
5380      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5381                                Ovl->getDeclContext()->getRedeclContext()))
5382        continue;
5383
5384      // C++ [temp.expl.spec]p11:
5385      //   A trailing template-argument can be left unspecified in the
5386      //   template-id naming an explicit function template specialization
5387      //   provided it can be deduced from the function argument type.
5388      // Perform template argument deduction to determine whether we may be
5389      // specializing this template.
5390      // FIXME: It is somewhat wasteful to build
5391      TemplateDeductionInfo Info(Context, FD->getLocation());
5392      FunctionDecl *Specialization = 0;
5393      if (TemplateDeductionResult TDK
5394            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5395                                      FD->getType(),
5396                                      Specialization,
5397                                      Info)) {
5398        // FIXME: Template argument deduction failed; record why it failed, so
5399        // that we can provide nifty diagnostics.
5400        (void)TDK;
5401        continue;
5402      }
5403
5404      // Record this candidate.
5405      Candidates.addDecl(Specialization, I.getAccess());
5406    }
5407  }
5408
5409  // Find the most specialized function template.
5410  UnresolvedSetIterator Result
5411    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5412                         TPOC_Other, 0, FD->getLocation(),
5413                  PDiag(diag::err_function_template_spec_no_match)
5414                    << FD->getDeclName(),
5415                  PDiag(diag::err_function_template_spec_ambiguous)
5416                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5417                  PDiag(diag::note_function_template_spec_matched));
5418  if (Result == Candidates.end())
5419    return true;
5420
5421  // Ignore access information;  it doesn't figure into redeclaration checking.
5422  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5423
5424  FunctionTemplateSpecializationInfo *SpecInfo
5425    = Specialization->getTemplateSpecializationInfo();
5426  assert(SpecInfo && "Function template specialization info missing?");
5427  {
5428    // Note: do not overwrite location info if previous template
5429    // specialization kind was explicit.
5430    TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5431    if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5432      Specialization->setLocation(FD->getLocation());
5433  }
5434
5435  // FIXME: Check if the prior specialization has a point of instantiation.
5436  // If so, we have run afoul of .
5437
5438  // If this is a friend declaration, then we're not really declaring
5439  // an explicit specialization.
5440  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5441
5442  // Check the scope of this explicit specialization.
5443  if (!isFriend &&
5444      CheckTemplateSpecializationScope(*this,
5445                                       Specialization->getPrimaryTemplate(),
5446                                       Specialization, FD->getLocation(),
5447                                       false))
5448    return true;
5449
5450  // C++ [temp.expl.spec]p6:
5451  //   If a template, a member template or the member of a class template is
5452  //   explicitly specialized then that specialization shall be declared
5453  //   before the first use of that specialization that would cause an implicit
5454  //   instantiation to take place, in every translation unit in which such a
5455  //   use occurs; no diagnostic is required.
5456  bool HasNoEffect = false;
5457  if (!isFriend &&
5458      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5459                                             TSK_ExplicitSpecialization,
5460                                             Specialization,
5461                                   SpecInfo->getTemplateSpecializationKind(),
5462                                         SpecInfo->getPointOfInstantiation(),
5463                                             HasNoEffect))
5464    return true;
5465
5466  // Mark the prior declaration as an explicit specialization, so that later
5467  // clients know that this is an explicit specialization.
5468  if (!isFriend) {
5469    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5470    MarkUnusedFileScopedDecl(Specialization);
5471  }
5472
5473  // Turn the given function declaration into a function template
5474  // specialization, with the template arguments from the previous
5475  // specialization.
5476  // Take copies of (semantic and syntactic) template argument lists.
5477  const TemplateArgumentList* TemplArgs = new (Context)
5478    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5479  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5480    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5481  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5482                                        TemplArgs, /*InsertPos=*/0,
5483                                    SpecInfo->getTemplateSpecializationKind(),
5484                                        TemplArgsAsWritten);
5485  FD->setStorageClass(Specialization->getStorageClass());
5486
5487  // The "previous declaration" for this function template specialization is
5488  // the prior function template specialization.
5489  Previous.clear();
5490  Previous.addDecl(Specialization);
5491  return false;
5492}
5493
5494/// \brief Perform semantic analysis for the given non-template member
5495/// specialization.
5496///
5497/// This routine performs all of the semantic analysis required for an
5498/// explicit member function specialization. On successful completion,
5499/// the function declaration \p FD will become a member function
5500/// specialization.
5501///
5502/// \param Member the member declaration, which will be updated to become a
5503/// specialization.
5504///
5505/// \param Previous the set of declarations, one of which may be specialized
5506/// by this function specialization;  the set will be modified to contain the
5507/// redeclared member.
5508bool
5509Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5510  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5511
5512  // Try to find the member we are instantiating.
5513  NamedDecl *Instantiation = 0;
5514  NamedDecl *InstantiatedFrom = 0;
5515  MemberSpecializationInfo *MSInfo = 0;
5516
5517  if (Previous.empty()) {
5518    // Nowhere to look anyway.
5519  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5520    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5521           I != E; ++I) {
5522      NamedDecl *D = (*I)->getUnderlyingDecl();
5523      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5524        if (Context.hasSameType(Function->getType(), Method->getType())) {
5525          Instantiation = Method;
5526          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5527          MSInfo = Method->getMemberSpecializationInfo();
5528          break;
5529        }
5530      }
5531    }
5532  } else if (isa<VarDecl>(Member)) {
5533    VarDecl *PrevVar;
5534    if (Previous.isSingleResult() &&
5535        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5536      if (PrevVar->isStaticDataMember()) {
5537        Instantiation = PrevVar;
5538        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5539        MSInfo = PrevVar->getMemberSpecializationInfo();
5540      }
5541  } else if (isa<RecordDecl>(Member)) {
5542    CXXRecordDecl *PrevRecord;
5543    if (Previous.isSingleResult() &&
5544        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5545      Instantiation = PrevRecord;
5546      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5547      MSInfo = PrevRecord->getMemberSpecializationInfo();
5548    }
5549  }
5550
5551  if (!Instantiation) {
5552    // There is no previous declaration that matches. Since member
5553    // specializations are always out-of-line, the caller will complain about
5554    // this mismatch later.
5555    return false;
5556  }
5557
5558  // If this is a friend, just bail out here before we start turning
5559  // things into explicit specializations.
5560  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5561    // Preserve instantiation information.
5562    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5563      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5564                                      cast<CXXMethodDecl>(InstantiatedFrom),
5565        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5566    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5567      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5568                                      cast<CXXRecordDecl>(InstantiatedFrom),
5569        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5570    }
5571
5572    Previous.clear();
5573    Previous.addDecl(Instantiation);
5574    return false;
5575  }
5576
5577  // Make sure that this is a specialization of a member.
5578  if (!InstantiatedFrom) {
5579    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5580      << Member;
5581    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5582    return true;
5583  }
5584
5585  // C++ [temp.expl.spec]p6:
5586  //   If a template, a member template or the member of a class template is
5587  //   explicitly specialized then that spe- cialization shall be declared
5588  //   before the first use of that specialization that would cause an implicit
5589  //   instantiation to take place, in every translation unit in which such a
5590  //   use occurs; no diagnostic is required.
5591  assert(MSInfo && "Member specialization info missing?");
5592
5593  bool HasNoEffect = false;
5594  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5595                                             TSK_ExplicitSpecialization,
5596                                             Instantiation,
5597                                     MSInfo->getTemplateSpecializationKind(),
5598                                           MSInfo->getPointOfInstantiation(),
5599                                             HasNoEffect))
5600    return true;
5601
5602  // Check the scope of this explicit specialization.
5603  if (CheckTemplateSpecializationScope(*this,
5604                                       InstantiatedFrom,
5605                                       Instantiation, Member->getLocation(),
5606                                       false))
5607    return true;
5608
5609  // Note that this is an explicit instantiation of a member.
5610  // the original declaration to note that it is an explicit specialization
5611  // (if it was previously an implicit instantiation). This latter step
5612  // makes bookkeeping easier.
5613  if (isa<FunctionDecl>(Member)) {
5614    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5615    if (InstantiationFunction->getTemplateSpecializationKind() ==
5616          TSK_ImplicitInstantiation) {
5617      InstantiationFunction->setTemplateSpecializationKind(
5618                                                  TSK_ExplicitSpecialization);
5619      InstantiationFunction->setLocation(Member->getLocation());
5620    }
5621
5622    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5623                                        cast<CXXMethodDecl>(InstantiatedFrom),
5624                                                  TSK_ExplicitSpecialization);
5625    MarkUnusedFileScopedDecl(InstantiationFunction);
5626  } else if (isa<VarDecl>(Member)) {
5627    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5628    if (InstantiationVar->getTemplateSpecializationKind() ==
5629          TSK_ImplicitInstantiation) {
5630      InstantiationVar->setTemplateSpecializationKind(
5631                                                  TSK_ExplicitSpecialization);
5632      InstantiationVar->setLocation(Member->getLocation());
5633    }
5634
5635    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5636                                                cast<VarDecl>(InstantiatedFrom),
5637                                                TSK_ExplicitSpecialization);
5638    MarkUnusedFileScopedDecl(InstantiationVar);
5639  } else {
5640    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5641    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5642    if (InstantiationClass->getTemplateSpecializationKind() ==
5643          TSK_ImplicitInstantiation) {
5644      InstantiationClass->setTemplateSpecializationKind(
5645                                                   TSK_ExplicitSpecialization);
5646      InstantiationClass->setLocation(Member->getLocation());
5647    }
5648
5649    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5650                                        cast<CXXRecordDecl>(InstantiatedFrom),
5651                                                   TSK_ExplicitSpecialization);
5652  }
5653
5654  // Save the caller the trouble of having to figure out which declaration
5655  // this specialization matches.
5656  Previous.clear();
5657  Previous.addDecl(Instantiation);
5658  return false;
5659}
5660
5661/// \brief Check the scope of an explicit instantiation.
5662///
5663/// \returns true if a serious error occurs, false otherwise.
5664static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5665                                            SourceLocation InstLoc,
5666                                            bool WasQualifiedName) {
5667  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5668  DeclContext *CurContext = S.CurContext->getRedeclContext();
5669
5670  if (CurContext->isRecord()) {
5671    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5672      << D;
5673    return true;
5674  }
5675
5676  // C++0x [temp.explicit]p2:
5677  //   An explicit instantiation shall appear in an enclosing namespace of its
5678  //   template.
5679  //
5680  // This is DR275, which we do not retroactively apply to C++98/03.
5681  if (S.getLangOptions().CPlusPlus0x &&
5682      !CurContext->Encloses(OrigContext)) {
5683    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5684      S.Diag(InstLoc,
5685             S.getLangOptions().CPlusPlus0x?
5686                 diag::err_explicit_instantiation_out_of_scope
5687               : diag::warn_explicit_instantiation_out_of_scope_0x)
5688        << D << NS;
5689    else
5690      S.Diag(InstLoc,
5691             S.getLangOptions().CPlusPlus0x?
5692                 diag::err_explicit_instantiation_must_be_global
5693               : diag::warn_explicit_instantiation_out_of_scope_0x)
5694        << D;
5695    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5696    return false;
5697  }
5698
5699  // C++0x [temp.explicit]p2:
5700  //   If the name declared in the explicit instantiation is an unqualified
5701  //   name, the explicit instantiation shall appear in the namespace where
5702  //   its template is declared or, if that namespace is inline (7.3.1), any
5703  //   namespace from its enclosing namespace set.
5704  if (WasQualifiedName)
5705    return false;
5706
5707  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5708    return false;
5709
5710  S.Diag(InstLoc,
5711         S.getLangOptions().CPlusPlus0x?
5712             diag::err_explicit_instantiation_unqualified_wrong_namespace
5713           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5714    << D << OrigContext;
5715  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5716  return false;
5717}
5718
5719/// \brief Determine whether the given scope specifier has a template-id in it.
5720static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5721  if (!SS.isSet())
5722    return false;
5723
5724  // C++0x [temp.explicit]p2:
5725  //   If the explicit instantiation is for a member function, a member class
5726  //   or a static data member of a class template specialization, the name of
5727  //   the class template specialization in the qualified-id for the member
5728  //   name shall be a simple-template-id.
5729  //
5730  // C++98 has the same restriction, just worded differently.
5731  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5732       NNS; NNS = NNS->getPrefix())
5733    if (const Type *T = NNS->getAsType())
5734      if (isa<TemplateSpecializationType>(T))
5735        return true;
5736
5737  return false;
5738}
5739
5740// Explicit instantiation of a class template specialization
5741DeclResult
5742Sema::ActOnExplicitInstantiation(Scope *S,
5743                                 SourceLocation ExternLoc,
5744                                 SourceLocation TemplateLoc,
5745                                 unsigned TagSpec,
5746                                 SourceLocation KWLoc,
5747                                 const CXXScopeSpec &SS,
5748                                 TemplateTy TemplateD,
5749                                 SourceLocation TemplateNameLoc,
5750                                 SourceLocation LAngleLoc,
5751                                 ASTTemplateArgsPtr TemplateArgsIn,
5752                                 SourceLocation RAngleLoc,
5753                                 AttributeList *Attr) {
5754  // Find the class template we're specializing
5755  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5756  ClassTemplateDecl *ClassTemplate
5757    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5758
5759  // Check that the specialization uses the same tag kind as the
5760  // original template.
5761  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5762  assert(Kind != TTK_Enum &&
5763         "Invalid enum tag in class template explicit instantiation!");
5764  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5765                                    Kind, /*isDefinition*/false, KWLoc,
5766                                    *ClassTemplate->getIdentifier())) {
5767    Diag(KWLoc, diag::err_use_with_wrong_tag)
5768      << ClassTemplate
5769      << FixItHint::CreateReplacement(KWLoc,
5770                            ClassTemplate->getTemplatedDecl()->getKindName());
5771    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5772         diag::note_previous_use);
5773    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5774  }
5775
5776  // C++0x [temp.explicit]p2:
5777  //   There are two forms of explicit instantiation: an explicit instantiation
5778  //   definition and an explicit instantiation declaration. An explicit
5779  //   instantiation declaration begins with the extern keyword. [...]
5780  TemplateSpecializationKind TSK
5781    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5782                           : TSK_ExplicitInstantiationDeclaration;
5783
5784  // Translate the parser's template argument list in our AST format.
5785  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5786  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5787
5788  // Check that the template argument list is well-formed for this
5789  // template.
5790  llvm::SmallVector<TemplateArgument, 4> Converted;
5791  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5792                                TemplateArgs, false, Converted))
5793    return true;
5794
5795  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5796         "Converted template argument list is too short!");
5797
5798  // Find the class template specialization declaration that
5799  // corresponds to these arguments.
5800  void *InsertPos = 0;
5801  ClassTemplateSpecializationDecl *PrevDecl
5802    = ClassTemplate->findSpecialization(Converted.data(),
5803                                        Converted.size(), InsertPos);
5804
5805  TemplateSpecializationKind PrevDecl_TSK
5806    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5807
5808  // C++0x [temp.explicit]p2:
5809  //   [...] An explicit instantiation shall appear in an enclosing
5810  //   namespace of its template. [...]
5811  //
5812  // This is C++ DR 275.
5813  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5814                                      SS.isSet()))
5815    return true;
5816
5817  ClassTemplateSpecializationDecl *Specialization = 0;
5818
5819  bool HasNoEffect = false;
5820  if (PrevDecl) {
5821    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5822                                               PrevDecl, PrevDecl_TSK,
5823                                            PrevDecl->getPointOfInstantiation(),
5824                                               HasNoEffect))
5825      return PrevDecl;
5826
5827    // Even though HasNoEffect == true means that this explicit instantiation
5828    // has no effect on semantics, we go on to put its syntax in the AST.
5829
5830    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5831        PrevDecl_TSK == TSK_Undeclared) {
5832      // Since the only prior class template specialization with these
5833      // arguments was referenced but not declared, reuse that
5834      // declaration node as our own, updating the source location
5835      // for the template name to reflect our new declaration.
5836      // (Other source locations will be updated later.)
5837      Specialization = PrevDecl;
5838      Specialization->setLocation(TemplateNameLoc);
5839      PrevDecl = 0;
5840    }
5841  }
5842
5843  if (!Specialization) {
5844    // Create a new class template specialization declaration node for
5845    // this explicit specialization.
5846    Specialization
5847      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5848                                             ClassTemplate->getDeclContext(),
5849                                                KWLoc, TemplateNameLoc,
5850                                                ClassTemplate,
5851                                                Converted.data(),
5852                                                Converted.size(),
5853                                                PrevDecl);
5854    SetNestedNameSpecifier(Specialization, SS);
5855
5856    if (!HasNoEffect && !PrevDecl) {
5857      // Insert the new specialization.
5858      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5859    }
5860  }
5861
5862  // Build the fully-sugared type for this explicit instantiation as
5863  // the user wrote in the explicit instantiation itself. This means
5864  // that we'll pretty-print the type retrieved from the
5865  // specialization's declaration the way that the user actually wrote
5866  // the explicit instantiation, rather than formatting the name based
5867  // on the "canonical" representation used to store the template
5868  // arguments in the specialization.
5869  TypeSourceInfo *WrittenTy
5870    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5871                                                TemplateArgs,
5872                                  Context.getTypeDeclType(Specialization));
5873  Specialization->setTypeAsWritten(WrittenTy);
5874  TemplateArgsIn.release();
5875
5876  // Set source locations for keywords.
5877  Specialization->setExternLoc(ExternLoc);
5878  Specialization->setTemplateKeywordLoc(TemplateLoc);
5879
5880  // Add the explicit instantiation into its lexical context. However,
5881  // since explicit instantiations are never found by name lookup, we
5882  // just put it into the declaration context directly.
5883  Specialization->setLexicalDeclContext(CurContext);
5884  CurContext->addDecl(Specialization);
5885
5886  // Syntax is now OK, so return if it has no other effect on semantics.
5887  if (HasNoEffect) {
5888    // Set the template specialization kind.
5889    Specialization->setTemplateSpecializationKind(TSK);
5890    return Specialization;
5891  }
5892
5893  // C++ [temp.explicit]p3:
5894  //   A definition of a class template or class member template
5895  //   shall be in scope at the point of the explicit instantiation of
5896  //   the class template or class member template.
5897  //
5898  // This check comes when we actually try to perform the
5899  // instantiation.
5900  ClassTemplateSpecializationDecl *Def
5901    = cast_or_null<ClassTemplateSpecializationDecl>(
5902                                              Specialization->getDefinition());
5903  if (!Def)
5904    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5905  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5906    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5907    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5908  }
5909
5910  // Instantiate the members of this class template specialization.
5911  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5912                                       Specialization->getDefinition());
5913  if (Def) {
5914    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5915
5916    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5917    // TSK_ExplicitInstantiationDefinition
5918    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5919        TSK == TSK_ExplicitInstantiationDefinition)
5920      Def->setTemplateSpecializationKind(TSK);
5921
5922    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5923  }
5924
5925  // Set the template specialization kind.
5926  Specialization->setTemplateSpecializationKind(TSK);
5927  return Specialization;
5928}
5929
5930// Explicit instantiation of a member class of a class template.
5931DeclResult
5932Sema::ActOnExplicitInstantiation(Scope *S,
5933                                 SourceLocation ExternLoc,
5934                                 SourceLocation TemplateLoc,
5935                                 unsigned TagSpec,
5936                                 SourceLocation KWLoc,
5937                                 CXXScopeSpec &SS,
5938                                 IdentifierInfo *Name,
5939                                 SourceLocation NameLoc,
5940                                 AttributeList *Attr) {
5941
5942  bool Owned = false;
5943  bool IsDependent = false;
5944  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5945                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5946                        MultiTemplateParamsArg(*this, 0, 0),
5947                        Owned, IsDependent, false, false,
5948                        TypeResult());
5949  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5950
5951  if (!TagD)
5952    return true;
5953
5954  TagDecl *Tag = cast<TagDecl>(TagD);
5955  if (Tag->isEnum()) {
5956    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5957      << Context.getTypeDeclType(Tag);
5958    return true;
5959  }
5960
5961  if (Tag->isInvalidDecl())
5962    return true;
5963
5964  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5965  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5966  if (!Pattern) {
5967    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5968      << Context.getTypeDeclType(Record);
5969    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5970    return true;
5971  }
5972
5973  // C++0x [temp.explicit]p2:
5974  //   If the explicit instantiation is for a class or member class, the
5975  //   elaborated-type-specifier in the declaration shall include a
5976  //   simple-template-id.
5977  //
5978  // C++98 has the same restriction, just worded differently.
5979  if (!ScopeSpecifierHasTemplateId(SS))
5980    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5981      << Record << SS.getRange();
5982
5983  // C++0x [temp.explicit]p2:
5984  //   There are two forms of explicit instantiation: an explicit instantiation
5985  //   definition and an explicit instantiation declaration. An explicit
5986  //   instantiation declaration begins with the extern keyword. [...]
5987  TemplateSpecializationKind TSK
5988    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5989                           : TSK_ExplicitInstantiationDeclaration;
5990
5991  // C++0x [temp.explicit]p2:
5992  //   [...] An explicit instantiation shall appear in an enclosing
5993  //   namespace of its template. [...]
5994  //
5995  // This is C++ DR 275.
5996  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5997
5998  // Verify that it is okay to explicitly instantiate here.
5999  CXXRecordDecl *PrevDecl
6000    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
6001  if (!PrevDecl && Record->getDefinition())
6002    PrevDecl = Record;
6003  if (PrevDecl) {
6004    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6005    bool HasNoEffect = false;
6006    assert(MSInfo && "No member specialization information?");
6007    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6008                                               PrevDecl,
6009                                        MSInfo->getTemplateSpecializationKind(),
6010                                             MSInfo->getPointOfInstantiation(),
6011                                               HasNoEffect))
6012      return true;
6013    if (HasNoEffect)
6014      return TagD;
6015  }
6016
6017  CXXRecordDecl *RecordDef
6018    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6019  if (!RecordDef) {
6020    // C++ [temp.explicit]p3:
6021    //   A definition of a member class of a class template shall be in scope
6022    //   at the point of an explicit instantiation of the member class.
6023    CXXRecordDecl *Def
6024      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6025    if (!Def) {
6026      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6027        << 0 << Record->getDeclName() << Record->getDeclContext();
6028      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6029        << Pattern;
6030      return true;
6031    } else {
6032      if (InstantiateClass(NameLoc, Record, Def,
6033                           getTemplateInstantiationArgs(Record),
6034                           TSK))
6035        return true;
6036
6037      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6038      if (!RecordDef)
6039        return true;
6040    }
6041  }
6042
6043  // Instantiate all of the members of the class.
6044  InstantiateClassMembers(NameLoc, RecordDef,
6045                          getTemplateInstantiationArgs(Record), TSK);
6046
6047  if (TSK == TSK_ExplicitInstantiationDefinition)
6048    MarkVTableUsed(NameLoc, RecordDef, true);
6049
6050  // FIXME: We don't have any representation for explicit instantiations of
6051  // member classes. Such a representation is not needed for compilation, but it
6052  // should be available for clients that want to see all of the declarations in
6053  // the source code.
6054  return TagD;
6055}
6056
6057DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6058                                            SourceLocation ExternLoc,
6059                                            SourceLocation TemplateLoc,
6060                                            Declarator &D) {
6061  // Explicit instantiations always require a name.
6062  // TODO: check if/when DNInfo should replace Name.
6063  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6064  DeclarationName Name = NameInfo.getName();
6065  if (!Name) {
6066    if (!D.isInvalidType())
6067      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6068           diag::err_explicit_instantiation_requires_name)
6069        << D.getDeclSpec().getSourceRange()
6070        << D.getSourceRange();
6071
6072    return true;
6073  }
6074
6075  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6076  // we find one that is.
6077  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6078         (S->getFlags() & Scope::TemplateParamScope) != 0)
6079    S = S->getParent();
6080
6081  // Determine the type of the declaration.
6082  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6083  QualType R = T->getType();
6084  if (R.isNull())
6085    return true;
6086
6087  // C++ [dcl.stc]p1:
6088  //   A storage-class-specifier shall not be specified in [...] an explicit
6089  //   instantiation (14.7.2) directive.
6090  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6091    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6092      << Name;
6093    return true;
6094  } else if (D.getDeclSpec().getStorageClassSpec()
6095                                                != DeclSpec::SCS_unspecified) {
6096    // Complain about then remove the storage class specifier.
6097    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6098      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6099
6100    D.getMutableDeclSpec().ClearStorageClassSpecs();
6101  }
6102
6103  // C++0x [temp.explicit]p1:
6104  //   [...] An explicit instantiation of a function template shall not use the
6105  //   inline or constexpr specifiers.
6106  // Presumably, this also applies to member functions of class templates as
6107  // well.
6108  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
6109    Diag(D.getDeclSpec().getInlineSpecLoc(),
6110         diag::err_explicit_instantiation_inline)
6111      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6112
6113  // FIXME: check for constexpr specifier.
6114
6115  // C++0x [temp.explicit]p2:
6116  //   There are two forms of explicit instantiation: an explicit instantiation
6117  //   definition and an explicit instantiation declaration. An explicit
6118  //   instantiation declaration begins with the extern keyword. [...]
6119  TemplateSpecializationKind TSK
6120    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6121                           : TSK_ExplicitInstantiationDeclaration;
6122
6123  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6124  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6125
6126  if (!R->isFunctionType()) {
6127    // C++ [temp.explicit]p1:
6128    //   A [...] static data member of a class template can be explicitly
6129    //   instantiated from the member definition associated with its class
6130    //   template.
6131    if (Previous.isAmbiguous())
6132      return true;
6133
6134    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6135    if (!Prev || !Prev->isStaticDataMember()) {
6136      // We expect to see a data data member here.
6137      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6138        << Name;
6139      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6140           P != PEnd; ++P)
6141        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6142      return true;
6143    }
6144
6145    if (!Prev->getInstantiatedFromStaticDataMember()) {
6146      // FIXME: Check for explicit specialization?
6147      Diag(D.getIdentifierLoc(),
6148           diag::err_explicit_instantiation_data_member_not_instantiated)
6149        << Prev;
6150      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6151      // FIXME: Can we provide a note showing where this was declared?
6152      return true;
6153    }
6154
6155    // C++0x [temp.explicit]p2:
6156    //   If the explicit instantiation is for a member function, a member class
6157    //   or a static data member of a class template specialization, the name of
6158    //   the class template specialization in the qualified-id for the member
6159    //   name shall be a simple-template-id.
6160    //
6161    // C++98 has the same restriction, just worded differently.
6162    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6163      Diag(D.getIdentifierLoc(),
6164           diag::ext_explicit_instantiation_without_qualified_id)
6165        << Prev << D.getCXXScopeSpec().getRange();
6166
6167    // Check the scope of this explicit instantiation.
6168    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6169
6170    // Verify that it is okay to explicitly instantiate here.
6171    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6172    assert(MSInfo && "Missing static data member specialization info?");
6173    bool HasNoEffect = false;
6174    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6175                                        MSInfo->getTemplateSpecializationKind(),
6176                                              MSInfo->getPointOfInstantiation(),
6177                                               HasNoEffect))
6178      return true;
6179    if (HasNoEffect)
6180      return (Decl*) 0;
6181
6182    // Instantiate static data member.
6183    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6184    if (TSK == TSK_ExplicitInstantiationDefinition)
6185      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6186
6187    // FIXME: Create an ExplicitInstantiation node?
6188    return (Decl*) 0;
6189  }
6190
6191  // If the declarator is a template-id, translate the parser's template
6192  // argument list into our AST format.
6193  bool HasExplicitTemplateArgs = false;
6194  TemplateArgumentListInfo TemplateArgs;
6195  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6196    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6197    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6198    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6199    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6200                                       TemplateId->getTemplateArgs(),
6201                                       TemplateId->NumArgs);
6202    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6203    HasExplicitTemplateArgs = true;
6204    TemplateArgsPtr.release();
6205  }
6206
6207  // C++ [temp.explicit]p1:
6208  //   A [...] function [...] can be explicitly instantiated from its template.
6209  //   A member function [...] of a class template can be explicitly
6210  //  instantiated from the member definition associated with its class
6211  //  template.
6212  UnresolvedSet<8> Matches;
6213  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6214       P != PEnd; ++P) {
6215    NamedDecl *Prev = *P;
6216    if (!HasExplicitTemplateArgs) {
6217      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6218        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6219          Matches.clear();
6220
6221          Matches.addDecl(Method, P.getAccess());
6222          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6223            break;
6224        }
6225      }
6226    }
6227
6228    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6229    if (!FunTmpl)
6230      continue;
6231
6232    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6233    FunctionDecl *Specialization = 0;
6234    if (TemplateDeductionResult TDK
6235          = DeduceTemplateArguments(FunTmpl,
6236                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6237                                    R, Specialization, Info)) {
6238      // FIXME: Keep track of almost-matches?
6239      (void)TDK;
6240      continue;
6241    }
6242
6243    Matches.addDecl(Specialization, P.getAccess());
6244  }
6245
6246  // Find the most specialized function template specialization.
6247  UnresolvedSetIterator Result
6248    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6249                         D.getIdentifierLoc(),
6250                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6251                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6252                         PDiag(diag::note_explicit_instantiation_candidate));
6253
6254  if (Result == Matches.end())
6255    return true;
6256
6257  // Ignore access control bits, we don't need them for redeclaration checking.
6258  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6259
6260  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6261    Diag(D.getIdentifierLoc(),
6262         diag::err_explicit_instantiation_member_function_not_instantiated)
6263      << Specialization
6264      << (Specialization->getTemplateSpecializationKind() ==
6265          TSK_ExplicitSpecialization);
6266    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6267    return true;
6268  }
6269
6270  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6271  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6272    PrevDecl = Specialization;
6273
6274  if (PrevDecl) {
6275    bool HasNoEffect = false;
6276    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6277                                               PrevDecl,
6278                                     PrevDecl->getTemplateSpecializationKind(),
6279                                          PrevDecl->getPointOfInstantiation(),
6280                                               HasNoEffect))
6281      return true;
6282
6283    // FIXME: We may still want to build some representation of this
6284    // explicit specialization.
6285    if (HasNoEffect)
6286      return (Decl*) 0;
6287  }
6288
6289  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6290
6291  if (TSK == TSK_ExplicitInstantiationDefinition)
6292    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6293
6294  // C++0x [temp.explicit]p2:
6295  //   If the explicit instantiation is for a member function, a member class
6296  //   or a static data member of a class template specialization, the name of
6297  //   the class template specialization in the qualified-id for the member
6298  //   name shall be a simple-template-id.
6299  //
6300  // C++98 has the same restriction, just worded differently.
6301  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6302  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6303      D.getCXXScopeSpec().isSet() &&
6304      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6305    Diag(D.getIdentifierLoc(),
6306         diag::ext_explicit_instantiation_without_qualified_id)
6307    << Specialization << D.getCXXScopeSpec().getRange();
6308
6309  CheckExplicitInstantiationScope(*this,
6310                   FunTmpl? (NamedDecl *)FunTmpl
6311                          : Specialization->getInstantiatedFromMemberFunction(),
6312                                  D.getIdentifierLoc(),
6313                                  D.getCXXScopeSpec().isSet());
6314
6315  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6316  return (Decl*) 0;
6317}
6318
6319TypeResult
6320Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6321                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6322                        SourceLocation TagLoc, SourceLocation NameLoc) {
6323  // This has to hold, because SS is expected to be defined.
6324  assert(Name && "Expected a name in a dependent tag");
6325
6326  NestedNameSpecifier *NNS
6327    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6328  if (!NNS)
6329    return true;
6330
6331  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6332
6333  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6334    Diag(NameLoc, diag::err_dependent_tag_decl)
6335      << (TUK == TUK_Definition) << Kind << SS.getRange();
6336    return true;
6337  }
6338
6339  // Create the resulting type.
6340  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6341  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6342
6343  // Create type-source location information for this type.
6344  TypeLocBuilder TLB;
6345  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6346  TL.setKeywordLoc(TagLoc);
6347  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6348  TL.setNameLoc(NameLoc);
6349  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6350}
6351
6352TypeResult
6353Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6354                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6355                        SourceLocation IdLoc) {
6356  if (SS.isInvalid())
6357    return true;
6358
6359  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6360      !getLangOptions().CPlusPlus0x)
6361    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6362      << FixItHint::CreateRemoval(TypenameLoc);
6363
6364  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6365  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6366                                 TypenameLoc, QualifierLoc, II, IdLoc);
6367  if (T.isNull())
6368    return true;
6369
6370  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6371  if (isa<DependentNameType>(T)) {
6372    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6373    TL.setKeywordLoc(TypenameLoc);
6374    TL.setQualifierLoc(QualifierLoc);
6375    TL.setNameLoc(IdLoc);
6376  } else {
6377    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6378    TL.setKeywordLoc(TypenameLoc);
6379    TL.setQualifierLoc(QualifierLoc);
6380    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6381  }
6382
6383  return CreateParsedType(T, TSI);
6384}
6385
6386TypeResult
6387Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6388                        const CXXScopeSpec &SS,
6389                        SourceLocation TemplateLoc,
6390                        TemplateTy TemplateIn,
6391                        SourceLocation TemplateNameLoc,
6392                        SourceLocation LAngleLoc,
6393                        ASTTemplateArgsPtr TemplateArgsIn,
6394                        SourceLocation RAngleLoc) {
6395  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6396      !getLangOptions().CPlusPlus0x)
6397    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6398    << FixItHint::CreateRemoval(TypenameLoc);
6399
6400  // Translate the parser's template argument list in our AST format.
6401  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6402  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6403
6404  TemplateName Template = TemplateIn.get();
6405  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6406    // Construct a dependent template specialization type.
6407    assert(DTN && "dependent template has non-dependent name?");
6408    assert(DTN->getQualifier()
6409           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6410    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6411                                                          DTN->getQualifier(),
6412                                                          DTN->getIdentifier(),
6413                                                                TemplateArgs);
6414
6415    // Create source-location information for this type.
6416    TypeLocBuilder Builder;
6417    DependentTemplateSpecializationTypeLoc SpecTL
6418    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6419    SpecTL.setLAngleLoc(LAngleLoc);
6420    SpecTL.setRAngleLoc(RAngleLoc);
6421    SpecTL.setKeywordLoc(TypenameLoc);
6422    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6423    SpecTL.setNameLoc(TemplateNameLoc);
6424    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6425      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6426    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6427  }
6428
6429  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6430  if (T.isNull())
6431    return true;
6432
6433  // Provide source-location information for the template specialization
6434  // type.
6435  TypeLocBuilder Builder;
6436  TemplateSpecializationTypeLoc SpecTL
6437    = Builder.push<TemplateSpecializationTypeLoc>(T);
6438
6439  // FIXME: No place to set the location of the 'template' keyword!
6440  SpecTL.setLAngleLoc(LAngleLoc);
6441  SpecTL.setRAngleLoc(RAngleLoc);
6442  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6443  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6444    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6445
6446  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6447  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6448  TL.setKeywordLoc(TypenameLoc);
6449  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6450
6451  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6452  return CreateParsedType(T, TSI);
6453}
6454
6455
6456/// \brief Build the type that describes a C++ typename specifier,
6457/// e.g., "typename T::type".
6458QualType
6459Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6460                        SourceLocation KeywordLoc,
6461                        NestedNameSpecifierLoc QualifierLoc,
6462                        const IdentifierInfo &II,
6463                        SourceLocation IILoc) {
6464  CXXScopeSpec SS;
6465  SS.Adopt(QualifierLoc);
6466
6467  DeclContext *Ctx = computeDeclContext(SS);
6468  if (!Ctx) {
6469    // If the nested-name-specifier is dependent and couldn't be
6470    // resolved to a type, build a typename type.
6471    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6472    return Context.getDependentNameType(Keyword,
6473                                        QualifierLoc.getNestedNameSpecifier(),
6474                                        &II);
6475  }
6476
6477  // If the nested-name-specifier refers to the current instantiation,
6478  // the "typename" keyword itself is superfluous. In C++03, the
6479  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6480  // allows such extraneous "typename" keywords, and we retroactively
6481  // apply this DR to C++03 code with only a warning. In any case we continue.
6482
6483  if (RequireCompleteDeclContext(SS, Ctx))
6484    return QualType();
6485
6486  DeclarationName Name(&II);
6487  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6488  LookupQualifiedName(Result, Ctx);
6489  unsigned DiagID = 0;
6490  Decl *Referenced = 0;
6491  switch (Result.getResultKind()) {
6492  case LookupResult::NotFound:
6493    DiagID = diag::err_typename_nested_not_found;
6494    break;
6495
6496  case LookupResult::FoundUnresolvedValue: {
6497    // We found a using declaration that is a value. Most likely, the using
6498    // declaration itself is meant to have the 'typename' keyword.
6499    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6500                          IILoc);
6501    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6502      << Name << Ctx << FullRange;
6503    if (UnresolvedUsingValueDecl *Using
6504          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6505      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6506      Diag(Loc, diag::note_using_value_decl_missing_typename)
6507        << FixItHint::CreateInsertion(Loc, "typename ");
6508    }
6509  }
6510  // Fall through to create a dependent typename type, from which we can recover
6511  // better.
6512
6513  case LookupResult::NotFoundInCurrentInstantiation:
6514    // Okay, it's a member of an unknown instantiation.
6515    return Context.getDependentNameType(Keyword,
6516                                        QualifierLoc.getNestedNameSpecifier(),
6517                                        &II);
6518
6519  case LookupResult::Found:
6520    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6521      // We found a type. Build an ElaboratedType, since the
6522      // typename-specifier was just sugar.
6523      return Context.getElaboratedType(ETK_Typename,
6524                                       QualifierLoc.getNestedNameSpecifier(),
6525                                       Context.getTypeDeclType(Type));
6526    }
6527
6528    DiagID = diag::err_typename_nested_not_type;
6529    Referenced = Result.getFoundDecl();
6530    break;
6531
6532
6533    llvm_unreachable("unresolved using decl in non-dependent context");
6534    return QualType();
6535
6536  case LookupResult::FoundOverloaded:
6537    DiagID = diag::err_typename_nested_not_type;
6538    Referenced = *Result.begin();
6539    break;
6540
6541  case LookupResult::Ambiguous:
6542    return QualType();
6543  }
6544
6545  // If we get here, it's because name lookup did not find a
6546  // type. Emit an appropriate diagnostic and return an error.
6547  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6548                        IILoc);
6549  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6550  if (Referenced)
6551    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6552      << Name;
6553  return QualType();
6554}
6555
6556namespace {
6557  // See Sema::RebuildTypeInCurrentInstantiation
6558  class CurrentInstantiationRebuilder
6559    : public TreeTransform<CurrentInstantiationRebuilder> {
6560    SourceLocation Loc;
6561    DeclarationName Entity;
6562
6563  public:
6564    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6565
6566    CurrentInstantiationRebuilder(Sema &SemaRef,
6567                                  SourceLocation Loc,
6568                                  DeclarationName Entity)
6569    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6570      Loc(Loc), Entity(Entity) { }
6571
6572    /// \brief Determine whether the given type \p T has already been
6573    /// transformed.
6574    ///
6575    /// For the purposes of type reconstruction, a type has already been
6576    /// transformed if it is NULL or if it is not dependent.
6577    bool AlreadyTransformed(QualType T) {
6578      return T.isNull() || !T->isDependentType();
6579    }
6580
6581    /// \brief Returns the location of the entity whose type is being
6582    /// rebuilt.
6583    SourceLocation getBaseLocation() { return Loc; }
6584
6585    /// \brief Returns the name of the entity whose type is being rebuilt.
6586    DeclarationName getBaseEntity() { return Entity; }
6587
6588    /// \brief Sets the "base" location and entity when that
6589    /// information is known based on another transformation.
6590    void setBase(SourceLocation Loc, DeclarationName Entity) {
6591      this->Loc = Loc;
6592      this->Entity = Entity;
6593    }
6594  };
6595}
6596
6597/// \brief Rebuilds a type within the context of the current instantiation.
6598///
6599/// The type \p T is part of the type of an out-of-line member definition of
6600/// a class template (or class template partial specialization) that was parsed
6601/// and constructed before we entered the scope of the class template (or
6602/// partial specialization thereof). This routine will rebuild that type now
6603/// that we have entered the declarator's scope, which may produce different
6604/// canonical types, e.g.,
6605///
6606/// \code
6607/// template<typename T>
6608/// struct X {
6609///   typedef T* pointer;
6610///   pointer data();
6611/// };
6612///
6613/// template<typename T>
6614/// typename X<T>::pointer X<T>::data() { ... }
6615/// \endcode
6616///
6617/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6618/// since we do not know that we can look into X<T> when we parsed the type.
6619/// This function will rebuild the type, performing the lookup of "pointer"
6620/// in X<T> and returning an ElaboratedType whose canonical type is the same
6621/// as the canonical type of T*, allowing the return types of the out-of-line
6622/// definition and the declaration to match.
6623TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6624                                                        SourceLocation Loc,
6625                                                        DeclarationName Name) {
6626  if (!T || !T->getType()->isDependentType())
6627    return T;
6628
6629  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6630  return Rebuilder.TransformType(T);
6631}
6632
6633ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6634  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6635                                          DeclarationName());
6636  return Rebuilder.TransformExpr(E);
6637}
6638
6639bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6640  if (SS.isInvalid())
6641    return true;
6642
6643  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6644  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6645                                          DeclarationName());
6646  NestedNameSpecifierLoc Rebuilt
6647    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6648  if (!Rebuilt)
6649    return true;
6650
6651  SS.Adopt(Rebuilt);
6652  return false;
6653}
6654
6655/// \brief Produces a formatted string that describes the binding of
6656/// template parameters to template arguments.
6657std::string
6658Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6659                                      const TemplateArgumentList &Args) {
6660  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6661}
6662
6663std::string
6664Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6665                                      const TemplateArgument *Args,
6666                                      unsigned NumArgs) {
6667  llvm::SmallString<128> Str;
6668  llvm::raw_svector_ostream Out(Str);
6669
6670  if (!Params || Params->size() == 0 || NumArgs == 0)
6671    return std::string();
6672
6673  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6674    if (I >= NumArgs)
6675      break;
6676
6677    if (I == 0)
6678      Out << "[with ";
6679    else
6680      Out << ", ";
6681
6682    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6683      Out << Id->getName();
6684    } else {
6685      Out << '$' << I;
6686    }
6687
6688    Out << " = ";
6689    Args[I].print(Context.PrintingPolicy, Out);
6690  }
6691
6692  Out << ']';
6693  return Out.str();
6694}
6695
6696void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6697  if (!FD)
6698    return;
6699  FD->setLateTemplateParsed(Flag);
6700}
6701
6702bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6703  DeclContext *DC = CurContext;
6704
6705  while (DC) {
6706    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6707      const FunctionDecl *FD = RD->isLocalClass();
6708      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6709    } else if (DC->isTranslationUnit() || DC->isNamespace())
6710      return false;
6711
6712    DC = DC->getParent();
6713  }
6714  return false;
6715}
6716