SemaTemplate.cpp revision d8bba9c15230d2b1b3893e272106aa79efc50251
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 Found.clear(); 298 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 299 Found.getLookupKind(), S, &SS, 300 LookupCtx, false, 301 CTC_CXXCasts)) { 302 Found.setLookupName(Corrected.getCorrection()); 303 if (Corrected.getCorrectionDecl()) 304 Found.addDecl(Corrected.getCorrectionDecl()); 305 FilterAcceptableTemplateNames(Found); 306 if (!Found.empty()) { 307 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 308 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 309 if (LookupCtx) 310 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 311 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 312 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 313 else 314 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 315 << Name << CorrectedQuotedStr 316 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 317 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 318 Diag(Template->getLocation(), diag::note_previous_decl) 319 << CorrectedQuotedStr; 320 } 321 } else { 322 Found.setLookupName(Name); 323 } 324 } 325 326 FilterAcceptableTemplateNames(Found); 327 if (Found.empty()) { 328 if (isDependent) 329 MemberOfUnknownSpecialization = true; 330 return; 331 } 332 333 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 334 // C++ [basic.lookup.classref]p1: 335 // [...] If the lookup in the class of the object expression finds a 336 // template, the name is also looked up in the context of the entire 337 // postfix-expression and [...] 338 // 339 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 340 LookupOrdinaryName); 341 LookupName(FoundOuter, S); 342 FilterAcceptableTemplateNames(FoundOuter); 343 344 if (FoundOuter.empty()) { 345 // - if the name is not found, the name found in the class of the 346 // object expression is used, otherwise 347 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 348 // - if the name is found in the context of the entire 349 // postfix-expression and does not name a class template, the name 350 // found in the class of the object expression is used, otherwise 351 } else if (!Found.isSuppressingDiagnostics()) { 352 // - if the name found is a class template, it must refer to the same 353 // entity as the one found in the class of the object expression, 354 // otherwise the program is ill-formed. 355 if (!Found.isSingleResult() || 356 Found.getFoundDecl()->getCanonicalDecl() 357 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 358 Diag(Found.getNameLoc(), 359 diag::ext_nested_name_member_ref_lookup_ambiguous) 360 << Found.getLookupName() 361 << ObjectType; 362 Diag(Found.getRepresentativeDecl()->getLocation(), 363 diag::note_ambig_member_ref_object_type) 364 << ObjectType; 365 Diag(FoundOuter.getFoundDecl()->getLocation(), 366 diag::note_ambig_member_ref_scope); 367 368 // Recover by taking the template that we found in the object 369 // expression's type. 370 } 371 } 372 } 373} 374 375/// ActOnDependentIdExpression - Handle a dependent id-expression that 376/// was just parsed. This is only possible with an explicit scope 377/// specifier naming a dependent type. 378ExprResult 379Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 380 const DeclarationNameInfo &NameInfo, 381 bool isAddressOfOperand, 382 const TemplateArgumentListInfo *TemplateArgs) { 383 DeclContext *DC = getFunctionLevelDeclContext(); 384 385 if (!isAddressOfOperand && 386 isa<CXXMethodDecl>(DC) && 387 cast<CXXMethodDecl>(DC)->isInstance()) { 388 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 389 390 // Since the 'this' expression is synthesized, we don't need to 391 // perform the double-lookup check. 392 NamedDecl *FirstQualifierInScope = 0; 393 394 return Owned(CXXDependentScopeMemberExpr::Create(Context, 395 /*This*/ 0, ThisType, 396 /*IsArrow*/ true, 397 /*Op*/ SourceLocation(), 398 SS.getWithLocInContext(Context), 399 FirstQualifierInScope, 400 NameInfo, 401 TemplateArgs)); 402 } 403 404 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 405} 406 407ExprResult 408Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 409 const DeclarationNameInfo &NameInfo, 410 const TemplateArgumentListInfo *TemplateArgs) { 411 return Owned(DependentScopeDeclRefExpr::Create(Context, 412 SS.getWithLocInContext(Context), 413 NameInfo, 414 TemplateArgs)); 415} 416 417/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 418/// that the template parameter 'PrevDecl' is being shadowed by a new 419/// declaration at location Loc. Returns true to indicate that this is 420/// an error, and false otherwise. 421bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 422 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 423 424 // Microsoft Visual C++ permits template parameters to be shadowed. 425 if (getLangOptions().Microsoft) 426 return false; 427 428 // C++ [temp.local]p4: 429 // A template-parameter shall not be redeclared within its 430 // scope (including nested scopes). 431 Diag(Loc, diag::err_template_param_shadow) 432 << cast<NamedDecl>(PrevDecl)->getDeclName(); 433 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 434 return true; 435} 436 437/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 438/// the parameter D to reference the templated declaration and return a pointer 439/// to the template declaration. Otherwise, do nothing to D and return null. 440TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 441 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 442 D = Temp->getTemplatedDecl(); 443 return Temp; 444 } 445 return 0; 446} 447 448ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 449 SourceLocation EllipsisLoc) const { 450 assert(Kind == Template && 451 "Only template template arguments can be pack expansions here"); 452 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 453 "Template template argument pack expansion without packs"); 454 ParsedTemplateArgument Result(*this); 455 Result.EllipsisLoc = EllipsisLoc; 456 return Result; 457} 458 459static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 460 const ParsedTemplateArgument &Arg) { 461 462 switch (Arg.getKind()) { 463 case ParsedTemplateArgument::Type: { 464 TypeSourceInfo *DI; 465 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 466 if (!DI) 467 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 468 return TemplateArgumentLoc(TemplateArgument(T), DI); 469 } 470 471 case ParsedTemplateArgument::NonType: { 472 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 473 return TemplateArgumentLoc(TemplateArgument(E), E); 474 } 475 476 case ParsedTemplateArgument::Template: { 477 TemplateName Template = Arg.getAsTemplate().get(); 478 TemplateArgument TArg; 479 if (Arg.getEllipsisLoc().isValid()) 480 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 481 else 482 TArg = Template; 483 return TemplateArgumentLoc(TArg, 484 Arg.getScopeSpec().getWithLocInContext( 485 SemaRef.Context), 486 Arg.getLocation(), 487 Arg.getEllipsisLoc()); 488 } 489 } 490 491 llvm_unreachable("Unhandled parsed template argument"); 492 return TemplateArgumentLoc(); 493} 494 495/// \brief Translates template arguments as provided by the parser 496/// into template arguments used by semantic analysis. 497void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 498 TemplateArgumentListInfo &TemplateArgs) { 499 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 500 TemplateArgs.addArgument(translateTemplateArgument(*this, 501 TemplateArgsIn[I])); 502} 503 504/// ActOnTypeParameter - Called when a C++ template type parameter 505/// (e.g., "typename T") has been parsed. Typename specifies whether 506/// the keyword "typename" was used to declare the type parameter 507/// (otherwise, "class" was used), and KeyLoc is the location of the 508/// "class" or "typename" keyword. ParamName is the name of the 509/// parameter (NULL indicates an unnamed template parameter) and 510/// ParamNameLoc is the location of the parameter name (if any). 511/// If the type parameter has a default argument, it will be added 512/// later via ActOnTypeParameterDefault. 513Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 514 SourceLocation EllipsisLoc, 515 SourceLocation KeyLoc, 516 IdentifierInfo *ParamName, 517 SourceLocation ParamNameLoc, 518 unsigned Depth, unsigned Position, 519 SourceLocation EqualLoc, 520 ParsedType DefaultArg) { 521 assert(S->isTemplateParamScope() && 522 "Template type parameter not in template parameter scope!"); 523 bool Invalid = false; 524 525 if (ParamName) { 526 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 527 LookupOrdinaryName, 528 ForRedeclaration); 529 if (PrevDecl && PrevDecl->isTemplateParameter()) 530 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 531 PrevDecl); 532 } 533 534 SourceLocation Loc = ParamNameLoc; 535 if (!ParamName) 536 Loc = KeyLoc; 537 538 TemplateTypeParmDecl *Param 539 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 540 KeyLoc, Loc, Depth, Position, ParamName, 541 Typename, Ellipsis); 542 Param->setAccess(AS_public); 543 if (Invalid) 544 Param->setInvalidDecl(); 545 546 if (ParamName) { 547 // Add the template parameter into the current scope. 548 S->AddDecl(Param); 549 IdResolver.AddDecl(Param); 550 } 551 552 // C++0x [temp.param]p9: 553 // A default template-argument may be specified for any kind of 554 // template-parameter that is not a template parameter pack. 555 if (DefaultArg && Ellipsis) { 556 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 557 DefaultArg = ParsedType(); 558 } 559 560 // Handle the default argument, if provided. 561 if (DefaultArg) { 562 TypeSourceInfo *DefaultTInfo; 563 GetTypeFromParser(DefaultArg, &DefaultTInfo); 564 565 assert(DefaultTInfo && "expected source information for type"); 566 567 // Check for unexpanded parameter packs. 568 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 569 UPPC_DefaultArgument)) 570 return Param; 571 572 // Check the template argument itself. 573 if (CheckTemplateArgument(Param, DefaultTInfo)) { 574 Param->setInvalidDecl(); 575 return Param; 576 } 577 578 Param->setDefaultArgument(DefaultTInfo, false); 579 } 580 581 return Param; 582} 583 584/// \brief Check that the type of a non-type template parameter is 585/// well-formed. 586/// 587/// \returns the (possibly-promoted) parameter type if valid; 588/// otherwise, produces a diagnostic and returns a NULL type. 589QualType 590Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 591 // We don't allow variably-modified types as the type of non-type template 592 // parameters. 593 if (T->isVariablyModifiedType()) { 594 Diag(Loc, diag::err_variably_modified_nontype_template_param) 595 << T; 596 return QualType(); 597 } 598 599 // C++ [temp.param]p4: 600 // 601 // A non-type template-parameter shall have one of the following 602 // (optionally cv-qualified) types: 603 // 604 // -- integral or enumeration type, 605 if (T->isIntegralOrEnumerationType() || 606 // -- pointer to object or pointer to function, 607 T->isPointerType() || 608 // -- reference to object or reference to function, 609 T->isReferenceType() || 610 // -- pointer to member, 611 T->isMemberPointerType() || 612 // -- std::nullptr_t. 613 T->isNullPtrType() || 614 // If T is a dependent type, we can't do the check now, so we 615 // assume that it is well-formed. 616 T->isDependentType()) 617 return T; 618 // C++ [temp.param]p8: 619 // 620 // A non-type template-parameter of type "array of T" or 621 // "function returning T" is adjusted to be of type "pointer to 622 // T" or "pointer to function returning T", respectively. 623 else if (T->isArrayType()) 624 // FIXME: Keep the type prior to promotion? 625 return Context.getArrayDecayedType(T); 626 else if (T->isFunctionType()) 627 // FIXME: Keep the type prior to promotion? 628 return Context.getPointerType(T); 629 630 Diag(Loc, diag::err_template_nontype_parm_bad_type) 631 << T; 632 633 return QualType(); 634} 635 636Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 637 unsigned Depth, 638 unsigned Position, 639 SourceLocation EqualLoc, 640 Expr *Default) { 641 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 642 QualType T = TInfo->getType(); 643 644 assert(S->isTemplateParamScope() && 645 "Non-type template parameter not in template parameter scope!"); 646 bool Invalid = false; 647 648 IdentifierInfo *ParamName = D.getIdentifier(); 649 if (ParamName) { 650 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 651 LookupOrdinaryName, 652 ForRedeclaration); 653 if (PrevDecl && PrevDecl->isTemplateParameter()) 654 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 655 PrevDecl); 656 } 657 658 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 659 if (T.isNull()) { 660 T = Context.IntTy; // Recover with an 'int' type. 661 Invalid = true; 662 } 663 664 bool IsParameterPack = D.hasEllipsis(); 665 NonTypeTemplateParmDecl *Param 666 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 667 D.getSourceRange().getBegin(), 668 D.getIdentifierLoc(), 669 Depth, Position, ParamName, T, 670 IsParameterPack, TInfo); 671 Param->setAccess(AS_public); 672 673 if (Invalid) 674 Param->setInvalidDecl(); 675 676 if (D.getIdentifier()) { 677 // Add the template parameter into the current scope. 678 S->AddDecl(Param); 679 IdResolver.AddDecl(Param); 680 } 681 682 // C++0x [temp.param]p9: 683 // A default template-argument may be specified for any kind of 684 // template-parameter that is not a template parameter pack. 685 if (Default && IsParameterPack) { 686 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 687 Default = 0; 688 } 689 690 // Check the well-formedness of the default template argument, if provided. 691 if (Default) { 692 // Check for unexpanded parameter packs. 693 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 694 return Param; 695 696 TemplateArgument Converted; 697 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 698 if (DefaultRes.isInvalid()) { 699 Param->setInvalidDecl(); 700 return Param; 701 } 702 Default = DefaultRes.take(); 703 704 Param->setDefaultArgument(Default, false); 705 } 706 707 return Param; 708} 709 710/// ActOnTemplateTemplateParameter - Called when a C++ template template 711/// parameter (e.g. T in template <template <typename> class T> class array) 712/// has been parsed. S is the current scope. 713Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 714 SourceLocation TmpLoc, 715 TemplateParamsTy *Params, 716 SourceLocation EllipsisLoc, 717 IdentifierInfo *Name, 718 SourceLocation NameLoc, 719 unsigned Depth, 720 unsigned Position, 721 SourceLocation EqualLoc, 722 ParsedTemplateArgument Default) { 723 assert(S->isTemplateParamScope() && 724 "Template template parameter not in template parameter scope!"); 725 726 // Construct the parameter object. 727 bool IsParameterPack = EllipsisLoc.isValid(); 728 TemplateTemplateParmDecl *Param = 729 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 730 NameLoc.isInvalid()? TmpLoc : NameLoc, 731 Depth, Position, IsParameterPack, 732 Name, Params); 733 Param->setAccess(AS_public); 734 735 // If the template template parameter has a name, then link the identifier 736 // into the scope and lookup mechanisms. 737 if (Name) { 738 S->AddDecl(Param); 739 IdResolver.AddDecl(Param); 740 } 741 742 if (Params->size() == 0) { 743 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 744 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 745 Param->setInvalidDecl(); 746 } 747 748 // C++0x [temp.param]p9: 749 // A default template-argument may be specified for any kind of 750 // template-parameter that is not a template parameter pack. 751 if (IsParameterPack && !Default.isInvalid()) { 752 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 753 Default = ParsedTemplateArgument(); 754 } 755 756 if (!Default.isInvalid()) { 757 // Check only that we have a template template argument. We don't want to 758 // try to check well-formedness now, because our template template parameter 759 // might have dependent types in its template parameters, which we wouldn't 760 // be able to match now. 761 // 762 // If none of the template template parameter's template arguments mention 763 // other template parameters, we could actually perform more checking here. 764 // However, it isn't worth doing. 765 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 766 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 767 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 768 << DefaultArg.getSourceRange(); 769 return Param; 770 } 771 772 // Check for unexpanded parameter packs. 773 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 774 DefaultArg.getArgument().getAsTemplate(), 775 UPPC_DefaultArgument)) 776 return Param; 777 778 Param->setDefaultArgument(DefaultArg, false); 779 } 780 781 return Param; 782} 783 784/// ActOnTemplateParameterList - Builds a TemplateParameterList that 785/// contains the template parameters in Params/NumParams. 786Sema::TemplateParamsTy * 787Sema::ActOnTemplateParameterList(unsigned Depth, 788 SourceLocation ExportLoc, 789 SourceLocation TemplateLoc, 790 SourceLocation LAngleLoc, 791 Decl **Params, unsigned NumParams, 792 SourceLocation RAngleLoc) { 793 if (ExportLoc.isValid()) 794 Diag(ExportLoc, diag::warn_template_export_unsupported); 795 796 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 797 (NamedDecl**)Params, NumParams, 798 RAngleLoc); 799} 800 801static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 802 if (SS.isSet()) 803 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 804} 805 806DeclResult 807Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 808 SourceLocation KWLoc, CXXScopeSpec &SS, 809 IdentifierInfo *Name, SourceLocation NameLoc, 810 AttributeList *Attr, 811 TemplateParameterList *TemplateParams, 812 AccessSpecifier AS, 813 unsigned NumOuterTemplateParamLists, 814 TemplateParameterList** OuterTemplateParamLists) { 815 assert(TemplateParams && TemplateParams->size() > 0 && 816 "No template parameters"); 817 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 818 bool Invalid = false; 819 820 // Check that we can declare a template here. 821 if (CheckTemplateDeclScope(S, TemplateParams)) 822 return true; 823 824 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 825 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 826 827 // There is no such thing as an unnamed class template. 828 if (!Name) { 829 Diag(KWLoc, diag::err_template_unnamed_class); 830 return true; 831 } 832 833 // Find any previous declaration with this name. 834 DeclContext *SemanticContext; 835 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 836 ForRedeclaration); 837 if (SS.isNotEmpty() && !SS.isInvalid()) { 838 SemanticContext = computeDeclContext(SS, true); 839 if (!SemanticContext) { 840 // FIXME: Produce a reasonable diagnostic here 841 return true; 842 } 843 844 if (RequireCompleteDeclContext(SS, SemanticContext)) 845 return true; 846 847 LookupQualifiedName(Previous, SemanticContext); 848 } else { 849 SemanticContext = CurContext; 850 LookupName(Previous, S); 851 } 852 853 if (Previous.isAmbiguous()) 854 return true; 855 856 NamedDecl *PrevDecl = 0; 857 if (Previous.begin() != Previous.end()) 858 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 859 860 // If there is a previous declaration with the same name, check 861 // whether this is a valid redeclaration. 862 ClassTemplateDecl *PrevClassTemplate 863 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 864 865 // We may have found the injected-class-name of a class template, 866 // class template partial specialization, or class template specialization. 867 // In these cases, grab the template that is being defined or specialized. 868 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 869 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 870 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 871 PrevClassTemplate 872 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 873 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 874 PrevClassTemplate 875 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 876 ->getSpecializedTemplate(); 877 } 878 } 879 880 if (TUK == TUK_Friend) { 881 // C++ [namespace.memdef]p3: 882 // [...] When looking for a prior declaration of a class or a function 883 // declared as a friend, and when the name of the friend class or 884 // function is neither a qualified name nor a template-id, scopes outside 885 // the innermost enclosing namespace scope are not considered. 886 if (!SS.isSet()) { 887 DeclContext *OutermostContext = CurContext; 888 while (!OutermostContext->isFileContext()) 889 OutermostContext = OutermostContext->getLookupParent(); 890 891 if (PrevDecl && 892 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 893 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 894 SemanticContext = PrevDecl->getDeclContext(); 895 } else { 896 // Declarations in outer scopes don't matter. However, the outermost 897 // context we computed is the semantic context for our new 898 // declaration. 899 PrevDecl = PrevClassTemplate = 0; 900 SemanticContext = OutermostContext; 901 } 902 } 903 904 if (CurContext->isDependentContext()) { 905 // If this is a dependent context, we don't want to link the friend 906 // class template to the template in scope, because that would perform 907 // checking of the template parameter lists that can't be performed 908 // until the outer context is instantiated. 909 PrevDecl = PrevClassTemplate = 0; 910 } 911 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 912 PrevDecl = PrevClassTemplate = 0; 913 914 if (PrevClassTemplate) { 915 // Ensure that the template parameter lists are compatible. 916 if (!TemplateParameterListsAreEqual(TemplateParams, 917 PrevClassTemplate->getTemplateParameters(), 918 /*Complain=*/true, 919 TPL_TemplateMatch)) 920 return true; 921 922 // C++ [temp.class]p4: 923 // In a redeclaration, partial specialization, explicit 924 // specialization or explicit instantiation of a class template, 925 // the class-key shall agree in kind with the original class 926 // template declaration (7.1.5.3). 927 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 928 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 929 TUK == TUK_Definition, KWLoc, *Name)) { 930 Diag(KWLoc, diag::err_use_with_wrong_tag) 931 << Name 932 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 933 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 934 Kind = PrevRecordDecl->getTagKind(); 935 } 936 937 // Check for redefinition of this class template. 938 if (TUK == TUK_Definition) { 939 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 940 Diag(NameLoc, diag::err_redefinition) << Name; 941 Diag(Def->getLocation(), diag::note_previous_definition); 942 // FIXME: Would it make sense to try to "forget" the previous 943 // definition, as part of error recovery? 944 return true; 945 } 946 } 947 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 948 // Maybe we will complain about the shadowed template parameter. 949 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 950 // Just pretend that we didn't see the previous declaration. 951 PrevDecl = 0; 952 } else if (PrevDecl) { 953 // C++ [temp]p5: 954 // A class template shall not have the same name as any other 955 // template, class, function, object, enumeration, enumerator, 956 // namespace, or type in the same scope (3.3), except as specified 957 // in (14.5.4). 958 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 959 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 960 return true; 961 } 962 963 // Check the template parameter list of this declaration, possibly 964 // merging in the template parameter list from the previous class 965 // template declaration. 966 if (CheckTemplateParameterList(TemplateParams, 967 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 968 (SS.isSet() && SemanticContext && 969 SemanticContext->isRecord() && 970 SemanticContext->isDependentContext()) 971 ? TPC_ClassTemplateMember 972 : TPC_ClassTemplate)) 973 Invalid = true; 974 975 if (SS.isSet()) { 976 // If the name of the template was qualified, we must be defining the 977 // template out-of-line. 978 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 979 !(TUK == TUK_Friend && CurContext->isDependentContext())) 980 Diag(NameLoc, diag::err_member_def_does_not_match) 981 << Name << SemanticContext << SS.getRange(); 982 } 983 984 CXXRecordDecl *NewClass = 985 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 986 PrevClassTemplate? 987 PrevClassTemplate->getTemplatedDecl() : 0, 988 /*DelayTypeCreation=*/true); 989 SetNestedNameSpecifier(NewClass, SS); 990 if (NumOuterTemplateParamLists > 0) 991 NewClass->setTemplateParameterListsInfo(Context, 992 NumOuterTemplateParamLists, 993 OuterTemplateParamLists); 994 995 ClassTemplateDecl *NewTemplate 996 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 997 DeclarationName(Name), TemplateParams, 998 NewClass, PrevClassTemplate); 999 NewClass->setDescribedClassTemplate(NewTemplate); 1000 1001 // Build the type for the class template declaration now. 1002 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1003 T = Context.getInjectedClassNameType(NewClass, T); 1004 assert(T->isDependentType() && "Class template type is not dependent?"); 1005 (void)T; 1006 1007 // If we are providing an explicit specialization of a member that is a 1008 // class template, make a note of that. 1009 if (PrevClassTemplate && 1010 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1011 PrevClassTemplate->setMemberSpecialization(); 1012 1013 // Set the access specifier. 1014 if (!Invalid && TUK != TUK_Friend) 1015 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1016 1017 // Set the lexical context of these templates 1018 NewClass->setLexicalDeclContext(CurContext); 1019 NewTemplate->setLexicalDeclContext(CurContext); 1020 1021 if (TUK == TUK_Definition) 1022 NewClass->startDefinition(); 1023 1024 if (Attr) 1025 ProcessDeclAttributeList(S, NewClass, Attr); 1026 1027 if (TUK != TUK_Friend) 1028 PushOnScopeChains(NewTemplate, S); 1029 else { 1030 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1031 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1032 NewClass->setAccess(PrevClassTemplate->getAccess()); 1033 } 1034 1035 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1036 PrevClassTemplate != NULL); 1037 1038 // Friend templates are visible in fairly strange ways. 1039 if (!CurContext->isDependentContext()) { 1040 DeclContext *DC = SemanticContext->getRedeclContext(); 1041 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1042 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1043 PushOnScopeChains(NewTemplate, EnclosingScope, 1044 /* AddToContext = */ false); 1045 } 1046 1047 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1048 NewClass->getLocation(), 1049 NewTemplate, 1050 /*FIXME:*/NewClass->getLocation()); 1051 Friend->setAccess(AS_public); 1052 CurContext->addDecl(Friend); 1053 } 1054 1055 if (Invalid) { 1056 NewTemplate->setInvalidDecl(); 1057 NewClass->setInvalidDecl(); 1058 } 1059 return NewTemplate; 1060} 1061 1062/// \brief Diagnose the presence of a default template argument on a 1063/// template parameter, which is ill-formed in certain contexts. 1064/// 1065/// \returns true if the default template argument should be dropped. 1066static bool DiagnoseDefaultTemplateArgument(Sema &S, 1067 Sema::TemplateParamListContext TPC, 1068 SourceLocation ParamLoc, 1069 SourceRange DefArgRange) { 1070 switch (TPC) { 1071 case Sema::TPC_ClassTemplate: 1072 case Sema::TPC_TypeAliasTemplate: 1073 return false; 1074 1075 case Sema::TPC_FunctionTemplate: 1076 case Sema::TPC_FriendFunctionTemplateDefinition: 1077 // C++ [temp.param]p9: 1078 // A default template-argument shall not be specified in a 1079 // function template declaration or a function template 1080 // definition [...] 1081 // If a friend function template declaration specifies a default 1082 // template-argument, that declaration shall be a definition and shall be 1083 // the only declaration of the function template in the translation unit. 1084 // (C++98/03 doesn't have this wording; see DR226). 1085 if (!S.getLangOptions().CPlusPlus0x) 1086 S.Diag(ParamLoc, 1087 diag::ext_template_parameter_default_in_function_template) 1088 << DefArgRange; 1089 return false; 1090 1091 case Sema::TPC_ClassTemplateMember: 1092 // C++0x [temp.param]p9: 1093 // A default template-argument shall not be specified in the 1094 // template-parameter-lists of the definition of a member of a 1095 // class template that appears outside of the member's class. 1096 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1097 << DefArgRange; 1098 return true; 1099 1100 case Sema::TPC_FriendFunctionTemplate: 1101 // C++ [temp.param]p9: 1102 // A default template-argument shall not be specified in a 1103 // friend template declaration. 1104 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1105 << DefArgRange; 1106 return true; 1107 1108 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1109 // for friend function templates if there is only a single 1110 // declaration (and it is a definition). Strange! 1111 } 1112 1113 return false; 1114} 1115 1116/// \brief Check for unexpanded parameter packs within the template parameters 1117/// of a template template parameter, recursively. 1118static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1119 TemplateTemplateParmDecl *TTP) { 1120 TemplateParameterList *Params = TTP->getTemplateParameters(); 1121 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1122 NamedDecl *P = Params->getParam(I); 1123 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1124 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1125 NTTP->getTypeSourceInfo(), 1126 Sema::UPPC_NonTypeTemplateParameterType)) 1127 return true; 1128 1129 continue; 1130 } 1131 1132 if (TemplateTemplateParmDecl *InnerTTP 1133 = dyn_cast<TemplateTemplateParmDecl>(P)) 1134 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1135 return true; 1136 } 1137 1138 return false; 1139} 1140 1141/// \brief Checks the validity of a template parameter list, possibly 1142/// considering the template parameter list from a previous 1143/// declaration. 1144/// 1145/// If an "old" template parameter list is provided, it must be 1146/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1147/// template parameter list. 1148/// 1149/// \param NewParams Template parameter list for a new template 1150/// declaration. This template parameter list will be updated with any 1151/// default arguments that are carried through from the previous 1152/// template parameter list. 1153/// 1154/// \param OldParams If provided, template parameter list from a 1155/// previous declaration of the same template. Default template 1156/// arguments will be merged from the old template parameter list to 1157/// the new template parameter list. 1158/// 1159/// \param TPC Describes the context in which we are checking the given 1160/// template parameter list. 1161/// 1162/// \returns true if an error occurred, false otherwise. 1163bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1164 TemplateParameterList *OldParams, 1165 TemplateParamListContext TPC) { 1166 bool Invalid = false; 1167 1168 // C++ [temp.param]p10: 1169 // The set of default template-arguments available for use with a 1170 // template declaration or definition is obtained by merging the 1171 // default arguments from the definition (if in scope) and all 1172 // declarations in scope in the same way default function 1173 // arguments are (8.3.6). 1174 bool SawDefaultArgument = false; 1175 SourceLocation PreviousDefaultArgLoc; 1176 1177 bool SawParameterPack = false; 1178 SourceLocation ParameterPackLoc; 1179 1180 // Dummy initialization to avoid warnings. 1181 TemplateParameterList::iterator OldParam = NewParams->end(); 1182 if (OldParams) 1183 OldParam = OldParams->begin(); 1184 1185 bool RemoveDefaultArguments = false; 1186 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1187 NewParamEnd = NewParams->end(); 1188 NewParam != NewParamEnd; ++NewParam) { 1189 // Variables used to diagnose redundant default arguments 1190 bool RedundantDefaultArg = false; 1191 SourceLocation OldDefaultLoc; 1192 SourceLocation NewDefaultLoc; 1193 1194 // Variables used to diagnose missing default arguments 1195 bool MissingDefaultArg = false; 1196 1197 // C++0x [temp.param]p11: 1198 // If a template parameter of a primary class template or alias template 1199 // is a template parameter pack, it shall be the last template parameter. 1200 if (SawParameterPack && 1201 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1202 Diag(ParameterPackLoc, 1203 diag::err_template_param_pack_must_be_last_template_parameter); 1204 Invalid = true; 1205 } 1206 1207 if (TemplateTypeParmDecl *NewTypeParm 1208 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1209 // Check the presence of a default argument here. 1210 if (NewTypeParm->hasDefaultArgument() && 1211 DiagnoseDefaultTemplateArgument(*this, TPC, 1212 NewTypeParm->getLocation(), 1213 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1214 .getSourceRange())) 1215 NewTypeParm->removeDefaultArgument(); 1216 1217 // Merge default arguments for template type parameters. 1218 TemplateTypeParmDecl *OldTypeParm 1219 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1220 1221 if (NewTypeParm->isParameterPack()) { 1222 assert(!NewTypeParm->hasDefaultArgument() && 1223 "Parameter packs can't have a default argument!"); 1224 SawParameterPack = true; 1225 ParameterPackLoc = NewTypeParm->getLocation(); 1226 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1227 NewTypeParm->hasDefaultArgument()) { 1228 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1229 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1230 SawDefaultArgument = true; 1231 RedundantDefaultArg = true; 1232 PreviousDefaultArgLoc = NewDefaultLoc; 1233 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1234 // Merge the default argument from the old declaration to the 1235 // new declaration. 1236 SawDefaultArgument = true; 1237 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1238 true); 1239 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1240 } else if (NewTypeParm->hasDefaultArgument()) { 1241 SawDefaultArgument = true; 1242 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1243 } else if (SawDefaultArgument) 1244 MissingDefaultArg = true; 1245 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1246 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1247 // Check for unexpanded parameter packs. 1248 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1249 NewNonTypeParm->getTypeSourceInfo(), 1250 UPPC_NonTypeTemplateParameterType)) { 1251 Invalid = true; 1252 continue; 1253 } 1254 1255 // Check the presence of a default argument here. 1256 if (NewNonTypeParm->hasDefaultArgument() && 1257 DiagnoseDefaultTemplateArgument(*this, TPC, 1258 NewNonTypeParm->getLocation(), 1259 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1260 NewNonTypeParm->removeDefaultArgument(); 1261 } 1262 1263 // Merge default arguments for non-type template parameters 1264 NonTypeTemplateParmDecl *OldNonTypeParm 1265 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1266 if (NewNonTypeParm->isParameterPack()) { 1267 assert(!NewNonTypeParm->hasDefaultArgument() && 1268 "Parameter packs can't have a default argument!"); 1269 SawParameterPack = true; 1270 ParameterPackLoc = NewNonTypeParm->getLocation(); 1271 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1272 NewNonTypeParm->hasDefaultArgument()) { 1273 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1274 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1275 SawDefaultArgument = true; 1276 RedundantDefaultArg = true; 1277 PreviousDefaultArgLoc = NewDefaultLoc; 1278 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1279 // Merge the default argument from the old declaration to the 1280 // new declaration. 1281 SawDefaultArgument = true; 1282 // FIXME: We need to create a new kind of "default argument" 1283 // expression that points to a previous non-type template 1284 // parameter. 1285 NewNonTypeParm->setDefaultArgument( 1286 OldNonTypeParm->getDefaultArgument(), 1287 /*Inherited=*/ true); 1288 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1289 } else if (NewNonTypeParm->hasDefaultArgument()) { 1290 SawDefaultArgument = true; 1291 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1292 } else if (SawDefaultArgument) 1293 MissingDefaultArg = true; 1294 } else { 1295 // Check the presence of a default argument here. 1296 TemplateTemplateParmDecl *NewTemplateParm 1297 = cast<TemplateTemplateParmDecl>(*NewParam); 1298 1299 // Check for unexpanded parameter packs, recursively. 1300 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1301 Invalid = true; 1302 continue; 1303 } 1304 1305 if (NewTemplateParm->hasDefaultArgument() && 1306 DiagnoseDefaultTemplateArgument(*this, TPC, 1307 NewTemplateParm->getLocation(), 1308 NewTemplateParm->getDefaultArgument().getSourceRange())) 1309 NewTemplateParm->removeDefaultArgument(); 1310 1311 // Merge default arguments for template template parameters 1312 TemplateTemplateParmDecl *OldTemplateParm 1313 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1314 if (NewTemplateParm->isParameterPack()) { 1315 assert(!NewTemplateParm->hasDefaultArgument() && 1316 "Parameter packs can't have a default argument!"); 1317 SawParameterPack = true; 1318 ParameterPackLoc = NewTemplateParm->getLocation(); 1319 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1320 NewTemplateParm->hasDefaultArgument()) { 1321 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1322 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1323 SawDefaultArgument = true; 1324 RedundantDefaultArg = true; 1325 PreviousDefaultArgLoc = NewDefaultLoc; 1326 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1327 // Merge the default argument from the old declaration to the 1328 // new declaration. 1329 SawDefaultArgument = true; 1330 // FIXME: We need to create a new kind of "default argument" expression 1331 // that points to a previous template template parameter. 1332 NewTemplateParm->setDefaultArgument( 1333 OldTemplateParm->getDefaultArgument(), 1334 /*Inherited=*/ true); 1335 PreviousDefaultArgLoc 1336 = OldTemplateParm->getDefaultArgument().getLocation(); 1337 } else if (NewTemplateParm->hasDefaultArgument()) { 1338 SawDefaultArgument = true; 1339 PreviousDefaultArgLoc 1340 = NewTemplateParm->getDefaultArgument().getLocation(); 1341 } else if (SawDefaultArgument) 1342 MissingDefaultArg = true; 1343 } 1344 1345 if (RedundantDefaultArg) { 1346 // C++ [temp.param]p12: 1347 // A template-parameter shall not be given default arguments 1348 // by two different declarations in the same scope. 1349 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1350 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1351 Invalid = true; 1352 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1353 // C++ [temp.param]p11: 1354 // If a template-parameter of a class template has a default 1355 // template-argument, each subsequent template-parameter shall either 1356 // have a default template-argument supplied or be a template parameter 1357 // pack. 1358 Diag((*NewParam)->getLocation(), 1359 diag::err_template_param_default_arg_missing); 1360 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1361 Invalid = true; 1362 RemoveDefaultArguments = true; 1363 } 1364 1365 // If we have an old template parameter list that we're merging 1366 // in, move on to the next parameter. 1367 if (OldParams) 1368 ++OldParam; 1369 } 1370 1371 // We were missing some default arguments at the end of the list, so remove 1372 // all of the default arguments. 1373 if (RemoveDefaultArguments) { 1374 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1375 NewParamEnd = NewParams->end(); 1376 NewParam != NewParamEnd; ++NewParam) { 1377 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1378 TTP->removeDefaultArgument(); 1379 else if (NonTypeTemplateParmDecl *NTTP 1380 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1381 NTTP->removeDefaultArgument(); 1382 else 1383 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1384 } 1385 } 1386 1387 return Invalid; 1388} 1389 1390namespace { 1391 1392/// A class which looks for a use of a certain level of template 1393/// parameter. 1394struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1395 typedef RecursiveASTVisitor<DependencyChecker> super; 1396 1397 unsigned Depth; 1398 bool Match; 1399 1400 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1401 NamedDecl *ND = Params->getParam(0); 1402 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1403 Depth = PD->getDepth(); 1404 } else if (NonTypeTemplateParmDecl *PD = 1405 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1406 Depth = PD->getDepth(); 1407 } else { 1408 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1409 } 1410 } 1411 1412 bool Matches(unsigned ParmDepth) { 1413 if (ParmDepth >= Depth) { 1414 Match = true; 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1421 return !Matches(T->getDepth()); 1422 } 1423 1424 bool TraverseTemplateName(TemplateName N) { 1425 if (TemplateTemplateParmDecl *PD = 1426 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1427 if (Matches(PD->getDepth())) return false; 1428 return super::TraverseTemplateName(N); 1429 } 1430 1431 bool VisitDeclRefExpr(DeclRefExpr *E) { 1432 if (NonTypeTemplateParmDecl *PD = 1433 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1434 if (PD->getDepth() == Depth) { 1435 Match = true; 1436 return false; 1437 } 1438 } 1439 return super::VisitDeclRefExpr(E); 1440 } 1441 1442 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1443 return TraverseType(T->getInjectedSpecializationType()); 1444 } 1445}; 1446} 1447 1448/// Determines whether a given type depends on the given parameter 1449/// list. 1450static bool 1451DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1452 DependencyChecker Checker(Params); 1453 Checker.TraverseType(T); 1454 return Checker.Match; 1455} 1456 1457// Find the source range corresponding to the named type in the given 1458// nested-name-specifier, if any. 1459static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1460 QualType T, 1461 const CXXScopeSpec &SS) { 1462 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1463 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1464 if (const Type *CurType = NNS->getAsType()) { 1465 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1466 return NNSLoc.getTypeLoc().getSourceRange(); 1467 } else 1468 break; 1469 1470 NNSLoc = NNSLoc.getPrefix(); 1471 } 1472 1473 return SourceRange(); 1474} 1475 1476/// \brief Match the given template parameter lists to the given scope 1477/// specifier, returning the template parameter list that applies to the 1478/// name. 1479/// 1480/// \param DeclStartLoc the start of the declaration that has a scope 1481/// specifier or a template parameter list. 1482/// 1483/// \param DeclLoc The location of the declaration itself. 1484/// 1485/// \param SS the scope specifier that will be matched to the given template 1486/// parameter lists. This scope specifier precedes a qualified name that is 1487/// being declared. 1488/// 1489/// \param ParamLists the template parameter lists, from the outermost to the 1490/// innermost template parameter lists. 1491/// 1492/// \param NumParamLists the number of template parameter lists in ParamLists. 1493/// 1494/// \param IsFriend Whether to apply the slightly different rules for 1495/// matching template parameters to scope specifiers in friend 1496/// declarations. 1497/// 1498/// \param IsExplicitSpecialization will be set true if the entity being 1499/// declared is an explicit specialization, false otherwise. 1500/// 1501/// \returns the template parameter list, if any, that corresponds to the 1502/// name that is preceded by the scope specifier @p SS. This template 1503/// parameter list may have template parameters (if we're declaring a 1504/// template) or may have no template parameters (if we're declaring a 1505/// template specialization), or may be NULL (if what we're declaring isn't 1506/// itself a template). 1507TemplateParameterList * 1508Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1509 SourceLocation DeclLoc, 1510 const CXXScopeSpec &SS, 1511 TemplateParameterList **ParamLists, 1512 unsigned NumParamLists, 1513 bool IsFriend, 1514 bool &IsExplicitSpecialization, 1515 bool &Invalid) { 1516 IsExplicitSpecialization = false; 1517 Invalid = false; 1518 1519 // The sequence of nested types to which we will match up the template 1520 // parameter lists. We first build this list by starting with the type named 1521 // by the nested-name-specifier and walking out until we run out of types. 1522 llvm::SmallVector<QualType, 4> NestedTypes; 1523 QualType T; 1524 if (SS.getScopeRep()) { 1525 if (CXXRecordDecl *Record 1526 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1527 T = Context.getTypeDeclType(Record); 1528 else 1529 T = QualType(SS.getScopeRep()->getAsType(), 0); 1530 } 1531 1532 // If we found an explicit specialization that prevents us from needing 1533 // 'template<>' headers, this will be set to the location of that 1534 // explicit specialization. 1535 SourceLocation ExplicitSpecLoc; 1536 1537 while (!T.isNull()) { 1538 NestedTypes.push_back(T); 1539 1540 // Retrieve the parent of a record type. 1541 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1542 // If this type is an explicit specialization, we're done. 1543 if (ClassTemplateSpecializationDecl *Spec 1544 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1545 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1546 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1547 ExplicitSpecLoc = Spec->getLocation(); 1548 break; 1549 } 1550 } else if (Record->getTemplateSpecializationKind() 1551 == TSK_ExplicitSpecialization) { 1552 ExplicitSpecLoc = Record->getLocation(); 1553 break; 1554 } 1555 1556 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1557 T = Context.getTypeDeclType(Parent); 1558 else 1559 T = QualType(); 1560 continue; 1561 } 1562 1563 if (const TemplateSpecializationType *TST 1564 = T->getAs<TemplateSpecializationType>()) { 1565 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1566 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1567 T = Context.getTypeDeclType(Parent); 1568 else 1569 T = QualType(); 1570 continue; 1571 } 1572 } 1573 1574 // Look one step prior in a dependent template specialization type. 1575 if (const DependentTemplateSpecializationType *DependentTST 1576 = T->getAs<DependentTemplateSpecializationType>()) { 1577 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1578 T = QualType(NNS->getAsType(), 0); 1579 else 1580 T = QualType(); 1581 continue; 1582 } 1583 1584 // Look one step prior in a dependent name type. 1585 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1586 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1587 T = QualType(NNS->getAsType(), 0); 1588 else 1589 T = QualType(); 1590 continue; 1591 } 1592 1593 // Retrieve the parent of an enumeration type. 1594 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1595 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1596 // check here. 1597 EnumDecl *Enum = EnumT->getDecl(); 1598 1599 // Get to the parent type. 1600 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1601 T = Context.getTypeDeclType(Parent); 1602 else 1603 T = QualType(); 1604 continue; 1605 } 1606 1607 T = QualType(); 1608 } 1609 // Reverse the nested types list, since we want to traverse from the outermost 1610 // to the innermost while checking template-parameter-lists. 1611 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1612 1613 // C++0x [temp.expl.spec]p17: 1614 // A member or a member template may be nested within many 1615 // enclosing class templates. In an explicit specialization for 1616 // such a member, the member declaration shall be preceded by a 1617 // template<> for each enclosing class template that is 1618 // explicitly specialized. 1619 bool SawNonEmptyTemplateParameterList = false; 1620 unsigned ParamIdx = 0; 1621 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1622 ++TypeIdx) { 1623 T = NestedTypes[TypeIdx]; 1624 1625 // Whether we expect a 'template<>' header. 1626 bool NeedEmptyTemplateHeader = false; 1627 1628 // Whether we expect a template header with parameters. 1629 bool NeedNonemptyTemplateHeader = false; 1630 1631 // For a dependent type, the set of template parameters that we 1632 // expect to see. 1633 TemplateParameterList *ExpectedTemplateParams = 0; 1634 1635 // C++0x [temp.expl.spec]p15: 1636 // A member or a member template may be nested within many enclosing 1637 // class templates. In an explicit specialization for such a member, the 1638 // member declaration shall be preceded by a template<> for each 1639 // enclosing class template that is explicitly specialized. 1640 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1641 if (ClassTemplatePartialSpecializationDecl *Partial 1642 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1643 ExpectedTemplateParams = Partial->getTemplateParameters(); 1644 NeedNonemptyTemplateHeader = true; 1645 } else if (Record->isDependentType()) { 1646 if (Record->getDescribedClassTemplate()) { 1647 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1648 ->getTemplateParameters(); 1649 NeedNonemptyTemplateHeader = true; 1650 } 1651 } else if (ClassTemplateSpecializationDecl *Spec 1652 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1653 // C++0x [temp.expl.spec]p4: 1654 // Members of an explicitly specialized class template are defined 1655 // in the same manner as members of normal classes, and not using 1656 // the template<> syntax. 1657 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1658 NeedEmptyTemplateHeader = true; 1659 else 1660 continue; 1661 } else if (Record->getTemplateSpecializationKind()) { 1662 if (Record->getTemplateSpecializationKind() 1663 != TSK_ExplicitSpecialization && 1664 TypeIdx == NumTypes - 1) 1665 IsExplicitSpecialization = true; 1666 1667 continue; 1668 } 1669 } else if (const TemplateSpecializationType *TST 1670 = T->getAs<TemplateSpecializationType>()) { 1671 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1672 ExpectedTemplateParams = Template->getTemplateParameters(); 1673 NeedNonemptyTemplateHeader = true; 1674 } 1675 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1676 // FIXME: We actually could/should check the template arguments here 1677 // against the corresponding template parameter list. 1678 NeedNonemptyTemplateHeader = false; 1679 } 1680 1681 // C++ [temp.expl.spec]p16: 1682 // In an explicit specialization declaration for a member of a class 1683 // template or a member template that ap- pears in namespace scope, the 1684 // member template and some of its enclosing class templates may remain 1685 // unspecialized, except that the declaration shall not explicitly 1686 // specialize a class member template if its en- closing class templates 1687 // are not explicitly specialized as well. 1688 if (ParamIdx < NumParamLists) { 1689 if (ParamLists[ParamIdx]->size() == 0) { 1690 if (SawNonEmptyTemplateParameterList) { 1691 Diag(DeclLoc, diag::err_specialize_member_of_template) 1692 << ParamLists[ParamIdx]->getSourceRange(); 1693 Invalid = true; 1694 IsExplicitSpecialization = false; 1695 return 0; 1696 } 1697 } else 1698 SawNonEmptyTemplateParameterList = true; 1699 } 1700 1701 if (NeedEmptyTemplateHeader) { 1702 // If we're on the last of the types, and we need a 'template<>' header 1703 // here, then it's an explicit specialization. 1704 if (TypeIdx == NumTypes - 1) 1705 IsExplicitSpecialization = true; 1706 1707 if (ParamIdx < NumParamLists) { 1708 if (ParamLists[ParamIdx]->size() > 0) { 1709 // The header has template parameters when it shouldn't. Complain. 1710 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1711 diag::err_template_param_list_matches_nontemplate) 1712 << T 1713 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1714 ParamLists[ParamIdx]->getRAngleLoc()) 1715 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1716 Invalid = true; 1717 return 0; 1718 } 1719 1720 // Consume this template header. 1721 ++ParamIdx; 1722 continue; 1723 } 1724 1725 if (!IsFriend) { 1726 // We don't have a template header, but we should. 1727 SourceLocation ExpectedTemplateLoc; 1728 if (NumParamLists > 0) 1729 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1730 else 1731 ExpectedTemplateLoc = DeclStartLoc; 1732 1733 Diag(DeclLoc, diag::err_template_spec_needs_header) 1734 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1735 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1736 } 1737 1738 continue; 1739 } 1740 1741 if (NeedNonemptyTemplateHeader) { 1742 // In friend declarations we can have template-ids which don't 1743 // depend on the corresponding template parameter lists. But 1744 // assume that empty parameter lists are supposed to match this 1745 // template-id. 1746 if (IsFriend && T->isDependentType()) { 1747 if (ParamIdx < NumParamLists && 1748 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1749 ExpectedTemplateParams = 0; 1750 else 1751 continue; 1752 } 1753 1754 if (ParamIdx < NumParamLists) { 1755 // Check the template parameter list, if we can. 1756 if (ExpectedTemplateParams && 1757 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1758 ExpectedTemplateParams, 1759 true, TPL_TemplateMatch)) 1760 Invalid = true; 1761 1762 if (!Invalid && 1763 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1764 TPC_ClassTemplateMember)) 1765 Invalid = true; 1766 1767 ++ParamIdx; 1768 continue; 1769 } 1770 1771 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1772 << T 1773 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1774 Invalid = true; 1775 continue; 1776 } 1777 } 1778 1779 // If there were at least as many template-ids as there were template 1780 // parameter lists, then there are no template parameter lists remaining for 1781 // the declaration itself. 1782 if (ParamIdx >= NumParamLists) 1783 return 0; 1784 1785 // If there were too many template parameter lists, complain about that now. 1786 if (ParamIdx < NumParamLists - 1) { 1787 bool HasAnyExplicitSpecHeader = false; 1788 bool AllExplicitSpecHeaders = true; 1789 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1790 if (ParamLists[I]->size() == 0) 1791 HasAnyExplicitSpecHeader = true; 1792 else 1793 AllExplicitSpecHeaders = false; 1794 } 1795 1796 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1797 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1798 : diag::err_template_spec_extra_headers) 1799 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1800 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1801 1802 // If there was a specialization somewhere, such that 'template<>' is 1803 // not required, and there were any 'template<>' headers, note where the 1804 // specialization occurred. 1805 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1806 Diag(ExplicitSpecLoc, 1807 diag::note_explicit_template_spec_does_not_need_header) 1808 << NestedTypes.back(); 1809 1810 // We have a template parameter list with no corresponding scope, which 1811 // means that the resulting template declaration can't be instantiated 1812 // properly (we'll end up with dependent nodes when we shouldn't). 1813 if (!AllExplicitSpecHeaders) 1814 Invalid = true; 1815 } 1816 1817 // C++ [temp.expl.spec]p16: 1818 // In an explicit specialization declaration for a member of a class 1819 // template or a member template that ap- pears in namespace scope, the 1820 // member template and some of its enclosing class templates may remain 1821 // unspecialized, except that the declaration shall not explicitly 1822 // specialize a class member template if its en- closing class templates 1823 // are not explicitly specialized as well. 1824 if (ParamLists[NumParamLists - 1]->size() == 0 && 1825 SawNonEmptyTemplateParameterList) { 1826 Diag(DeclLoc, diag::err_specialize_member_of_template) 1827 << ParamLists[ParamIdx]->getSourceRange(); 1828 Invalid = true; 1829 IsExplicitSpecialization = false; 1830 return 0; 1831 } 1832 1833 // Return the last template parameter list, which corresponds to the 1834 // entity being declared. 1835 return ParamLists[NumParamLists - 1]; 1836} 1837 1838void Sema::NoteAllFoundTemplates(TemplateName Name) { 1839 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1840 Diag(Template->getLocation(), diag::note_template_declared_here) 1841 << (isa<FunctionTemplateDecl>(Template)? 0 1842 : isa<ClassTemplateDecl>(Template)? 1 1843 : isa<TypeAliasTemplateDecl>(Template)? 2 1844 : 3) 1845 << Template->getDeclName(); 1846 return; 1847 } 1848 1849 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1850 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1851 IEnd = OST->end(); 1852 I != IEnd; ++I) 1853 Diag((*I)->getLocation(), diag::note_template_declared_here) 1854 << 0 << (*I)->getDeclName(); 1855 1856 return; 1857 } 1858} 1859 1860 1861QualType Sema::CheckTemplateIdType(TemplateName Name, 1862 SourceLocation TemplateLoc, 1863 TemplateArgumentListInfo &TemplateArgs) { 1864 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 1865 if (DTN && DTN->isIdentifier()) 1866 // When building a template-id where the template-name is dependent, 1867 // assume the template is a type template. Either our assumption is 1868 // correct, or the code is ill-formed and will be diagnosed when the 1869 // dependent name is substituted. 1870 return Context.getDependentTemplateSpecializationType(ETK_None, 1871 DTN->getQualifier(), 1872 DTN->getIdentifier(), 1873 TemplateArgs); 1874 1875 TemplateDecl *Template = Name.getAsTemplateDecl(); 1876 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1877 // We might have a substituted template template parameter pack. If so, 1878 // build a template specialization type for it. 1879 if (Name.getAsSubstTemplateTemplateParmPack()) 1880 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1881 1882 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1883 << Name; 1884 NoteAllFoundTemplates(Name); 1885 return QualType(); 1886 } 1887 1888 // Check that the template argument list is well-formed for this 1889 // template. 1890 llvm::SmallVector<TemplateArgument, 4> Converted; 1891 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1892 false, Converted)) 1893 return QualType(); 1894 1895 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1896 "Converted template argument list is too short!"); 1897 1898 QualType CanonType; 1899 1900 if (TypeAliasTemplateDecl *AliasTemplate 1901 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1902 // Find the canonical type for this type alias template specialization. 1903 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1904 if (Pattern->isInvalidDecl()) 1905 return QualType(); 1906 1907 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1908 Converted.data(), Converted.size()); 1909 1910 // Only substitute for the innermost template argument list. 1911 MultiLevelTemplateArgumentList TemplateArgLists; 1912 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1913 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1914 for (unsigned I = 0; I < Depth; ++I) 1915 TemplateArgLists.addOuterTemplateArguments(0, 0); 1916 1917 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1918 CanonType = SubstType(Pattern->getUnderlyingType(), 1919 TemplateArgLists, AliasTemplate->getLocation(), 1920 AliasTemplate->getDeclName()); 1921 if (CanonType.isNull()) 1922 return QualType(); 1923 } else if (Name.isDependent() || 1924 TemplateSpecializationType::anyDependentTemplateArguments( 1925 TemplateArgs)) { 1926 // This class template specialization is a dependent 1927 // type. Therefore, its canonical type is another class template 1928 // specialization type that contains all of the converted 1929 // arguments in canonical form. This ensures that, e.g., A<T> and 1930 // A<T, T> have identical types when A is declared as: 1931 // 1932 // template<typename T, typename U = T> struct A; 1933 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1934 CanonType = Context.getTemplateSpecializationType(CanonName, 1935 Converted.data(), 1936 Converted.size()); 1937 1938 // FIXME: CanonType is not actually the canonical type, and unfortunately 1939 // it is a TemplateSpecializationType that we will never use again. 1940 // In the future, we need to teach getTemplateSpecializationType to only 1941 // build the canonical type and return that to us. 1942 CanonType = Context.getCanonicalType(CanonType); 1943 1944 // This might work out to be a current instantiation, in which 1945 // case the canonical type needs to be the InjectedClassNameType. 1946 // 1947 // TODO: in theory this could be a simple hashtable lookup; most 1948 // changes to CurContext don't change the set of current 1949 // instantiations. 1950 if (isa<ClassTemplateDecl>(Template)) { 1951 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1952 // If we get out to a namespace, we're done. 1953 if (Ctx->isFileContext()) break; 1954 1955 // If this isn't a record, keep looking. 1956 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1957 if (!Record) continue; 1958 1959 // Look for one of the two cases with InjectedClassNameTypes 1960 // and check whether it's the same template. 1961 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1962 !Record->getDescribedClassTemplate()) 1963 continue; 1964 1965 // Fetch the injected class name type and check whether its 1966 // injected type is equal to the type we just built. 1967 QualType ICNT = Context.getTypeDeclType(Record); 1968 QualType Injected = cast<InjectedClassNameType>(ICNT) 1969 ->getInjectedSpecializationType(); 1970 1971 if (CanonType != Injected->getCanonicalTypeInternal()) 1972 continue; 1973 1974 // If so, the canonical type of this TST is the injected 1975 // class name type of the record we just found. 1976 assert(ICNT.isCanonical()); 1977 CanonType = ICNT; 1978 break; 1979 } 1980 } 1981 } else if (ClassTemplateDecl *ClassTemplate 1982 = dyn_cast<ClassTemplateDecl>(Template)) { 1983 // Find the class template specialization declaration that 1984 // corresponds to these arguments. 1985 void *InsertPos = 0; 1986 ClassTemplateSpecializationDecl *Decl 1987 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1988 InsertPos); 1989 if (!Decl) { 1990 // This is the first time we have referenced this class template 1991 // specialization. Create the canonical declaration and add it to 1992 // the set of specializations. 1993 Decl = ClassTemplateSpecializationDecl::Create(Context, 1994 ClassTemplate->getTemplatedDecl()->getTagKind(), 1995 ClassTemplate->getDeclContext(), 1996 ClassTemplate->getLocation(), 1997 ClassTemplate->getLocation(), 1998 ClassTemplate, 1999 Converted.data(), 2000 Converted.size(), 0); 2001 ClassTemplate->AddSpecialization(Decl, InsertPos); 2002 Decl->setLexicalDeclContext(CurContext); 2003 } 2004 2005 CanonType = Context.getTypeDeclType(Decl); 2006 assert(isa<RecordType>(CanonType) && 2007 "type of non-dependent specialization is not a RecordType"); 2008 } 2009 2010 // Build the fully-sugared type for this class template 2011 // specialization, which refers back to the class template 2012 // specialization we created or found. 2013 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2014} 2015 2016TypeResult 2017Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 2018 TemplateTy TemplateD, SourceLocation TemplateLoc, 2019 SourceLocation LAngleLoc, 2020 ASTTemplateArgsPtr TemplateArgsIn, 2021 SourceLocation RAngleLoc) { 2022 if (SS.isInvalid()) 2023 return true; 2024 2025 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2026 2027 // Translate the parser's template argument list in our AST format. 2028 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2029 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2030 2031 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2032 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 2033 DTN->getQualifier(), 2034 DTN->getIdentifier(), 2035 TemplateArgs); 2036 2037 // Build type-source information. 2038 TypeLocBuilder TLB; 2039 DependentTemplateSpecializationTypeLoc SpecTL 2040 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2041 SpecTL.setKeywordLoc(SourceLocation()); 2042 SpecTL.setNameLoc(TemplateLoc); 2043 SpecTL.setLAngleLoc(LAngleLoc); 2044 SpecTL.setRAngleLoc(RAngleLoc); 2045 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2046 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2047 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2048 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2049 } 2050 2051 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2052 TemplateArgsIn.release(); 2053 2054 if (Result.isNull()) 2055 return true; 2056 2057 // Build type-source information. 2058 TypeLocBuilder TLB; 2059 TemplateSpecializationTypeLoc SpecTL 2060 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2061 SpecTL.setTemplateNameLoc(TemplateLoc); 2062 SpecTL.setLAngleLoc(LAngleLoc); 2063 SpecTL.setRAngleLoc(RAngleLoc); 2064 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2065 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2066 2067 if (SS.isNotEmpty()) { 2068 // Create an elaborated-type-specifier containing the nested-name-specifier. 2069 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2070 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2071 ElabTL.setKeywordLoc(SourceLocation()); 2072 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2073 } 2074 2075 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2076} 2077 2078TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2079 TypeSpecifierType TagSpec, 2080 SourceLocation TagLoc, 2081 CXXScopeSpec &SS, 2082 TemplateTy TemplateD, 2083 SourceLocation TemplateLoc, 2084 SourceLocation LAngleLoc, 2085 ASTTemplateArgsPtr TemplateArgsIn, 2086 SourceLocation RAngleLoc) { 2087 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2088 2089 // Translate the parser's template argument list in our AST format. 2090 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2091 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2092 2093 // Determine the tag kind 2094 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2095 ElaboratedTypeKeyword Keyword 2096 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2097 2098 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2099 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2100 DTN->getQualifier(), 2101 DTN->getIdentifier(), 2102 TemplateArgs); 2103 2104 // Build type-source information. 2105 TypeLocBuilder TLB; 2106 DependentTemplateSpecializationTypeLoc SpecTL 2107 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2108 SpecTL.setKeywordLoc(TagLoc); 2109 SpecTL.setNameLoc(TemplateLoc); 2110 SpecTL.setLAngleLoc(LAngleLoc); 2111 SpecTL.setRAngleLoc(RAngleLoc); 2112 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2113 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2114 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2115 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2116 } 2117 2118 if (TypeAliasTemplateDecl *TAT = 2119 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2120 // C++0x [dcl.type.elab]p2: 2121 // If the identifier resolves to a typedef-name or the simple-template-id 2122 // resolves to an alias template specialization, the 2123 // elaborated-type-specifier is ill-formed. 2124 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2125 Diag(TAT->getLocation(), diag::note_declared_at); 2126 } 2127 2128 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2129 if (Result.isNull()) 2130 return TypeResult(); 2131 2132 // Check the tag kind 2133 if (const RecordType *RT = Result->getAs<RecordType>()) { 2134 RecordDecl *D = RT->getDecl(); 2135 2136 IdentifierInfo *Id = D->getIdentifier(); 2137 assert(Id && "templated class must have an identifier"); 2138 2139 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2140 TagLoc, *Id)) { 2141 Diag(TagLoc, diag::err_use_with_wrong_tag) 2142 << Result 2143 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2144 Diag(D->getLocation(), diag::note_previous_use); 2145 } 2146 } 2147 2148 // Provide source-location information for the template specialization. 2149 TypeLocBuilder TLB; 2150 TemplateSpecializationTypeLoc SpecTL 2151 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2152 SpecTL.setTemplateNameLoc(TemplateLoc); 2153 SpecTL.setLAngleLoc(LAngleLoc); 2154 SpecTL.setRAngleLoc(RAngleLoc); 2155 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2156 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2157 2158 // Construct an elaborated type containing the nested-name-specifier (if any) 2159 // and keyword. 2160 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2161 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2162 ElabTL.setKeywordLoc(TagLoc); 2163 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2164 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2165} 2166 2167ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2168 LookupResult &R, 2169 bool RequiresADL, 2170 const TemplateArgumentListInfo &TemplateArgs) { 2171 // FIXME: Can we do any checking at this point? I guess we could check the 2172 // template arguments that we have against the template name, if the template 2173 // name refers to a single template. That's not a terribly common case, 2174 // though. 2175 // foo<int> could identify a single function unambiguously 2176 // This approach does NOT work, since f<int>(1); 2177 // gets resolved prior to resorting to overload resolution 2178 // i.e., template<class T> void f(double); 2179 // vs template<class T, class U> void f(U); 2180 2181 // These should be filtered out by our callers. 2182 assert(!R.empty() && "empty lookup results when building templateid"); 2183 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2184 2185 // We don't want lookup warnings at this point. 2186 R.suppressDiagnostics(); 2187 2188 UnresolvedLookupExpr *ULE 2189 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2190 SS.getWithLocInContext(Context), 2191 R.getLookupNameInfo(), 2192 RequiresADL, TemplateArgs, 2193 R.begin(), R.end()); 2194 2195 return Owned(ULE); 2196} 2197 2198// We actually only call this from template instantiation. 2199ExprResult 2200Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2201 const DeclarationNameInfo &NameInfo, 2202 const TemplateArgumentListInfo &TemplateArgs) { 2203 DeclContext *DC; 2204 if (!(DC = computeDeclContext(SS, false)) || 2205 DC->isDependentContext() || 2206 RequireCompleteDeclContext(SS, DC)) 2207 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2208 2209 bool MemberOfUnknownSpecialization; 2210 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2211 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2212 MemberOfUnknownSpecialization); 2213 2214 if (R.isAmbiguous()) 2215 return ExprError(); 2216 2217 if (R.empty()) { 2218 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2219 << NameInfo.getName() << SS.getRange(); 2220 return ExprError(); 2221 } 2222 2223 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2224 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2225 << (NestedNameSpecifier*) SS.getScopeRep() 2226 << NameInfo.getName() << SS.getRange(); 2227 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2228 return ExprError(); 2229 } 2230 2231 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2232} 2233 2234/// \brief Form a dependent template name. 2235/// 2236/// This action forms a dependent template name given the template 2237/// name and its (presumably dependent) scope specifier. For 2238/// example, given "MetaFun::template apply", the scope specifier \p 2239/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2240/// of the "template" keyword, and "apply" is the \p Name. 2241TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2242 SourceLocation TemplateKWLoc, 2243 CXXScopeSpec &SS, 2244 UnqualifiedId &Name, 2245 ParsedType ObjectType, 2246 bool EnteringContext, 2247 TemplateTy &Result) { 2248 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2249 !getLangOptions().CPlusPlus0x) 2250 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2251 << FixItHint::CreateRemoval(TemplateKWLoc); 2252 2253 DeclContext *LookupCtx = 0; 2254 if (SS.isSet()) 2255 LookupCtx = computeDeclContext(SS, EnteringContext); 2256 if (!LookupCtx && ObjectType) 2257 LookupCtx = computeDeclContext(ObjectType.get()); 2258 if (LookupCtx) { 2259 // C++0x [temp.names]p5: 2260 // If a name prefixed by the keyword template is not the name of 2261 // a template, the program is ill-formed. [Note: the keyword 2262 // template may not be applied to non-template members of class 2263 // templates. -end note ] [ Note: as is the case with the 2264 // typename prefix, the template prefix is allowed in cases 2265 // where it is not strictly necessary; i.e., when the 2266 // nested-name-specifier or the expression on the left of the -> 2267 // or . is not dependent on a template-parameter, or the use 2268 // does not appear in the scope of a template. -end note] 2269 // 2270 // Note: C++03 was more strict here, because it banned the use of 2271 // the "template" keyword prior to a template-name that was not a 2272 // dependent name. C++ DR468 relaxed this requirement (the 2273 // "template" keyword is now permitted). We follow the C++0x 2274 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2275 bool MemberOfUnknownSpecialization; 2276 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2277 ObjectType, EnteringContext, Result, 2278 MemberOfUnknownSpecialization); 2279 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2280 isa<CXXRecordDecl>(LookupCtx) && 2281 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2282 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2283 // This is a dependent template. Handle it below. 2284 } else if (TNK == TNK_Non_template) { 2285 Diag(Name.getSourceRange().getBegin(), 2286 diag::err_template_kw_refers_to_non_template) 2287 << GetNameFromUnqualifiedId(Name).getName() 2288 << Name.getSourceRange() 2289 << TemplateKWLoc; 2290 return TNK_Non_template; 2291 } else { 2292 // We found something; return it. 2293 return TNK; 2294 } 2295 } 2296 2297 NestedNameSpecifier *Qualifier 2298 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2299 2300 switch (Name.getKind()) { 2301 case UnqualifiedId::IK_Identifier: 2302 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2303 Name.Identifier)); 2304 return TNK_Dependent_template_name; 2305 2306 case UnqualifiedId::IK_OperatorFunctionId: 2307 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2308 Name.OperatorFunctionId.Operator)); 2309 return TNK_Dependent_template_name; 2310 2311 case UnqualifiedId::IK_LiteralOperatorId: 2312 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2313 2314 default: 2315 break; 2316 } 2317 2318 Diag(Name.getSourceRange().getBegin(), 2319 diag::err_template_kw_refers_to_non_template) 2320 << GetNameFromUnqualifiedId(Name).getName() 2321 << Name.getSourceRange() 2322 << TemplateKWLoc; 2323 return TNK_Non_template; 2324} 2325 2326bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2327 const TemplateArgumentLoc &AL, 2328 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2329 const TemplateArgument &Arg = AL.getArgument(); 2330 2331 // Check template type parameter. 2332 switch(Arg.getKind()) { 2333 case TemplateArgument::Type: 2334 // C++ [temp.arg.type]p1: 2335 // A template-argument for a template-parameter which is a 2336 // type shall be a type-id. 2337 break; 2338 case TemplateArgument::Template: { 2339 // We have a template type parameter but the template argument 2340 // is a template without any arguments. 2341 SourceRange SR = AL.getSourceRange(); 2342 TemplateName Name = Arg.getAsTemplate(); 2343 Diag(SR.getBegin(), diag::err_template_missing_args) 2344 << Name << SR; 2345 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2346 Diag(Decl->getLocation(), diag::note_template_decl_here); 2347 2348 return true; 2349 } 2350 default: { 2351 // We have a template type parameter but the template argument 2352 // is not a type. 2353 SourceRange SR = AL.getSourceRange(); 2354 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2355 Diag(Param->getLocation(), diag::note_template_param_here); 2356 2357 return true; 2358 } 2359 } 2360 2361 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2362 return true; 2363 2364 // Add the converted template type argument. 2365 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2366 2367 // Objective-C ARC: 2368 // If an explicitly-specified template argument type is a lifetime type 2369 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2370 if (getLangOptions().ObjCAutoRefCount && 2371 ArgType->isObjCLifetimeType() && 2372 !ArgType.getObjCLifetime()) { 2373 Qualifiers Qs; 2374 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2375 ArgType = Context.getQualifiedType(ArgType, Qs); 2376 } 2377 2378 Converted.push_back(TemplateArgument(ArgType)); 2379 return false; 2380} 2381 2382/// \brief Substitute template arguments into the default template argument for 2383/// the given template type parameter. 2384/// 2385/// \param SemaRef the semantic analysis object for which we are performing 2386/// the substitution. 2387/// 2388/// \param Template the template that we are synthesizing template arguments 2389/// for. 2390/// 2391/// \param TemplateLoc the location of the template name that started the 2392/// template-id we are checking. 2393/// 2394/// \param RAngleLoc the location of the right angle bracket ('>') that 2395/// terminates the template-id. 2396/// 2397/// \param Param the template template parameter whose default we are 2398/// substituting into. 2399/// 2400/// \param Converted the list of template arguments provided for template 2401/// parameters that precede \p Param in the template parameter list. 2402/// \returns the substituted template argument, or NULL if an error occurred. 2403static TypeSourceInfo * 2404SubstDefaultTemplateArgument(Sema &SemaRef, 2405 TemplateDecl *Template, 2406 SourceLocation TemplateLoc, 2407 SourceLocation RAngleLoc, 2408 TemplateTypeParmDecl *Param, 2409 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2410 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2411 2412 // If the argument type is dependent, instantiate it now based 2413 // on the previously-computed template arguments. 2414 if (ArgType->getType()->isDependentType()) { 2415 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2416 Converted.data(), Converted.size()); 2417 2418 MultiLevelTemplateArgumentList AllTemplateArgs 2419 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2420 2421 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2422 Template, Converted.data(), 2423 Converted.size(), 2424 SourceRange(TemplateLoc, RAngleLoc)); 2425 2426 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2427 Param->getDefaultArgumentLoc(), 2428 Param->getDeclName()); 2429 } 2430 2431 return ArgType; 2432} 2433 2434/// \brief Substitute template arguments into the default template argument for 2435/// the given non-type template parameter. 2436/// 2437/// \param SemaRef the semantic analysis object for which we are performing 2438/// the substitution. 2439/// 2440/// \param Template the template that we are synthesizing template arguments 2441/// for. 2442/// 2443/// \param TemplateLoc the location of the template name that started the 2444/// template-id we are checking. 2445/// 2446/// \param RAngleLoc the location of the right angle bracket ('>') that 2447/// terminates the template-id. 2448/// 2449/// \param Param the non-type template parameter whose default we are 2450/// substituting into. 2451/// 2452/// \param Converted the list of template arguments provided for template 2453/// parameters that precede \p Param in the template parameter list. 2454/// 2455/// \returns the substituted template argument, or NULL if an error occurred. 2456static ExprResult 2457SubstDefaultTemplateArgument(Sema &SemaRef, 2458 TemplateDecl *Template, 2459 SourceLocation TemplateLoc, 2460 SourceLocation RAngleLoc, 2461 NonTypeTemplateParmDecl *Param, 2462 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2463 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2464 Converted.data(), Converted.size()); 2465 2466 MultiLevelTemplateArgumentList AllTemplateArgs 2467 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2468 2469 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2470 Template, Converted.data(), 2471 Converted.size(), 2472 SourceRange(TemplateLoc, RAngleLoc)); 2473 2474 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2475} 2476 2477/// \brief Substitute template arguments into the default template argument for 2478/// the given template template parameter. 2479/// 2480/// \param SemaRef the semantic analysis object for which we are performing 2481/// the substitution. 2482/// 2483/// \param Template the template that we are synthesizing template arguments 2484/// for. 2485/// 2486/// \param TemplateLoc the location of the template name that started the 2487/// template-id we are checking. 2488/// 2489/// \param RAngleLoc the location of the right angle bracket ('>') that 2490/// terminates the template-id. 2491/// 2492/// \param Param the template template parameter whose default we are 2493/// substituting into. 2494/// 2495/// \param Converted the list of template arguments provided for template 2496/// parameters that precede \p Param in the template parameter list. 2497/// 2498/// \param QualifierLoc Will be set to the nested-name-specifier (with 2499/// source-location information) that precedes the template name. 2500/// 2501/// \returns the substituted template argument, or NULL if an error occurred. 2502static TemplateName 2503SubstDefaultTemplateArgument(Sema &SemaRef, 2504 TemplateDecl *Template, 2505 SourceLocation TemplateLoc, 2506 SourceLocation RAngleLoc, 2507 TemplateTemplateParmDecl *Param, 2508 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2509 NestedNameSpecifierLoc &QualifierLoc) { 2510 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2511 Converted.data(), Converted.size()); 2512 2513 MultiLevelTemplateArgumentList AllTemplateArgs 2514 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2515 2516 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2517 Template, Converted.data(), 2518 Converted.size(), 2519 SourceRange(TemplateLoc, RAngleLoc)); 2520 2521 // Substitute into the nested-name-specifier first, 2522 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2523 if (QualifierLoc) { 2524 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2525 AllTemplateArgs); 2526 if (!QualifierLoc) 2527 return TemplateName(); 2528 } 2529 2530 return SemaRef.SubstTemplateName(QualifierLoc, 2531 Param->getDefaultArgument().getArgument().getAsTemplate(), 2532 Param->getDefaultArgument().getTemplateNameLoc(), 2533 AllTemplateArgs); 2534} 2535 2536/// \brief If the given template parameter has a default template 2537/// argument, substitute into that default template argument and 2538/// return the corresponding template argument. 2539TemplateArgumentLoc 2540Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2541 SourceLocation TemplateLoc, 2542 SourceLocation RAngleLoc, 2543 Decl *Param, 2544 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2545 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2546 if (!TypeParm->hasDefaultArgument()) 2547 return TemplateArgumentLoc(); 2548 2549 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2550 TemplateLoc, 2551 RAngleLoc, 2552 TypeParm, 2553 Converted); 2554 if (DI) 2555 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2556 2557 return TemplateArgumentLoc(); 2558 } 2559 2560 if (NonTypeTemplateParmDecl *NonTypeParm 2561 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2562 if (!NonTypeParm->hasDefaultArgument()) 2563 return TemplateArgumentLoc(); 2564 2565 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2566 TemplateLoc, 2567 RAngleLoc, 2568 NonTypeParm, 2569 Converted); 2570 if (Arg.isInvalid()) 2571 return TemplateArgumentLoc(); 2572 2573 Expr *ArgE = Arg.takeAs<Expr>(); 2574 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2575 } 2576 2577 TemplateTemplateParmDecl *TempTempParm 2578 = cast<TemplateTemplateParmDecl>(Param); 2579 if (!TempTempParm->hasDefaultArgument()) 2580 return TemplateArgumentLoc(); 2581 2582 2583 NestedNameSpecifierLoc QualifierLoc; 2584 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2585 TemplateLoc, 2586 RAngleLoc, 2587 TempTempParm, 2588 Converted, 2589 QualifierLoc); 2590 if (TName.isNull()) 2591 return TemplateArgumentLoc(); 2592 2593 return TemplateArgumentLoc(TemplateArgument(TName), 2594 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2595 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2596} 2597 2598/// \brief Check that the given template argument corresponds to the given 2599/// template parameter. 2600/// 2601/// \param Param The template parameter against which the argument will be 2602/// checked. 2603/// 2604/// \param Arg The template argument. 2605/// 2606/// \param Template The template in which the template argument resides. 2607/// 2608/// \param TemplateLoc The location of the template name for the template 2609/// whose argument list we're matching. 2610/// 2611/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2612/// the template argument list. 2613/// 2614/// \param ArgumentPackIndex The index into the argument pack where this 2615/// argument will be placed. Only valid if the parameter is a parameter pack. 2616/// 2617/// \param Converted The checked, converted argument will be added to the 2618/// end of this small vector. 2619/// 2620/// \param CTAK Describes how we arrived at this particular template argument: 2621/// explicitly written, deduced, etc. 2622/// 2623/// \returns true on error, false otherwise. 2624bool Sema::CheckTemplateArgument(NamedDecl *Param, 2625 const TemplateArgumentLoc &Arg, 2626 NamedDecl *Template, 2627 SourceLocation TemplateLoc, 2628 SourceLocation RAngleLoc, 2629 unsigned ArgumentPackIndex, 2630 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2631 CheckTemplateArgumentKind CTAK) { 2632 // Check template type parameters. 2633 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2634 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2635 2636 // Check non-type template parameters. 2637 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2638 // Do substitution on the type of the non-type template parameter 2639 // with the template arguments we've seen thus far. But if the 2640 // template has a dependent context then we cannot substitute yet. 2641 QualType NTTPType = NTTP->getType(); 2642 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2643 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2644 2645 if (NTTPType->isDependentType() && 2646 !isa<TemplateTemplateParmDecl>(Template) && 2647 !Template->getDeclContext()->isDependentContext()) { 2648 // Do substitution on the type of the non-type template parameter. 2649 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2650 NTTP, Converted.data(), Converted.size(), 2651 SourceRange(TemplateLoc, RAngleLoc)); 2652 2653 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2654 Converted.data(), Converted.size()); 2655 NTTPType = SubstType(NTTPType, 2656 MultiLevelTemplateArgumentList(TemplateArgs), 2657 NTTP->getLocation(), 2658 NTTP->getDeclName()); 2659 // If that worked, check the non-type template parameter type 2660 // for validity. 2661 if (!NTTPType.isNull()) 2662 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2663 NTTP->getLocation()); 2664 if (NTTPType.isNull()) 2665 return true; 2666 } 2667 2668 switch (Arg.getArgument().getKind()) { 2669 case TemplateArgument::Null: 2670 assert(false && "Should never see a NULL template argument here"); 2671 return true; 2672 2673 case TemplateArgument::Expression: { 2674 TemplateArgument Result; 2675 ExprResult Res = 2676 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2677 Result, CTAK); 2678 if (Res.isInvalid()) 2679 return true; 2680 2681 Converted.push_back(Result); 2682 break; 2683 } 2684 2685 case TemplateArgument::Declaration: 2686 case TemplateArgument::Integral: 2687 // We've already checked this template argument, so just copy 2688 // it to the list of converted arguments. 2689 Converted.push_back(Arg.getArgument()); 2690 break; 2691 2692 case TemplateArgument::Template: 2693 case TemplateArgument::TemplateExpansion: 2694 // We were given a template template argument. It may not be ill-formed; 2695 // see below. 2696 if (DependentTemplateName *DTN 2697 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2698 .getAsDependentTemplateName()) { 2699 // We have a template argument such as \c T::template X, which we 2700 // parsed as a template template argument. However, since we now 2701 // know that we need a non-type template argument, convert this 2702 // template name into an expression. 2703 2704 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2705 Arg.getTemplateNameLoc()); 2706 2707 CXXScopeSpec SS; 2708 SS.Adopt(Arg.getTemplateQualifierLoc()); 2709 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2710 SS.getWithLocInContext(Context), 2711 NameInfo)); 2712 2713 // If we parsed the template argument as a pack expansion, create a 2714 // pack expansion expression. 2715 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2716 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2717 if (E.isInvalid()) 2718 return true; 2719 } 2720 2721 TemplateArgument Result; 2722 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2723 if (E.isInvalid()) 2724 return true; 2725 2726 Converted.push_back(Result); 2727 break; 2728 } 2729 2730 // We have a template argument that actually does refer to a class 2731 // template, alias template, or template template parameter, and 2732 // therefore cannot be a non-type template argument. 2733 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2734 << Arg.getSourceRange(); 2735 2736 Diag(Param->getLocation(), diag::note_template_param_here); 2737 return true; 2738 2739 case TemplateArgument::Type: { 2740 // We have a non-type template parameter but the template 2741 // argument is a type. 2742 2743 // C++ [temp.arg]p2: 2744 // In a template-argument, an ambiguity between a type-id and 2745 // an expression is resolved to a type-id, regardless of the 2746 // form of the corresponding template-parameter. 2747 // 2748 // We warn specifically about this case, since it can be rather 2749 // confusing for users. 2750 QualType T = Arg.getArgument().getAsType(); 2751 SourceRange SR = Arg.getSourceRange(); 2752 if (T->isFunctionType()) 2753 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2754 else 2755 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2756 Diag(Param->getLocation(), diag::note_template_param_here); 2757 return true; 2758 } 2759 2760 case TemplateArgument::Pack: 2761 llvm_unreachable("Caller must expand template argument packs"); 2762 break; 2763 } 2764 2765 return false; 2766 } 2767 2768 2769 // Check template template parameters. 2770 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2771 2772 // Substitute into the template parameter list of the template 2773 // template parameter, since previously-supplied template arguments 2774 // may appear within the template template parameter. 2775 { 2776 // Set up a template instantiation context. 2777 LocalInstantiationScope Scope(*this); 2778 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2779 TempParm, Converted.data(), Converted.size(), 2780 SourceRange(TemplateLoc, RAngleLoc)); 2781 2782 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2783 Converted.data(), Converted.size()); 2784 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2785 SubstDecl(TempParm, CurContext, 2786 MultiLevelTemplateArgumentList(TemplateArgs))); 2787 if (!TempParm) 2788 return true; 2789 } 2790 2791 switch (Arg.getArgument().getKind()) { 2792 case TemplateArgument::Null: 2793 assert(false && "Should never see a NULL template argument here"); 2794 return true; 2795 2796 case TemplateArgument::Template: 2797 case TemplateArgument::TemplateExpansion: 2798 if (CheckTemplateArgument(TempParm, Arg)) 2799 return true; 2800 2801 Converted.push_back(Arg.getArgument()); 2802 break; 2803 2804 case TemplateArgument::Expression: 2805 case TemplateArgument::Type: 2806 // We have a template template parameter but the template 2807 // argument does not refer to a template. 2808 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2809 << getLangOptions().CPlusPlus0x; 2810 return true; 2811 2812 case TemplateArgument::Declaration: 2813 llvm_unreachable( 2814 "Declaration argument with template template parameter"); 2815 break; 2816 case TemplateArgument::Integral: 2817 llvm_unreachable( 2818 "Integral argument with template template parameter"); 2819 break; 2820 2821 case TemplateArgument::Pack: 2822 llvm_unreachable("Caller must expand template argument packs"); 2823 break; 2824 } 2825 2826 return false; 2827} 2828 2829/// \brief Check that the given template argument list is well-formed 2830/// for specializing the given template. 2831bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2832 SourceLocation TemplateLoc, 2833 TemplateArgumentListInfo &TemplateArgs, 2834 bool PartialTemplateArgs, 2835 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2836 TemplateParameterList *Params = Template->getTemplateParameters(); 2837 unsigned NumParams = Params->size(); 2838 unsigned NumArgs = TemplateArgs.size(); 2839 bool Invalid = false; 2840 2841 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2842 2843 bool HasParameterPack = 2844 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2845 2846 if ((NumArgs > NumParams && !HasParameterPack) || 2847 (NumArgs < Params->getMinRequiredArguments() && 2848 !PartialTemplateArgs)) { 2849 // FIXME: point at either the first arg beyond what we can handle, 2850 // or the '>', depending on whether we have too many or too few 2851 // arguments. 2852 SourceRange Range; 2853 if (NumArgs > NumParams) 2854 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2855 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2856 << (NumArgs > NumParams) 2857 << (isa<ClassTemplateDecl>(Template)? 0 : 2858 isa<FunctionTemplateDecl>(Template)? 1 : 2859 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2860 << Template << Range; 2861 Diag(Template->getLocation(), diag::note_template_decl_here) 2862 << Params->getSourceRange(); 2863 Invalid = true; 2864 } 2865 2866 // C++ [temp.arg]p1: 2867 // [...] The type and form of each template-argument specified in 2868 // a template-id shall match the type and form specified for the 2869 // corresponding parameter declared by the template in its 2870 // template-parameter-list. 2871 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2872 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2873 TemplateParameterList::iterator Param = Params->begin(), 2874 ParamEnd = Params->end(); 2875 unsigned ArgIdx = 0; 2876 LocalInstantiationScope InstScope(*this, true); 2877 while (Param != ParamEnd) { 2878 if (ArgIdx < NumArgs) { 2879 // If we have an expanded parameter pack, make sure we don't have too 2880 // many arguments. 2881 if (NonTypeTemplateParmDecl *NTTP 2882 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2883 if (NTTP->isExpandedParameterPack() && 2884 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2885 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2886 << true 2887 << (isa<ClassTemplateDecl>(Template)? 0 : 2888 isa<FunctionTemplateDecl>(Template)? 1 : 2889 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2890 << Template; 2891 Diag(Template->getLocation(), diag::note_template_decl_here) 2892 << Params->getSourceRange(); 2893 return true; 2894 } 2895 } 2896 2897 // Check the template argument we were given. 2898 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2899 TemplateLoc, RAngleLoc, 2900 ArgumentPack.size(), Converted)) 2901 return true; 2902 2903 if ((*Param)->isTemplateParameterPack()) { 2904 // The template parameter was a template parameter pack, so take the 2905 // deduced argument and place it on the argument pack. Note that we 2906 // stay on the same template parameter so that we can deduce more 2907 // arguments. 2908 ArgumentPack.push_back(Converted.back()); 2909 Converted.pop_back(); 2910 } else { 2911 // Move to the next template parameter. 2912 ++Param; 2913 } 2914 ++ArgIdx; 2915 continue; 2916 } 2917 2918 // If we're checking a partial template argument list, we're done. 2919 if (PartialTemplateArgs) { 2920 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2921 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2922 ArgumentPack.data(), 2923 ArgumentPack.size())); 2924 2925 return Invalid; 2926 } 2927 2928 // If we have a template parameter pack with no more corresponding 2929 // arguments, just break out now and we'll fill in the argument pack below. 2930 if ((*Param)->isTemplateParameterPack()) 2931 break; 2932 2933 // We have a default template argument that we will use. 2934 TemplateArgumentLoc Arg; 2935 2936 // Retrieve the default template argument from the template 2937 // parameter. For each kind of template parameter, we substitute the 2938 // template arguments provided thus far and any "outer" template arguments 2939 // (when the template parameter was part of a nested template) into 2940 // the default argument. 2941 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2942 if (!TTP->hasDefaultArgument()) { 2943 assert(Invalid && "Missing default argument"); 2944 break; 2945 } 2946 2947 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2948 Template, 2949 TemplateLoc, 2950 RAngleLoc, 2951 TTP, 2952 Converted); 2953 if (!ArgType) 2954 return true; 2955 2956 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2957 ArgType); 2958 } else if (NonTypeTemplateParmDecl *NTTP 2959 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2960 if (!NTTP->hasDefaultArgument()) { 2961 assert(Invalid && "Missing default argument"); 2962 break; 2963 } 2964 2965 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2966 TemplateLoc, 2967 RAngleLoc, 2968 NTTP, 2969 Converted); 2970 if (E.isInvalid()) 2971 return true; 2972 2973 Expr *Ex = E.takeAs<Expr>(); 2974 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2975 } else { 2976 TemplateTemplateParmDecl *TempParm 2977 = cast<TemplateTemplateParmDecl>(*Param); 2978 2979 if (!TempParm->hasDefaultArgument()) { 2980 assert(Invalid && "Missing default argument"); 2981 break; 2982 } 2983 2984 NestedNameSpecifierLoc QualifierLoc; 2985 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2986 TemplateLoc, 2987 RAngleLoc, 2988 TempParm, 2989 Converted, 2990 QualifierLoc); 2991 if (Name.isNull()) 2992 return true; 2993 2994 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2995 TempParm->getDefaultArgument().getTemplateNameLoc()); 2996 } 2997 2998 // Introduce an instantiation record that describes where we are using 2999 // the default template argument. 3000 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3001 Converted.data(), Converted.size(), 3002 SourceRange(TemplateLoc, RAngleLoc)); 3003 3004 // Check the default template argument. 3005 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3006 RAngleLoc, 0, Converted)) 3007 return true; 3008 3009 // Core issue 150 (assumed resolution): if this is a template template 3010 // parameter, keep track of the default template arguments from the 3011 // template definition. 3012 if (isTemplateTemplateParameter) 3013 TemplateArgs.addArgument(Arg); 3014 3015 // Move to the next template parameter and argument. 3016 ++Param; 3017 ++ArgIdx; 3018 } 3019 3020 // Form argument packs for each of the parameter packs remaining. 3021 while (Param != ParamEnd) { 3022 // If we're checking a partial list of template arguments, don't fill 3023 // in arguments for non-template parameter packs. 3024 3025 if ((*Param)->isTemplateParameterPack()) { 3026 if (ArgumentPack.empty()) 3027 Converted.push_back(TemplateArgument(0, 0)); 3028 else { 3029 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3030 ArgumentPack.data(), 3031 ArgumentPack.size())); 3032 ArgumentPack.clear(); 3033 } 3034 } 3035 3036 ++Param; 3037 } 3038 3039 return Invalid; 3040} 3041 3042namespace { 3043 class UnnamedLocalNoLinkageFinder 3044 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3045 { 3046 Sema &S; 3047 SourceRange SR; 3048 3049 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3050 3051 public: 3052 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3053 3054 bool Visit(QualType T) { 3055 return inherited::Visit(T.getTypePtr()); 3056 } 3057 3058#define TYPE(Class, Parent) \ 3059 bool Visit##Class##Type(const Class##Type *); 3060#define ABSTRACT_TYPE(Class, Parent) \ 3061 bool Visit##Class##Type(const Class##Type *) { return false; } 3062#define NON_CANONICAL_TYPE(Class, Parent) \ 3063 bool Visit##Class##Type(const Class##Type *) { return false; } 3064#include "clang/AST/TypeNodes.def" 3065 3066 bool VisitTagDecl(const TagDecl *Tag); 3067 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3068 }; 3069} 3070 3071bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3072 return false; 3073} 3074 3075bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3076 return Visit(T->getElementType()); 3077} 3078 3079bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3080 return Visit(T->getPointeeType()); 3081} 3082 3083bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3084 const BlockPointerType* T) { 3085 return Visit(T->getPointeeType()); 3086} 3087 3088bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3089 const LValueReferenceType* T) { 3090 return Visit(T->getPointeeType()); 3091} 3092 3093bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3094 const RValueReferenceType* T) { 3095 return Visit(T->getPointeeType()); 3096} 3097 3098bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3099 const MemberPointerType* T) { 3100 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3101} 3102 3103bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3104 const ConstantArrayType* T) { 3105 return Visit(T->getElementType()); 3106} 3107 3108bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3109 const IncompleteArrayType* T) { 3110 return Visit(T->getElementType()); 3111} 3112 3113bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3114 const VariableArrayType* T) { 3115 return Visit(T->getElementType()); 3116} 3117 3118bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3119 const DependentSizedArrayType* T) { 3120 return Visit(T->getElementType()); 3121} 3122 3123bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3124 const DependentSizedExtVectorType* T) { 3125 return Visit(T->getElementType()); 3126} 3127 3128bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3129 return Visit(T->getElementType()); 3130} 3131 3132bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3133 return Visit(T->getElementType()); 3134} 3135 3136bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3137 const FunctionProtoType* T) { 3138 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3139 AEnd = T->arg_type_end(); 3140 A != AEnd; ++A) { 3141 if (Visit(*A)) 3142 return true; 3143 } 3144 3145 return Visit(T->getResultType()); 3146} 3147 3148bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3149 const FunctionNoProtoType* T) { 3150 return Visit(T->getResultType()); 3151} 3152 3153bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3154 const UnresolvedUsingType*) { 3155 return false; 3156} 3157 3158bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3159 return false; 3160} 3161 3162bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3163 return Visit(T->getUnderlyingType()); 3164} 3165 3166bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3167 return false; 3168} 3169 3170bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3171 const UnaryTransformType*) { 3172 return false; 3173} 3174 3175bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3176 return Visit(T->getDeducedType()); 3177} 3178 3179bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3180 return VisitTagDecl(T->getDecl()); 3181} 3182 3183bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3184 return VisitTagDecl(T->getDecl()); 3185} 3186 3187bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3188 const TemplateTypeParmType*) { 3189 return false; 3190} 3191 3192bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3193 const SubstTemplateTypeParmPackType *) { 3194 return false; 3195} 3196 3197bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3198 const TemplateSpecializationType*) { 3199 return false; 3200} 3201 3202bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3203 const InjectedClassNameType* T) { 3204 return VisitTagDecl(T->getDecl()); 3205} 3206 3207bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3208 const DependentNameType* T) { 3209 return VisitNestedNameSpecifier(T->getQualifier()); 3210} 3211 3212bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3213 const DependentTemplateSpecializationType* T) { 3214 return VisitNestedNameSpecifier(T->getQualifier()); 3215} 3216 3217bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3218 const PackExpansionType* T) { 3219 return Visit(T->getPattern()); 3220} 3221 3222bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3223 return false; 3224} 3225 3226bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3227 const ObjCInterfaceType *) { 3228 return false; 3229} 3230 3231bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3232 const ObjCObjectPointerType *) { 3233 return false; 3234} 3235 3236bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3237 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3238 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3239 << S.Context.getTypeDeclType(Tag) << SR; 3240 return true; 3241 } 3242 3243 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3244 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3245 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3246 return true; 3247 } 3248 3249 return false; 3250} 3251 3252bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3253 NestedNameSpecifier *NNS) { 3254 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3255 return true; 3256 3257 switch (NNS->getKind()) { 3258 case NestedNameSpecifier::Identifier: 3259 case NestedNameSpecifier::Namespace: 3260 case NestedNameSpecifier::NamespaceAlias: 3261 case NestedNameSpecifier::Global: 3262 return false; 3263 3264 case NestedNameSpecifier::TypeSpec: 3265 case NestedNameSpecifier::TypeSpecWithTemplate: 3266 return Visit(QualType(NNS->getAsType(), 0)); 3267 } 3268 return false; 3269} 3270 3271 3272/// \brief Check a template argument against its corresponding 3273/// template type parameter. 3274/// 3275/// This routine implements the semantics of C++ [temp.arg.type]. It 3276/// returns true if an error occurred, and false otherwise. 3277bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3278 TypeSourceInfo *ArgInfo) { 3279 assert(ArgInfo && "invalid TypeSourceInfo"); 3280 QualType Arg = ArgInfo->getType(); 3281 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3282 3283 if (Arg->isVariablyModifiedType()) { 3284 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3285 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3286 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3287 } 3288 3289 // C++03 [temp.arg.type]p2: 3290 // A local type, a type with no linkage, an unnamed type or a type 3291 // compounded from any of these types shall not be used as a 3292 // template-argument for a template type-parameter. 3293 // 3294 // C++0x allows these, and even in C++03 we allow them as an extension with 3295 // a warning. 3296 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3297 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3298 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3299 } 3300 3301 return false; 3302} 3303 3304/// \brief Checks whether the given template argument is the address 3305/// of an object or function according to C++ [temp.arg.nontype]p1. 3306static bool 3307CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3308 NonTypeTemplateParmDecl *Param, 3309 QualType ParamType, 3310 Expr *ArgIn, 3311 TemplateArgument &Converted) { 3312 bool Invalid = false; 3313 Expr *Arg = ArgIn; 3314 QualType ArgType = Arg->getType(); 3315 3316 // See through any implicit casts we added to fix the type. 3317 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3318 Arg = Cast->getSubExpr(); 3319 3320 // C++ [temp.arg.nontype]p1: 3321 // 3322 // A template-argument for a non-type, non-template 3323 // template-parameter shall be one of: [...] 3324 // 3325 // -- the address of an object or function with external 3326 // linkage, including function templates and function 3327 // template-ids but excluding non-static class members, 3328 // expressed as & id-expression where the & is optional if 3329 // the name refers to a function or array, or if the 3330 // corresponding template-parameter is a reference; or 3331 DeclRefExpr *DRE = 0; 3332 3333 // In C++98/03 mode, give an extension warning on any extra parentheses. 3334 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3335 bool ExtraParens = false; 3336 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3337 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3338 S.Diag(Arg->getSourceRange().getBegin(), 3339 diag::ext_template_arg_extra_parens) 3340 << Arg->getSourceRange(); 3341 ExtraParens = true; 3342 } 3343 3344 Arg = Parens->getSubExpr(); 3345 } 3346 3347 bool AddressTaken = false; 3348 SourceLocation AddrOpLoc; 3349 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3350 if (UnOp->getOpcode() == UO_AddrOf) { 3351 // Support &__uuidof(class_with_uuid) as a non-type template argument. 3352 // Very common in Microsoft COM headers. 3353 if (S.getLangOptions().Microsoft && 3354 isa<CXXUuidofExpr>(UnOp->getSubExpr())) { 3355 Converted = TemplateArgument(ArgIn); 3356 return false; 3357 } 3358 3359 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3360 AddressTaken = true; 3361 AddrOpLoc = UnOp->getOperatorLoc(); 3362 } 3363 } else { 3364 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3365 Converted = TemplateArgument(ArgIn); 3366 return false; 3367 } 3368 DRE = dyn_cast<DeclRefExpr>(Arg); 3369 } 3370 if (!DRE) { 3371 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3372 << Arg->getSourceRange(); 3373 S.Diag(Param->getLocation(), diag::note_template_param_here); 3374 return true; 3375 } 3376 3377 // Stop checking the precise nature of the argument if it is value dependent, 3378 // it should be checked when instantiated. 3379 if (Arg->isValueDependent()) { 3380 Converted = TemplateArgument(ArgIn); 3381 return false; 3382 } 3383 3384 if (!isa<ValueDecl>(DRE->getDecl())) { 3385 S.Diag(Arg->getSourceRange().getBegin(), 3386 diag::err_template_arg_not_object_or_func_form) 3387 << Arg->getSourceRange(); 3388 S.Diag(Param->getLocation(), diag::note_template_param_here); 3389 return true; 3390 } 3391 3392 NamedDecl *Entity = 0; 3393 3394 // Cannot refer to non-static data members 3395 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3396 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3397 << Field << Arg->getSourceRange(); 3398 S.Diag(Param->getLocation(), diag::note_template_param_here); 3399 return true; 3400 } 3401 3402 // Cannot refer to non-static member functions 3403 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3404 if (!Method->isStatic()) { 3405 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3406 << Method << Arg->getSourceRange(); 3407 S.Diag(Param->getLocation(), diag::note_template_param_here); 3408 return true; 3409 } 3410 3411 // Functions must have external linkage. 3412 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3413 if (!isExternalLinkage(Func->getLinkage())) { 3414 S.Diag(Arg->getSourceRange().getBegin(), 3415 diag::err_template_arg_function_not_extern) 3416 << Func << Arg->getSourceRange(); 3417 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3418 << true; 3419 return true; 3420 } 3421 3422 // Okay: we've named a function with external linkage. 3423 Entity = Func; 3424 3425 // If the template parameter has pointer type, the function decays. 3426 if (ParamType->isPointerType() && !AddressTaken) 3427 ArgType = S.Context.getPointerType(Func->getType()); 3428 else if (AddressTaken && ParamType->isReferenceType()) { 3429 // If we originally had an address-of operator, but the 3430 // parameter has reference type, complain and (if things look 3431 // like they will work) drop the address-of operator. 3432 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3433 ParamType.getNonReferenceType())) { 3434 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3435 << ParamType; 3436 S.Diag(Param->getLocation(), diag::note_template_param_here); 3437 return true; 3438 } 3439 3440 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3441 << ParamType 3442 << FixItHint::CreateRemoval(AddrOpLoc); 3443 S.Diag(Param->getLocation(), diag::note_template_param_here); 3444 3445 ArgType = Func->getType(); 3446 } 3447 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3448 if (!isExternalLinkage(Var->getLinkage())) { 3449 S.Diag(Arg->getSourceRange().getBegin(), 3450 diag::err_template_arg_object_not_extern) 3451 << Var << Arg->getSourceRange(); 3452 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3453 << true; 3454 return true; 3455 } 3456 3457 // A value of reference type is not an object. 3458 if (Var->getType()->isReferenceType()) { 3459 S.Diag(Arg->getSourceRange().getBegin(), 3460 diag::err_template_arg_reference_var) 3461 << Var->getType() << Arg->getSourceRange(); 3462 S.Diag(Param->getLocation(), diag::note_template_param_here); 3463 return true; 3464 } 3465 3466 // Okay: we've named an object with external linkage 3467 Entity = Var; 3468 3469 // If the template parameter has pointer type, we must have taken 3470 // the address of this object. 3471 if (ParamType->isReferenceType()) { 3472 if (AddressTaken) { 3473 // If we originally had an address-of operator, but the 3474 // parameter has reference type, complain and (if things look 3475 // like they will work) drop the address-of operator. 3476 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3477 ParamType.getNonReferenceType())) { 3478 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3479 << ParamType; 3480 S.Diag(Param->getLocation(), diag::note_template_param_here); 3481 return true; 3482 } 3483 3484 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3485 << ParamType 3486 << FixItHint::CreateRemoval(AddrOpLoc); 3487 S.Diag(Param->getLocation(), diag::note_template_param_here); 3488 3489 ArgType = Var->getType(); 3490 } 3491 } else if (!AddressTaken && ParamType->isPointerType()) { 3492 if (Var->getType()->isArrayType()) { 3493 // Array-to-pointer decay. 3494 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3495 } else { 3496 // If the template parameter has pointer type but the address of 3497 // this object was not taken, complain and (possibly) recover by 3498 // taking the address of the entity. 3499 ArgType = S.Context.getPointerType(Var->getType()); 3500 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3501 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3502 << ParamType; 3503 S.Diag(Param->getLocation(), diag::note_template_param_here); 3504 return true; 3505 } 3506 3507 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3508 << ParamType 3509 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3510 3511 S.Diag(Param->getLocation(), diag::note_template_param_here); 3512 } 3513 } 3514 } else { 3515 // We found something else, but we don't know specifically what it is. 3516 S.Diag(Arg->getSourceRange().getBegin(), 3517 diag::err_template_arg_not_object_or_func) 3518 << Arg->getSourceRange(); 3519 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3520 return true; 3521 } 3522 3523 bool ObjCLifetimeConversion; 3524 if (ParamType->isPointerType() && 3525 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3526 S.IsQualificationConversion(ArgType, ParamType, false, 3527 ObjCLifetimeConversion)) { 3528 // For pointer-to-object types, qualification conversions are 3529 // permitted. 3530 } else { 3531 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3532 if (!ParamRef->getPointeeType()->isFunctionType()) { 3533 // C++ [temp.arg.nontype]p5b3: 3534 // For a non-type template-parameter of type reference to 3535 // object, no conversions apply. The type referred to by the 3536 // reference may be more cv-qualified than the (otherwise 3537 // identical) type of the template- argument. The 3538 // template-parameter is bound directly to the 3539 // template-argument, which shall be an lvalue. 3540 3541 // FIXME: Other qualifiers? 3542 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3543 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3544 3545 if ((ParamQuals | ArgQuals) != ParamQuals) { 3546 S.Diag(Arg->getSourceRange().getBegin(), 3547 diag::err_template_arg_ref_bind_ignores_quals) 3548 << ParamType << Arg->getType() 3549 << Arg->getSourceRange(); 3550 S.Diag(Param->getLocation(), diag::note_template_param_here); 3551 return true; 3552 } 3553 } 3554 } 3555 3556 // At this point, the template argument refers to an object or 3557 // function with external linkage. We now need to check whether the 3558 // argument and parameter types are compatible. 3559 if (!S.Context.hasSameUnqualifiedType(ArgType, 3560 ParamType.getNonReferenceType())) { 3561 // We can't perform this conversion or binding. 3562 if (ParamType->isReferenceType()) 3563 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3564 << ParamType << Arg->getType() << Arg->getSourceRange(); 3565 else 3566 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3567 << Arg->getType() << ParamType << Arg->getSourceRange(); 3568 S.Diag(Param->getLocation(), diag::note_template_param_here); 3569 return true; 3570 } 3571 } 3572 3573 // Create the template argument. 3574 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3575 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3576 return false; 3577} 3578 3579/// \brief Checks whether the given template argument is a pointer to 3580/// member constant according to C++ [temp.arg.nontype]p1. 3581bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3582 TemplateArgument &Converted) { 3583 bool Invalid = false; 3584 3585 // See through any implicit casts we added to fix the type. 3586 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3587 Arg = Cast->getSubExpr(); 3588 3589 // C++ [temp.arg.nontype]p1: 3590 // 3591 // A template-argument for a non-type, non-template 3592 // template-parameter shall be one of: [...] 3593 // 3594 // -- a pointer to member expressed as described in 5.3.1. 3595 DeclRefExpr *DRE = 0; 3596 3597 // In C++98/03 mode, give an extension warning on any extra parentheses. 3598 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3599 bool ExtraParens = false; 3600 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3601 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3602 Diag(Arg->getSourceRange().getBegin(), 3603 diag::ext_template_arg_extra_parens) 3604 << Arg->getSourceRange(); 3605 ExtraParens = true; 3606 } 3607 3608 Arg = Parens->getSubExpr(); 3609 } 3610 3611 // A pointer-to-member constant written &Class::member. 3612 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3613 if (UnOp->getOpcode() == UO_AddrOf) { 3614 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3615 if (DRE && !DRE->getQualifier()) 3616 DRE = 0; 3617 } 3618 } 3619 // A constant of pointer-to-member type. 3620 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3621 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3622 if (VD->getType()->isMemberPointerType()) { 3623 if (isa<NonTypeTemplateParmDecl>(VD) || 3624 (isa<VarDecl>(VD) && 3625 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3626 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3627 Converted = TemplateArgument(Arg); 3628 else 3629 Converted = TemplateArgument(VD->getCanonicalDecl()); 3630 return Invalid; 3631 } 3632 } 3633 } 3634 3635 DRE = 0; 3636 } 3637 3638 if (!DRE) 3639 return Diag(Arg->getSourceRange().getBegin(), 3640 diag::err_template_arg_not_pointer_to_member_form) 3641 << Arg->getSourceRange(); 3642 3643 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3644 assert((isa<FieldDecl>(DRE->getDecl()) || 3645 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3646 "Only non-static member pointers can make it here"); 3647 3648 // Okay: this is the address of a non-static member, and therefore 3649 // a member pointer constant. 3650 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3651 Converted = TemplateArgument(Arg); 3652 else 3653 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3654 return Invalid; 3655 } 3656 3657 // We found something else, but we don't know specifically what it is. 3658 Diag(Arg->getSourceRange().getBegin(), 3659 diag::err_template_arg_not_pointer_to_member_form) 3660 << Arg->getSourceRange(); 3661 Diag(DRE->getDecl()->getLocation(), 3662 diag::note_template_arg_refers_here); 3663 return true; 3664} 3665 3666/// \brief Check a template argument against its corresponding 3667/// non-type template parameter. 3668/// 3669/// This routine implements the semantics of C++ [temp.arg.nontype]. 3670/// If an error occurred, it returns ExprError(); otherwise, it 3671/// returns the converted template argument. \p 3672/// InstantiatedParamType is the type of the non-type template 3673/// parameter after it has been instantiated. 3674ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3675 QualType InstantiatedParamType, Expr *Arg, 3676 TemplateArgument &Converted, 3677 CheckTemplateArgumentKind CTAK) { 3678 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3679 3680 // If either the parameter has a dependent type or the argument is 3681 // type-dependent, there's nothing we can check now. 3682 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3683 // FIXME: Produce a cloned, canonical expression? 3684 Converted = TemplateArgument(Arg); 3685 return Owned(Arg); 3686 } 3687 3688 // C++ [temp.arg.nontype]p5: 3689 // The following conversions are performed on each expression used 3690 // as a non-type template-argument. If a non-type 3691 // template-argument cannot be converted to the type of the 3692 // corresponding template-parameter then the program is 3693 // ill-formed. 3694 // 3695 // -- for a non-type template-parameter of integral or 3696 // enumeration type, integral promotions (4.5) and integral 3697 // conversions (4.7) are applied. 3698 QualType ParamType = InstantiatedParamType; 3699 QualType ArgType = Arg->getType(); 3700 if (ParamType->isIntegralOrEnumerationType()) { 3701 // C++ [temp.arg.nontype]p1: 3702 // A template-argument for a non-type, non-template 3703 // template-parameter shall be one of: 3704 // 3705 // -- an integral constant-expression of integral or enumeration 3706 // type; or 3707 // -- the name of a non-type template-parameter; or 3708 SourceLocation NonConstantLoc; 3709 llvm::APSInt Value; 3710 if (!ArgType->isIntegralOrEnumerationType()) { 3711 Diag(Arg->getSourceRange().getBegin(), 3712 diag::err_template_arg_not_integral_or_enumeral) 3713 << ArgType << Arg->getSourceRange(); 3714 Diag(Param->getLocation(), diag::note_template_param_here); 3715 return ExprError(); 3716 } else if (!Arg->isValueDependent() && 3717 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3718 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3719 << ArgType << Arg->getSourceRange(); 3720 return ExprError(); 3721 } 3722 3723 // From here on out, all we care about are the unqualified forms 3724 // of the parameter and argument types. 3725 ParamType = ParamType.getUnqualifiedType(); 3726 ArgType = ArgType.getUnqualifiedType(); 3727 3728 // Try to convert the argument to the parameter's type. 3729 if (Context.hasSameType(ParamType, ArgType)) { 3730 // Okay: no conversion necessary 3731 } else if (CTAK == CTAK_Deduced) { 3732 // C++ [temp.deduct.type]p17: 3733 // If, in the declaration of a function template with a non-type 3734 // template-parameter, the non-type template- parameter is used 3735 // in an expression in the function parameter-list and, if the 3736 // corresponding template-argument is deduced, the 3737 // template-argument type shall match the type of the 3738 // template-parameter exactly, except that a template-argument 3739 // deduced from an array bound may be of any integral type. 3740 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3741 << ArgType << ParamType; 3742 Diag(Param->getLocation(), diag::note_template_param_here); 3743 return ExprError(); 3744 } else if (ParamType->isBooleanType()) { 3745 // This is an integral-to-boolean conversion. 3746 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3747 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3748 !ParamType->isEnumeralType()) { 3749 // This is an integral promotion or conversion. 3750 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3751 } else { 3752 // We can't perform this conversion. 3753 Diag(Arg->getSourceRange().getBegin(), 3754 diag::err_template_arg_not_convertible) 3755 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3756 Diag(Param->getLocation(), diag::note_template_param_here); 3757 return ExprError(); 3758 } 3759 3760 // Add the value of this argument to the list of converted 3761 // arguments. We use the bitwidth and signedness of the template 3762 // parameter. 3763 if (Arg->isValueDependent()) { 3764 // The argument is value-dependent. Create a new 3765 // TemplateArgument with the converted expression. 3766 Converted = TemplateArgument(Arg); 3767 return Owned(Arg); 3768 } 3769 3770 QualType IntegerType = Context.getCanonicalType(ParamType); 3771 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3772 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3773 3774 if (ParamType->isBooleanType()) { 3775 // Value must be zero or one. 3776 Value = Value != 0; 3777 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3778 if (Value.getBitWidth() != AllowedBits) 3779 Value = Value.extOrTrunc(AllowedBits); 3780 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3781 } else { 3782 llvm::APSInt OldValue = Value; 3783 3784 // Coerce the template argument's value to the value it will have 3785 // based on the template parameter's type. 3786 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3787 if (Value.getBitWidth() != AllowedBits) 3788 Value = Value.extOrTrunc(AllowedBits); 3789 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3790 3791 // Complain if an unsigned parameter received a negative value. 3792 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3793 && (OldValue.isSigned() && OldValue.isNegative())) { 3794 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3795 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3796 << Arg->getSourceRange(); 3797 Diag(Param->getLocation(), diag::note_template_param_here); 3798 } 3799 3800 // Complain if we overflowed the template parameter's type. 3801 unsigned RequiredBits; 3802 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3803 RequiredBits = OldValue.getActiveBits(); 3804 else if (OldValue.isUnsigned()) 3805 RequiredBits = OldValue.getActiveBits() + 1; 3806 else 3807 RequiredBits = OldValue.getMinSignedBits(); 3808 if (RequiredBits > AllowedBits) { 3809 Diag(Arg->getSourceRange().getBegin(), 3810 diag::warn_template_arg_too_large) 3811 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3812 << Arg->getSourceRange(); 3813 Diag(Param->getLocation(), diag::note_template_param_here); 3814 } 3815 } 3816 3817 Converted = TemplateArgument(Value, 3818 ParamType->isEnumeralType() ? ParamType 3819 : IntegerType); 3820 return Owned(Arg); 3821 } 3822 3823 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3824 3825 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3826 // from a template argument of type std::nullptr_t to a non-type 3827 // template parameter of type pointer to object, pointer to 3828 // function, or pointer-to-member, respectively. 3829 if (ArgType->isNullPtrType()) { 3830 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3831 Converted = TemplateArgument((NamedDecl *)0); 3832 return Owned(Arg); 3833 } 3834 3835 if (ParamType->isNullPtrType()) { 3836 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3837 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3838 return Owned(Arg); 3839 } 3840 } 3841 3842 // Handle pointer-to-function, reference-to-function, and 3843 // pointer-to-member-function all in (roughly) the same way. 3844 if (// -- For a non-type template-parameter of type pointer to 3845 // function, only the function-to-pointer conversion (4.3) is 3846 // applied. If the template-argument represents a set of 3847 // overloaded functions (or a pointer to such), the matching 3848 // function is selected from the set (13.4). 3849 (ParamType->isPointerType() && 3850 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3851 // -- For a non-type template-parameter of type reference to 3852 // function, no conversions apply. If the template-argument 3853 // represents a set of overloaded functions, the matching 3854 // function is selected from the set (13.4). 3855 (ParamType->isReferenceType() && 3856 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3857 // -- For a non-type template-parameter of type pointer to 3858 // member function, no conversions apply. If the 3859 // template-argument represents a set of overloaded member 3860 // functions, the matching member function is selected from 3861 // the set (13.4). 3862 (ParamType->isMemberPointerType() && 3863 ParamType->getAs<MemberPointerType>()->getPointeeType() 3864 ->isFunctionType())) { 3865 3866 if (Arg->getType() == Context.OverloadTy) { 3867 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3868 true, 3869 FoundResult)) { 3870 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3871 return ExprError(); 3872 3873 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3874 ArgType = Arg->getType(); 3875 } else 3876 return ExprError(); 3877 } 3878 3879 if (!ParamType->isMemberPointerType()) { 3880 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3881 ParamType, 3882 Arg, Converted)) 3883 return ExprError(); 3884 return Owned(Arg); 3885 } 3886 3887 bool ObjCLifetimeConversion; 3888 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3889 false, ObjCLifetimeConversion)) { 3890 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3891 } else if (!Context.hasSameUnqualifiedType(ArgType, 3892 ParamType.getNonReferenceType())) { 3893 // We can't perform this conversion. 3894 Diag(Arg->getSourceRange().getBegin(), 3895 diag::err_template_arg_not_convertible) 3896 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3897 Diag(Param->getLocation(), diag::note_template_param_here); 3898 return ExprError(); 3899 } 3900 3901 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3902 return ExprError(); 3903 return Owned(Arg); 3904 } 3905 3906 if (ParamType->isPointerType()) { 3907 // -- for a non-type template-parameter of type pointer to 3908 // object, qualification conversions (4.4) and the 3909 // array-to-pointer conversion (4.2) are applied. 3910 // C++0x also allows a value of std::nullptr_t. 3911 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3912 "Only object pointers allowed here"); 3913 3914 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3915 ParamType, 3916 Arg, Converted)) 3917 return ExprError(); 3918 return Owned(Arg); 3919 } 3920 3921 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3922 // -- For a non-type template-parameter of type reference to 3923 // object, no conversions apply. The type referred to by the 3924 // reference may be more cv-qualified than the (otherwise 3925 // identical) type of the template-argument. The 3926 // template-parameter is bound directly to the 3927 // template-argument, which must be an lvalue. 3928 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3929 "Only object references allowed here"); 3930 3931 if (Arg->getType() == Context.OverloadTy) { 3932 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3933 ParamRefType->getPointeeType(), 3934 true, 3935 FoundResult)) { 3936 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3937 return ExprError(); 3938 3939 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3940 ArgType = Arg->getType(); 3941 } else 3942 return ExprError(); 3943 } 3944 3945 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3946 ParamType, 3947 Arg, Converted)) 3948 return ExprError(); 3949 return Owned(Arg); 3950 } 3951 3952 // -- For a non-type template-parameter of type pointer to data 3953 // member, qualification conversions (4.4) are applied. 3954 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3955 3956 bool ObjCLifetimeConversion; 3957 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3958 // Types match exactly: nothing more to do here. 3959 } else if (IsQualificationConversion(ArgType, ParamType, false, 3960 ObjCLifetimeConversion)) { 3961 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3962 } else { 3963 // We can't perform this conversion. 3964 Diag(Arg->getSourceRange().getBegin(), 3965 diag::err_template_arg_not_convertible) 3966 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3967 Diag(Param->getLocation(), diag::note_template_param_here); 3968 return ExprError(); 3969 } 3970 3971 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3972 return ExprError(); 3973 return Owned(Arg); 3974} 3975 3976/// \brief Check a template argument against its corresponding 3977/// template template parameter. 3978/// 3979/// This routine implements the semantics of C++ [temp.arg.template]. 3980/// It returns true if an error occurred, and false otherwise. 3981bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3982 const TemplateArgumentLoc &Arg) { 3983 TemplateName Name = Arg.getArgument().getAsTemplate(); 3984 TemplateDecl *Template = Name.getAsTemplateDecl(); 3985 if (!Template) { 3986 // Any dependent template name is fine. 3987 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3988 return false; 3989 } 3990 3991 // C++0x [temp.arg.template]p1: 3992 // A template-argument for a template template-parameter shall be 3993 // the name of a class template or an alias template, expressed as an 3994 // id-expression. When the template-argument names a class template, only 3995 // primary class templates are considered when matching the 3996 // template template argument with the corresponding parameter; 3997 // partial specializations are not considered even if their 3998 // parameter lists match that of the template template parameter. 3999 // 4000 // Note that we also allow template template parameters here, which 4001 // will happen when we are dealing with, e.g., class template 4002 // partial specializations. 4003 if (!isa<ClassTemplateDecl>(Template) && 4004 !isa<TemplateTemplateParmDecl>(Template) && 4005 !isa<TypeAliasTemplateDecl>(Template)) { 4006 assert(isa<FunctionTemplateDecl>(Template) && 4007 "Only function templates are possible here"); 4008 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4009 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4010 << Template; 4011 } 4012 4013 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4014 Param->getTemplateParameters(), 4015 true, 4016 TPL_TemplateTemplateArgumentMatch, 4017 Arg.getLocation()); 4018} 4019 4020/// \brief Given a non-type template argument that refers to a 4021/// declaration and the type of its corresponding non-type template 4022/// parameter, produce an expression that properly refers to that 4023/// declaration. 4024ExprResult 4025Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4026 QualType ParamType, 4027 SourceLocation Loc) { 4028 assert(Arg.getKind() == TemplateArgument::Declaration && 4029 "Only declaration template arguments permitted here"); 4030 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4031 4032 if (VD->getDeclContext()->isRecord() && 4033 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4034 // If the value is a class member, we might have a pointer-to-member. 4035 // Determine whether the non-type template template parameter is of 4036 // pointer-to-member type. If so, we need to build an appropriate 4037 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4038 // would refer to the member itself. 4039 if (ParamType->isMemberPointerType()) { 4040 QualType ClassType 4041 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4042 NestedNameSpecifier *Qualifier 4043 = NestedNameSpecifier::Create(Context, 0, false, 4044 ClassType.getTypePtr()); 4045 CXXScopeSpec SS; 4046 SS.MakeTrivial(Context, Qualifier, Loc); 4047 4048 // The actual value-ness of this is unimportant, but for 4049 // internal consistency's sake, references to instance methods 4050 // are r-values. 4051 ExprValueKind VK = VK_LValue; 4052 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4053 VK = VK_RValue; 4054 4055 ExprResult RefExpr = BuildDeclRefExpr(VD, 4056 VD->getType().getNonReferenceType(), 4057 VK, 4058 Loc, 4059 &SS); 4060 if (RefExpr.isInvalid()) 4061 return ExprError(); 4062 4063 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4064 4065 // We might need to perform a trailing qualification conversion, since 4066 // the element type on the parameter could be more qualified than the 4067 // element type in the expression we constructed. 4068 bool ObjCLifetimeConversion; 4069 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4070 ParamType.getUnqualifiedType(), false, 4071 ObjCLifetimeConversion)) 4072 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4073 4074 assert(!RefExpr.isInvalid() && 4075 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4076 ParamType.getUnqualifiedType())); 4077 return move(RefExpr); 4078 } 4079 } 4080 4081 QualType T = VD->getType().getNonReferenceType(); 4082 if (ParamType->isPointerType()) { 4083 // When the non-type template parameter is a pointer, take the 4084 // address of the declaration. 4085 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4086 if (RefExpr.isInvalid()) 4087 return ExprError(); 4088 4089 if (T->isFunctionType() || T->isArrayType()) { 4090 // Decay functions and arrays. 4091 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4092 if (RefExpr.isInvalid()) 4093 return ExprError(); 4094 4095 return move(RefExpr); 4096 } 4097 4098 // Take the address of everything else 4099 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4100 } 4101 4102 ExprValueKind VK = VK_RValue; 4103 4104 // If the non-type template parameter has reference type, qualify the 4105 // resulting declaration reference with the extra qualifiers on the 4106 // type that the reference refers to. 4107 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4108 VK = VK_LValue; 4109 T = Context.getQualifiedType(T, 4110 TargetRef->getPointeeType().getQualifiers()); 4111 } 4112 4113 return BuildDeclRefExpr(VD, T, VK, Loc); 4114} 4115 4116/// \brief Construct a new expression that refers to the given 4117/// integral template argument with the given source-location 4118/// information. 4119/// 4120/// This routine takes care of the mapping from an integral template 4121/// argument (which may have any integral type) to the appropriate 4122/// literal value. 4123ExprResult 4124Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4125 SourceLocation Loc) { 4126 assert(Arg.getKind() == TemplateArgument::Integral && 4127 "Operation is only valid for integral template arguments"); 4128 QualType T = Arg.getIntegralType(); 4129 if (T->isCharType() || T->isWideCharType()) 4130 return Owned(new (Context) CharacterLiteral( 4131 Arg.getAsIntegral()->getZExtValue(), 4132 T->isWideCharType(), T, Loc)); 4133 if (T->isBooleanType()) 4134 return Owned(new (Context) CXXBoolLiteralExpr( 4135 Arg.getAsIntegral()->getBoolValue(), 4136 T, Loc)); 4137 4138 if (T->isNullPtrType()) 4139 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4140 4141 // If this is an enum type that we're instantiating, we need to use an integer 4142 // type the same size as the enumerator. We don't want to build an 4143 // IntegerLiteral with enum type. 4144 QualType BT; 4145 if (const EnumType *ET = T->getAs<EnumType>()) 4146 BT = ET->getDecl()->getIntegerType(); 4147 else 4148 BT = T; 4149 4150 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4151 if (T->isEnumeralType()) { 4152 // FIXME: This is a hack. We need a better way to handle substituted 4153 // non-type template parameters. 4154 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4155 Context.getTrivialTypeSourceInfo(T, Loc), 4156 Loc, Loc); 4157 } 4158 4159 return Owned(E); 4160} 4161 4162/// \brief Match two template parameters within template parameter lists. 4163static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4164 bool Complain, 4165 Sema::TemplateParameterListEqualKind Kind, 4166 SourceLocation TemplateArgLoc) { 4167 // Check the actual kind (type, non-type, template). 4168 if (Old->getKind() != New->getKind()) { 4169 if (Complain) { 4170 unsigned NextDiag = diag::err_template_param_different_kind; 4171 if (TemplateArgLoc.isValid()) { 4172 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4173 NextDiag = diag::note_template_param_different_kind; 4174 } 4175 S.Diag(New->getLocation(), NextDiag) 4176 << (Kind != Sema::TPL_TemplateMatch); 4177 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4178 << (Kind != Sema::TPL_TemplateMatch); 4179 } 4180 4181 return false; 4182 } 4183 4184 // Check that both are parameter packs are neither are parameter packs. 4185 // However, if we are matching a template template argument to a 4186 // template template parameter, the template template parameter can have 4187 // a parameter pack where the template template argument does not. 4188 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4189 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4190 Old->isTemplateParameterPack())) { 4191 if (Complain) { 4192 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4193 if (TemplateArgLoc.isValid()) { 4194 S.Diag(TemplateArgLoc, 4195 diag::err_template_arg_template_params_mismatch); 4196 NextDiag = diag::note_template_parameter_pack_non_pack; 4197 } 4198 4199 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4200 : isa<NonTypeTemplateParmDecl>(New)? 1 4201 : 2; 4202 S.Diag(New->getLocation(), NextDiag) 4203 << ParamKind << New->isParameterPack(); 4204 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4205 << ParamKind << Old->isParameterPack(); 4206 } 4207 4208 return false; 4209 } 4210 4211 // For non-type template parameters, check the type of the parameter. 4212 if (NonTypeTemplateParmDecl *OldNTTP 4213 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4214 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4215 4216 // If we are matching a template template argument to a template 4217 // template parameter and one of the non-type template parameter types 4218 // is dependent, then we must wait until template instantiation time 4219 // to actually compare the arguments. 4220 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4221 (OldNTTP->getType()->isDependentType() || 4222 NewNTTP->getType()->isDependentType())) 4223 return true; 4224 4225 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4226 if (Complain) { 4227 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4228 if (TemplateArgLoc.isValid()) { 4229 S.Diag(TemplateArgLoc, 4230 diag::err_template_arg_template_params_mismatch); 4231 NextDiag = diag::note_template_nontype_parm_different_type; 4232 } 4233 S.Diag(NewNTTP->getLocation(), NextDiag) 4234 << NewNTTP->getType() 4235 << (Kind != Sema::TPL_TemplateMatch); 4236 S.Diag(OldNTTP->getLocation(), 4237 diag::note_template_nontype_parm_prev_declaration) 4238 << OldNTTP->getType(); 4239 } 4240 4241 return false; 4242 } 4243 4244 return true; 4245 } 4246 4247 // For template template parameters, check the template parameter types. 4248 // The template parameter lists of template template 4249 // parameters must agree. 4250 if (TemplateTemplateParmDecl *OldTTP 4251 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4252 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4253 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4254 OldTTP->getTemplateParameters(), 4255 Complain, 4256 (Kind == Sema::TPL_TemplateMatch 4257 ? Sema::TPL_TemplateTemplateParmMatch 4258 : Kind), 4259 TemplateArgLoc); 4260 } 4261 4262 return true; 4263} 4264 4265/// \brief Diagnose a known arity mismatch when comparing template argument 4266/// lists. 4267static 4268void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4269 TemplateParameterList *New, 4270 TemplateParameterList *Old, 4271 Sema::TemplateParameterListEqualKind Kind, 4272 SourceLocation TemplateArgLoc) { 4273 unsigned NextDiag = diag::err_template_param_list_different_arity; 4274 if (TemplateArgLoc.isValid()) { 4275 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4276 NextDiag = diag::note_template_param_list_different_arity; 4277 } 4278 S.Diag(New->getTemplateLoc(), NextDiag) 4279 << (New->size() > Old->size()) 4280 << (Kind != Sema::TPL_TemplateMatch) 4281 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4282 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4283 << (Kind != Sema::TPL_TemplateMatch) 4284 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4285} 4286 4287/// \brief Determine whether the given template parameter lists are 4288/// equivalent. 4289/// 4290/// \param New The new template parameter list, typically written in the 4291/// source code as part of a new template declaration. 4292/// 4293/// \param Old The old template parameter list, typically found via 4294/// name lookup of the template declared with this template parameter 4295/// list. 4296/// 4297/// \param Complain If true, this routine will produce a diagnostic if 4298/// the template parameter lists are not equivalent. 4299/// 4300/// \param Kind describes how we are to match the template parameter lists. 4301/// 4302/// \param TemplateArgLoc If this source location is valid, then we 4303/// are actually checking the template parameter list of a template 4304/// argument (New) against the template parameter list of its 4305/// corresponding template template parameter (Old). We produce 4306/// slightly different diagnostics in this scenario. 4307/// 4308/// \returns True if the template parameter lists are equal, false 4309/// otherwise. 4310bool 4311Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4312 TemplateParameterList *Old, 4313 bool Complain, 4314 TemplateParameterListEqualKind Kind, 4315 SourceLocation TemplateArgLoc) { 4316 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4317 if (Complain) 4318 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4319 TemplateArgLoc); 4320 4321 return false; 4322 } 4323 4324 // C++0x [temp.arg.template]p3: 4325 // A template-argument matches a template template-parameter (call it P) 4326 // when each of the template parameters in the template-parameter-list of 4327 // the template-argument's corresponding class template or alias template 4328 // (call it A) matches the corresponding template parameter in the 4329 // template-parameter-list of P. [...] 4330 TemplateParameterList::iterator NewParm = New->begin(); 4331 TemplateParameterList::iterator NewParmEnd = New->end(); 4332 for (TemplateParameterList::iterator OldParm = Old->begin(), 4333 OldParmEnd = Old->end(); 4334 OldParm != OldParmEnd; ++OldParm) { 4335 if (Kind != TPL_TemplateTemplateArgumentMatch || 4336 !(*OldParm)->isTemplateParameterPack()) { 4337 if (NewParm == NewParmEnd) { 4338 if (Complain) 4339 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4340 TemplateArgLoc); 4341 4342 return false; 4343 } 4344 4345 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4346 Kind, TemplateArgLoc)) 4347 return false; 4348 4349 ++NewParm; 4350 continue; 4351 } 4352 4353 // C++0x [temp.arg.template]p3: 4354 // [...] When P's template- parameter-list contains a template parameter 4355 // pack (14.5.3), the template parameter pack will match zero or more 4356 // template parameters or template parameter packs in the 4357 // template-parameter-list of A with the same type and form as the 4358 // template parameter pack in P (ignoring whether those template 4359 // parameters are template parameter packs). 4360 for (; NewParm != NewParmEnd; ++NewParm) { 4361 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4362 Kind, TemplateArgLoc)) 4363 return false; 4364 } 4365 } 4366 4367 // Make sure we exhausted all of the arguments. 4368 if (NewParm != NewParmEnd) { 4369 if (Complain) 4370 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4371 TemplateArgLoc); 4372 4373 return false; 4374 } 4375 4376 return true; 4377} 4378 4379/// \brief Check whether a template can be declared within this scope. 4380/// 4381/// If the template declaration is valid in this scope, returns 4382/// false. Otherwise, issues a diagnostic and returns true. 4383bool 4384Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4385 // Find the nearest enclosing declaration scope. 4386 while ((S->getFlags() & Scope::DeclScope) == 0 || 4387 (S->getFlags() & Scope::TemplateParamScope) != 0) 4388 S = S->getParent(); 4389 4390 // C++ [temp]p2: 4391 // A template-declaration can appear only as a namespace scope or 4392 // class scope declaration. 4393 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4394 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4395 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4396 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4397 << TemplateParams->getSourceRange(); 4398 4399 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4400 Ctx = Ctx->getParent(); 4401 4402 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4403 return false; 4404 4405 return Diag(TemplateParams->getTemplateLoc(), 4406 diag::err_template_outside_namespace_or_class_scope) 4407 << TemplateParams->getSourceRange(); 4408} 4409 4410/// \brief Determine what kind of template specialization the given declaration 4411/// is. 4412static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4413 if (!D) 4414 return TSK_Undeclared; 4415 4416 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4417 return Record->getTemplateSpecializationKind(); 4418 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4419 return Function->getTemplateSpecializationKind(); 4420 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4421 return Var->getTemplateSpecializationKind(); 4422 4423 return TSK_Undeclared; 4424} 4425 4426/// \brief Check whether a specialization is well-formed in the current 4427/// context. 4428/// 4429/// This routine determines whether a template specialization can be declared 4430/// in the current context (C++ [temp.expl.spec]p2). 4431/// 4432/// \param S the semantic analysis object for which this check is being 4433/// performed. 4434/// 4435/// \param Specialized the entity being specialized or instantiated, which 4436/// may be a kind of template (class template, function template, etc.) or 4437/// a member of a class template (member function, static data member, 4438/// member class). 4439/// 4440/// \param PrevDecl the previous declaration of this entity, if any. 4441/// 4442/// \param Loc the location of the explicit specialization or instantiation of 4443/// this entity. 4444/// 4445/// \param IsPartialSpecialization whether this is a partial specialization of 4446/// a class template. 4447/// 4448/// \returns true if there was an error that we cannot recover from, false 4449/// otherwise. 4450static bool CheckTemplateSpecializationScope(Sema &S, 4451 NamedDecl *Specialized, 4452 NamedDecl *PrevDecl, 4453 SourceLocation Loc, 4454 bool IsPartialSpecialization) { 4455 // Keep these "kind" numbers in sync with the %select statements in the 4456 // various diagnostics emitted by this routine. 4457 int EntityKind = 0; 4458 if (isa<ClassTemplateDecl>(Specialized)) 4459 EntityKind = IsPartialSpecialization? 1 : 0; 4460 else if (isa<FunctionTemplateDecl>(Specialized)) 4461 EntityKind = 2; 4462 else if (isa<CXXMethodDecl>(Specialized)) 4463 EntityKind = 3; 4464 else if (isa<VarDecl>(Specialized)) 4465 EntityKind = 4; 4466 else if (isa<RecordDecl>(Specialized)) 4467 EntityKind = 5; 4468 else { 4469 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4470 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4471 return true; 4472 } 4473 4474 // C++ [temp.expl.spec]p2: 4475 // An explicit specialization shall be declared in the namespace 4476 // of which the template is a member, or, for member templates, in 4477 // the namespace of which the enclosing class or enclosing class 4478 // template is a member. An explicit specialization of a member 4479 // function, member class or static data member of a class 4480 // template shall be declared in the namespace of which the class 4481 // template is a member. Such a declaration may also be a 4482 // definition. If the declaration is not a definition, the 4483 // specialization may be defined later in the name- space in which 4484 // the explicit specialization was declared, or in a namespace 4485 // that encloses the one in which the explicit specialization was 4486 // declared. 4487 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4488 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4489 << Specialized; 4490 return true; 4491 } 4492 4493 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4494 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4495 << Specialized; 4496 return true; 4497 } 4498 4499 // C++ [temp.class.spec]p6: 4500 // A class template partial specialization may be declared or redeclared 4501 // in any namespace scope in which its definition may be defined (14.5.1 4502 // and 14.5.2). 4503 bool ComplainedAboutScope = false; 4504 DeclContext *SpecializedContext 4505 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4506 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4507 if ((!PrevDecl || 4508 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4509 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4510 // C++ [temp.exp.spec]p2: 4511 // An explicit specialization shall be declared in the namespace of which 4512 // the template is a member, or, for member templates, in the namespace 4513 // of which the enclosing class or enclosing class template is a member. 4514 // An explicit specialization of a member function, member class or 4515 // static data member of a class template shall be declared in the 4516 // namespace of which the class template is a member. 4517 // 4518 // C++0x [temp.expl.spec]p2: 4519 // An explicit specialization shall be declared in a namespace enclosing 4520 // the specialized template. 4521 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4522 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4523 bool IsCPlusPlus0xExtension 4524 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4525 if (isa<TranslationUnitDecl>(SpecializedContext)) 4526 S.Diag(Loc, IsCPlusPlus0xExtension 4527 ? diag::ext_template_spec_decl_out_of_scope_global 4528 : diag::err_template_spec_decl_out_of_scope_global) 4529 << EntityKind << Specialized; 4530 else if (isa<NamespaceDecl>(SpecializedContext)) 4531 S.Diag(Loc, IsCPlusPlus0xExtension 4532 ? diag::ext_template_spec_decl_out_of_scope 4533 : diag::err_template_spec_decl_out_of_scope) 4534 << EntityKind << Specialized 4535 << cast<NamedDecl>(SpecializedContext); 4536 4537 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4538 ComplainedAboutScope = true; 4539 } 4540 } 4541 4542 // Make sure that this redeclaration (or definition) occurs in an enclosing 4543 // namespace. 4544 // Note that HandleDeclarator() performs this check for explicit 4545 // specializations of function templates, static data members, and member 4546 // functions, so we skip the check here for those kinds of entities. 4547 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4548 // Should we refactor that check, so that it occurs later? 4549 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4550 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4551 isa<FunctionDecl>(Specialized))) { 4552 if (isa<TranslationUnitDecl>(SpecializedContext)) 4553 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4554 << EntityKind << Specialized; 4555 else if (isa<NamespaceDecl>(SpecializedContext)) 4556 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4557 << EntityKind << Specialized 4558 << cast<NamedDecl>(SpecializedContext); 4559 4560 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4561 } 4562 4563 // FIXME: check for specialization-after-instantiation errors and such. 4564 4565 return false; 4566} 4567 4568/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4569/// that checks non-type template partial specialization arguments. 4570static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4571 NonTypeTemplateParmDecl *Param, 4572 const TemplateArgument *Args, 4573 unsigned NumArgs) { 4574 for (unsigned I = 0; I != NumArgs; ++I) { 4575 if (Args[I].getKind() == TemplateArgument::Pack) { 4576 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4577 Args[I].pack_begin(), 4578 Args[I].pack_size())) 4579 return true; 4580 4581 continue; 4582 } 4583 4584 Expr *ArgExpr = Args[I].getAsExpr(); 4585 if (!ArgExpr) { 4586 continue; 4587 } 4588 4589 // We can have a pack expansion of any of the bullets below. 4590 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4591 ArgExpr = Expansion->getPattern(); 4592 4593 // Strip off any implicit casts we added as part of type checking. 4594 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4595 ArgExpr = ICE->getSubExpr(); 4596 4597 // C++ [temp.class.spec]p8: 4598 // A non-type argument is non-specialized if it is the name of a 4599 // non-type parameter. All other non-type arguments are 4600 // specialized. 4601 // 4602 // Below, we check the two conditions that only apply to 4603 // specialized non-type arguments, so skip any non-specialized 4604 // arguments. 4605 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4606 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4607 continue; 4608 4609 // C++ [temp.class.spec]p9: 4610 // Within the argument list of a class template partial 4611 // specialization, the following restrictions apply: 4612 // -- A partially specialized non-type argument expression 4613 // shall not involve a template parameter of the partial 4614 // specialization except when the argument expression is a 4615 // simple identifier. 4616 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4617 S.Diag(ArgExpr->getLocStart(), 4618 diag::err_dependent_non_type_arg_in_partial_spec) 4619 << ArgExpr->getSourceRange(); 4620 return true; 4621 } 4622 4623 // -- The type of a template parameter corresponding to a 4624 // specialized non-type argument shall not be dependent on a 4625 // parameter of the specialization. 4626 if (Param->getType()->isDependentType()) { 4627 S.Diag(ArgExpr->getLocStart(), 4628 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4629 << Param->getType() 4630 << ArgExpr->getSourceRange(); 4631 S.Diag(Param->getLocation(), diag::note_template_param_here); 4632 return true; 4633 } 4634 } 4635 4636 return false; 4637} 4638 4639/// \brief Check the non-type template arguments of a class template 4640/// partial specialization according to C++ [temp.class.spec]p9. 4641/// 4642/// \param TemplateParams the template parameters of the primary class 4643/// template. 4644/// 4645/// \param TemplateArg the template arguments of the class template 4646/// partial specialization. 4647/// 4648/// \returns true if there was an error, false otherwise. 4649static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4650 TemplateParameterList *TemplateParams, 4651 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4652 const TemplateArgument *ArgList = TemplateArgs.data(); 4653 4654 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4655 NonTypeTemplateParmDecl *Param 4656 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4657 if (!Param) 4658 continue; 4659 4660 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4661 &ArgList[I], 1)) 4662 return true; 4663 } 4664 4665 return false; 4666} 4667 4668/// \brief Retrieve the previous declaration of the given declaration. 4669static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4670 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4671 return VD->getPreviousDeclaration(); 4672 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4673 return FD->getPreviousDeclaration(); 4674 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4675 return TD->getPreviousDeclaration(); 4676 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4677 return TD->getPreviousDeclaration(); 4678 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4679 return FTD->getPreviousDeclaration(); 4680 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4681 return CTD->getPreviousDeclaration(); 4682 return 0; 4683} 4684 4685DeclResult 4686Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4687 TagUseKind TUK, 4688 SourceLocation KWLoc, 4689 CXXScopeSpec &SS, 4690 TemplateTy TemplateD, 4691 SourceLocation TemplateNameLoc, 4692 SourceLocation LAngleLoc, 4693 ASTTemplateArgsPtr TemplateArgsIn, 4694 SourceLocation RAngleLoc, 4695 AttributeList *Attr, 4696 MultiTemplateParamsArg TemplateParameterLists) { 4697 assert(TUK != TUK_Reference && "References are not specializations"); 4698 4699 // NOTE: KWLoc is the location of the tag keyword. This will instead 4700 // store the location of the outermost template keyword in the declaration. 4701 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4702 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4703 4704 // Find the class template we're specializing 4705 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4706 ClassTemplateDecl *ClassTemplate 4707 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4708 4709 if (!ClassTemplate) { 4710 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4711 << (Name.getAsTemplateDecl() && 4712 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4713 return true; 4714 } 4715 4716 bool isExplicitSpecialization = false; 4717 bool isPartialSpecialization = false; 4718 4719 // Check the validity of the template headers that introduce this 4720 // template. 4721 // FIXME: We probably shouldn't complain about these headers for 4722 // friend declarations. 4723 bool Invalid = false; 4724 TemplateParameterList *TemplateParams 4725 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4726 TemplateNameLoc, 4727 SS, 4728 (TemplateParameterList**)TemplateParameterLists.get(), 4729 TemplateParameterLists.size(), 4730 TUK == TUK_Friend, 4731 isExplicitSpecialization, 4732 Invalid); 4733 if (Invalid) 4734 return true; 4735 4736 if (TemplateParams && TemplateParams->size() > 0) { 4737 isPartialSpecialization = true; 4738 4739 if (TUK == TUK_Friend) { 4740 Diag(KWLoc, diag::err_partial_specialization_friend) 4741 << SourceRange(LAngleLoc, RAngleLoc); 4742 return true; 4743 } 4744 4745 // C++ [temp.class.spec]p10: 4746 // The template parameter list of a specialization shall not 4747 // contain default template argument values. 4748 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4749 Decl *Param = TemplateParams->getParam(I); 4750 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4751 if (TTP->hasDefaultArgument()) { 4752 Diag(TTP->getDefaultArgumentLoc(), 4753 diag::err_default_arg_in_partial_spec); 4754 TTP->removeDefaultArgument(); 4755 } 4756 } else if (NonTypeTemplateParmDecl *NTTP 4757 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4758 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4759 Diag(NTTP->getDefaultArgumentLoc(), 4760 diag::err_default_arg_in_partial_spec) 4761 << DefArg->getSourceRange(); 4762 NTTP->removeDefaultArgument(); 4763 } 4764 } else { 4765 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4766 if (TTP->hasDefaultArgument()) { 4767 Diag(TTP->getDefaultArgument().getLocation(), 4768 diag::err_default_arg_in_partial_spec) 4769 << TTP->getDefaultArgument().getSourceRange(); 4770 TTP->removeDefaultArgument(); 4771 } 4772 } 4773 } 4774 } else if (TemplateParams) { 4775 if (TUK == TUK_Friend) 4776 Diag(KWLoc, diag::err_template_spec_friend) 4777 << FixItHint::CreateRemoval( 4778 SourceRange(TemplateParams->getTemplateLoc(), 4779 TemplateParams->getRAngleLoc())) 4780 << SourceRange(LAngleLoc, RAngleLoc); 4781 else 4782 isExplicitSpecialization = true; 4783 } else if (TUK != TUK_Friend) { 4784 Diag(KWLoc, diag::err_template_spec_needs_header) 4785 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4786 isExplicitSpecialization = true; 4787 } 4788 4789 // Check that the specialization uses the same tag kind as the 4790 // original template. 4791 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4792 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4793 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4794 Kind, TUK == TUK_Definition, KWLoc, 4795 *ClassTemplate->getIdentifier())) { 4796 Diag(KWLoc, diag::err_use_with_wrong_tag) 4797 << ClassTemplate 4798 << FixItHint::CreateReplacement(KWLoc, 4799 ClassTemplate->getTemplatedDecl()->getKindName()); 4800 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4801 diag::note_previous_use); 4802 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4803 } 4804 4805 // Translate the parser's template argument list in our AST format. 4806 TemplateArgumentListInfo TemplateArgs; 4807 TemplateArgs.setLAngleLoc(LAngleLoc); 4808 TemplateArgs.setRAngleLoc(RAngleLoc); 4809 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4810 4811 // Check for unexpanded parameter packs in any of the template arguments. 4812 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4813 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4814 UPPC_PartialSpecialization)) 4815 return true; 4816 4817 // Check that the template argument list is well-formed for this 4818 // template. 4819 llvm::SmallVector<TemplateArgument, 4> Converted; 4820 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4821 TemplateArgs, false, Converted)) 4822 return true; 4823 4824 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4825 "Converted template argument list is too short!"); 4826 4827 // Find the class template (partial) specialization declaration that 4828 // corresponds to these arguments. 4829 if (isPartialSpecialization) { 4830 if (CheckClassTemplatePartialSpecializationArgs(*this, 4831 ClassTemplate->getTemplateParameters(), 4832 Converted)) 4833 return true; 4834 4835 if (!Name.isDependent() && 4836 !TemplateSpecializationType::anyDependentTemplateArguments( 4837 TemplateArgs.getArgumentArray(), 4838 TemplateArgs.size())) { 4839 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4840 << ClassTemplate->getDeclName(); 4841 isPartialSpecialization = false; 4842 } 4843 } 4844 4845 void *InsertPos = 0; 4846 ClassTemplateSpecializationDecl *PrevDecl = 0; 4847 4848 if (isPartialSpecialization) 4849 // FIXME: Template parameter list matters, too 4850 PrevDecl 4851 = ClassTemplate->findPartialSpecialization(Converted.data(), 4852 Converted.size(), 4853 InsertPos); 4854 else 4855 PrevDecl 4856 = ClassTemplate->findSpecialization(Converted.data(), 4857 Converted.size(), InsertPos); 4858 4859 ClassTemplateSpecializationDecl *Specialization = 0; 4860 4861 // Check whether we can declare a class template specialization in 4862 // the current scope. 4863 if (TUK != TUK_Friend && 4864 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4865 TemplateNameLoc, 4866 isPartialSpecialization)) 4867 return true; 4868 4869 // The canonical type 4870 QualType CanonType; 4871 if (PrevDecl && 4872 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4873 TUK == TUK_Friend)) { 4874 // Since the only prior class template specialization with these 4875 // arguments was referenced but not declared, or we're only 4876 // referencing this specialization as a friend, reuse that 4877 // declaration node as our own, updating its source location and 4878 // the list of outer template parameters to reflect our new declaration. 4879 Specialization = PrevDecl; 4880 Specialization->setLocation(TemplateNameLoc); 4881 if (TemplateParameterLists.size() > 0) { 4882 Specialization->setTemplateParameterListsInfo(Context, 4883 TemplateParameterLists.size(), 4884 (TemplateParameterList**) TemplateParameterLists.release()); 4885 } 4886 PrevDecl = 0; 4887 CanonType = Context.getTypeDeclType(Specialization); 4888 } else if (isPartialSpecialization) { 4889 // Build the canonical type that describes the converted template 4890 // arguments of the class template partial specialization. 4891 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4892 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4893 Converted.data(), 4894 Converted.size()); 4895 4896 if (Context.hasSameType(CanonType, 4897 ClassTemplate->getInjectedClassNameSpecialization())) { 4898 // C++ [temp.class.spec]p9b3: 4899 // 4900 // -- The argument list of the specialization shall not be identical 4901 // to the implicit argument list of the primary template. 4902 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4903 << (TUK == TUK_Definition) 4904 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4905 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4906 ClassTemplate->getIdentifier(), 4907 TemplateNameLoc, 4908 Attr, 4909 TemplateParams, 4910 AS_none, 4911 TemplateParameterLists.size() - 1, 4912 (TemplateParameterList**) TemplateParameterLists.release()); 4913 } 4914 4915 // Create a new class template partial specialization declaration node. 4916 ClassTemplatePartialSpecializationDecl *PrevPartial 4917 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4918 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4919 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4920 ClassTemplatePartialSpecializationDecl *Partial 4921 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4922 ClassTemplate->getDeclContext(), 4923 KWLoc, TemplateNameLoc, 4924 TemplateParams, 4925 ClassTemplate, 4926 Converted.data(), 4927 Converted.size(), 4928 TemplateArgs, 4929 CanonType, 4930 PrevPartial, 4931 SequenceNumber); 4932 SetNestedNameSpecifier(Partial, SS); 4933 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4934 Partial->setTemplateParameterListsInfo(Context, 4935 TemplateParameterLists.size() - 1, 4936 (TemplateParameterList**) TemplateParameterLists.release()); 4937 } 4938 4939 if (!PrevPartial) 4940 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4941 Specialization = Partial; 4942 4943 // If we are providing an explicit specialization of a member class 4944 // template specialization, make a note of that. 4945 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4946 PrevPartial->setMemberSpecialization(); 4947 4948 // Check that all of the template parameters of the class template 4949 // partial specialization are deducible from the template 4950 // arguments. If not, this class template partial specialization 4951 // will never be used. 4952 llvm::SmallVector<bool, 8> DeducibleParams; 4953 DeducibleParams.resize(TemplateParams->size()); 4954 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4955 TemplateParams->getDepth(), 4956 DeducibleParams); 4957 unsigned NumNonDeducible = 0; 4958 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4959 if (!DeducibleParams[I]) 4960 ++NumNonDeducible; 4961 4962 if (NumNonDeducible) { 4963 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4964 << (NumNonDeducible > 1) 4965 << SourceRange(TemplateNameLoc, RAngleLoc); 4966 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4967 if (!DeducibleParams[I]) { 4968 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4969 if (Param->getDeclName()) 4970 Diag(Param->getLocation(), 4971 diag::note_partial_spec_unused_parameter) 4972 << Param->getDeclName(); 4973 else 4974 Diag(Param->getLocation(), 4975 diag::note_partial_spec_unused_parameter) 4976 << "<anonymous>"; 4977 } 4978 } 4979 } 4980 } else { 4981 // Create a new class template specialization declaration node for 4982 // this explicit specialization or friend declaration. 4983 Specialization 4984 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4985 ClassTemplate->getDeclContext(), 4986 KWLoc, TemplateNameLoc, 4987 ClassTemplate, 4988 Converted.data(), 4989 Converted.size(), 4990 PrevDecl); 4991 SetNestedNameSpecifier(Specialization, SS); 4992 if (TemplateParameterLists.size() > 0) { 4993 Specialization->setTemplateParameterListsInfo(Context, 4994 TemplateParameterLists.size(), 4995 (TemplateParameterList**) TemplateParameterLists.release()); 4996 } 4997 4998 if (!PrevDecl) 4999 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5000 5001 CanonType = Context.getTypeDeclType(Specialization); 5002 } 5003 5004 // C++ [temp.expl.spec]p6: 5005 // If a template, a member template or the member of a class template is 5006 // explicitly specialized then that specialization shall be declared 5007 // before the first use of that specialization that would cause an implicit 5008 // instantiation to take place, in every translation unit in which such a 5009 // use occurs; no diagnostic is required. 5010 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5011 bool Okay = false; 5012 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5013 // Is there any previous explicit specialization declaration? 5014 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5015 Okay = true; 5016 break; 5017 } 5018 } 5019 5020 if (!Okay) { 5021 SourceRange Range(TemplateNameLoc, RAngleLoc); 5022 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5023 << Context.getTypeDeclType(Specialization) << Range; 5024 5025 Diag(PrevDecl->getPointOfInstantiation(), 5026 diag::note_instantiation_required_here) 5027 << (PrevDecl->getTemplateSpecializationKind() 5028 != TSK_ImplicitInstantiation); 5029 return true; 5030 } 5031 } 5032 5033 // If this is not a friend, note that this is an explicit specialization. 5034 if (TUK != TUK_Friend) 5035 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5036 5037 // Check that this isn't a redefinition of this specialization. 5038 if (TUK == TUK_Definition) { 5039 if (RecordDecl *Def = Specialization->getDefinition()) { 5040 SourceRange Range(TemplateNameLoc, RAngleLoc); 5041 Diag(TemplateNameLoc, diag::err_redefinition) 5042 << Context.getTypeDeclType(Specialization) << Range; 5043 Diag(Def->getLocation(), diag::note_previous_definition); 5044 Specialization->setInvalidDecl(); 5045 return true; 5046 } 5047 } 5048 5049 if (Attr) 5050 ProcessDeclAttributeList(S, Specialization, Attr); 5051 5052 // Build the fully-sugared type for this class template 5053 // specialization as the user wrote in the specialization 5054 // itself. This means that we'll pretty-print the type retrieved 5055 // from the specialization's declaration the way that the user 5056 // actually wrote the specialization, rather than formatting the 5057 // name based on the "canonical" representation used to store the 5058 // template arguments in the specialization. 5059 TypeSourceInfo *WrittenTy 5060 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5061 TemplateArgs, CanonType); 5062 if (TUK != TUK_Friend) { 5063 Specialization->setTypeAsWritten(WrittenTy); 5064 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5065 } 5066 TemplateArgsIn.release(); 5067 5068 // C++ [temp.expl.spec]p9: 5069 // A template explicit specialization is in the scope of the 5070 // namespace in which the template was defined. 5071 // 5072 // We actually implement this paragraph where we set the semantic 5073 // context (in the creation of the ClassTemplateSpecializationDecl), 5074 // but we also maintain the lexical context where the actual 5075 // definition occurs. 5076 Specialization->setLexicalDeclContext(CurContext); 5077 5078 // We may be starting the definition of this specialization. 5079 if (TUK == TUK_Definition) 5080 Specialization->startDefinition(); 5081 5082 if (TUK == TUK_Friend) { 5083 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5084 TemplateNameLoc, 5085 WrittenTy, 5086 /*FIXME:*/KWLoc); 5087 Friend->setAccess(AS_public); 5088 CurContext->addDecl(Friend); 5089 } else { 5090 // Add the specialization into its lexical context, so that it can 5091 // be seen when iterating through the list of declarations in that 5092 // context. However, specializations are not found by name lookup. 5093 CurContext->addDecl(Specialization); 5094 } 5095 return Specialization; 5096} 5097 5098Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5099 MultiTemplateParamsArg TemplateParameterLists, 5100 Declarator &D) { 5101 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5102} 5103 5104Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5105 MultiTemplateParamsArg TemplateParameterLists, 5106 Declarator &D) { 5107 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5108 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5109 5110 if (FTI.hasPrototype) { 5111 // FIXME: Diagnose arguments without names in C. 5112 } 5113 5114 Scope *ParentScope = FnBodyScope->getParent(); 5115 5116 Decl *DP = HandleDeclarator(ParentScope, D, 5117 move(TemplateParameterLists), 5118 /*IsFunctionDefinition=*/true); 5119 if (FunctionTemplateDecl *FunctionTemplate 5120 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5121 return ActOnStartOfFunctionDef(FnBodyScope, 5122 FunctionTemplate->getTemplatedDecl()); 5123 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5124 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5125 return 0; 5126} 5127 5128/// \brief Strips various properties off an implicit instantiation 5129/// that has just been explicitly specialized. 5130static void StripImplicitInstantiation(NamedDecl *D) { 5131 D->dropAttrs(); 5132 5133 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5134 FD->setInlineSpecified(false); 5135 } 5136} 5137 5138/// \brief Diagnose cases where we have an explicit template specialization 5139/// before/after an explicit template instantiation, producing diagnostics 5140/// for those cases where they are required and determining whether the 5141/// new specialization/instantiation will have any effect. 5142/// 5143/// \param NewLoc the location of the new explicit specialization or 5144/// instantiation. 5145/// 5146/// \param NewTSK the kind of the new explicit specialization or instantiation. 5147/// 5148/// \param PrevDecl the previous declaration of the entity. 5149/// 5150/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5151/// 5152/// \param PrevPointOfInstantiation if valid, indicates where the previus 5153/// declaration was instantiated (either implicitly or explicitly). 5154/// 5155/// \param HasNoEffect will be set to true to indicate that the new 5156/// specialization or instantiation has no effect and should be ignored. 5157/// 5158/// \returns true if there was an error that should prevent the introduction of 5159/// the new declaration into the AST, false otherwise. 5160bool 5161Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5162 TemplateSpecializationKind NewTSK, 5163 NamedDecl *PrevDecl, 5164 TemplateSpecializationKind PrevTSK, 5165 SourceLocation PrevPointOfInstantiation, 5166 bool &HasNoEffect) { 5167 HasNoEffect = false; 5168 5169 switch (NewTSK) { 5170 case TSK_Undeclared: 5171 case TSK_ImplicitInstantiation: 5172 assert(false && "Don't check implicit instantiations here"); 5173 return false; 5174 5175 case TSK_ExplicitSpecialization: 5176 switch (PrevTSK) { 5177 case TSK_Undeclared: 5178 case TSK_ExplicitSpecialization: 5179 // Okay, we're just specializing something that is either already 5180 // explicitly specialized or has merely been mentioned without any 5181 // instantiation. 5182 return false; 5183 5184 case TSK_ImplicitInstantiation: 5185 if (PrevPointOfInstantiation.isInvalid()) { 5186 // The declaration itself has not actually been instantiated, so it is 5187 // still okay to specialize it. 5188 StripImplicitInstantiation(PrevDecl); 5189 return false; 5190 } 5191 // Fall through 5192 5193 case TSK_ExplicitInstantiationDeclaration: 5194 case TSK_ExplicitInstantiationDefinition: 5195 assert((PrevTSK == TSK_ImplicitInstantiation || 5196 PrevPointOfInstantiation.isValid()) && 5197 "Explicit instantiation without point of instantiation?"); 5198 5199 // C++ [temp.expl.spec]p6: 5200 // If a template, a member template or the member of a class template 5201 // is explicitly specialized then that specialization shall be declared 5202 // before the first use of that specialization that would cause an 5203 // implicit instantiation to take place, in every translation unit in 5204 // which such a use occurs; no diagnostic is required. 5205 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5206 // Is there any previous explicit specialization declaration? 5207 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5208 return false; 5209 } 5210 5211 Diag(NewLoc, diag::err_specialization_after_instantiation) 5212 << PrevDecl; 5213 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5214 << (PrevTSK != TSK_ImplicitInstantiation); 5215 5216 return true; 5217 } 5218 break; 5219 5220 case TSK_ExplicitInstantiationDeclaration: 5221 switch (PrevTSK) { 5222 case TSK_ExplicitInstantiationDeclaration: 5223 // This explicit instantiation declaration is redundant (that's okay). 5224 HasNoEffect = true; 5225 return false; 5226 5227 case TSK_Undeclared: 5228 case TSK_ImplicitInstantiation: 5229 // We're explicitly instantiating something that may have already been 5230 // implicitly instantiated; that's fine. 5231 return false; 5232 5233 case TSK_ExplicitSpecialization: 5234 // C++0x [temp.explicit]p4: 5235 // For a given set of template parameters, if an explicit instantiation 5236 // of a template appears after a declaration of an explicit 5237 // specialization for that template, the explicit instantiation has no 5238 // effect. 5239 HasNoEffect = true; 5240 return false; 5241 5242 case TSK_ExplicitInstantiationDefinition: 5243 // C++0x [temp.explicit]p10: 5244 // If an entity is the subject of both an explicit instantiation 5245 // declaration and an explicit instantiation definition in the same 5246 // translation unit, the definition shall follow the declaration. 5247 Diag(NewLoc, 5248 diag::err_explicit_instantiation_declaration_after_definition); 5249 Diag(PrevPointOfInstantiation, 5250 diag::note_explicit_instantiation_definition_here); 5251 assert(PrevPointOfInstantiation.isValid() && 5252 "Explicit instantiation without point of instantiation?"); 5253 HasNoEffect = true; 5254 return false; 5255 } 5256 break; 5257 5258 case TSK_ExplicitInstantiationDefinition: 5259 switch (PrevTSK) { 5260 case TSK_Undeclared: 5261 case TSK_ImplicitInstantiation: 5262 // We're explicitly instantiating something that may have already been 5263 // implicitly instantiated; that's fine. 5264 return false; 5265 5266 case TSK_ExplicitSpecialization: 5267 // C++ DR 259, C++0x [temp.explicit]p4: 5268 // For a given set of template parameters, if an explicit 5269 // instantiation of a template appears after a declaration of 5270 // an explicit specialization for that template, the explicit 5271 // instantiation has no effect. 5272 // 5273 // In C++98/03 mode, we only give an extension warning here, because it 5274 // is not harmful to try to explicitly instantiate something that 5275 // has been explicitly specialized. 5276 if (!getLangOptions().CPlusPlus0x) { 5277 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5278 << PrevDecl; 5279 Diag(PrevDecl->getLocation(), 5280 diag::note_previous_template_specialization); 5281 } 5282 HasNoEffect = true; 5283 return false; 5284 5285 case TSK_ExplicitInstantiationDeclaration: 5286 // We're explicity instantiating a definition for something for which we 5287 // were previously asked to suppress instantiations. That's fine. 5288 return false; 5289 5290 case TSK_ExplicitInstantiationDefinition: 5291 // C++0x [temp.spec]p5: 5292 // For a given template and a given set of template-arguments, 5293 // - an explicit instantiation definition shall appear at most once 5294 // in a program, 5295 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5296 << PrevDecl; 5297 Diag(PrevPointOfInstantiation, 5298 diag::note_previous_explicit_instantiation); 5299 HasNoEffect = true; 5300 return false; 5301 } 5302 break; 5303 } 5304 5305 assert(false && "Missing specialization/instantiation case?"); 5306 5307 return false; 5308} 5309 5310/// \brief Perform semantic analysis for the given dependent function 5311/// template specialization. The only possible way to get a dependent 5312/// function template specialization is with a friend declaration, 5313/// like so: 5314/// 5315/// template <class T> void foo(T); 5316/// template <class T> class A { 5317/// friend void foo<>(T); 5318/// }; 5319/// 5320/// There really isn't any useful analysis we can do here, so we 5321/// just store the information. 5322bool 5323Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5324 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5325 LookupResult &Previous) { 5326 // Remove anything from Previous that isn't a function template in 5327 // the correct context. 5328 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5329 LookupResult::Filter F = Previous.makeFilter(); 5330 while (F.hasNext()) { 5331 NamedDecl *D = F.next()->getUnderlyingDecl(); 5332 if (!isa<FunctionTemplateDecl>(D) || 5333 !FDLookupContext->InEnclosingNamespaceSetOf( 5334 D->getDeclContext()->getRedeclContext())) 5335 F.erase(); 5336 } 5337 F.done(); 5338 5339 // Should this be diagnosed here? 5340 if (Previous.empty()) return true; 5341 5342 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5343 ExplicitTemplateArgs); 5344 return false; 5345} 5346 5347/// \brief Perform semantic analysis for the given function template 5348/// specialization. 5349/// 5350/// This routine performs all of the semantic analysis required for an 5351/// explicit function template specialization. On successful completion, 5352/// the function declaration \p FD will become a function template 5353/// specialization. 5354/// 5355/// \param FD the function declaration, which will be updated to become a 5356/// function template specialization. 5357/// 5358/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5359/// if any. Note that this may be valid info even when 0 arguments are 5360/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5361/// as it anyway contains info on the angle brackets locations. 5362/// 5363/// \param PrevDecl the set of declarations that may be specialized by 5364/// this function specialization. 5365bool 5366Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5367 TemplateArgumentListInfo *ExplicitTemplateArgs, 5368 LookupResult &Previous) { 5369 // The set of function template specializations that could match this 5370 // explicit function template specialization. 5371 UnresolvedSet<8> Candidates; 5372 5373 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5374 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5375 I != E; ++I) { 5376 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5377 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5378 // Only consider templates found within the same semantic lookup scope as 5379 // FD. 5380 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5381 Ovl->getDeclContext()->getRedeclContext())) 5382 continue; 5383 5384 // C++ [temp.expl.spec]p11: 5385 // A trailing template-argument can be left unspecified in the 5386 // template-id naming an explicit function template specialization 5387 // provided it can be deduced from the function argument type. 5388 // Perform template argument deduction to determine whether we may be 5389 // specializing this template. 5390 // FIXME: It is somewhat wasteful to build 5391 TemplateDeductionInfo Info(Context, FD->getLocation()); 5392 FunctionDecl *Specialization = 0; 5393 if (TemplateDeductionResult TDK 5394 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5395 FD->getType(), 5396 Specialization, 5397 Info)) { 5398 // FIXME: Template argument deduction failed; record why it failed, so 5399 // that we can provide nifty diagnostics. 5400 (void)TDK; 5401 continue; 5402 } 5403 5404 // Record this candidate. 5405 Candidates.addDecl(Specialization, I.getAccess()); 5406 } 5407 } 5408 5409 // Find the most specialized function template. 5410 UnresolvedSetIterator Result 5411 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5412 TPOC_Other, 0, FD->getLocation(), 5413 PDiag(diag::err_function_template_spec_no_match) 5414 << FD->getDeclName(), 5415 PDiag(diag::err_function_template_spec_ambiguous) 5416 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5417 PDiag(diag::note_function_template_spec_matched)); 5418 if (Result == Candidates.end()) 5419 return true; 5420 5421 // Ignore access information; it doesn't figure into redeclaration checking. 5422 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5423 5424 FunctionTemplateSpecializationInfo *SpecInfo 5425 = Specialization->getTemplateSpecializationInfo(); 5426 assert(SpecInfo && "Function template specialization info missing?"); 5427 { 5428 // Note: do not overwrite location info if previous template 5429 // specialization kind was explicit. 5430 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5431 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5432 Specialization->setLocation(FD->getLocation()); 5433 } 5434 5435 // FIXME: Check if the prior specialization has a point of instantiation. 5436 // If so, we have run afoul of . 5437 5438 // If this is a friend declaration, then we're not really declaring 5439 // an explicit specialization. 5440 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5441 5442 // Check the scope of this explicit specialization. 5443 if (!isFriend && 5444 CheckTemplateSpecializationScope(*this, 5445 Specialization->getPrimaryTemplate(), 5446 Specialization, FD->getLocation(), 5447 false)) 5448 return true; 5449 5450 // C++ [temp.expl.spec]p6: 5451 // If a template, a member template or the member of a class template is 5452 // explicitly specialized then that specialization shall be declared 5453 // before the first use of that specialization that would cause an implicit 5454 // instantiation to take place, in every translation unit in which such a 5455 // use occurs; no diagnostic is required. 5456 bool HasNoEffect = false; 5457 if (!isFriend && 5458 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5459 TSK_ExplicitSpecialization, 5460 Specialization, 5461 SpecInfo->getTemplateSpecializationKind(), 5462 SpecInfo->getPointOfInstantiation(), 5463 HasNoEffect)) 5464 return true; 5465 5466 // Mark the prior declaration as an explicit specialization, so that later 5467 // clients know that this is an explicit specialization. 5468 if (!isFriend) { 5469 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5470 MarkUnusedFileScopedDecl(Specialization); 5471 } 5472 5473 // Turn the given function declaration into a function template 5474 // specialization, with the template arguments from the previous 5475 // specialization. 5476 // Take copies of (semantic and syntactic) template argument lists. 5477 const TemplateArgumentList* TemplArgs = new (Context) 5478 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5479 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5480 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5481 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5482 TemplArgs, /*InsertPos=*/0, 5483 SpecInfo->getTemplateSpecializationKind(), 5484 TemplArgsAsWritten); 5485 FD->setStorageClass(Specialization->getStorageClass()); 5486 5487 // The "previous declaration" for this function template specialization is 5488 // the prior function template specialization. 5489 Previous.clear(); 5490 Previous.addDecl(Specialization); 5491 return false; 5492} 5493 5494/// \brief Perform semantic analysis for the given non-template member 5495/// specialization. 5496/// 5497/// This routine performs all of the semantic analysis required for an 5498/// explicit member function specialization. On successful completion, 5499/// the function declaration \p FD will become a member function 5500/// specialization. 5501/// 5502/// \param Member the member declaration, which will be updated to become a 5503/// specialization. 5504/// 5505/// \param Previous the set of declarations, one of which may be specialized 5506/// by this function specialization; the set will be modified to contain the 5507/// redeclared member. 5508bool 5509Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5510 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5511 5512 // Try to find the member we are instantiating. 5513 NamedDecl *Instantiation = 0; 5514 NamedDecl *InstantiatedFrom = 0; 5515 MemberSpecializationInfo *MSInfo = 0; 5516 5517 if (Previous.empty()) { 5518 // Nowhere to look anyway. 5519 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5520 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5521 I != E; ++I) { 5522 NamedDecl *D = (*I)->getUnderlyingDecl(); 5523 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5524 if (Context.hasSameType(Function->getType(), Method->getType())) { 5525 Instantiation = Method; 5526 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5527 MSInfo = Method->getMemberSpecializationInfo(); 5528 break; 5529 } 5530 } 5531 } 5532 } else if (isa<VarDecl>(Member)) { 5533 VarDecl *PrevVar; 5534 if (Previous.isSingleResult() && 5535 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5536 if (PrevVar->isStaticDataMember()) { 5537 Instantiation = PrevVar; 5538 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5539 MSInfo = PrevVar->getMemberSpecializationInfo(); 5540 } 5541 } else if (isa<RecordDecl>(Member)) { 5542 CXXRecordDecl *PrevRecord; 5543 if (Previous.isSingleResult() && 5544 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5545 Instantiation = PrevRecord; 5546 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5547 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5548 } 5549 } 5550 5551 if (!Instantiation) { 5552 // There is no previous declaration that matches. Since member 5553 // specializations are always out-of-line, the caller will complain about 5554 // this mismatch later. 5555 return false; 5556 } 5557 5558 // If this is a friend, just bail out here before we start turning 5559 // things into explicit specializations. 5560 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5561 // Preserve instantiation information. 5562 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5563 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5564 cast<CXXMethodDecl>(InstantiatedFrom), 5565 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5566 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5567 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5568 cast<CXXRecordDecl>(InstantiatedFrom), 5569 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5570 } 5571 5572 Previous.clear(); 5573 Previous.addDecl(Instantiation); 5574 return false; 5575 } 5576 5577 // Make sure that this is a specialization of a member. 5578 if (!InstantiatedFrom) { 5579 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5580 << Member; 5581 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5582 return true; 5583 } 5584 5585 // C++ [temp.expl.spec]p6: 5586 // If a template, a member template or the member of a class template is 5587 // explicitly specialized then that spe- cialization shall be declared 5588 // before the first use of that specialization that would cause an implicit 5589 // instantiation to take place, in every translation unit in which such a 5590 // use occurs; no diagnostic is required. 5591 assert(MSInfo && "Member specialization info missing?"); 5592 5593 bool HasNoEffect = false; 5594 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5595 TSK_ExplicitSpecialization, 5596 Instantiation, 5597 MSInfo->getTemplateSpecializationKind(), 5598 MSInfo->getPointOfInstantiation(), 5599 HasNoEffect)) 5600 return true; 5601 5602 // Check the scope of this explicit specialization. 5603 if (CheckTemplateSpecializationScope(*this, 5604 InstantiatedFrom, 5605 Instantiation, Member->getLocation(), 5606 false)) 5607 return true; 5608 5609 // Note that this is an explicit instantiation of a member. 5610 // the original declaration to note that it is an explicit specialization 5611 // (if it was previously an implicit instantiation). This latter step 5612 // makes bookkeeping easier. 5613 if (isa<FunctionDecl>(Member)) { 5614 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5615 if (InstantiationFunction->getTemplateSpecializationKind() == 5616 TSK_ImplicitInstantiation) { 5617 InstantiationFunction->setTemplateSpecializationKind( 5618 TSK_ExplicitSpecialization); 5619 InstantiationFunction->setLocation(Member->getLocation()); 5620 } 5621 5622 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5623 cast<CXXMethodDecl>(InstantiatedFrom), 5624 TSK_ExplicitSpecialization); 5625 MarkUnusedFileScopedDecl(InstantiationFunction); 5626 } else if (isa<VarDecl>(Member)) { 5627 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5628 if (InstantiationVar->getTemplateSpecializationKind() == 5629 TSK_ImplicitInstantiation) { 5630 InstantiationVar->setTemplateSpecializationKind( 5631 TSK_ExplicitSpecialization); 5632 InstantiationVar->setLocation(Member->getLocation()); 5633 } 5634 5635 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5636 cast<VarDecl>(InstantiatedFrom), 5637 TSK_ExplicitSpecialization); 5638 MarkUnusedFileScopedDecl(InstantiationVar); 5639 } else { 5640 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5641 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5642 if (InstantiationClass->getTemplateSpecializationKind() == 5643 TSK_ImplicitInstantiation) { 5644 InstantiationClass->setTemplateSpecializationKind( 5645 TSK_ExplicitSpecialization); 5646 InstantiationClass->setLocation(Member->getLocation()); 5647 } 5648 5649 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5650 cast<CXXRecordDecl>(InstantiatedFrom), 5651 TSK_ExplicitSpecialization); 5652 } 5653 5654 // Save the caller the trouble of having to figure out which declaration 5655 // this specialization matches. 5656 Previous.clear(); 5657 Previous.addDecl(Instantiation); 5658 return false; 5659} 5660 5661/// \brief Check the scope of an explicit instantiation. 5662/// 5663/// \returns true if a serious error occurs, false otherwise. 5664static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5665 SourceLocation InstLoc, 5666 bool WasQualifiedName) { 5667 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5668 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5669 5670 if (CurContext->isRecord()) { 5671 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5672 << D; 5673 return true; 5674 } 5675 5676 // C++0x [temp.explicit]p2: 5677 // An explicit instantiation shall appear in an enclosing namespace of its 5678 // template. 5679 // 5680 // This is DR275, which we do not retroactively apply to C++98/03. 5681 if (S.getLangOptions().CPlusPlus0x && 5682 !CurContext->Encloses(OrigContext)) { 5683 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5684 S.Diag(InstLoc, 5685 S.getLangOptions().CPlusPlus0x? 5686 diag::err_explicit_instantiation_out_of_scope 5687 : diag::warn_explicit_instantiation_out_of_scope_0x) 5688 << D << NS; 5689 else 5690 S.Diag(InstLoc, 5691 S.getLangOptions().CPlusPlus0x? 5692 diag::err_explicit_instantiation_must_be_global 5693 : diag::warn_explicit_instantiation_out_of_scope_0x) 5694 << D; 5695 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5696 return false; 5697 } 5698 5699 // C++0x [temp.explicit]p2: 5700 // If the name declared in the explicit instantiation is an unqualified 5701 // name, the explicit instantiation shall appear in the namespace where 5702 // its template is declared or, if that namespace is inline (7.3.1), any 5703 // namespace from its enclosing namespace set. 5704 if (WasQualifiedName) 5705 return false; 5706 5707 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5708 return false; 5709 5710 S.Diag(InstLoc, 5711 S.getLangOptions().CPlusPlus0x? 5712 diag::err_explicit_instantiation_unqualified_wrong_namespace 5713 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5714 << D << OrigContext; 5715 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5716 return false; 5717} 5718 5719/// \brief Determine whether the given scope specifier has a template-id in it. 5720static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5721 if (!SS.isSet()) 5722 return false; 5723 5724 // C++0x [temp.explicit]p2: 5725 // If the explicit instantiation is for a member function, a member class 5726 // or a static data member of a class template specialization, the name of 5727 // the class template specialization in the qualified-id for the member 5728 // name shall be a simple-template-id. 5729 // 5730 // C++98 has the same restriction, just worded differently. 5731 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5732 NNS; NNS = NNS->getPrefix()) 5733 if (const Type *T = NNS->getAsType()) 5734 if (isa<TemplateSpecializationType>(T)) 5735 return true; 5736 5737 return false; 5738} 5739 5740// Explicit instantiation of a class template specialization 5741DeclResult 5742Sema::ActOnExplicitInstantiation(Scope *S, 5743 SourceLocation ExternLoc, 5744 SourceLocation TemplateLoc, 5745 unsigned TagSpec, 5746 SourceLocation KWLoc, 5747 const CXXScopeSpec &SS, 5748 TemplateTy TemplateD, 5749 SourceLocation TemplateNameLoc, 5750 SourceLocation LAngleLoc, 5751 ASTTemplateArgsPtr TemplateArgsIn, 5752 SourceLocation RAngleLoc, 5753 AttributeList *Attr) { 5754 // Find the class template we're specializing 5755 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5756 ClassTemplateDecl *ClassTemplate 5757 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5758 5759 // Check that the specialization uses the same tag kind as the 5760 // original template. 5761 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5762 assert(Kind != TTK_Enum && 5763 "Invalid enum tag in class template explicit instantiation!"); 5764 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5765 Kind, /*isDefinition*/false, KWLoc, 5766 *ClassTemplate->getIdentifier())) { 5767 Diag(KWLoc, diag::err_use_with_wrong_tag) 5768 << ClassTemplate 5769 << FixItHint::CreateReplacement(KWLoc, 5770 ClassTemplate->getTemplatedDecl()->getKindName()); 5771 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5772 diag::note_previous_use); 5773 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5774 } 5775 5776 // C++0x [temp.explicit]p2: 5777 // There are two forms of explicit instantiation: an explicit instantiation 5778 // definition and an explicit instantiation declaration. An explicit 5779 // instantiation declaration begins with the extern keyword. [...] 5780 TemplateSpecializationKind TSK 5781 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5782 : TSK_ExplicitInstantiationDeclaration; 5783 5784 // Translate the parser's template argument list in our AST format. 5785 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5786 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5787 5788 // Check that the template argument list is well-formed for this 5789 // template. 5790 llvm::SmallVector<TemplateArgument, 4> Converted; 5791 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5792 TemplateArgs, false, Converted)) 5793 return true; 5794 5795 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5796 "Converted template argument list is too short!"); 5797 5798 // Find the class template specialization declaration that 5799 // corresponds to these arguments. 5800 void *InsertPos = 0; 5801 ClassTemplateSpecializationDecl *PrevDecl 5802 = ClassTemplate->findSpecialization(Converted.data(), 5803 Converted.size(), InsertPos); 5804 5805 TemplateSpecializationKind PrevDecl_TSK 5806 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5807 5808 // C++0x [temp.explicit]p2: 5809 // [...] An explicit instantiation shall appear in an enclosing 5810 // namespace of its template. [...] 5811 // 5812 // This is C++ DR 275. 5813 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5814 SS.isSet())) 5815 return true; 5816 5817 ClassTemplateSpecializationDecl *Specialization = 0; 5818 5819 bool HasNoEffect = false; 5820 if (PrevDecl) { 5821 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5822 PrevDecl, PrevDecl_TSK, 5823 PrevDecl->getPointOfInstantiation(), 5824 HasNoEffect)) 5825 return PrevDecl; 5826 5827 // Even though HasNoEffect == true means that this explicit instantiation 5828 // has no effect on semantics, we go on to put its syntax in the AST. 5829 5830 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5831 PrevDecl_TSK == TSK_Undeclared) { 5832 // Since the only prior class template specialization with these 5833 // arguments was referenced but not declared, reuse that 5834 // declaration node as our own, updating the source location 5835 // for the template name to reflect our new declaration. 5836 // (Other source locations will be updated later.) 5837 Specialization = PrevDecl; 5838 Specialization->setLocation(TemplateNameLoc); 5839 PrevDecl = 0; 5840 } 5841 } 5842 5843 if (!Specialization) { 5844 // Create a new class template specialization declaration node for 5845 // this explicit specialization. 5846 Specialization 5847 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5848 ClassTemplate->getDeclContext(), 5849 KWLoc, TemplateNameLoc, 5850 ClassTemplate, 5851 Converted.data(), 5852 Converted.size(), 5853 PrevDecl); 5854 SetNestedNameSpecifier(Specialization, SS); 5855 5856 if (!HasNoEffect && !PrevDecl) { 5857 // Insert the new specialization. 5858 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5859 } 5860 } 5861 5862 // Build the fully-sugared type for this explicit instantiation as 5863 // the user wrote in the explicit instantiation itself. This means 5864 // that we'll pretty-print the type retrieved from the 5865 // specialization's declaration the way that the user actually wrote 5866 // the explicit instantiation, rather than formatting the name based 5867 // on the "canonical" representation used to store the template 5868 // arguments in the specialization. 5869 TypeSourceInfo *WrittenTy 5870 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5871 TemplateArgs, 5872 Context.getTypeDeclType(Specialization)); 5873 Specialization->setTypeAsWritten(WrittenTy); 5874 TemplateArgsIn.release(); 5875 5876 // Set source locations for keywords. 5877 Specialization->setExternLoc(ExternLoc); 5878 Specialization->setTemplateKeywordLoc(TemplateLoc); 5879 5880 // Add the explicit instantiation into its lexical context. However, 5881 // since explicit instantiations are never found by name lookup, we 5882 // just put it into the declaration context directly. 5883 Specialization->setLexicalDeclContext(CurContext); 5884 CurContext->addDecl(Specialization); 5885 5886 // Syntax is now OK, so return if it has no other effect on semantics. 5887 if (HasNoEffect) { 5888 // Set the template specialization kind. 5889 Specialization->setTemplateSpecializationKind(TSK); 5890 return Specialization; 5891 } 5892 5893 // C++ [temp.explicit]p3: 5894 // A definition of a class template or class member template 5895 // shall be in scope at the point of the explicit instantiation of 5896 // the class template or class member template. 5897 // 5898 // This check comes when we actually try to perform the 5899 // instantiation. 5900 ClassTemplateSpecializationDecl *Def 5901 = cast_or_null<ClassTemplateSpecializationDecl>( 5902 Specialization->getDefinition()); 5903 if (!Def) 5904 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5905 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5906 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5907 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5908 } 5909 5910 // Instantiate the members of this class template specialization. 5911 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5912 Specialization->getDefinition()); 5913 if (Def) { 5914 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5915 5916 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5917 // TSK_ExplicitInstantiationDefinition 5918 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5919 TSK == TSK_ExplicitInstantiationDefinition) 5920 Def->setTemplateSpecializationKind(TSK); 5921 5922 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5923 } 5924 5925 // Set the template specialization kind. 5926 Specialization->setTemplateSpecializationKind(TSK); 5927 return Specialization; 5928} 5929 5930// Explicit instantiation of a member class of a class template. 5931DeclResult 5932Sema::ActOnExplicitInstantiation(Scope *S, 5933 SourceLocation ExternLoc, 5934 SourceLocation TemplateLoc, 5935 unsigned TagSpec, 5936 SourceLocation KWLoc, 5937 CXXScopeSpec &SS, 5938 IdentifierInfo *Name, 5939 SourceLocation NameLoc, 5940 AttributeList *Attr) { 5941 5942 bool Owned = false; 5943 bool IsDependent = false; 5944 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5945 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5946 MultiTemplateParamsArg(*this, 0, 0), 5947 Owned, IsDependent, false, false, 5948 TypeResult()); 5949 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5950 5951 if (!TagD) 5952 return true; 5953 5954 TagDecl *Tag = cast<TagDecl>(TagD); 5955 if (Tag->isEnum()) { 5956 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5957 << Context.getTypeDeclType(Tag); 5958 return true; 5959 } 5960 5961 if (Tag->isInvalidDecl()) 5962 return true; 5963 5964 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5965 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5966 if (!Pattern) { 5967 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5968 << Context.getTypeDeclType(Record); 5969 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5970 return true; 5971 } 5972 5973 // C++0x [temp.explicit]p2: 5974 // If the explicit instantiation is for a class or member class, the 5975 // elaborated-type-specifier in the declaration shall include a 5976 // simple-template-id. 5977 // 5978 // C++98 has the same restriction, just worded differently. 5979 if (!ScopeSpecifierHasTemplateId(SS)) 5980 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5981 << Record << SS.getRange(); 5982 5983 // C++0x [temp.explicit]p2: 5984 // There are two forms of explicit instantiation: an explicit instantiation 5985 // definition and an explicit instantiation declaration. An explicit 5986 // instantiation declaration begins with the extern keyword. [...] 5987 TemplateSpecializationKind TSK 5988 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5989 : TSK_ExplicitInstantiationDeclaration; 5990 5991 // C++0x [temp.explicit]p2: 5992 // [...] An explicit instantiation shall appear in an enclosing 5993 // namespace of its template. [...] 5994 // 5995 // This is C++ DR 275. 5996 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5997 5998 // Verify that it is okay to explicitly instantiate here. 5999 CXXRecordDecl *PrevDecl 6000 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 6001 if (!PrevDecl && Record->getDefinition()) 6002 PrevDecl = Record; 6003 if (PrevDecl) { 6004 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6005 bool HasNoEffect = false; 6006 assert(MSInfo && "No member specialization information?"); 6007 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6008 PrevDecl, 6009 MSInfo->getTemplateSpecializationKind(), 6010 MSInfo->getPointOfInstantiation(), 6011 HasNoEffect)) 6012 return true; 6013 if (HasNoEffect) 6014 return TagD; 6015 } 6016 6017 CXXRecordDecl *RecordDef 6018 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6019 if (!RecordDef) { 6020 // C++ [temp.explicit]p3: 6021 // A definition of a member class of a class template shall be in scope 6022 // at the point of an explicit instantiation of the member class. 6023 CXXRecordDecl *Def 6024 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6025 if (!Def) { 6026 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6027 << 0 << Record->getDeclName() << Record->getDeclContext(); 6028 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6029 << Pattern; 6030 return true; 6031 } else { 6032 if (InstantiateClass(NameLoc, Record, Def, 6033 getTemplateInstantiationArgs(Record), 6034 TSK)) 6035 return true; 6036 6037 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6038 if (!RecordDef) 6039 return true; 6040 } 6041 } 6042 6043 // Instantiate all of the members of the class. 6044 InstantiateClassMembers(NameLoc, RecordDef, 6045 getTemplateInstantiationArgs(Record), TSK); 6046 6047 if (TSK == TSK_ExplicitInstantiationDefinition) 6048 MarkVTableUsed(NameLoc, RecordDef, true); 6049 6050 // FIXME: We don't have any representation for explicit instantiations of 6051 // member classes. Such a representation is not needed for compilation, but it 6052 // should be available for clients that want to see all of the declarations in 6053 // the source code. 6054 return TagD; 6055} 6056 6057DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6058 SourceLocation ExternLoc, 6059 SourceLocation TemplateLoc, 6060 Declarator &D) { 6061 // Explicit instantiations always require a name. 6062 // TODO: check if/when DNInfo should replace Name. 6063 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6064 DeclarationName Name = NameInfo.getName(); 6065 if (!Name) { 6066 if (!D.isInvalidType()) 6067 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6068 diag::err_explicit_instantiation_requires_name) 6069 << D.getDeclSpec().getSourceRange() 6070 << D.getSourceRange(); 6071 6072 return true; 6073 } 6074 6075 // The scope passed in may not be a decl scope. Zip up the scope tree until 6076 // we find one that is. 6077 while ((S->getFlags() & Scope::DeclScope) == 0 || 6078 (S->getFlags() & Scope::TemplateParamScope) != 0) 6079 S = S->getParent(); 6080 6081 // Determine the type of the declaration. 6082 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6083 QualType R = T->getType(); 6084 if (R.isNull()) 6085 return true; 6086 6087 // C++ [dcl.stc]p1: 6088 // A storage-class-specifier shall not be specified in [...] an explicit 6089 // instantiation (14.7.2) directive. 6090 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6091 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6092 << Name; 6093 return true; 6094 } else if (D.getDeclSpec().getStorageClassSpec() 6095 != DeclSpec::SCS_unspecified) { 6096 // Complain about then remove the storage class specifier. 6097 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6098 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6099 6100 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6101 } 6102 6103 // C++0x [temp.explicit]p1: 6104 // [...] An explicit instantiation of a function template shall not use the 6105 // inline or constexpr specifiers. 6106 // Presumably, this also applies to member functions of class templates as 6107 // well. 6108 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6109 Diag(D.getDeclSpec().getInlineSpecLoc(), 6110 diag::err_explicit_instantiation_inline) 6111 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6112 6113 // FIXME: check for constexpr specifier. 6114 6115 // C++0x [temp.explicit]p2: 6116 // There are two forms of explicit instantiation: an explicit instantiation 6117 // definition and an explicit instantiation declaration. An explicit 6118 // instantiation declaration begins with the extern keyword. [...] 6119 TemplateSpecializationKind TSK 6120 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6121 : TSK_ExplicitInstantiationDeclaration; 6122 6123 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6124 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6125 6126 if (!R->isFunctionType()) { 6127 // C++ [temp.explicit]p1: 6128 // A [...] static data member of a class template can be explicitly 6129 // instantiated from the member definition associated with its class 6130 // template. 6131 if (Previous.isAmbiguous()) 6132 return true; 6133 6134 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6135 if (!Prev || !Prev->isStaticDataMember()) { 6136 // We expect to see a data data member here. 6137 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6138 << Name; 6139 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6140 P != PEnd; ++P) 6141 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6142 return true; 6143 } 6144 6145 if (!Prev->getInstantiatedFromStaticDataMember()) { 6146 // FIXME: Check for explicit specialization? 6147 Diag(D.getIdentifierLoc(), 6148 diag::err_explicit_instantiation_data_member_not_instantiated) 6149 << Prev; 6150 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6151 // FIXME: Can we provide a note showing where this was declared? 6152 return true; 6153 } 6154 6155 // C++0x [temp.explicit]p2: 6156 // If the explicit instantiation is for a member function, a member class 6157 // or a static data member of a class template specialization, the name of 6158 // the class template specialization in the qualified-id for the member 6159 // name shall be a simple-template-id. 6160 // 6161 // C++98 has the same restriction, just worded differently. 6162 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6163 Diag(D.getIdentifierLoc(), 6164 diag::ext_explicit_instantiation_without_qualified_id) 6165 << Prev << D.getCXXScopeSpec().getRange(); 6166 6167 // Check the scope of this explicit instantiation. 6168 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6169 6170 // Verify that it is okay to explicitly instantiate here. 6171 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6172 assert(MSInfo && "Missing static data member specialization info?"); 6173 bool HasNoEffect = false; 6174 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6175 MSInfo->getTemplateSpecializationKind(), 6176 MSInfo->getPointOfInstantiation(), 6177 HasNoEffect)) 6178 return true; 6179 if (HasNoEffect) 6180 return (Decl*) 0; 6181 6182 // Instantiate static data member. 6183 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6184 if (TSK == TSK_ExplicitInstantiationDefinition) 6185 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6186 6187 // FIXME: Create an ExplicitInstantiation node? 6188 return (Decl*) 0; 6189 } 6190 6191 // If the declarator is a template-id, translate the parser's template 6192 // argument list into our AST format. 6193 bool HasExplicitTemplateArgs = false; 6194 TemplateArgumentListInfo TemplateArgs; 6195 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6196 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6197 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6198 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6199 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6200 TemplateId->getTemplateArgs(), 6201 TemplateId->NumArgs); 6202 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6203 HasExplicitTemplateArgs = true; 6204 TemplateArgsPtr.release(); 6205 } 6206 6207 // C++ [temp.explicit]p1: 6208 // A [...] function [...] can be explicitly instantiated from its template. 6209 // A member function [...] of a class template can be explicitly 6210 // instantiated from the member definition associated with its class 6211 // template. 6212 UnresolvedSet<8> Matches; 6213 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6214 P != PEnd; ++P) { 6215 NamedDecl *Prev = *P; 6216 if (!HasExplicitTemplateArgs) { 6217 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6218 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6219 Matches.clear(); 6220 6221 Matches.addDecl(Method, P.getAccess()); 6222 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6223 break; 6224 } 6225 } 6226 } 6227 6228 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6229 if (!FunTmpl) 6230 continue; 6231 6232 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6233 FunctionDecl *Specialization = 0; 6234 if (TemplateDeductionResult TDK 6235 = DeduceTemplateArguments(FunTmpl, 6236 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6237 R, Specialization, Info)) { 6238 // FIXME: Keep track of almost-matches? 6239 (void)TDK; 6240 continue; 6241 } 6242 6243 Matches.addDecl(Specialization, P.getAccess()); 6244 } 6245 6246 // Find the most specialized function template specialization. 6247 UnresolvedSetIterator Result 6248 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6249 D.getIdentifierLoc(), 6250 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6251 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6252 PDiag(diag::note_explicit_instantiation_candidate)); 6253 6254 if (Result == Matches.end()) 6255 return true; 6256 6257 // Ignore access control bits, we don't need them for redeclaration checking. 6258 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6259 6260 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6261 Diag(D.getIdentifierLoc(), 6262 diag::err_explicit_instantiation_member_function_not_instantiated) 6263 << Specialization 6264 << (Specialization->getTemplateSpecializationKind() == 6265 TSK_ExplicitSpecialization); 6266 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6267 return true; 6268 } 6269 6270 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6271 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6272 PrevDecl = Specialization; 6273 6274 if (PrevDecl) { 6275 bool HasNoEffect = false; 6276 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6277 PrevDecl, 6278 PrevDecl->getTemplateSpecializationKind(), 6279 PrevDecl->getPointOfInstantiation(), 6280 HasNoEffect)) 6281 return true; 6282 6283 // FIXME: We may still want to build some representation of this 6284 // explicit specialization. 6285 if (HasNoEffect) 6286 return (Decl*) 0; 6287 } 6288 6289 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6290 6291 if (TSK == TSK_ExplicitInstantiationDefinition) 6292 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6293 6294 // C++0x [temp.explicit]p2: 6295 // If the explicit instantiation is for a member function, a member class 6296 // or a static data member of a class template specialization, the name of 6297 // the class template specialization in the qualified-id for the member 6298 // name shall be a simple-template-id. 6299 // 6300 // C++98 has the same restriction, just worded differently. 6301 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6302 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6303 D.getCXXScopeSpec().isSet() && 6304 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6305 Diag(D.getIdentifierLoc(), 6306 diag::ext_explicit_instantiation_without_qualified_id) 6307 << Specialization << D.getCXXScopeSpec().getRange(); 6308 6309 CheckExplicitInstantiationScope(*this, 6310 FunTmpl? (NamedDecl *)FunTmpl 6311 : Specialization->getInstantiatedFromMemberFunction(), 6312 D.getIdentifierLoc(), 6313 D.getCXXScopeSpec().isSet()); 6314 6315 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6316 return (Decl*) 0; 6317} 6318 6319TypeResult 6320Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6321 const CXXScopeSpec &SS, IdentifierInfo *Name, 6322 SourceLocation TagLoc, SourceLocation NameLoc) { 6323 // This has to hold, because SS is expected to be defined. 6324 assert(Name && "Expected a name in a dependent tag"); 6325 6326 NestedNameSpecifier *NNS 6327 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6328 if (!NNS) 6329 return true; 6330 6331 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6332 6333 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6334 Diag(NameLoc, diag::err_dependent_tag_decl) 6335 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6336 return true; 6337 } 6338 6339 // Create the resulting type. 6340 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6341 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6342 6343 // Create type-source location information for this type. 6344 TypeLocBuilder TLB; 6345 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6346 TL.setKeywordLoc(TagLoc); 6347 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6348 TL.setNameLoc(NameLoc); 6349 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6350} 6351 6352TypeResult 6353Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6354 const CXXScopeSpec &SS, const IdentifierInfo &II, 6355 SourceLocation IdLoc) { 6356 if (SS.isInvalid()) 6357 return true; 6358 6359 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6360 !getLangOptions().CPlusPlus0x) 6361 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6362 << FixItHint::CreateRemoval(TypenameLoc); 6363 6364 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6365 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6366 TypenameLoc, QualifierLoc, II, IdLoc); 6367 if (T.isNull()) 6368 return true; 6369 6370 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6371 if (isa<DependentNameType>(T)) { 6372 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6373 TL.setKeywordLoc(TypenameLoc); 6374 TL.setQualifierLoc(QualifierLoc); 6375 TL.setNameLoc(IdLoc); 6376 } else { 6377 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6378 TL.setKeywordLoc(TypenameLoc); 6379 TL.setQualifierLoc(QualifierLoc); 6380 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6381 } 6382 6383 return CreateParsedType(T, TSI); 6384} 6385 6386TypeResult 6387Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6388 const CXXScopeSpec &SS, 6389 SourceLocation TemplateLoc, 6390 TemplateTy TemplateIn, 6391 SourceLocation TemplateNameLoc, 6392 SourceLocation LAngleLoc, 6393 ASTTemplateArgsPtr TemplateArgsIn, 6394 SourceLocation RAngleLoc) { 6395 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6396 !getLangOptions().CPlusPlus0x) 6397 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6398 << FixItHint::CreateRemoval(TypenameLoc); 6399 6400 // Translate the parser's template argument list in our AST format. 6401 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6402 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6403 6404 TemplateName Template = TemplateIn.get(); 6405 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6406 // Construct a dependent template specialization type. 6407 assert(DTN && "dependent template has non-dependent name?"); 6408 assert(DTN->getQualifier() 6409 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6410 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6411 DTN->getQualifier(), 6412 DTN->getIdentifier(), 6413 TemplateArgs); 6414 6415 // Create source-location information for this type. 6416 TypeLocBuilder Builder; 6417 DependentTemplateSpecializationTypeLoc SpecTL 6418 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6419 SpecTL.setLAngleLoc(LAngleLoc); 6420 SpecTL.setRAngleLoc(RAngleLoc); 6421 SpecTL.setKeywordLoc(TypenameLoc); 6422 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6423 SpecTL.setNameLoc(TemplateNameLoc); 6424 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6425 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6426 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6427 } 6428 6429 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6430 if (T.isNull()) 6431 return true; 6432 6433 // Provide source-location information for the template specialization 6434 // type. 6435 TypeLocBuilder Builder; 6436 TemplateSpecializationTypeLoc SpecTL 6437 = Builder.push<TemplateSpecializationTypeLoc>(T); 6438 6439 // FIXME: No place to set the location of the 'template' keyword! 6440 SpecTL.setLAngleLoc(LAngleLoc); 6441 SpecTL.setRAngleLoc(RAngleLoc); 6442 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6443 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6444 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6445 6446 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6447 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6448 TL.setKeywordLoc(TypenameLoc); 6449 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6450 6451 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6452 return CreateParsedType(T, TSI); 6453} 6454 6455 6456/// \brief Build the type that describes a C++ typename specifier, 6457/// e.g., "typename T::type". 6458QualType 6459Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6460 SourceLocation KeywordLoc, 6461 NestedNameSpecifierLoc QualifierLoc, 6462 const IdentifierInfo &II, 6463 SourceLocation IILoc) { 6464 CXXScopeSpec SS; 6465 SS.Adopt(QualifierLoc); 6466 6467 DeclContext *Ctx = computeDeclContext(SS); 6468 if (!Ctx) { 6469 // If the nested-name-specifier is dependent and couldn't be 6470 // resolved to a type, build a typename type. 6471 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6472 return Context.getDependentNameType(Keyword, 6473 QualifierLoc.getNestedNameSpecifier(), 6474 &II); 6475 } 6476 6477 // If the nested-name-specifier refers to the current instantiation, 6478 // the "typename" keyword itself is superfluous. In C++03, the 6479 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6480 // allows such extraneous "typename" keywords, and we retroactively 6481 // apply this DR to C++03 code with only a warning. In any case we continue. 6482 6483 if (RequireCompleteDeclContext(SS, Ctx)) 6484 return QualType(); 6485 6486 DeclarationName Name(&II); 6487 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6488 LookupQualifiedName(Result, Ctx); 6489 unsigned DiagID = 0; 6490 Decl *Referenced = 0; 6491 switch (Result.getResultKind()) { 6492 case LookupResult::NotFound: 6493 DiagID = diag::err_typename_nested_not_found; 6494 break; 6495 6496 case LookupResult::FoundUnresolvedValue: { 6497 // We found a using declaration that is a value. Most likely, the using 6498 // declaration itself is meant to have the 'typename' keyword. 6499 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6500 IILoc); 6501 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6502 << Name << Ctx << FullRange; 6503 if (UnresolvedUsingValueDecl *Using 6504 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6505 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6506 Diag(Loc, diag::note_using_value_decl_missing_typename) 6507 << FixItHint::CreateInsertion(Loc, "typename "); 6508 } 6509 } 6510 // Fall through to create a dependent typename type, from which we can recover 6511 // better. 6512 6513 case LookupResult::NotFoundInCurrentInstantiation: 6514 // Okay, it's a member of an unknown instantiation. 6515 return Context.getDependentNameType(Keyword, 6516 QualifierLoc.getNestedNameSpecifier(), 6517 &II); 6518 6519 case LookupResult::Found: 6520 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6521 // We found a type. Build an ElaboratedType, since the 6522 // typename-specifier was just sugar. 6523 return Context.getElaboratedType(ETK_Typename, 6524 QualifierLoc.getNestedNameSpecifier(), 6525 Context.getTypeDeclType(Type)); 6526 } 6527 6528 DiagID = diag::err_typename_nested_not_type; 6529 Referenced = Result.getFoundDecl(); 6530 break; 6531 6532 6533 llvm_unreachable("unresolved using decl in non-dependent context"); 6534 return QualType(); 6535 6536 case LookupResult::FoundOverloaded: 6537 DiagID = diag::err_typename_nested_not_type; 6538 Referenced = *Result.begin(); 6539 break; 6540 6541 case LookupResult::Ambiguous: 6542 return QualType(); 6543 } 6544 6545 // If we get here, it's because name lookup did not find a 6546 // type. Emit an appropriate diagnostic and return an error. 6547 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6548 IILoc); 6549 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6550 if (Referenced) 6551 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6552 << Name; 6553 return QualType(); 6554} 6555 6556namespace { 6557 // See Sema::RebuildTypeInCurrentInstantiation 6558 class CurrentInstantiationRebuilder 6559 : public TreeTransform<CurrentInstantiationRebuilder> { 6560 SourceLocation Loc; 6561 DeclarationName Entity; 6562 6563 public: 6564 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6565 6566 CurrentInstantiationRebuilder(Sema &SemaRef, 6567 SourceLocation Loc, 6568 DeclarationName Entity) 6569 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6570 Loc(Loc), Entity(Entity) { } 6571 6572 /// \brief Determine whether the given type \p T has already been 6573 /// transformed. 6574 /// 6575 /// For the purposes of type reconstruction, a type has already been 6576 /// transformed if it is NULL or if it is not dependent. 6577 bool AlreadyTransformed(QualType T) { 6578 return T.isNull() || !T->isDependentType(); 6579 } 6580 6581 /// \brief Returns the location of the entity whose type is being 6582 /// rebuilt. 6583 SourceLocation getBaseLocation() { return Loc; } 6584 6585 /// \brief Returns the name of the entity whose type is being rebuilt. 6586 DeclarationName getBaseEntity() { return Entity; } 6587 6588 /// \brief Sets the "base" location and entity when that 6589 /// information is known based on another transformation. 6590 void setBase(SourceLocation Loc, DeclarationName Entity) { 6591 this->Loc = Loc; 6592 this->Entity = Entity; 6593 } 6594 }; 6595} 6596 6597/// \brief Rebuilds a type within the context of the current instantiation. 6598/// 6599/// The type \p T is part of the type of an out-of-line member definition of 6600/// a class template (or class template partial specialization) that was parsed 6601/// and constructed before we entered the scope of the class template (or 6602/// partial specialization thereof). This routine will rebuild that type now 6603/// that we have entered the declarator's scope, which may produce different 6604/// canonical types, e.g., 6605/// 6606/// \code 6607/// template<typename T> 6608/// struct X { 6609/// typedef T* pointer; 6610/// pointer data(); 6611/// }; 6612/// 6613/// template<typename T> 6614/// typename X<T>::pointer X<T>::data() { ... } 6615/// \endcode 6616/// 6617/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6618/// since we do not know that we can look into X<T> when we parsed the type. 6619/// This function will rebuild the type, performing the lookup of "pointer" 6620/// in X<T> and returning an ElaboratedType whose canonical type is the same 6621/// as the canonical type of T*, allowing the return types of the out-of-line 6622/// definition and the declaration to match. 6623TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6624 SourceLocation Loc, 6625 DeclarationName Name) { 6626 if (!T || !T->getType()->isDependentType()) 6627 return T; 6628 6629 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6630 return Rebuilder.TransformType(T); 6631} 6632 6633ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6634 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6635 DeclarationName()); 6636 return Rebuilder.TransformExpr(E); 6637} 6638 6639bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6640 if (SS.isInvalid()) 6641 return true; 6642 6643 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6644 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6645 DeclarationName()); 6646 NestedNameSpecifierLoc Rebuilt 6647 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6648 if (!Rebuilt) 6649 return true; 6650 6651 SS.Adopt(Rebuilt); 6652 return false; 6653} 6654 6655/// \brief Produces a formatted string that describes the binding of 6656/// template parameters to template arguments. 6657std::string 6658Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6659 const TemplateArgumentList &Args) { 6660 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6661} 6662 6663std::string 6664Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6665 const TemplateArgument *Args, 6666 unsigned NumArgs) { 6667 llvm::SmallString<128> Str; 6668 llvm::raw_svector_ostream Out(Str); 6669 6670 if (!Params || Params->size() == 0 || NumArgs == 0) 6671 return std::string(); 6672 6673 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6674 if (I >= NumArgs) 6675 break; 6676 6677 if (I == 0) 6678 Out << "[with "; 6679 else 6680 Out << ", "; 6681 6682 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6683 Out << Id->getName(); 6684 } else { 6685 Out << '$' << I; 6686 } 6687 6688 Out << " = "; 6689 Args[I].print(Context.PrintingPolicy, Out); 6690 } 6691 6692 Out << ']'; 6693 return Out.str(); 6694} 6695 6696void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6697 if (!FD) 6698 return; 6699 FD->setLateTemplateParsed(Flag); 6700} 6701 6702bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6703 DeclContext *DC = CurContext; 6704 6705 while (DC) { 6706 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6707 const FunctionDecl *FD = RD->isLocalClass(); 6708 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6709 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6710 return false; 6711 6712 DC = DC->getParent(); 6713 } 6714 return false; 6715} 6716