SemaTemplate.cpp revision dec0984fce504a39a7f085774fb67cfd9957be58
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
441                                             SourceLocation EllipsisLoc) const {
442  assert(Kind == Template &&
443         "Only template template arguments can be pack expansions here");
444  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
445         "Template template argument pack expansion without packs");
446  ParsedTemplateArgument Result(*this);
447  Result.EllipsisLoc = EllipsisLoc;
448  return Result;
449}
450
451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
452                                            const ParsedTemplateArgument &Arg) {
453
454  switch (Arg.getKind()) {
455  case ParsedTemplateArgument::Type: {
456    TypeSourceInfo *DI;
457    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
458    if (!DI)
459      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
460    return TemplateArgumentLoc(TemplateArgument(T), DI);
461  }
462
463  case ParsedTemplateArgument::NonType: {
464    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
465    return TemplateArgumentLoc(TemplateArgument(E), E);
466  }
467
468  case ParsedTemplateArgument::Template: {
469    TemplateName Template = Arg.getAsTemplate().get();
470    TemplateArgument TArg;
471    if (Arg.getEllipsisLoc().isValid())
472      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
473    else
474      TArg = Template;
475    return TemplateArgumentLoc(TArg,
476                               Arg.getScopeSpec().getRange(),
477                               Arg.getLocation(),
478                               Arg.getEllipsisLoc());
479  }
480  }
481
482  llvm_unreachable("Unhandled parsed template argument");
483  return TemplateArgumentLoc();
484}
485
486/// \brief Translates template arguments as provided by the parser
487/// into template arguments used by semantic analysis.
488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
489                                      TemplateArgumentListInfo &TemplateArgs) {
490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
491   TemplateArgs.addArgument(translateTemplateArgument(*this,
492                                                      TemplateArgsIn[I]));
493}
494
495/// ActOnTypeParameter - Called when a C++ template type parameter
496/// (e.g., "typename T") has been parsed. Typename specifies whether
497/// the keyword "typename" was used to declare the type parameter
498/// (otherwise, "class" was used), and KeyLoc is the location of the
499/// "class" or "typename" keyword. ParamName is the name of the
500/// parameter (NULL indicates an unnamed template parameter) and
501/// ParamName is the location of the parameter name (if any).
502/// If the type parameter has a default argument, it will be added
503/// later via ActOnTypeParameterDefault.
504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
505                               SourceLocation EllipsisLoc,
506                               SourceLocation KeyLoc,
507                               IdentifierInfo *ParamName,
508                               SourceLocation ParamNameLoc,
509                               unsigned Depth, unsigned Position,
510                               SourceLocation EqualLoc,
511                               ParsedType DefaultArg) {
512  assert(S->isTemplateParamScope() &&
513         "Template type parameter not in template parameter scope!");
514  bool Invalid = false;
515
516  if (ParamName) {
517    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
518                                           LookupOrdinaryName,
519                                           ForRedeclaration);
520    if (PrevDecl && PrevDecl->isTemplateParameter())
521      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
522                                                           PrevDecl);
523  }
524
525  SourceLocation Loc = ParamNameLoc;
526  if (!ParamName)
527    Loc = KeyLoc;
528
529  TemplateTypeParmDecl *Param
530    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
531                                   Loc, Depth, Position, ParamName, Typename,
532                                   Ellipsis);
533  if (Invalid)
534    Param->setInvalidDecl();
535
536  if (ParamName) {
537    // Add the template parameter into the current scope.
538    S->AddDecl(Param);
539    IdResolver.AddDecl(Param);
540  }
541
542  // C++0x [temp.param]p9:
543  //   A default template-argument may be specified for any kind of
544  //   template-parameter that is not a template parameter pack.
545  if (DefaultArg && Ellipsis) {
546    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
547    DefaultArg = ParsedType();
548  }
549
550  // Handle the default argument, if provided.
551  if (DefaultArg) {
552    TypeSourceInfo *DefaultTInfo;
553    GetTypeFromParser(DefaultArg, &DefaultTInfo);
554
555    assert(DefaultTInfo && "expected source information for type");
556
557    // Check for unexpanded parameter packs.
558    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
559                                        UPPC_DefaultArgument))
560      return Param;
561
562    // Check the template argument itself.
563    if (CheckTemplateArgument(Param, DefaultTInfo)) {
564      Param->setInvalidDecl();
565      return Param;
566    }
567
568    Param->setDefaultArgument(DefaultTInfo, false);
569  }
570
571  return Param;
572}
573
574/// \brief Check that the type of a non-type template parameter is
575/// well-formed.
576///
577/// \returns the (possibly-promoted) parameter type if valid;
578/// otherwise, produces a diagnostic and returns a NULL type.
579QualType
580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
581  // We don't allow variably-modified types as the type of non-type template
582  // parameters.
583  if (T->isVariablyModifiedType()) {
584    Diag(Loc, diag::err_variably_modified_nontype_template_param)
585      << T;
586    return QualType();
587  }
588
589  // C++ [temp.param]p4:
590  //
591  // A non-type template-parameter shall have one of the following
592  // (optionally cv-qualified) types:
593  //
594  //       -- integral or enumeration type,
595  if (T->isIntegralOrEnumerationType() ||
596      //   -- pointer to object or pointer to function,
597      T->isPointerType() ||
598      //   -- reference to object or reference to function,
599      T->isReferenceType() ||
600      //   -- pointer to member.
601      T->isMemberPointerType() ||
602      // If T is a dependent type, we can't do the check now, so we
603      // assume that it is well-formed.
604      T->isDependentType())
605    return T;
606  // C++ [temp.param]p8:
607  //
608  //   A non-type template-parameter of type "array of T" or
609  //   "function returning T" is adjusted to be of type "pointer to
610  //   T" or "pointer to function returning T", respectively.
611  else if (T->isArrayType())
612    // FIXME: Keep the type prior to promotion?
613    return Context.getArrayDecayedType(T);
614  else if (T->isFunctionType())
615    // FIXME: Keep the type prior to promotion?
616    return Context.getPointerType(T);
617
618  Diag(Loc, diag::err_template_nontype_parm_bad_type)
619    << T;
620
621  return QualType();
622}
623
624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
625                                          unsigned Depth,
626                                          unsigned Position,
627                                          SourceLocation EqualLoc,
628                                          Expr *Default) {
629  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
630  QualType T = TInfo->getType();
631
632  assert(S->isTemplateParamScope() &&
633         "Non-type template parameter not in template parameter scope!");
634  bool Invalid = false;
635
636  IdentifierInfo *ParamName = D.getIdentifier();
637  if (ParamName) {
638    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
639                                           LookupOrdinaryName,
640                                           ForRedeclaration);
641    if (PrevDecl && PrevDecl->isTemplateParameter())
642      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
643                                                           PrevDecl);
644  }
645
646  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
647  if (T.isNull()) {
648    T = Context.IntTy; // Recover with an 'int' type.
649    Invalid = true;
650  }
651
652  bool IsParameterPack = D.hasEllipsis();
653  NonTypeTemplateParmDecl *Param
654    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
655                                      D.getIdentifierLoc(),
656                                      Depth, Position, ParamName, T,
657                                      IsParameterPack, TInfo);
658  if (Invalid)
659    Param->setInvalidDecl();
660
661  if (D.getIdentifier()) {
662    // Add the template parameter into the current scope.
663    S->AddDecl(Param);
664    IdResolver.AddDecl(Param);
665  }
666
667  // C++0x [temp.param]p9:
668  //   A default template-argument may be specified for any kind of
669  //   template-parameter that is not a template parameter pack.
670  if (Default && IsParameterPack) {
671    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
672    Default = 0;
673  }
674
675  // Check the well-formedness of the default template argument, if provided.
676  if (Default) {
677    // Check for unexpanded parameter packs.
678    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
679      return Param;
680
681    TemplateArgument Converted;
682    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
683      Param->setInvalidDecl();
684      return Param;
685    }
686
687    Param->setDefaultArgument(Default, false);
688  }
689
690  return Param;
691}
692
693/// ActOnTemplateTemplateParameter - Called when a C++ template template
694/// parameter (e.g. T in template <template <typename> class T> class array)
695/// has been parsed. S is the current scope.
696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
697                                           SourceLocation TmpLoc,
698                                           TemplateParamsTy *Params,
699                                           SourceLocation EllipsisLoc,
700                                           IdentifierInfo *Name,
701                                           SourceLocation NameLoc,
702                                           unsigned Depth,
703                                           unsigned Position,
704                                           SourceLocation EqualLoc,
705                                           ParsedTemplateArgument Default) {
706  assert(S->isTemplateParamScope() &&
707         "Template template parameter not in template parameter scope!");
708
709  // Construct the parameter object.
710  bool IsParameterPack = EllipsisLoc.isValid();
711  // FIXME: Pack-ness is dropped
712  TemplateTemplateParmDecl *Param =
713    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
714                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
715                                     Depth, Position, IsParameterPack,
716                                     Name, Params);
717
718  // If the template template parameter has a name, then link the identifier
719  // into the scope and lookup mechanisms.
720  if (Name) {
721    S->AddDecl(Param);
722    IdResolver.AddDecl(Param);
723  }
724
725  if (Params->size() == 0) {
726    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
727    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
728    Param->setInvalidDecl();
729  }
730
731  // C++0x [temp.param]p9:
732  //   A default template-argument may be specified for any kind of
733  //   template-parameter that is not a template parameter pack.
734  if (IsParameterPack && !Default.isInvalid()) {
735    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
736    Default = ParsedTemplateArgument();
737  }
738
739  if (!Default.isInvalid()) {
740    // Check only that we have a template template argument. We don't want to
741    // try to check well-formedness now, because our template template parameter
742    // might have dependent types in its template parameters, which we wouldn't
743    // be able to match now.
744    //
745    // If none of the template template parameter's template arguments mention
746    // other template parameters, we could actually perform more checking here.
747    // However, it isn't worth doing.
748    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
749    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
750      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
751        << DefaultArg.getSourceRange();
752      return Param;
753    }
754
755    // Check for unexpanded parameter packs.
756    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
757                                        DefaultArg.getArgument().getAsTemplate(),
758                                        UPPC_DefaultArgument))
759      return Param;
760
761    Param->setDefaultArgument(DefaultArg, false);
762  }
763
764  return Param;
765}
766
767/// ActOnTemplateParameterList - Builds a TemplateParameterList that
768/// contains the template parameters in Params/NumParams.
769Sema::TemplateParamsTy *
770Sema::ActOnTemplateParameterList(unsigned Depth,
771                                 SourceLocation ExportLoc,
772                                 SourceLocation TemplateLoc,
773                                 SourceLocation LAngleLoc,
774                                 Decl **Params, unsigned NumParams,
775                                 SourceLocation RAngleLoc) {
776  if (ExportLoc.isValid())
777    Diag(ExportLoc, diag::warn_template_export_unsupported);
778
779  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
780                                       (NamedDecl**)Params, NumParams,
781                                       RAngleLoc);
782}
783
784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
785  if (SS.isSet())
786    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
787                        SS.getRange());
788}
789
790DeclResult
791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
792                         SourceLocation KWLoc, CXXScopeSpec &SS,
793                         IdentifierInfo *Name, SourceLocation NameLoc,
794                         AttributeList *Attr,
795                         TemplateParameterList *TemplateParams,
796                         AccessSpecifier AS) {
797  assert(TemplateParams && TemplateParams->size() > 0 &&
798         "No template parameters");
799  assert(TUK != TUK_Reference && "Can only declare or define class templates");
800  bool Invalid = false;
801
802  // Check that we can declare a template here.
803  if (CheckTemplateDeclScope(S, TemplateParams))
804    return true;
805
806  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
807  assert(Kind != TTK_Enum && "can't build template of enumerated type");
808
809  // There is no such thing as an unnamed class template.
810  if (!Name) {
811    Diag(KWLoc, diag::err_template_unnamed_class);
812    return true;
813  }
814
815  // Find any previous declaration with this name.
816  DeclContext *SemanticContext;
817  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
818                        ForRedeclaration);
819  if (SS.isNotEmpty() && !SS.isInvalid()) {
820    SemanticContext = computeDeclContext(SS, true);
821    if (!SemanticContext) {
822      // FIXME: Produce a reasonable diagnostic here
823      return true;
824    }
825
826    if (RequireCompleteDeclContext(SS, SemanticContext))
827      return true;
828
829    LookupQualifiedName(Previous, SemanticContext);
830  } else {
831    SemanticContext = CurContext;
832    LookupName(Previous, S);
833  }
834
835  if (Previous.isAmbiguous())
836    return true;
837
838  NamedDecl *PrevDecl = 0;
839  if (Previous.begin() != Previous.end())
840    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
841
842  // If there is a previous declaration with the same name, check
843  // whether this is a valid redeclaration.
844  ClassTemplateDecl *PrevClassTemplate
845    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
846
847  // We may have found the injected-class-name of a class template,
848  // class template partial specialization, or class template specialization.
849  // In these cases, grab the template that is being defined or specialized.
850  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
851      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
852    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
853    PrevClassTemplate
854      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
855    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
856      PrevClassTemplate
857        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
858            ->getSpecializedTemplate();
859    }
860  }
861
862  if (TUK == TUK_Friend) {
863    // C++ [namespace.memdef]p3:
864    //   [...] When looking for a prior declaration of a class or a function
865    //   declared as a friend, and when the name of the friend class or
866    //   function is neither a qualified name nor a template-id, scopes outside
867    //   the innermost enclosing namespace scope are not considered.
868    if (!SS.isSet()) {
869      DeclContext *OutermostContext = CurContext;
870      while (!OutermostContext->isFileContext())
871        OutermostContext = OutermostContext->getLookupParent();
872
873      if (PrevDecl &&
874          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
875           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
876        SemanticContext = PrevDecl->getDeclContext();
877      } else {
878        // Declarations in outer scopes don't matter. However, the outermost
879        // context we computed is the semantic context for our new
880        // declaration.
881        PrevDecl = PrevClassTemplate = 0;
882        SemanticContext = OutermostContext;
883      }
884    }
885
886    if (CurContext->isDependentContext()) {
887      // If this is a dependent context, we don't want to link the friend
888      // class template to the template in scope, because that would perform
889      // checking of the template parameter lists that can't be performed
890      // until the outer context is instantiated.
891      PrevDecl = PrevClassTemplate = 0;
892    }
893  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
894    PrevDecl = PrevClassTemplate = 0;
895
896  if (PrevClassTemplate) {
897    // Ensure that the template parameter lists are compatible.
898    if (!TemplateParameterListsAreEqual(TemplateParams,
899                                   PrevClassTemplate->getTemplateParameters(),
900                                        /*Complain=*/true,
901                                        TPL_TemplateMatch))
902      return true;
903
904    // C++ [temp.class]p4:
905    //   In a redeclaration, partial specialization, explicit
906    //   specialization or explicit instantiation of a class template,
907    //   the class-key shall agree in kind with the original class
908    //   template declaration (7.1.5.3).
909    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
910    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
911      Diag(KWLoc, diag::err_use_with_wrong_tag)
912        << Name
913        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
914      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
915      Kind = PrevRecordDecl->getTagKind();
916    }
917
918    // Check for redefinition of this class template.
919    if (TUK == TUK_Definition) {
920      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
921        Diag(NameLoc, diag::err_redefinition) << Name;
922        Diag(Def->getLocation(), diag::note_previous_definition);
923        // FIXME: Would it make sense to try to "forget" the previous
924        // definition, as part of error recovery?
925        return true;
926      }
927    }
928  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
929    // Maybe we will complain about the shadowed template parameter.
930    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
931    // Just pretend that we didn't see the previous declaration.
932    PrevDecl = 0;
933  } else if (PrevDecl) {
934    // C++ [temp]p5:
935    //   A class template shall not have the same name as any other
936    //   template, class, function, object, enumeration, enumerator,
937    //   namespace, or type in the same scope (3.3), except as specified
938    //   in (14.5.4).
939    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
940    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
941    return true;
942  }
943
944  // Check the template parameter list of this declaration, possibly
945  // merging in the template parameter list from the previous class
946  // template declaration.
947  if (CheckTemplateParameterList(TemplateParams,
948            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
949                                 TPC_ClassTemplate))
950    Invalid = true;
951
952  if (SS.isSet()) {
953    // If the name of the template was qualified, we must be defining the
954    // template out-of-line.
955    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
956        !(TUK == TUK_Friend && CurContext->isDependentContext()))
957      Diag(NameLoc, diag::err_member_def_does_not_match)
958        << Name << SemanticContext << SS.getRange();
959  }
960
961  CXXRecordDecl *NewClass =
962    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
963                          PrevClassTemplate?
964                            PrevClassTemplate->getTemplatedDecl() : 0,
965                          /*DelayTypeCreation=*/true);
966  SetNestedNameSpecifier(NewClass, SS);
967
968  ClassTemplateDecl *NewTemplate
969    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
970                                DeclarationName(Name), TemplateParams,
971                                NewClass, PrevClassTemplate);
972  NewClass->setDescribedClassTemplate(NewTemplate);
973
974  // Build the type for the class template declaration now.
975  QualType T = NewTemplate->getInjectedClassNameSpecialization();
976  T = Context.getInjectedClassNameType(NewClass, T);
977  assert(T->isDependentType() && "Class template type is not dependent?");
978  (void)T;
979
980  // If we are providing an explicit specialization of a member that is a
981  // class template, make a note of that.
982  if (PrevClassTemplate &&
983      PrevClassTemplate->getInstantiatedFromMemberTemplate())
984    PrevClassTemplate->setMemberSpecialization();
985
986  // Set the access specifier.
987  if (!Invalid && TUK != TUK_Friend)
988    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
989
990  // Set the lexical context of these templates
991  NewClass->setLexicalDeclContext(CurContext);
992  NewTemplate->setLexicalDeclContext(CurContext);
993
994  if (TUK == TUK_Definition)
995    NewClass->startDefinition();
996
997  if (Attr)
998    ProcessDeclAttributeList(S, NewClass, Attr);
999
1000  if (TUK != TUK_Friend)
1001    PushOnScopeChains(NewTemplate, S);
1002  else {
1003    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1004      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1005      NewClass->setAccess(PrevClassTemplate->getAccess());
1006    }
1007
1008    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1009                                       PrevClassTemplate != NULL);
1010
1011    // Friend templates are visible in fairly strange ways.
1012    if (!CurContext->isDependentContext()) {
1013      DeclContext *DC = SemanticContext->getRedeclContext();
1014      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1015      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1016        PushOnScopeChains(NewTemplate, EnclosingScope,
1017                          /* AddToContext = */ false);
1018    }
1019
1020    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1021                                            NewClass->getLocation(),
1022                                            NewTemplate,
1023                                    /*FIXME:*/NewClass->getLocation());
1024    Friend->setAccess(AS_public);
1025    CurContext->addDecl(Friend);
1026  }
1027
1028  if (Invalid) {
1029    NewTemplate->setInvalidDecl();
1030    NewClass->setInvalidDecl();
1031  }
1032  return NewTemplate;
1033}
1034
1035/// \brief Diagnose the presence of a default template argument on a
1036/// template parameter, which is ill-formed in certain contexts.
1037///
1038/// \returns true if the default template argument should be dropped.
1039static bool DiagnoseDefaultTemplateArgument(Sema &S,
1040                                            Sema::TemplateParamListContext TPC,
1041                                            SourceLocation ParamLoc,
1042                                            SourceRange DefArgRange) {
1043  switch (TPC) {
1044  case Sema::TPC_ClassTemplate:
1045    return false;
1046
1047  case Sema::TPC_FunctionTemplate:
1048    // C++ [temp.param]p9:
1049    //   A default template-argument shall not be specified in a
1050    //   function template declaration or a function template
1051    //   definition [...]
1052    // (This sentence is not in C++0x, per DR226).
1053    if (!S.getLangOptions().CPlusPlus0x)
1054      S.Diag(ParamLoc,
1055             diag::err_template_parameter_default_in_function_template)
1056        << DefArgRange;
1057    return false;
1058
1059  case Sema::TPC_ClassTemplateMember:
1060    // C++0x [temp.param]p9:
1061    //   A default template-argument shall not be specified in the
1062    //   template-parameter-lists of the definition of a member of a
1063    //   class template that appears outside of the member's class.
1064    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1065      << DefArgRange;
1066    return true;
1067
1068  case Sema::TPC_FriendFunctionTemplate:
1069    // C++ [temp.param]p9:
1070    //   A default template-argument shall not be specified in a
1071    //   friend template declaration.
1072    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1073      << DefArgRange;
1074    return true;
1075
1076    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1077    // for friend function templates if there is only a single
1078    // declaration (and it is a definition). Strange!
1079  }
1080
1081  return false;
1082}
1083
1084/// \brief Check for unexpanded parameter packs within the template parameters
1085/// of a template template parameter, recursively.
1086bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1087  TemplateParameterList *Params = TTP->getTemplateParameters();
1088  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1089    NamedDecl *P = Params->getParam(I);
1090    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1091      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1092                                            NTTP->getTypeSourceInfo(),
1093                                      Sema::UPPC_NonTypeTemplateParameterType))
1094        return true;
1095
1096      continue;
1097    }
1098
1099    if (TemplateTemplateParmDecl *InnerTTP
1100                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1101      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1102        return true;
1103  }
1104
1105  return false;
1106}
1107
1108/// \brief Checks the validity of a template parameter list, possibly
1109/// considering the template parameter list from a previous
1110/// declaration.
1111///
1112/// If an "old" template parameter list is provided, it must be
1113/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1114/// template parameter list.
1115///
1116/// \param NewParams Template parameter list for a new template
1117/// declaration. This template parameter list will be updated with any
1118/// default arguments that are carried through from the previous
1119/// template parameter list.
1120///
1121/// \param OldParams If provided, template parameter list from a
1122/// previous declaration of the same template. Default template
1123/// arguments will be merged from the old template parameter list to
1124/// the new template parameter list.
1125///
1126/// \param TPC Describes the context in which we are checking the given
1127/// template parameter list.
1128///
1129/// \returns true if an error occurred, false otherwise.
1130bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1131                                      TemplateParameterList *OldParams,
1132                                      TemplateParamListContext TPC) {
1133  bool Invalid = false;
1134
1135  // C++ [temp.param]p10:
1136  //   The set of default template-arguments available for use with a
1137  //   template declaration or definition is obtained by merging the
1138  //   default arguments from the definition (if in scope) and all
1139  //   declarations in scope in the same way default function
1140  //   arguments are (8.3.6).
1141  bool SawDefaultArgument = false;
1142  SourceLocation PreviousDefaultArgLoc;
1143
1144  bool SawParameterPack = false;
1145  SourceLocation ParameterPackLoc;
1146
1147  // Dummy initialization to avoid warnings.
1148  TemplateParameterList::iterator OldParam = NewParams->end();
1149  if (OldParams)
1150    OldParam = OldParams->begin();
1151
1152  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1153                                    NewParamEnd = NewParams->end();
1154       NewParam != NewParamEnd; ++NewParam) {
1155    // Variables used to diagnose redundant default arguments
1156    bool RedundantDefaultArg = false;
1157    SourceLocation OldDefaultLoc;
1158    SourceLocation NewDefaultLoc;
1159
1160    // Variables used to diagnose missing default arguments
1161    bool MissingDefaultArg = false;
1162
1163    // C++0x [temp.param]p11:
1164    //   If a template parameter of a primary class template is a template
1165    //   parameter pack, it shall be the last template parameter.
1166    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1167      Diag(ParameterPackLoc,
1168           diag::err_template_param_pack_must_be_last_template_parameter);
1169      Invalid = true;
1170    }
1171
1172    if (TemplateTypeParmDecl *NewTypeParm
1173          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1174      // Check the presence of a default argument here.
1175      if (NewTypeParm->hasDefaultArgument() &&
1176          DiagnoseDefaultTemplateArgument(*this, TPC,
1177                                          NewTypeParm->getLocation(),
1178               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1179                                                       .getSourceRange()))
1180        NewTypeParm->removeDefaultArgument();
1181
1182      // Merge default arguments for template type parameters.
1183      TemplateTypeParmDecl *OldTypeParm
1184          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1185
1186      if (NewTypeParm->isParameterPack()) {
1187        assert(!NewTypeParm->hasDefaultArgument() &&
1188               "Parameter packs can't have a default argument!");
1189        SawParameterPack = true;
1190        ParameterPackLoc = NewTypeParm->getLocation();
1191      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1192                 NewTypeParm->hasDefaultArgument()) {
1193        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1194        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1195        SawDefaultArgument = true;
1196        RedundantDefaultArg = true;
1197        PreviousDefaultArgLoc = NewDefaultLoc;
1198      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1199        // Merge the default argument from the old declaration to the
1200        // new declaration.
1201        SawDefaultArgument = true;
1202        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1203                                        true);
1204        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1205      } else if (NewTypeParm->hasDefaultArgument()) {
1206        SawDefaultArgument = true;
1207        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1208      } else if (SawDefaultArgument)
1209        MissingDefaultArg = true;
1210    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1211               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1212      // Check for unexpanded parameter packs.
1213      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1214                                          NewNonTypeParm->getTypeSourceInfo(),
1215                                          UPPC_NonTypeTemplateParameterType)) {
1216        Invalid = true;
1217        continue;
1218      }
1219
1220      // Check the presence of a default argument here.
1221      if (NewNonTypeParm->hasDefaultArgument() &&
1222          DiagnoseDefaultTemplateArgument(*this, TPC,
1223                                          NewNonTypeParm->getLocation(),
1224                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1225        NewNonTypeParm->removeDefaultArgument();
1226      }
1227
1228      // Merge default arguments for non-type template parameters
1229      NonTypeTemplateParmDecl *OldNonTypeParm
1230        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1231      if (NewNonTypeParm->isParameterPack()) {
1232        assert(!NewNonTypeParm->hasDefaultArgument() &&
1233               "Parameter packs can't have a default argument!");
1234        SawParameterPack = true;
1235        ParameterPackLoc = NewNonTypeParm->getLocation();
1236      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1237          NewNonTypeParm->hasDefaultArgument()) {
1238        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1239        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1240        SawDefaultArgument = true;
1241        RedundantDefaultArg = true;
1242        PreviousDefaultArgLoc = NewDefaultLoc;
1243      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1244        // Merge the default argument from the old declaration to the
1245        // new declaration.
1246        SawDefaultArgument = true;
1247        // FIXME: We need to create a new kind of "default argument"
1248        // expression that points to a previous non-type template
1249        // parameter.
1250        NewNonTypeParm->setDefaultArgument(
1251                                         OldNonTypeParm->getDefaultArgument(),
1252                                         /*Inherited=*/ true);
1253        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1254      } else if (NewNonTypeParm->hasDefaultArgument()) {
1255        SawDefaultArgument = true;
1256        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1257      } else if (SawDefaultArgument)
1258        MissingDefaultArg = true;
1259    } else {
1260      // Check the presence of a default argument here.
1261      TemplateTemplateParmDecl *NewTemplateParm
1262        = cast<TemplateTemplateParmDecl>(*NewParam);
1263
1264      // Check for unexpanded parameter packs, recursively.
1265      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1266        Invalid = true;
1267        continue;
1268      }
1269
1270      if (NewTemplateParm->hasDefaultArgument() &&
1271          DiagnoseDefaultTemplateArgument(*this, TPC,
1272                                          NewTemplateParm->getLocation(),
1273                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1274        NewTemplateParm->removeDefaultArgument();
1275
1276      // Merge default arguments for template template parameters
1277      TemplateTemplateParmDecl *OldTemplateParm
1278        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1279      if (NewTemplateParm->isParameterPack()) {
1280        assert(!NewTemplateParm->hasDefaultArgument() &&
1281               "Parameter packs can't have a default argument!");
1282        SawParameterPack = true;
1283        ParameterPackLoc = NewTemplateParm->getLocation();
1284      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1285          NewTemplateParm->hasDefaultArgument()) {
1286        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1287        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1288        SawDefaultArgument = true;
1289        RedundantDefaultArg = true;
1290        PreviousDefaultArgLoc = NewDefaultLoc;
1291      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1292        // Merge the default argument from the old declaration to the
1293        // new declaration.
1294        SawDefaultArgument = true;
1295        // FIXME: We need to create a new kind of "default argument" expression
1296        // that points to a previous template template parameter.
1297        NewTemplateParm->setDefaultArgument(
1298                                          OldTemplateParm->getDefaultArgument(),
1299                                          /*Inherited=*/ true);
1300        PreviousDefaultArgLoc
1301          = OldTemplateParm->getDefaultArgument().getLocation();
1302      } else if (NewTemplateParm->hasDefaultArgument()) {
1303        SawDefaultArgument = true;
1304        PreviousDefaultArgLoc
1305          = NewTemplateParm->getDefaultArgument().getLocation();
1306      } else if (SawDefaultArgument)
1307        MissingDefaultArg = true;
1308    }
1309
1310    if (RedundantDefaultArg) {
1311      // C++ [temp.param]p12:
1312      //   A template-parameter shall not be given default arguments
1313      //   by two different declarations in the same scope.
1314      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1315      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1316      Invalid = true;
1317    } else if (MissingDefaultArg) {
1318      // C++ [temp.param]p11:
1319      //   If a template-parameter of a class template has a default
1320      //   template-argument, each subsequent template- parameter shall either
1321      //   have a default template-argument supplied or be a template parameter
1322      //   pack.
1323      Diag((*NewParam)->getLocation(),
1324           diag::err_template_param_default_arg_missing);
1325      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1326      Invalid = true;
1327    }
1328
1329    // If we have an old template parameter list that we're merging
1330    // in, move on to the next parameter.
1331    if (OldParams)
1332      ++OldParam;
1333  }
1334
1335  return Invalid;
1336}
1337
1338namespace {
1339
1340/// A class which looks for a use of a certain level of template
1341/// parameter.
1342struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1343  typedef RecursiveASTVisitor<DependencyChecker> super;
1344
1345  unsigned Depth;
1346  bool Match;
1347
1348  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1349    NamedDecl *ND = Params->getParam(0);
1350    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1351      Depth = PD->getDepth();
1352    } else if (NonTypeTemplateParmDecl *PD =
1353                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1354      Depth = PD->getDepth();
1355    } else {
1356      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1357    }
1358  }
1359
1360  bool Matches(unsigned ParmDepth) {
1361    if (ParmDepth >= Depth) {
1362      Match = true;
1363      return true;
1364    }
1365    return false;
1366  }
1367
1368  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1369    return !Matches(T->getDepth());
1370  }
1371
1372  bool TraverseTemplateName(TemplateName N) {
1373    if (TemplateTemplateParmDecl *PD =
1374          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1375      if (Matches(PD->getDepth())) return false;
1376    return super::TraverseTemplateName(N);
1377  }
1378
1379  bool VisitDeclRefExpr(DeclRefExpr *E) {
1380    if (NonTypeTemplateParmDecl *PD =
1381          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1382      if (PD->getDepth() == Depth) {
1383        Match = true;
1384        return false;
1385      }
1386    }
1387    return super::VisitDeclRefExpr(E);
1388  }
1389};
1390}
1391
1392/// Determines whether a template-id depends on the given parameter
1393/// list.
1394static bool
1395DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1396                            TemplateParameterList *Params) {
1397  DependencyChecker Checker(Params);
1398  Checker.TraverseType(QualType(TemplateId, 0));
1399  return Checker.Match;
1400}
1401
1402/// \brief Match the given template parameter lists to the given scope
1403/// specifier, returning the template parameter list that applies to the
1404/// name.
1405///
1406/// \param DeclStartLoc the start of the declaration that has a scope
1407/// specifier or a template parameter list.
1408///
1409/// \param SS the scope specifier that will be matched to the given template
1410/// parameter lists. This scope specifier precedes a qualified name that is
1411/// being declared.
1412///
1413/// \param ParamLists the template parameter lists, from the outermost to the
1414/// innermost template parameter lists.
1415///
1416/// \param NumParamLists the number of template parameter lists in ParamLists.
1417///
1418/// \param IsFriend Whether to apply the slightly different rules for
1419/// matching template parameters to scope specifiers in friend
1420/// declarations.
1421///
1422/// \param IsExplicitSpecialization will be set true if the entity being
1423/// declared is an explicit specialization, false otherwise.
1424///
1425/// \returns the template parameter list, if any, that corresponds to the
1426/// name that is preceded by the scope specifier @p SS. This template
1427/// parameter list may be have template parameters (if we're declaring a
1428/// template) or may have no template parameters (if we're declaring a
1429/// template specialization), or may be NULL (if we were's declaring isn't
1430/// itself a template).
1431TemplateParameterList *
1432Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1433                                              const CXXScopeSpec &SS,
1434                                          TemplateParameterList **ParamLists,
1435                                              unsigned NumParamLists,
1436                                              bool IsFriend,
1437                                              bool &IsExplicitSpecialization,
1438                                              bool &Invalid) {
1439  IsExplicitSpecialization = false;
1440
1441  // Find the template-ids that occur within the nested-name-specifier. These
1442  // template-ids will match up with the template parameter lists.
1443  llvm::SmallVector<const TemplateSpecializationType *, 4>
1444    TemplateIdsInSpecifier;
1445  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1446    ExplicitSpecializationsInSpecifier;
1447  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1448       NNS; NNS = NNS->getPrefix()) {
1449    const Type *T = NNS->getAsType();
1450    if (!T) break;
1451
1452    // C++0x [temp.expl.spec]p17:
1453    //   A member or a member template may be nested within many
1454    //   enclosing class templates. In an explicit specialization for
1455    //   such a member, the member declaration shall be preceded by a
1456    //   template<> for each enclosing class template that is
1457    //   explicitly specialized.
1458    //
1459    // Following the existing practice of GNU and EDG, we allow a typedef of a
1460    // template specialization type.
1461    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1462      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1463
1464    if (const TemplateSpecializationType *SpecType
1465                                  = dyn_cast<TemplateSpecializationType>(T)) {
1466      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1467      if (!Template)
1468        continue; // FIXME: should this be an error? probably...
1469
1470      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1471        ClassTemplateSpecializationDecl *SpecDecl
1472          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1473        // If the nested name specifier refers to an explicit specialization,
1474        // we don't need a template<> header.
1475        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1476          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1477          continue;
1478        }
1479      }
1480
1481      TemplateIdsInSpecifier.push_back(SpecType);
1482    }
1483  }
1484
1485  // Reverse the list of template-ids in the scope specifier, so that we can
1486  // more easily match up the template-ids and the template parameter lists.
1487  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1488
1489  SourceLocation FirstTemplateLoc = DeclStartLoc;
1490  if (NumParamLists)
1491    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1492
1493  // Match the template-ids found in the specifier to the template parameter
1494  // lists.
1495  unsigned ParamIdx = 0, TemplateIdx = 0;
1496  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1497       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1498    const TemplateSpecializationType *TemplateId
1499      = TemplateIdsInSpecifier[TemplateIdx];
1500    bool DependentTemplateId = TemplateId->isDependentType();
1501
1502    // In friend declarations we can have template-ids which don't
1503    // depend on the corresponding template parameter lists.  But
1504    // assume that empty parameter lists are supposed to match this
1505    // template-id.
1506    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1507      if (!DependentTemplateId ||
1508          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1509        continue;
1510    }
1511
1512    if (ParamIdx >= NumParamLists) {
1513      // We have a template-id without a corresponding template parameter
1514      // list.
1515
1516      // ...which is fine if this is a friend declaration.
1517      if (IsFriend) {
1518        IsExplicitSpecialization = true;
1519        break;
1520      }
1521
1522      if (DependentTemplateId) {
1523        // FIXME: the location information here isn't great.
1524        Diag(SS.getRange().getBegin(),
1525             diag::err_template_spec_needs_template_parameters)
1526          << QualType(TemplateId, 0)
1527          << SS.getRange();
1528        Invalid = true;
1529      } else {
1530        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1531          << SS.getRange()
1532          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1533        IsExplicitSpecialization = true;
1534      }
1535      return 0;
1536    }
1537
1538    // Check the template parameter list against its corresponding template-id.
1539    if (DependentTemplateId) {
1540      TemplateParameterList *ExpectedTemplateParams = 0;
1541
1542      // Are there cases in (e.g.) friends where this won't match?
1543      if (const InjectedClassNameType *Injected
1544            = TemplateId->getAs<InjectedClassNameType>()) {
1545        CXXRecordDecl *Record = Injected->getDecl();
1546        if (ClassTemplatePartialSpecializationDecl *Partial =
1547              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1548          ExpectedTemplateParams = Partial->getTemplateParameters();
1549        else
1550          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1551            ->getTemplateParameters();
1552      }
1553
1554      if (ExpectedTemplateParams)
1555        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1556                                       ExpectedTemplateParams,
1557                                       true, TPL_TemplateMatch);
1558
1559      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1560                                 TPC_ClassTemplateMember);
1561    } else if (ParamLists[ParamIdx]->size() > 0)
1562      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1563           diag::err_template_param_list_matches_nontemplate)
1564        << TemplateId
1565        << ParamLists[ParamIdx]->getSourceRange();
1566    else
1567      IsExplicitSpecialization = true;
1568
1569    ++ParamIdx;
1570  }
1571
1572  // If there were at least as many template-ids as there were template
1573  // parameter lists, then there are no template parameter lists remaining for
1574  // the declaration itself.
1575  if (ParamIdx >= NumParamLists)
1576    return 0;
1577
1578  // If there were too many template parameter lists, complain about that now.
1579  if (ParamIdx != NumParamLists - 1) {
1580    while (ParamIdx < NumParamLists - 1) {
1581      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1582      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1583           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1584                               : diag::err_template_spec_extra_headers)
1585        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1586                       ParamLists[ParamIdx]->getRAngleLoc());
1587
1588      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1589        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1590             diag::note_explicit_template_spec_does_not_need_header)
1591          << ExplicitSpecializationsInSpecifier.back();
1592        ExplicitSpecializationsInSpecifier.pop_back();
1593      }
1594
1595      // We have a template parameter list with no corresponding scope, which
1596      // means that the resulting template declaration can't be instantiated
1597      // properly (we'll end up with dependent nodes when we shouldn't).
1598      if (!isExplicitSpecHeader)
1599        Invalid = true;
1600
1601      ++ParamIdx;
1602    }
1603  }
1604
1605  // Return the last template parameter list, which corresponds to the
1606  // entity being declared.
1607  return ParamLists[NumParamLists - 1];
1608}
1609
1610QualType Sema::CheckTemplateIdType(TemplateName Name,
1611                                   SourceLocation TemplateLoc,
1612                              const TemplateArgumentListInfo &TemplateArgs) {
1613  TemplateDecl *Template = Name.getAsTemplateDecl();
1614  if (!Template) {
1615    // The template name does not resolve to a template, so we just
1616    // build a dependent template-id type.
1617    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1618  }
1619
1620  // Check that the template argument list is well-formed for this
1621  // template.
1622  llvm::SmallVector<TemplateArgument, 4> Converted;
1623  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1624                                false, Converted))
1625    return QualType();
1626
1627  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1628         "Converted template argument list is too short!");
1629
1630  QualType CanonType;
1631
1632  if (Name.isDependent() ||
1633      TemplateSpecializationType::anyDependentTemplateArguments(
1634                                                      TemplateArgs)) {
1635    // This class template specialization is a dependent
1636    // type. Therefore, its canonical type is another class template
1637    // specialization type that contains all of the converted
1638    // arguments in canonical form. This ensures that, e.g., A<T> and
1639    // A<T, T> have identical types when A is declared as:
1640    //
1641    //   template<typename T, typename U = T> struct A;
1642    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1643    CanonType = Context.getTemplateSpecializationType(CanonName,
1644                                                      Converted.data(),
1645                                                      Converted.size());
1646
1647    // FIXME: CanonType is not actually the canonical type, and unfortunately
1648    // it is a TemplateSpecializationType that we will never use again.
1649    // In the future, we need to teach getTemplateSpecializationType to only
1650    // build the canonical type and return that to us.
1651    CanonType = Context.getCanonicalType(CanonType);
1652
1653    // This might work out to be a current instantiation, in which
1654    // case the canonical type needs to be the InjectedClassNameType.
1655    //
1656    // TODO: in theory this could be a simple hashtable lookup; most
1657    // changes to CurContext don't change the set of current
1658    // instantiations.
1659    if (isa<ClassTemplateDecl>(Template)) {
1660      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1661        // If we get out to a namespace, we're done.
1662        if (Ctx->isFileContext()) break;
1663
1664        // If this isn't a record, keep looking.
1665        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1666        if (!Record) continue;
1667
1668        // Look for one of the two cases with InjectedClassNameTypes
1669        // and check whether it's the same template.
1670        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1671            !Record->getDescribedClassTemplate())
1672          continue;
1673
1674        // Fetch the injected class name type and check whether its
1675        // injected type is equal to the type we just built.
1676        QualType ICNT = Context.getTypeDeclType(Record);
1677        QualType Injected = cast<InjectedClassNameType>(ICNT)
1678          ->getInjectedSpecializationType();
1679
1680        if (CanonType != Injected->getCanonicalTypeInternal())
1681          continue;
1682
1683        // If so, the canonical type of this TST is the injected
1684        // class name type of the record we just found.
1685        assert(ICNT.isCanonical());
1686        CanonType = ICNT;
1687        break;
1688      }
1689    }
1690  } else if (ClassTemplateDecl *ClassTemplate
1691               = dyn_cast<ClassTemplateDecl>(Template)) {
1692    // Find the class template specialization declaration that
1693    // corresponds to these arguments.
1694    void *InsertPos = 0;
1695    ClassTemplateSpecializationDecl *Decl
1696      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1697                                          InsertPos);
1698    if (!Decl) {
1699      // This is the first time we have referenced this class template
1700      // specialization. Create the canonical declaration and add it to
1701      // the set of specializations.
1702      Decl = ClassTemplateSpecializationDecl::Create(Context,
1703                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1704                                                ClassTemplate->getDeclContext(),
1705                                                ClassTemplate->getLocation(),
1706                                                     ClassTemplate,
1707                                                     Converted.data(),
1708                                                     Converted.size(), 0);
1709      ClassTemplate->AddSpecialization(Decl, InsertPos);
1710      Decl->setLexicalDeclContext(CurContext);
1711    }
1712
1713    CanonType = Context.getTypeDeclType(Decl);
1714    assert(isa<RecordType>(CanonType) &&
1715           "type of non-dependent specialization is not a RecordType");
1716  }
1717
1718  // Build the fully-sugared type for this class template
1719  // specialization, which refers back to the class template
1720  // specialization we created or found.
1721  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1722}
1723
1724TypeResult
1725Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1726                          SourceLocation LAngleLoc,
1727                          ASTTemplateArgsPtr TemplateArgsIn,
1728                          SourceLocation RAngleLoc) {
1729  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1730
1731  // Translate the parser's template argument list in our AST format.
1732  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1733  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1734
1735  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1736  TemplateArgsIn.release();
1737
1738  if (Result.isNull())
1739    return true;
1740
1741  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1742  TemplateSpecializationTypeLoc TL
1743    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1744  TL.setTemplateNameLoc(TemplateLoc);
1745  TL.setLAngleLoc(LAngleLoc);
1746  TL.setRAngleLoc(RAngleLoc);
1747  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1748    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1749
1750  return CreateParsedType(Result, DI);
1751}
1752
1753TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1754                                        TypeResult TypeResult,
1755                                        TagUseKind TUK,
1756                                        TypeSpecifierType TagSpec,
1757                                        SourceLocation TagLoc) {
1758  if (TypeResult.isInvalid())
1759    return ::TypeResult();
1760
1761  TypeSourceInfo *DI;
1762  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1763
1764  // Verify the tag specifier.
1765  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1766
1767  if (const RecordType *RT = Type->getAs<RecordType>()) {
1768    RecordDecl *D = RT->getDecl();
1769
1770    IdentifierInfo *Id = D->getIdentifier();
1771    assert(Id && "templated class must have an identifier");
1772
1773    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1774      Diag(TagLoc, diag::err_use_with_wrong_tag)
1775        << Type
1776        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1777      Diag(D->getLocation(), diag::note_previous_use);
1778    }
1779  }
1780
1781  ElaboratedTypeKeyword Keyword
1782    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1783  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1784
1785  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1786  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1787  TL.setKeywordLoc(TagLoc);
1788  TL.setQualifierRange(SS.getRange());
1789  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1790  return CreateParsedType(ElabType, ElabDI);
1791}
1792
1793ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1794                                                 LookupResult &R,
1795                                                 bool RequiresADL,
1796                                 const TemplateArgumentListInfo &TemplateArgs) {
1797  // FIXME: Can we do any checking at this point? I guess we could check the
1798  // template arguments that we have against the template name, if the template
1799  // name refers to a single template. That's not a terribly common case,
1800  // though.
1801
1802  // These should be filtered out by our callers.
1803  assert(!R.empty() && "empty lookup results when building templateid");
1804  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1805
1806  NestedNameSpecifier *Qualifier = 0;
1807  SourceRange QualifierRange;
1808  if (SS.isSet()) {
1809    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1810    QualifierRange = SS.getRange();
1811  }
1812
1813  // We don't want lookup warnings at this point.
1814  R.suppressDiagnostics();
1815
1816  UnresolvedLookupExpr *ULE
1817    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1818                                   Qualifier, QualifierRange,
1819                                   R.getLookupNameInfo(),
1820                                   RequiresADL, TemplateArgs,
1821                                   R.begin(), R.end());
1822
1823  return Owned(ULE);
1824}
1825
1826// We actually only call this from template instantiation.
1827ExprResult
1828Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1829                                   const DeclarationNameInfo &NameInfo,
1830                             const TemplateArgumentListInfo &TemplateArgs) {
1831  DeclContext *DC;
1832  if (!(DC = computeDeclContext(SS, false)) ||
1833      DC->isDependentContext() ||
1834      RequireCompleteDeclContext(SS, DC))
1835    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1836
1837  bool MemberOfUnknownSpecialization;
1838  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1839  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1840                     MemberOfUnknownSpecialization);
1841
1842  if (R.isAmbiguous())
1843    return ExprError();
1844
1845  if (R.empty()) {
1846    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1847      << NameInfo.getName() << SS.getRange();
1848    return ExprError();
1849  }
1850
1851  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1852    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1853      << (NestedNameSpecifier*) SS.getScopeRep()
1854      << NameInfo.getName() << SS.getRange();
1855    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1856    return ExprError();
1857  }
1858
1859  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1860}
1861
1862/// \brief Form a dependent template name.
1863///
1864/// This action forms a dependent template name given the template
1865/// name and its (presumably dependent) scope specifier. For
1866/// example, given "MetaFun::template apply", the scope specifier \p
1867/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1868/// of the "template" keyword, and "apply" is the \p Name.
1869TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1870                                                  SourceLocation TemplateKWLoc,
1871                                                  CXXScopeSpec &SS,
1872                                                  UnqualifiedId &Name,
1873                                                  ParsedType ObjectType,
1874                                                  bool EnteringContext,
1875                                                  TemplateTy &Result) {
1876  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1877      !getLangOptions().CPlusPlus0x)
1878    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1879      << FixItHint::CreateRemoval(TemplateKWLoc);
1880
1881  DeclContext *LookupCtx = 0;
1882  if (SS.isSet())
1883    LookupCtx = computeDeclContext(SS, EnteringContext);
1884  if (!LookupCtx && ObjectType)
1885    LookupCtx = computeDeclContext(ObjectType.get());
1886  if (LookupCtx) {
1887    // C++0x [temp.names]p5:
1888    //   If a name prefixed by the keyword template is not the name of
1889    //   a template, the program is ill-formed. [Note: the keyword
1890    //   template may not be applied to non-template members of class
1891    //   templates. -end note ] [ Note: as is the case with the
1892    //   typename prefix, the template prefix is allowed in cases
1893    //   where it is not strictly necessary; i.e., when the
1894    //   nested-name-specifier or the expression on the left of the ->
1895    //   or . is not dependent on a template-parameter, or the use
1896    //   does not appear in the scope of a template. -end note]
1897    //
1898    // Note: C++03 was more strict here, because it banned the use of
1899    // the "template" keyword prior to a template-name that was not a
1900    // dependent name. C++ DR468 relaxed this requirement (the
1901    // "template" keyword is now permitted). We follow the C++0x
1902    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1903    bool MemberOfUnknownSpecialization;
1904    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1905                                          ObjectType, EnteringContext, Result,
1906                                          MemberOfUnknownSpecialization);
1907    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1908        isa<CXXRecordDecl>(LookupCtx) &&
1909        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1910      // This is a dependent template. Handle it below.
1911    } else if (TNK == TNK_Non_template) {
1912      Diag(Name.getSourceRange().getBegin(),
1913           diag::err_template_kw_refers_to_non_template)
1914        << GetNameFromUnqualifiedId(Name).getName()
1915        << Name.getSourceRange()
1916        << TemplateKWLoc;
1917      return TNK_Non_template;
1918    } else {
1919      // We found something; return it.
1920      return TNK;
1921    }
1922  }
1923
1924  NestedNameSpecifier *Qualifier
1925    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1926
1927  switch (Name.getKind()) {
1928  case UnqualifiedId::IK_Identifier:
1929    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1930                                                              Name.Identifier));
1931    return TNK_Dependent_template_name;
1932
1933  case UnqualifiedId::IK_OperatorFunctionId:
1934    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1935                                             Name.OperatorFunctionId.Operator));
1936    return TNK_Dependent_template_name;
1937
1938  case UnqualifiedId::IK_LiteralOperatorId:
1939    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1940
1941  default:
1942    break;
1943  }
1944
1945  Diag(Name.getSourceRange().getBegin(),
1946       diag::err_template_kw_refers_to_non_template)
1947    << GetNameFromUnqualifiedId(Name).getName()
1948    << Name.getSourceRange()
1949    << TemplateKWLoc;
1950  return TNK_Non_template;
1951}
1952
1953bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1954                                     const TemplateArgumentLoc &AL,
1955                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1956  const TemplateArgument &Arg = AL.getArgument();
1957
1958  // Check template type parameter.
1959  switch(Arg.getKind()) {
1960  case TemplateArgument::Type:
1961    // C++ [temp.arg.type]p1:
1962    //   A template-argument for a template-parameter which is a
1963    //   type shall be a type-id.
1964    break;
1965  case TemplateArgument::Template: {
1966    // We have a template type parameter but the template argument
1967    // is a template without any arguments.
1968    SourceRange SR = AL.getSourceRange();
1969    TemplateName Name = Arg.getAsTemplate();
1970    Diag(SR.getBegin(), diag::err_template_missing_args)
1971      << Name << SR;
1972    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1973      Diag(Decl->getLocation(), diag::note_template_decl_here);
1974
1975    return true;
1976  }
1977  default: {
1978    // We have a template type parameter but the template argument
1979    // is not a type.
1980    SourceRange SR = AL.getSourceRange();
1981    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1982    Diag(Param->getLocation(), diag::note_template_param_here);
1983
1984    return true;
1985  }
1986  }
1987
1988  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1989    return true;
1990
1991  // Add the converted template type argument.
1992  Converted.push_back(
1993                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1994  return false;
1995}
1996
1997/// \brief Substitute template arguments into the default template argument for
1998/// the given template type parameter.
1999///
2000/// \param SemaRef the semantic analysis object for which we are performing
2001/// the substitution.
2002///
2003/// \param Template the template that we are synthesizing template arguments
2004/// for.
2005///
2006/// \param TemplateLoc the location of the template name that started the
2007/// template-id we are checking.
2008///
2009/// \param RAngleLoc the location of the right angle bracket ('>') that
2010/// terminates the template-id.
2011///
2012/// \param Param the template template parameter whose default we are
2013/// substituting into.
2014///
2015/// \param Converted the list of template arguments provided for template
2016/// parameters that precede \p Param in the template parameter list.
2017///
2018/// \returns the substituted template argument, or NULL if an error occurred.
2019static TypeSourceInfo *
2020SubstDefaultTemplateArgument(Sema &SemaRef,
2021                             TemplateDecl *Template,
2022                             SourceLocation TemplateLoc,
2023                             SourceLocation RAngleLoc,
2024                             TemplateTypeParmDecl *Param,
2025                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2026  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2027
2028  // If the argument type is dependent, instantiate it now based
2029  // on the previously-computed template arguments.
2030  if (ArgType->getType()->isDependentType()) {
2031    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2032                                      Converted.data(), Converted.size());
2033
2034    MultiLevelTemplateArgumentList AllTemplateArgs
2035      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2036
2037    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2038                                     Template, Converted.data(),
2039                                     Converted.size(),
2040                                     SourceRange(TemplateLoc, RAngleLoc));
2041
2042    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2043                                Param->getDefaultArgumentLoc(),
2044                                Param->getDeclName());
2045  }
2046
2047  return ArgType;
2048}
2049
2050/// \brief Substitute template arguments into the default template argument for
2051/// the given non-type template parameter.
2052///
2053/// \param SemaRef the semantic analysis object for which we are performing
2054/// the substitution.
2055///
2056/// \param Template the template that we are synthesizing template arguments
2057/// for.
2058///
2059/// \param TemplateLoc the location of the template name that started the
2060/// template-id we are checking.
2061///
2062/// \param RAngleLoc the location of the right angle bracket ('>') that
2063/// terminates the template-id.
2064///
2065/// \param Param the non-type template parameter whose default we are
2066/// substituting into.
2067///
2068/// \param Converted the list of template arguments provided for template
2069/// parameters that precede \p Param in the template parameter list.
2070///
2071/// \returns the substituted template argument, or NULL if an error occurred.
2072static ExprResult
2073SubstDefaultTemplateArgument(Sema &SemaRef,
2074                             TemplateDecl *Template,
2075                             SourceLocation TemplateLoc,
2076                             SourceLocation RAngleLoc,
2077                             NonTypeTemplateParmDecl *Param,
2078                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2079  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2080                                    Converted.data(), Converted.size());
2081
2082  MultiLevelTemplateArgumentList AllTemplateArgs
2083    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2084
2085  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2086                                   Template, Converted.data(),
2087                                   Converted.size(),
2088                                   SourceRange(TemplateLoc, RAngleLoc));
2089
2090  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2091}
2092
2093/// \brief Substitute template arguments into the default template argument for
2094/// the given template template parameter.
2095///
2096/// \param SemaRef the semantic analysis object for which we are performing
2097/// the substitution.
2098///
2099/// \param Template the template that we are synthesizing template arguments
2100/// for.
2101///
2102/// \param TemplateLoc the location of the template name that started the
2103/// template-id we are checking.
2104///
2105/// \param RAngleLoc the location of the right angle bracket ('>') that
2106/// terminates the template-id.
2107///
2108/// \param Param the template template parameter whose default we are
2109/// substituting into.
2110///
2111/// \param Converted the list of template arguments provided for template
2112/// parameters that precede \p Param in the template parameter list.
2113///
2114/// \returns the substituted template argument, or NULL if an error occurred.
2115static TemplateName
2116SubstDefaultTemplateArgument(Sema &SemaRef,
2117                             TemplateDecl *Template,
2118                             SourceLocation TemplateLoc,
2119                             SourceLocation RAngleLoc,
2120                             TemplateTemplateParmDecl *Param,
2121                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2122  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2123                                    Converted.data(), Converted.size());
2124
2125  MultiLevelTemplateArgumentList AllTemplateArgs
2126    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2127
2128  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2129                                   Template, Converted.data(),
2130                                   Converted.size(),
2131                                   SourceRange(TemplateLoc, RAngleLoc));
2132
2133  return SemaRef.SubstTemplateName(
2134                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2135                              Param->getDefaultArgument().getTemplateNameLoc(),
2136                                   AllTemplateArgs);
2137}
2138
2139/// \brief If the given template parameter has a default template
2140/// argument, substitute into that default template argument and
2141/// return the corresponding template argument.
2142TemplateArgumentLoc
2143Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2144                                              SourceLocation TemplateLoc,
2145                                              SourceLocation RAngleLoc,
2146                                              Decl *Param,
2147                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2148   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2149    if (!TypeParm->hasDefaultArgument())
2150      return TemplateArgumentLoc();
2151
2152    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2153                                                      TemplateLoc,
2154                                                      RAngleLoc,
2155                                                      TypeParm,
2156                                                      Converted);
2157    if (DI)
2158      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2159
2160    return TemplateArgumentLoc();
2161  }
2162
2163  if (NonTypeTemplateParmDecl *NonTypeParm
2164        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2165    if (!NonTypeParm->hasDefaultArgument())
2166      return TemplateArgumentLoc();
2167
2168    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2169                                                        TemplateLoc,
2170                                                        RAngleLoc,
2171                                                        NonTypeParm,
2172                                                        Converted);
2173    if (Arg.isInvalid())
2174      return TemplateArgumentLoc();
2175
2176    Expr *ArgE = Arg.takeAs<Expr>();
2177    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2178  }
2179
2180  TemplateTemplateParmDecl *TempTempParm
2181    = cast<TemplateTemplateParmDecl>(Param);
2182  if (!TempTempParm->hasDefaultArgument())
2183    return TemplateArgumentLoc();
2184
2185  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2186                                                    TemplateLoc,
2187                                                    RAngleLoc,
2188                                                    TempTempParm,
2189                                                    Converted);
2190  if (TName.isNull())
2191    return TemplateArgumentLoc();
2192
2193  return TemplateArgumentLoc(TemplateArgument(TName),
2194                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2195                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2196}
2197
2198/// \brief Check that the given template argument corresponds to the given
2199/// template parameter.
2200bool Sema::CheckTemplateArgument(NamedDecl *Param,
2201                                 const TemplateArgumentLoc &Arg,
2202                                 NamedDecl *Template,
2203                                 SourceLocation TemplateLoc,
2204                                 SourceLocation RAngleLoc,
2205                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2206                                 CheckTemplateArgumentKind CTAK) {
2207  // Check template type parameters.
2208  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2209    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2210
2211  // Check non-type template parameters.
2212  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2213    // Do substitution on the type of the non-type template parameter
2214    // with the template arguments we've seen thus far.  But if the
2215    // template has a dependent context then we cannot substitute yet.
2216    QualType NTTPType = NTTP->getType();
2217    if (NTTPType->isDependentType() &&
2218        !isa<TemplateTemplateParmDecl>(Template) &&
2219        !Template->getDeclContext()->isDependentContext()) {
2220      // Do substitution on the type of the non-type template parameter.
2221      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2222                                 NTTP, Converted.data(), Converted.size(),
2223                                 SourceRange(TemplateLoc, RAngleLoc));
2224
2225      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2226                                        Converted.data(), Converted.size());
2227      NTTPType = SubstType(NTTPType,
2228                           MultiLevelTemplateArgumentList(TemplateArgs),
2229                           NTTP->getLocation(),
2230                           NTTP->getDeclName());
2231      // If that worked, check the non-type template parameter type
2232      // for validity.
2233      if (!NTTPType.isNull())
2234        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2235                                                     NTTP->getLocation());
2236      if (NTTPType.isNull())
2237        return true;
2238    }
2239
2240    switch (Arg.getArgument().getKind()) {
2241    case TemplateArgument::Null:
2242      assert(false && "Should never see a NULL template argument here");
2243      return true;
2244
2245    case TemplateArgument::Expression: {
2246      Expr *E = Arg.getArgument().getAsExpr();
2247      TemplateArgument Result;
2248      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2249        return true;
2250
2251      Converted.push_back(Result);
2252      break;
2253    }
2254
2255    case TemplateArgument::Declaration:
2256    case TemplateArgument::Integral:
2257      // We've already checked this template argument, so just copy
2258      // it to the list of converted arguments.
2259      Converted.push_back(Arg.getArgument());
2260      break;
2261
2262    case TemplateArgument::Template:
2263    case TemplateArgument::TemplateExpansion:
2264      // We were given a template template argument. It may not be ill-formed;
2265      // see below.
2266      if (DependentTemplateName *DTN
2267            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2268                                              .getAsDependentTemplateName()) {
2269        // We have a template argument such as \c T::template X, which we
2270        // parsed as a template template argument. However, since we now
2271        // know that we need a non-type template argument, convert this
2272        // template name into an expression.
2273
2274        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2275                                     Arg.getTemplateNameLoc());
2276
2277        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2278                                                    DTN->getQualifier(),
2279                                               Arg.getTemplateQualifierRange(),
2280                                                    NameInfo);
2281
2282        // If we parsed the template argument as a pack expansion, create a
2283        // pack expansion expression.
2284        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2285          ExprResult Expansion = ActOnPackExpansion(E,
2286                                                  Arg.getTemplateEllipsisLoc());
2287          if (Expansion.isInvalid())
2288            return true;
2289
2290          E = Expansion.get();
2291        }
2292
2293        TemplateArgument Result;
2294        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2295          return true;
2296
2297        Converted.push_back(Result);
2298        break;
2299      }
2300
2301      // We have a template argument that actually does refer to a class
2302      // template, template alias, or template template parameter, and
2303      // therefore cannot be a non-type template argument.
2304      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2305        << Arg.getSourceRange();
2306
2307      Diag(Param->getLocation(), diag::note_template_param_here);
2308      return true;
2309
2310    case TemplateArgument::Type: {
2311      // We have a non-type template parameter but the template
2312      // argument is a type.
2313
2314      // C++ [temp.arg]p2:
2315      //   In a template-argument, an ambiguity between a type-id and
2316      //   an expression is resolved to a type-id, regardless of the
2317      //   form of the corresponding template-parameter.
2318      //
2319      // We warn specifically about this case, since it can be rather
2320      // confusing for users.
2321      QualType T = Arg.getArgument().getAsType();
2322      SourceRange SR = Arg.getSourceRange();
2323      if (T->isFunctionType())
2324        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2325      else
2326        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2327      Diag(Param->getLocation(), diag::note_template_param_here);
2328      return true;
2329    }
2330
2331    case TemplateArgument::Pack:
2332      llvm_unreachable("Caller must expand template argument packs");
2333      break;
2334    }
2335
2336    return false;
2337  }
2338
2339
2340  // Check template template parameters.
2341  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2342
2343  // Substitute into the template parameter list of the template
2344  // template parameter, since previously-supplied template arguments
2345  // may appear within the template template parameter.
2346  {
2347    // Set up a template instantiation context.
2348    LocalInstantiationScope Scope(*this);
2349    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2350                               TempParm, Converted.data(), Converted.size(),
2351                               SourceRange(TemplateLoc, RAngleLoc));
2352
2353    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2354                                      Converted.data(), Converted.size());
2355    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2356                      SubstDecl(TempParm, CurContext,
2357                                MultiLevelTemplateArgumentList(TemplateArgs)));
2358    if (!TempParm)
2359      return true;
2360  }
2361
2362  switch (Arg.getArgument().getKind()) {
2363  case TemplateArgument::Null:
2364    assert(false && "Should never see a NULL template argument here");
2365    return true;
2366
2367  case TemplateArgument::Template:
2368  case TemplateArgument::TemplateExpansion:
2369    if (CheckTemplateArgument(TempParm, Arg))
2370      return true;
2371
2372    Converted.push_back(Arg.getArgument());
2373    break;
2374
2375  case TemplateArgument::Expression:
2376  case TemplateArgument::Type:
2377    // We have a template template parameter but the template
2378    // argument does not refer to a template.
2379    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2380    return true;
2381
2382  case TemplateArgument::Declaration:
2383    llvm_unreachable(
2384                       "Declaration argument with template template parameter");
2385    break;
2386  case TemplateArgument::Integral:
2387    llvm_unreachable(
2388                          "Integral argument with template template parameter");
2389    break;
2390
2391  case TemplateArgument::Pack:
2392    llvm_unreachable("Caller must expand template argument packs");
2393    break;
2394  }
2395
2396  return false;
2397}
2398
2399/// \brief Check that the given template argument list is well-formed
2400/// for specializing the given template.
2401bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2402                                     SourceLocation TemplateLoc,
2403                                const TemplateArgumentListInfo &TemplateArgs,
2404                                     bool PartialTemplateArgs,
2405                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2406  TemplateParameterList *Params = Template->getTemplateParameters();
2407  unsigned NumParams = Params->size();
2408  unsigned NumArgs = TemplateArgs.size();
2409  bool Invalid = false;
2410
2411  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2412
2413  bool HasParameterPack =
2414    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2415
2416  if ((NumArgs > NumParams && !HasParameterPack) ||
2417      (NumArgs < Params->getMinRequiredArguments() &&
2418       !PartialTemplateArgs)) {
2419    // FIXME: point at either the first arg beyond what we can handle,
2420    // or the '>', depending on whether we have too many or too few
2421    // arguments.
2422    SourceRange Range;
2423    if (NumArgs > NumParams)
2424      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2425    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2426      << (NumArgs > NumParams)
2427      << (isa<ClassTemplateDecl>(Template)? 0 :
2428          isa<FunctionTemplateDecl>(Template)? 1 :
2429          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2430      << Template << Range;
2431    Diag(Template->getLocation(), diag::note_template_decl_here)
2432      << Params->getSourceRange();
2433    Invalid = true;
2434  }
2435
2436  // C++ [temp.arg]p1:
2437  //   [...] The type and form of each template-argument specified in
2438  //   a template-id shall match the type and form specified for the
2439  //   corresponding parameter declared by the template in its
2440  //   template-parameter-list.
2441  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2442  TemplateParameterList::iterator Param = Params->begin(),
2443                               ParamEnd = Params->end();
2444  unsigned ArgIdx = 0;
2445  while (Param != ParamEnd) {
2446    if (ArgIdx > NumArgs && PartialTemplateArgs)
2447      break;
2448
2449    if (ArgIdx < NumArgs) {
2450      // Check the template argument we were given.
2451      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2452                                TemplateLoc, RAngleLoc, Converted))
2453        return true;
2454
2455      if ((*Param)->isTemplateParameterPack()) {
2456        // The template parameter was a template parameter pack, so take the
2457        // deduced argument and place it on the argument pack. Note that we
2458        // stay on the same template parameter so that we can deduce more
2459        // arguments.
2460        ArgumentPack.push_back(Converted.back());
2461        Converted.pop_back();
2462      } else {
2463        // Move to the next template parameter.
2464        ++Param;
2465      }
2466      ++ArgIdx;
2467      continue;
2468    }
2469
2470    // If we have a template parameter pack with no more corresponding
2471    // arguments, just break out now and we'll fill in the argument pack below.
2472    if ((*Param)->isTemplateParameterPack())
2473      break;
2474
2475    // We have a default template argument that we will use.
2476    TemplateArgumentLoc Arg;
2477
2478    // Retrieve the default template argument from the template
2479    // parameter. For each kind of template parameter, we substitute the
2480    // template arguments provided thus far and any "outer" template arguments
2481    // (when the template parameter was part of a nested template) into
2482    // the default argument.
2483    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2484      if (!TTP->hasDefaultArgument()) {
2485        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2486        break;
2487      }
2488
2489      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2490                                                             Template,
2491                                                             TemplateLoc,
2492                                                             RAngleLoc,
2493                                                             TTP,
2494                                                             Converted);
2495      if (!ArgType)
2496        return true;
2497
2498      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2499                                ArgType);
2500    } else if (NonTypeTemplateParmDecl *NTTP
2501                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2502      if (!NTTP->hasDefaultArgument()) {
2503        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2504        break;
2505      }
2506
2507      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2508                                                              TemplateLoc,
2509                                                              RAngleLoc,
2510                                                              NTTP,
2511                                                              Converted);
2512      if (E.isInvalid())
2513        return true;
2514
2515      Expr *Ex = E.takeAs<Expr>();
2516      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2517    } else {
2518      TemplateTemplateParmDecl *TempParm
2519        = cast<TemplateTemplateParmDecl>(*Param);
2520
2521      if (!TempParm->hasDefaultArgument()) {
2522        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2523        break;
2524      }
2525
2526      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2527                                                       TemplateLoc,
2528                                                       RAngleLoc,
2529                                                       TempParm,
2530                                                       Converted);
2531      if (Name.isNull())
2532        return true;
2533
2534      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2535                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2536                  TempParm->getDefaultArgument().getTemplateNameLoc());
2537    }
2538
2539    // Introduce an instantiation record that describes where we are using
2540    // the default template argument.
2541    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2542                                        Converted.data(), Converted.size(),
2543                                        SourceRange(TemplateLoc, RAngleLoc));
2544
2545    // Check the default template argument.
2546    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2547                              RAngleLoc, Converted))
2548      return true;
2549
2550    // Move to the next template parameter and argument.
2551    ++Param;
2552    ++ArgIdx;
2553  }
2554
2555  // Form argument packs for each of the parameter packs remaining.
2556  while (Param != ParamEnd) {
2557    // If we're checking a partial list of template arguments, don't fill
2558    // in arguments for non-template parameter packs.
2559
2560    if ((*Param)->isTemplateParameterPack()) {
2561      if (PartialTemplateArgs && ArgumentPack.empty()) {
2562        Converted.push_back(TemplateArgument());
2563      } else if (ArgumentPack.empty())
2564        Converted.push_back(TemplateArgument(0, 0));
2565      else {
2566        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2567                                                          ArgumentPack.data(),
2568                                                         ArgumentPack.size()));
2569        ArgumentPack.clear();
2570      }
2571    }
2572
2573    ++Param;
2574  }
2575
2576  return Invalid;
2577}
2578
2579namespace {
2580  class UnnamedLocalNoLinkageFinder
2581    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2582  {
2583    Sema &S;
2584    SourceRange SR;
2585
2586    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2587
2588  public:
2589    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2590
2591    bool Visit(QualType T) {
2592      return inherited::Visit(T.getTypePtr());
2593    }
2594
2595#define TYPE(Class, Parent) \
2596    bool Visit##Class##Type(const Class##Type *);
2597#define ABSTRACT_TYPE(Class, Parent) \
2598    bool Visit##Class##Type(const Class##Type *) { return false; }
2599#define NON_CANONICAL_TYPE(Class, Parent) \
2600    bool Visit##Class##Type(const Class##Type *) { return false; }
2601#include "clang/AST/TypeNodes.def"
2602
2603    bool VisitTagDecl(const TagDecl *Tag);
2604    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2605  };
2606}
2607
2608bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2609  return false;
2610}
2611
2612bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2613  return Visit(T->getElementType());
2614}
2615
2616bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2617  return Visit(T->getPointeeType());
2618}
2619
2620bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2621                                                    const BlockPointerType* T) {
2622  return Visit(T->getPointeeType());
2623}
2624
2625bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2626                                                const LValueReferenceType* T) {
2627  return Visit(T->getPointeeType());
2628}
2629
2630bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2631                                                const RValueReferenceType* T) {
2632  return Visit(T->getPointeeType());
2633}
2634
2635bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2636                                                  const MemberPointerType* T) {
2637  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2638}
2639
2640bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2641                                                  const ConstantArrayType* T) {
2642  return Visit(T->getElementType());
2643}
2644
2645bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2646                                                 const IncompleteArrayType* T) {
2647  return Visit(T->getElementType());
2648}
2649
2650bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2651                                                   const VariableArrayType* T) {
2652  return Visit(T->getElementType());
2653}
2654
2655bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2656                                            const DependentSizedArrayType* T) {
2657  return Visit(T->getElementType());
2658}
2659
2660bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2661                                         const DependentSizedExtVectorType* T) {
2662  return Visit(T->getElementType());
2663}
2664
2665bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2666  return Visit(T->getElementType());
2667}
2668
2669bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2670  return Visit(T->getElementType());
2671}
2672
2673bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2674                                                  const FunctionProtoType* T) {
2675  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2676                                         AEnd = T->arg_type_end();
2677       A != AEnd; ++A) {
2678    if (Visit(*A))
2679      return true;
2680  }
2681
2682  return Visit(T->getResultType());
2683}
2684
2685bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2686                                               const FunctionNoProtoType* T) {
2687  return Visit(T->getResultType());
2688}
2689
2690bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2691                                                  const UnresolvedUsingType*) {
2692  return false;
2693}
2694
2695bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2696  return false;
2697}
2698
2699bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2700  return Visit(T->getUnderlyingType());
2701}
2702
2703bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2704  return false;
2705}
2706
2707bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2708  return VisitTagDecl(T->getDecl());
2709}
2710
2711bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2712  return VisitTagDecl(T->getDecl());
2713}
2714
2715bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2716                                                 const TemplateTypeParmType*) {
2717  return false;
2718}
2719
2720bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2721                                        const SubstTemplateTypeParmPackType *) {
2722  return false;
2723}
2724
2725bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2726                                            const TemplateSpecializationType*) {
2727  return false;
2728}
2729
2730bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2731                                              const InjectedClassNameType* T) {
2732  return VisitTagDecl(T->getDecl());
2733}
2734
2735bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2736                                                   const DependentNameType* T) {
2737  return VisitNestedNameSpecifier(T->getQualifier());
2738}
2739
2740bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2741                                 const DependentTemplateSpecializationType* T) {
2742  return VisitNestedNameSpecifier(T->getQualifier());
2743}
2744
2745bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2746                                                   const PackExpansionType* T) {
2747  return Visit(T->getPattern());
2748}
2749
2750bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2751  return false;
2752}
2753
2754bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2755                                                   const ObjCInterfaceType *) {
2756  return false;
2757}
2758
2759bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2760                                                const ObjCObjectPointerType *) {
2761  return false;
2762}
2763
2764bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2765  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2766    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2767      << S.Context.getTypeDeclType(Tag) << SR;
2768    return true;
2769  }
2770
2771  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2772    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2773    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2774    return true;
2775  }
2776
2777  return false;
2778}
2779
2780bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2781                                                    NestedNameSpecifier *NNS) {
2782  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2783    return true;
2784
2785  switch (NNS->getKind()) {
2786  case NestedNameSpecifier::Identifier:
2787  case NestedNameSpecifier::Namespace:
2788  case NestedNameSpecifier::Global:
2789    return false;
2790
2791  case NestedNameSpecifier::TypeSpec:
2792  case NestedNameSpecifier::TypeSpecWithTemplate:
2793    return Visit(QualType(NNS->getAsType(), 0));
2794  }
2795  return false;
2796}
2797
2798
2799/// \brief Check a template argument against its corresponding
2800/// template type parameter.
2801///
2802/// This routine implements the semantics of C++ [temp.arg.type]. It
2803/// returns true if an error occurred, and false otherwise.
2804bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2805                                 TypeSourceInfo *ArgInfo) {
2806  assert(ArgInfo && "invalid TypeSourceInfo");
2807  QualType Arg = ArgInfo->getType();
2808  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2809
2810  if (Arg->isVariablyModifiedType()) {
2811    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2812  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2813    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2814  }
2815
2816  // C++03 [temp.arg.type]p2:
2817  //   A local type, a type with no linkage, an unnamed type or a type
2818  //   compounded from any of these types shall not be used as a
2819  //   template-argument for a template type-parameter.
2820  //
2821  // C++0x allows these, and even in C++03 we allow them as an extension with
2822  // a warning.
2823  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2824    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2825    (void)Finder.Visit(Context.getCanonicalType(Arg));
2826  }
2827
2828  return false;
2829}
2830
2831/// \brief Checks whether the given template argument is the address
2832/// of an object or function according to C++ [temp.arg.nontype]p1.
2833static bool
2834CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2835                                               NonTypeTemplateParmDecl *Param,
2836                                               QualType ParamType,
2837                                               Expr *ArgIn,
2838                                               TemplateArgument &Converted) {
2839  bool Invalid = false;
2840  Expr *Arg = ArgIn;
2841  QualType ArgType = Arg->getType();
2842
2843  // See through any implicit casts we added to fix the type.
2844  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2845    Arg = Cast->getSubExpr();
2846
2847  // C++ [temp.arg.nontype]p1:
2848  //
2849  //   A template-argument for a non-type, non-template
2850  //   template-parameter shall be one of: [...]
2851  //
2852  //     -- the address of an object or function with external
2853  //        linkage, including function templates and function
2854  //        template-ids but excluding non-static class members,
2855  //        expressed as & id-expression where the & is optional if
2856  //        the name refers to a function or array, or if the
2857  //        corresponding template-parameter is a reference; or
2858  DeclRefExpr *DRE = 0;
2859
2860  // In C++98/03 mode, give an extension warning on any extra parentheses.
2861  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2862  bool ExtraParens = false;
2863  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2864    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2865      S.Diag(Arg->getSourceRange().getBegin(),
2866             diag::ext_template_arg_extra_parens)
2867        << Arg->getSourceRange();
2868      ExtraParens = true;
2869    }
2870
2871    Arg = Parens->getSubExpr();
2872  }
2873
2874  bool AddressTaken = false;
2875  SourceLocation AddrOpLoc;
2876  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2877    if (UnOp->getOpcode() == UO_AddrOf) {
2878      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2879      AddressTaken = true;
2880      AddrOpLoc = UnOp->getOperatorLoc();
2881    }
2882  } else
2883    DRE = dyn_cast<DeclRefExpr>(Arg);
2884
2885  if (!DRE) {
2886    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2887      << Arg->getSourceRange();
2888    S.Diag(Param->getLocation(), diag::note_template_param_here);
2889    return true;
2890  }
2891
2892  // Stop checking the precise nature of the argument if it is value dependent,
2893  // it should be checked when instantiated.
2894  if (Arg->isValueDependent()) {
2895    Converted = TemplateArgument(ArgIn);
2896    return false;
2897  }
2898
2899  if (!isa<ValueDecl>(DRE->getDecl())) {
2900    S.Diag(Arg->getSourceRange().getBegin(),
2901           diag::err_template_arg_not_object_or_func_form)
2902      << Arg->getSourceRange();
2903    S.Diag(Param->getLocation(), diag::note_template_param_here);
2904    return true;
2905  }
2906
2907  NamedDecl *Entity = 0;
2908
2909  // Cannot refer to non-static data members
2910  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2911    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2912      << Field << Arg->getSourceRange();
2913    S.Diag(Param->getLocation(), diag::note_template_param_here);
2914    return true;
2915  }
2916
2917  // Cannot refer to non-static member functions
2918  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2919    if (!Method->isStatic()) {
2920      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2921        << Method << Arg->getSourceRange();
2922      S.Diag(Param->getLocation(), diag::note_template_param_here);
2923      return true;
2924    }
2925
2926  // Functions must have external linkage.
2927  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2928    if (!isExternalLinkage(Func->getLinkage())) {
2929      S.Diag(Arg->getSourceRange().getBegin(),
2930             diag::err_template_arg_function_not_extern)
2931        << Func << Arg->getSourceRange();
2932      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2933        << true;
2934      return true;
2935    }
2936
2937    // Okay: we've named a function with external linkage.
2938    Entity = Func;
2939
2940    // If the template parameter has pointer type, the function decays.
2941    if (ParamType->isPointerType() && !AddressTaken)
2942      ArgType = S.Context.getPointerType(Func->getType());
2943    else if (AddressTaken && ParamType->isReferenceType()) {
2944      // If we originally had an address-of operator, but the
2945      // parameter has reference type, complain and (if things look
2946      // like they will work) drop the address-of operator.
2947      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2948                                            ParamType.getNonReferenceType())) {
2949        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2950          << ParamType;
2951        S.Diag(Param->getLocation(), diag::note_template_param_here);
2952        return true;
2953      }
2954
2955      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2956        << ParamType
2957        << FixItHint::CreateRemoval(AddrOpLoc);
2958      S.Diag(Param->getLocation(), diag::note_template_param_here);
2959
2960      ArgType = Func->getType();
2961    }
2962  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2963    if (!isExternalLinkage(Var->getLinkage())) {
2964      S.Diag(Arg->getSourceRange().getBegin(),
2965             diag::err_template_arg_object_not_extern)
2966        << Var << Arg->getSourceRange();
2967      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2968        << true;
2969      return true;
2970    }
2971
2972    // A value of reference type is not an object.
2973    if (Var->getType()->isReferenceType()) {
2974      S.Diag(Arg->getSourceRange().getBegin(),
2975             diag::err_template_arg_reference_var)
2976        << Var->getType() << Arg->getSourceRange();
2977      S.Diag(Param->getLocation(), diag::note_template_param_here);
2978      return true;
2979    }
2980
2981    // Okay: we've named an object with external linkage
2982    Entity = Var;
2983
2984    // If the template parameter has pointer type, we must have taken
2985    // the address of this object.
2986    if (ParamType->isReferenceType()) {
2987      if (AddressTaken) {
2988        // If we originally had an address-of operator, but the
2989        // parameter has reference type, complain and (if things look
2990        // like they will work) drop the address-of operator.
2991        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2992                                            ParamType.getNonReferenceType())) {
2993          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2994            << ParamType;
2995          S.Diag(Param->getLocation(), diag::note_template_param_here);
2996          return true;
2997        }
2998
2999        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3000          << ParamType
3001          << FixItHint::CreateRemoval(AddrOpLoc);
3002        S.Diag(Param->getLocation(), diag::note_template_param_here);
3003
3004        ArgType = Var->getType();
3005      }
3006    } else if (!AddressTaken && ParamType->isPointerType()) {
3007      if (Var->getType()->isArrayType()) {
3008        // Array-to-pointer decay.
3009        ArgType = S.Context.getArrayDecayedType(Var->getType());
3010      } else {
3011        // If the template parameter has pointer type but the address of
3012        // this object was not taken, complain and (possibly) recover by
3013        // taking the address of the entity.
3014        ArgType = S.Context.getPointerType(Var->getType());
3015        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3016          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3017            << ParamType;
3018          S.Diag(Param->getLocation(), diag::note_template_param_here);
3019          return true;
3020        }
3021
3022        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3023          << ParamType
3024          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3025
3026        S.Diag(Param->getLocation(), diag::note_template_param_here);
3027      }
3028    }
3029  } else {
3030    // We found something else, but we don't know specifically what it is.
3031    S.Diag(Arg->getSourceRange().getBegin(),
3032           diag::err_template_arg_not_object_or_func)
3033      << Arg->getSourceRange();
3034    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3035    return true;
3036  }
3037
3038  if (ParamType->isPointerType() &&
3039      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3040      S.IsQualificationConversion(ArgType, ParamType)) {
3041    // For pointer-to-object types, qualification conversions are
3042    // permitted.
3043  } else {
3044    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3045      if (!ParamRef->getPointeeType()->isFunctionType()) {
3046        // C++ [temp.arg.nontype]p5b3:
3047        //   For a non-type template-parameter of type reference to
3048        //   object, no conversions apply. The type referred to by the
3049        //   reference may be more cv-qualified than the (otherwise
3050        //   identical) type of the template- argument. The
3051        //   template-parameter is bound directly to the
3052        //   template-argument, which shall be an lvalue.
3053
3054        // FIXME: Other qualifiers?
3055        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3056        unsigned ArgQuals = ArgType.getCVRQualifiers();
3057
3058        if ((ParamQuals | ArgQuals) != ParamQuals) {
3059          S.Diag(Arg->getSourceRange().getBegin(),
3060                 diag::err_template_arg_ref_bind_ignores_quals)
3061            << ParamType << Arg->getType()
3062            << Arg->getSourceRange();
3063          S.Diag(Param->getLocation(), diag::note_template_param_here);
3064          return true;
3065        }
3066      }
3067    }
3068
3069    // At this point, the template argument refers to an object or
3070    // function with external linkage. We now need to check whether the
3071    // argument and parameter types are compatible.
3072    if (!S.Context.hasSameUnqualifiedType(ArgType,
3073                                          ParamType.getNonReferenceType())) {
3074      // We can't perform this conversion or binding.
3075      if (ParamType->isReferenceType())
3076        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3077          << ParamType << Arg->getType() << Arg->getSourceRange();
3078      else
3079        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3080          << Arg->getType() << ParamType << Arg->getSourceRange();
3081      S.Diag(Param->getLocation(), diag::note_template_param_here);
3082      return true;
3083    }
3084  }
3085
3086  // Create the template argument.
3087  Converted = TemplateArgument(Entity->getCanonicalDecl());
3088  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3089  return false;
3090}
3091
3092/// \brief Checks whether the given template argument is a pointer to
3093/// member constant according to C++ [temp.arg.nontype]p1.
3094bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3095                                                TemplateArgument &Converted) {
3096  bool Invalid = false;
3097
3098  // See through any implicit casts we added to fix the type.
3099  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3100    Arg = Cast->getSubExpr();
3101
3102  // C++ [temp.arg.nontype]p1:
3103  //
3104  //   A template-argument for a non-type, non-template
3105  //   template-parameter shall be one of: [...]
3106  //
3107  //     -- a pointer to member expressed as described in 5.3.1.
3108  DeclRefExpr *DRE = 0;
3109
3110  // In C++98/03 mode, give an extension warning on any extra parentheses.
3111  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3112  bool ExtraParens = false;
3113  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3114    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3115      Diag(Arg->getSourceRange().getBegin(),
3116           diag::ext_template_arg_extra_parens)
3117        << Arg->getSourceRange();
3118      ExtraParens = true;
3119    }
3120
3121    Arg = Parens->getSubExpr();
3122  }
3123
3124  // A pointer-to-member constant written &Class::member.
3125  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3126    if (UnOp->getOpcode() == UO_AddrOf) {
3127      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3128      if (DRE && !DRE->getQualifier())
3129        DRE = 0;
3130    }
3131  }
3132  // A constant of pointer-to-member type.
3133  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3134    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3135      if (VD->getType()->isMemberPointerType()) {
3136        if (isa<NonTypeTemplateParmDecl>(VD) ||
3137            (isa<VarDecl>(VD) &&
3138             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3139          if (Arg->isTypeDependent() || Arg->isValueDependent())
3140            Converted = TemplateArgument(Arg);
3141          else
3142            Converted = TemplateArgument(VD->getCanonicalDecl());
3143          return Invalid;
3144        }
3145      }
3146    }
3147
3148    DRE = 0;
3149  }
3150
3151  if (!DRE)
3152    return Diag(Arg->getSourceRange().getBegin(),
3153                diag::err_template_arg_not_pointer_to_member_form)
3154      << Arg->getSourceRange();
3155
3156  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3157    assert((isa<FieldDecl>(DRE->getDecl()) ||
3158            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3159           "Only non-static member pointers can make it here");
3160
3161    // Okay: this is the address of a non-static member, and therefore
3162    // a member pointer constant.
3163    if (Arg->isTypeDependent() || Arg->isValueDependent())
3164      Converted = TemplateArgument(Arg);
3165    else
3166      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3167    return Invalid;
3168  }
3169
3170  // We found something else, but we don't know specifically what it is.
3171  Diag(Arg->getSourceRange().getBegin(),
3172       diag::err_template_arg_not_pointer_to_member_form)
3173      << Arg->getSourceRange();
3174  Diag(DRE->getDecl()->getLocation(),
3175       diag::note_template_arg_refers_here);
3176  return true;
3177}
3178
3179/// \brief Check a template argument against its corresponding
3180/// non-type template parameter.
3181///
3182/// This routine implements the semantics of C++ [temp.arg.nontype].
3183/// It returns true if an error occurred, and false otherwise. \p
3184/// InstantiatedParamType is the type of the non-type template
3185/// parameter after it has been instantiated.
3186///
3187/// If no error was detected, Converted receives the converted template argument.
3188bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3189                                 QualType InstantiatedParamType, Expr *&Arg,
3190                                 TemplateArgument &Converted,
3191                                 CheckTemplateArgumentKind CTAK) {
3192  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3193
3194  // If either the parameter has a dependent type or the argument is
3195  // type-dependent, there's nothing we can check now.
3196  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3197    // FIXME: Produce a cloned, canonical expression?
3198    Converted = TemplateArgument(Arg);
3199    return false;
3200  }
3201
3202  // C++ [temp.arg.nontype]p5:
3203  //   The following conversions are performed on each expression used
3204  //   as a non-type template-argument. If a non-type
3205  //   template-argument cannot be converted to the type of the
3206  //   corresponding template-parameter then the program is
3207  //   ill-formed.
3208  //
3209  //     -- for a non-type template-parameter of integral or
3210  //        enumeration type, integral promotions (4.5) and integral
3211  //        conversions (4.7) are applied.
3212  QualType ParamType = InstantiatedParamType;
3213  QualType ArgType = Arg->getType();
3214  if (ParamType->isIntegralOrEnumerationType()) {
3215    // C++ [temp.arg.nontype]p1:
3216    //   A template-argument for a non-type, non-template
3217    //   template-parameter shall be one of:
3218    //
3219    //     -- an integral constant-expression of integral or enumeration
3220    //        type; or
3221    //     -- the name of a non-type template-parameter; or
3222    SourceLocation NonConstantLoc;
3223    llvm::APSInt Value;
3224    if (!ArgType->isIntegralOrEnumerationType()) {
3225      Diag(Arg->getSourceRange().getBegin(),
3226           diag::err_template_arg_not_integral_or_enumeral)
3227        << ArgType << Arg->getSourceRange();
3228      Diag(Param->getLocation(), diag::note_template_param_here);
3229      return true;
3230    } else if (!Arg->isValueDependent() &&
3231               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3232      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3233        << ArgType << Arg->getSourceRange();
3234      return true;
3235    }
3236
3237    // From here on out, all we care about are the unqualified forms
3238    // of the parameter and argument types.
3239    ParamType = ParamType.getUnqualifiedType();
3240    ArgType = ArgType.getUnqualifiedType();
3241
3242    // Try to convert the argument to the parameter's type.
3243    if (Context.hasSameType(ParamType, ArgType)) {
3244      // Okay: no conversion necessary
3245    } else if (CTAK == CTAK_Deduced) {
3246      // C++ [temp.deduct.type]p17:
3247      //   If, in the declaration of a function template with a non-type
3248      //   template-parameter, the non-type template- parameter is used
3249      //   in an expression in the function parameter-list and, if the
3250      //   corresponding template-argument is deduced, the
3251      //   template-argument type shall match the type of the
3252      //   template-parameter exactly, except that a template-argument
3253      //   deduced from an array bound may be of any integral type.
3254      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3255        << ArgType << ParamType;
3256      Diag(Param->getLocation(), diag::note_template_param_here);
3257      return true;
3258    } else if (ParamType->isBooleanType()) {
3259      // This is an integral-to-boolean conversion.
3260      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3261    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3262               !ParamType->isEnumeralType()) {
3263      // This is an integral promotion or conversion.
3264      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3265    } else {
3266      // We can't perform this conversion.
3267      Diag(Arg->getSourceRange().getBegin(),
3268           diag::err_template_arg_not_convertible)
3269        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3270      Diag(Param->getLocation(), diag::note_template_param_here);
3271      return true;
3272    }
3273
3274    QualType IntegerType = Context.getCanonicalType(ParamType);
3275    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3276      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3277
3278    if (!Arg->isValueDependent()) {
3279      llvm::APSInt OldValue = Value;
3280
3281      // Coerce the template argument's value to the value it will have
3282      // based on the template parameter's type.
3283      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3284      if (Value.getBitWidth() != AllowedBits)
3285        Value = Value.extOrTrunc(AllowedBits);
3286      Value.setIsSigned(IntegerType->isSignedIntegerType());
3287
3288      // Complain if an unsigned parameter received a negative value.
3289      if (IntegerType->isUnsignedIntegerType()
3290          && (OldValue.isSigned() && OldValue.isNegative())) {
3291        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3292          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3293          << Arg->getSourceRange();
3294        Diag(Param->getLocation(), diag::note_template_param_here);
3295      }
3296
3297      // Complain if we overflowed the template parameter's type.
3298      unsigned RequiredBits;
3299      if (IntegerType->isUnsignedIntegerType())
3300        RequiredBits = OldValue.getActiveBits();
3301      else if (OldValue.isUnsigned())
3302        RequiredBits = OldValue.getActiveBits() + 1;
3303      else
3304        RequiredBits = OldValue.getMinSignedBits();
3305      if (RequiredBits > AllowedBits) {
3306        Diag(Arg->getSourceRange().getBegin(),
3307             diag::warn_template_arg_too_large)
3308          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3309          << Arg->getSourceRange();
3310        Diag(Param->getLocation(), diag::note_template_param_here);
3311      }
3312    }
3313
3314    // Add the value of this argument to the list of converted
3315    // arguments. We use the bitwidth and signedness of the template
3316    // parameter.
3317    if (Arg->isValueDependent()) {
3318      // The argument is value-dependent. Create a new
3319      // TemplateArgument with the converted expression.
3320      Converted = TemplateArgument(Arg);
3321      return false;
3322    }
3323
3324    Converted = TemplateArgument(Value,
3325                                 ParamType->isEnumeralType() ? ParamType
3326                                                             : IntegerType);
3327    return false;
3328  }
3329
3330  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3331
3332  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3333  // from a template argument of type std::nullptr_t to a non-type
3334  // template parameter of type pointer to object, pointer to
3335  // function, or pointer-to-member, respectively.
3336  if (ArgType->isNullPtrType() &&
3337      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3338    Converted = TemplateArgument((NamedDecl *)0);
3339    return false;
3340  }
3341
3342  // Handle pointer-to-function, reference-to-function, and
3343  // pointer-to-member-function all in (roughly) the same way.
3344  if (// -- For a non-type template-parameter of type pointer to
3345      //    function, only the function-to-pointer conversion (4.3) is
3346      //    applied. If the template-argument represents a set of
3347      //    overloaded functions (or a pointer to such), the matching
3348      //    function is selected from the set (13.4).
3349      (ParamType->isPointerType() &&
3350       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3351      // -- For a non-type template-parameter of type reference to
3352      //    function, no conversions apply. If the template-argument
3353      //    represents a set of overloaded functions, the matching
3354      //    function is selected from the set (13.4).
3355      (ParamType->isReferenceType() &&
3356       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3357      // -- For a non-type template-parameter of type pointer to
3358      //    member function, no conversions apply. If the
3359      //    template-argument represents a set of overloaded member
3360      //    functions, the matching member function is selected from
3361      //    the set (13.4).
3362      (ParamType->isMemberPointerType() &&
3363       ParamType->getAs<MemberPointerType>()->getPointeeType()
3364         ->isFunctionType())) {
3365
3366    if (Arg->getType() == Context.OverloadTy) {
3367      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3368                                                                true,
3369                                                                FoundResult)) {
3370        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3371          return true;
3372
3373        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3374        ArgType = Arg->getType();
3375      } else
3376        return true;
3377    }
3378
3379    if (!ParamType->isMemberPointerType())
3380      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3381                                                            ParamType,
3382                                                            Arg, Converted);
3383
3384    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3385      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3386    } else if (!Context.hasSameUnqualifiedType(ArgType,
3387                                           ParamType.getNonReferenceType())) {
3388      // We can't perform this conversion.
3389      Diag(Arg->getSourceRange().getBegin(),
3390           diag::err_template_arg_not_convertible)
3391        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3392      Diag(Param->getLocation(), diag::note_template_param_here);
3393      return true;
3394    }
3395
3396    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3397  }
3398
3399  if (ParamType->isPointerType()) {
3400    //   -- for a non-type template-parameter of type pointer to
3401    //      object, qualification conversions (4.4) and the
3402    //      array-to-pointer conversion (4.2) are applied.
3403    // C++0x also allows a value of std::nullptr_t.
3404    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3405           "Only object pointers allowed here");
3406
3407    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3408                                                          ParamType,
3409                                                          Arg, Converted);
3410  }
3411
3412  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3413    //   -- For a non-type template-parameter of type reference to
3414    //      object, no conversions apply. The type referred to by the
3415    //      reference may be more cv-qualified than the (otherwise
3416    //      identical) type of the template-argument. The
3417    //      template-parameter is bound directly to the
3418    //      template-argument, which must be an lvalue.
3419    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3420           "Only object references allowed here");
3421
3422    if (Arg->getType() == Context.OverloadTy) {
3423      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3424                                                 ParamRefType->getPointeeType(),
3425                                                                true,
3426                                                                FoundResult)) {
3427        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3428          return true;
3429
3430        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3431        ArgType = Arg->getType();
3432      } else
3433        return true;
3434    }
3435
3436    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3437                                                          ParamType,
3438                                                          Arg, Converted);
3439  }
3440
3441  //     -- For a non-type template-parameter of type pointer to data
3442  //        member, qualification conversions (4.4) are applied.
3443  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3444
3445  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3446    // Types match exactly: nothing more to do here.
3447  } else if (IsQualificationConversion(ArgType, ParamType)) {
3448    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3449  } else {
3450    // We can't perform this conversion.
3451    Diag(Arg->getSourceRange().getBegin(),
3452         diag::err_template_arg_not_convertible)
3453      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3454    Diag(Param->getLocation(), diag::note_template_param_here);
3455    return true;
3456  }
3457
3458  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3459}
3460
3461/// \brief Check a template argument against its corresponding
3462/// template template parameter.
3463///
3464/// This routine implements the semantics of C++ [temp.arg.template].
3465/// It returns true if an error occurred, and false otherwise.
3466bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3467                                 const TemplateArgumentLoc &Arg) {
3468  TemplateName Name = Arg.getArgument().getAsTemplate();
3469  TemplateDecl *Template = Name.getAsTemplateDecl();
3470  if (!Template) {
3471    // Any dependent template name is fine.
3472    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3473    return false;
3474  }
3475
3476  // C++ [temp.arg.template]p1:
3477  //   A template-argument for a template template-parameter shall be
3478  //   the name of a class template, expressed as id-expression. Only
3479  //   primary class templates are considered when matching the
3480  //   template template argument with the corresponding parameter;
3481  //   partial specializations are not considered even if their
3482  //   parameter lists match that of the template template parameter.
3483  //
3484  // Note that we also allow template template parameters here, which
3485  // will happen when we are dealing with, e.g., class template
3486  // partial specializations.
3487  if (!isa<ClassTemplateDecl>(Template) &&
3488      !isa<TemplateTemplateParmDecl>(Template)) {
3489    assert(isa<FunctionTemplateDecl>(Template) &&
3490           "Only function templates are possible here");
3491    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3492    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3493      << Template;
3494  }
3495
3496  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3497                                         Param->getTemplateParameters(),
3498                                         true,
3499                                         TPL_TemplateTemplateArgumentMatch,
3500                                         Arg.getLocation());
3501}
3502
3503/// \brief Given a non-type template argument that refers to a
3504/// declaration and the type of its corresponding non-type template
3505/// parameter, produce an expression that properly refers to that
3506/// declaration.
3507ExprResult
3508Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3509                                              QualType ParamType,
3510                                              SourceLocation Loc) {
3511  assert(Arg.getKind() == TemplateArgument::Declaration &&
3512         "Only declaration template arguments permitted here");
3513  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3514
3515  if (VD->getDeclContext()->isRecord() &&
3516      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3517    // If the value is a class member, we might have a pointer-to-member.
3518    // Determine whether the non-type template template parameter is of
3519    // pointer-to-member type. If so, we need to build an appropriate
3520    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3521    // would refer to the member itself.
3522    if (ParamType->isMemberPointerType()) {
3523      QualType ClassType
3524        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3525      NestedNameSpecifier *Qualifier
3526        = NestedNameSpecifier::Create(Context, 0, false,
3527                                      ClassType.getTypePtr());
3528      CXXScopeSpec SS;
3529      SS.setScopeRep(Qualifier);
3530
3531      // The actual value-ness of this is unimportant, but for
3532      // internal consistency's sake, references to instance methods
3533      // are r-values.
3534      ExprValueKind VK = VK_LValue;
3535      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3536        VK = VK_RValue;
3537
3538      ExprResult RefExpr = BuildDeclRefExpr(VD,
3539                                            VD->getType().getNonReferenceType(),
3540                                            VK,
3541                                            Loc,
3542                                            &SS);
3543      if (RefExpr.isInvalid())
3544        return ExprError();
3545
3546      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3547
3548      // We might need to perform a trailing qualification conversion, since
3549      // the element type on the parameter could be more qualified than the
3550      // element type in the expression we constructed.
3551      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3552                                    ParamType.getUnqualifiedType())) {
3553        Expr *RefE = RefExpr.takeAs<Expr>();
3554        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3555        RefExpr = Owned(RefE);
3556      }
3557
3558      assert(!RefExpr.isInvalid() &&
3559             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3560                                 ParamType.getUnqualifiedType()));
3561      return move(RefExpr);
3562    }
3563  }
3564
3565  QualType T = VD->getType().getNonReferenceType();
3566  if (ParamType->isPointerType()) {
3567    // When the non-type template parameter is a pointer, take the
3568    // address of the declaration.
3569    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3570    if (RefExpr.isInvalid())
3571      return ExprError();
3572
3573    if (T->isFunctionType() || T->isArrayType()) {
3574      // Decay functions and arrays.
3575      Expr *RefE = (Expr *)RefExpr.get();
3576      DefaultFunctionArrayConversion(RefE);
3577      if (RefE != RefExpr.get()) {
3578        RefExpr.release();
3579        RefExpr = Owned(RefE);
3580      }
3581
3582      return move(RefExpr);
3583    }
3584
3585    // Take the address of everything else
3586    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3587  }
3588
3589  ExprValueKind VK = VK_RValue;
3590
3591  // If the non-type template parameter has reference type, qualify the
3592  // resulting declaration reference with the extra qualifiers on the
3593  // type that the reference refers to.
3594  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3595    VK = VK_LValue;
3596    T = Context.getQualifiedType(T,
3597                              TargetRef->getPointeeType().getQualifiers());
3598  }
3599
3600  return BuildDeclRefExpr(VD, T, VK, Loc);
3601}
3602
3603/// \brief Construct a new expression that refers to the given
3604/// integral template argument with the given source-location
3605/// information.
3606///
3607/// This routine takes care of the mapping from an integral template
3608/// argument (which may have any integral type) to the appropriate
3609/// literal value.
3610ExprResult
3611Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3612                                                  SourceLocation Loc) {
3613  assert(Arg.getKind() == TemplateArgument::Integral &&
3614         "Operation is only valid for integral template arguments");
3615  QualType T = Arg.getIntegralType();
3616  if (T->isCharType() || T->isWideCharType())
3617    return Owned(new (Context) CharacterLiteral(
3618                                             Arg.getAsIntegral()->getZExtValue(),
3619                                             T->isWideCharType(),
3620                                             T,
3621                                             Loc));
3622  if (T->isBooleanType())
3623    return Owned(new (Context) CXXBoolLiteralExpr(
3624                                            Arg.getAsIntegral()->getBoolValue(),
3625                                            T,
3626                                            Loc));
3627
3628  QualType BT;
3629  if (const EnumType *ET = T->getAs<EnumType>())
3630    BT = ET->getDecl()->getPromotionType();
3631  else
3632    BT = T;
3633
3634  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3635  ImpCastExprToType(E, T, CK_IntegralCast);
3636
3637  return Owned(E);
3638}
3639
3640/// \brief Match two template parameters within template parameter lists.
3641static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3642                                       bool Complain,
3643                                     Sema::TemplateParameterListEqualKind Kind,
3644                                       SourceLocation TemplateArgLoc) {
3645  // Check the actual kind (type, non-type, template).
3646  if (Old->getKind() != New->getKind()) {
3647    if (Complain) {
3648      unsigned NextDiag = diag::err_template_param_different_kind;
3649      if (TemplateArgLoc.isValid()) {
3650        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3651        NextDiag = diag::note_template_param_different_kind;
3652      }
3653      S.Diag(New->getLocation(), NextDiag)
3654        << (Kind != Sema::TPL_TemplateMatch);
3655      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3656        << (Kind != Sema::TPL_TemplateMatch);
3657    }
3658
3659    return false;
3660  }
3661
3662  // Check that both are parameter packs are neither are parameter packs.
3663  // However, if we are matching a template template argument to a
3664  // template template parameter, the template template parameter can have
3665  // a parameter pack where the template template argument does not.
3666  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3667      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3668        Old->isTemplateParameterPack())) {
3669    if (Complain) {
3670      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3671      if (TemplateArgLoc.isValid()) {
3672        S.Diag(TemplateArgLoc,
3673             diag::err_template_arg_template_params_mismatch);
3674        NextDiag = diag::note_template_parameter_pack_non_pack;
3675      }
3676
3677      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3678                      : isa<NonTypeTemplateParmDecl>(New)? 1
3679                      : 2;
3680      S.Diag(New->getLocation(), NextDiag)
3681        << ParamKind << New->isParameterPack();
3682      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3683        << ParamKind << Old->isParameterPack();
3684    }
3685
3686    return false;
3687  }
3688
3689  // For non-type template parameters, check the type of the parameter.
3690  if (NonTypeTemplateParmDecl *OldNTTP
3691                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3692    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3693
3694    // If we are matching a template template argument to a template
3695    // template parameter and one of the non-type template parameter types
3696    // is dependent, then we must wait until template instantiation time
3697    // to actually compare the arguments.
3698    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3699        (OldNTTP->getType()->isDependentType() ||
3700         NewNTTP->getType()->isDependentType()))
3701      return true;
3702
3703    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3704      if (Complain) {
3705        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3706        if (TemplateArgLoc.isValid()) {
3707          S.Diag(TemplateArgLoc,
3708                 diag::err_template_arg_template_params_mismatch);
3709          NextDiag = diag::note_template_nontype_parm_different_type;
3710        }
3711        S.Diag(NewNTTP->getLocation(), NextDiag)
3712          << NewNTTP->getType()
3713          << (Kind != Sema::TPL_TemplateMatch);
3714        S.Diag(OldNTTP->getLocation(),
3715               diag::note_template_nontype_parm_prev_declaration)
3716          << OldNTTP->getType();
3717      }
3718
3719      return false;
3720    }
3721
3722    return true;
3723  }
3724
3725  // For template template parameters, check the template parameter types.
3726  // The template parameter lists of template template
3727  // parameters must agree.
3728  if (TemplateTemplateParmDecl *OldTTP
3729                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3730    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3731    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3732                                            OldTTP->getTemplateParameters(),
3733                                            Complain,
3734                                        (Kind == Sema::TPL_TemplateMatch
3735                                           ? Sema::TPL_TemplateTemplateParmMatch
3736                                           : Kind),
3737                                            TemplateArgLoc);
3738  }
3739
3740  return true;
3741}
3742
3743/// \brief Diagnose a known arity mismatch when comparing template argument
3744/// lists.
3745static
3746void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3747                                                TemplateParameterList *New,
3748                                                TemplateParameterList *Old,
3749                                      Sema::TemplateParameterListEqualKind Kind,
3750                                                SourceLocation TemplateArgLoc) {
3751  unsigned NextDiag = diag::err_template_param_list_different_arity;
3752  if (TemplateArgLoc.isValid()) {
3753    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3754    NextDiag = diag::note_template_param_list_different_arity;
3755  }
3756  S.Diag(New->getTemplateLoc(), NextDiag)
3757    << (New->size() > Old->size())
3758    << (Kind != Sema::TPL_TemplateMatch)
3759    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3760  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3761    << (Kind != Sema::TPL_TemplateMatch)
3762    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3763}
3764
3765/// \brief Determine whether the given template parameter lists are
3766/// equivalent.
3767///
3768/// \param New  The new template parameter list, typically written in the
3769/// source code as part of a new template declaration.
3770///
3771/// \param Old  The old template parameter list, typically found via
3772/// name lookup of the template declared with this template parameter
3773/// list.
3774///
3775/// \param Complain  If true, this routine will produce a diagnostic if
3776/// the template parameter lists are not equivalent.
3777///
3778/// \param Kind describes how we are to match the template parameter lists.
3779///
3780/// \param TemplateArgLoc If this source location is valid, then we
3781/// are actually checking the template parameter list of a template
3782/// argument (New) against the template parameter list of its
3783/// corresponding template template parameter (Old). We produce
3784/// slightly different diagnostics in this scenario.
3785///
3786/// \returns True if the template parameter lists are equal, false
3787/// otherwise.
3788bool
3789Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3790                                     TemplateParameterList *Old,
3791                                     bool Complain,
3792                                     TemplateParameterListEqualKind Kind,
3793                                     SourceLocation TemplateArgLoc) {
3794  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
3795    if (Complain)
3796      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3797                                                 TemplateArgLoc);
3798
3799    return false;
3800  }
3801
3802  // C++0x [temp.arg.template]p3:
3803  //   A template-argument matches a template template-parameter (call it P)
3804  //   when each of the template parameters in the template-parameter-list of
3805  //   the template-argument’s corresponding class template or template alias
3806  //   (call it A) matches the corresponding template parameter in the
3807  //   template-parameter-list of P. [...]
3808  TemplateParameterList::iterator NewParm = New->begin();
3809  TemplateParameterList::iterator NewParmEnd = New->end();
3810  for (TemplateParameterList::iterator OldParm = Old->begin(),
3811                                    OldParmEnd = Old->end();
3812       OldParm != OldParmEnd; ++OldParm) {
3813    if (Kind != TPL_TemplateTemplateArgumentMatch ||
3814        !(*OldParm)->isTemplateParameterPack()) {
3815      if (NewParm == NewParmEnd) {
3816        if (Complain)
3817          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3818                                                     TemplateArgLoc);
3819
3820        return false;
3821      }
3822
3823      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3824                                      Kind, TemplateArgLoc))
3825        return false;
3826
3827      ++NewParm;
3828      continue;
3829    }
3830
3831    // C++0x [temp.arg.template]p3:
3832    //   [...] When P’s template- parameter-list contains a template parameter
3833    //   pack (14.5.3), the template parameter pack will match zero or more
3834    //   template parameters or template parameter packs in the
3835    //   template-parameter-list of A with the same type and form as the
3836    //   template parameter pack in P (ignoring whether those template
3837    //   parameters are template parameter packs).
3838    for (; NewParm != NewParmEnd; ++NewParm) {
3839      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3840                                      Kind, TemplateArgLoc))
3841        return false;
3842    }
3843  }
3844
3845  // Make sure we exhausted all of the arguments.
3846  if (NewParm != NewParmEnd) {
3847    if (Complain)
3848      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3849                                                 TemplateArgLoc);
3850
3851    return false;
3852  }
3853
3854  return true;
3855}
3856
3857/// \brief Check whether a template can be declared within this scope.
3858///
3859/// If the template declaration is valid in this scope, returns
3860/// false. Otherwise, issues a diagnostic and returns true.
3861bool
3862Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3863  // Find the nearest enclosing declaration scope.
3864  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3865         (S->getFlags() & Scope::TemplateParamScope) != 0)
3866    S = S->getParent();
3867
3868  // C++ [temp]p2:
3869  //   A template-declaration can appear only as a namespace scope or
3870  //   class scope declaration.
3871  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3872  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3873      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3874    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3875             << TemplateParams->getSourceRange();
3876
3877  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3878    Ctx = Ctx->getParent();
3879
3880  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3881    return false;
3882
3883  return Diag(TemplateParams->getTemplateLoc(),
3884              diag::err_template_outside_namespace_or_class_scope)
3885    << TemplateParams->getSourceRange();
3886}
3887
3888/// \brief Determine what kind of template specialization the given declaration
3889/// is.
3890static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3891  if (!D)
3892    return TSK_Undeclared;
3893
3894  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3895    return Record->getTemplateSpecializationKind();
3896  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3897    return Function->getTemplateSpecializationKind();
3898  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3899    return Var->getTemplateSpecializationKind();
3900
3901  return TSK_Undeclared;
3902}
3903
3904/// \brief Check whether a specialization is well-formed in the current
3905/// context.
3906///
3907/// This routine determines whether a template specialization can be declared
3908/// in the current context (C++ [temp.expl.spec]p2).
3909///
3910/// \param S the semantic analysis object for which this check is being
3911/// performed.
3912///
3913/// \param Specialized the entity being specialized or instantiated, which
3914/// may be a kind of template (class template, function template, etc.) or
3915/// a member of a class template (member function, static data member,
3916/// member class).
3917///
3918/// \param PrevDecl the previous declaration of this entity, if any.
3919///
3920/// \param Loc the location of the explicit specialization or instantiation of
3921/// this entity.
3922///
3923/// \param IsPartialSpecialization whether this is a partial specialization of
3924/// a class template.
3925///
3926/// \returns true if there was an error that we cannot recover from, false
3927/// otherwise.
3928static bool CheckTemplateSpecializationScope(Sema &S,
3929                                             NamedDecl *Specialized,
3930                                             NamedDecl *PrevDecl,
3931                                             SourceLocation Loc,
3932                                             bool IsPartialSpecialization) {
3933  // Keep these "kind" numbers in sync with the %select statements in the
3934  // various diagnostics emitted by this routine.
3935  int EntityKind = 0;
3936  if (isa<ClassTemplateDecl>(Specialized))
3937    EntityKind = IsPartialSpecialization? 1 : 0;
3938  else if (isa<FunctionTemplateDecl>(Specialized))
3939    EntityKind = 2;
3940  else if (isa<CXXMethodDecl>(Specialized))
3941    EntityKind = 3;
3942  else if (isa<VarDecl>(Specialized))
3943    EntityKind = 4;
3944  else if (isa<RecordDecl>(Specialized))
3945    EntityKind = 5;
3946  else {
3947    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3948    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3949    return true;
3950  }
3951
3952  // C++ [temp.expl.spec]p2:
3953  //   An explicit specialization shall be declared in the namespace
3954  //   of which the template is a member, or, for member templates, in
3955  //   the namespace of which the enclosing class or enclosing class
3956  //   template is a member. An explicit specialization of a member
3957  //   function, member class or static data member of a class
3958  //   template shall be declared in the namespace of which the class
3959  //   template is a member. Such a declaration may also be a
3960  //   definition. If the declaration is not a definition, the
3961  //   specialization may be defined later in the name- space in which
3962  //   the explicit specialization was declared, or in a namespace
3963  //   that encloses the one in which the explicit specialization was
3964  //   declared.
3965  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3966    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3967      << Specialized;
3968    return true;
3969  }
3970
3971  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3972    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3973      << Specialized;
3974    return true;
3975  }
3976
3977  // C++ [temp.class.spec]p6:
3978  //   A class template partial specialization may be declared or redeclared
3979  //   in any namespace scope in which its definition may be defined (14.5.1
3980  //   and 14.5.2).
3981  bool ComplainedAboutScope = false;
3982  DeclContext *SpecializedContext
3983    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3984  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3985  if ((!PrevDecl ||
3986       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3987       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3988    // C++ [temp.exp.spec]p2:
3989    //   An explicit specialization shall be declared in the namespace of which
3990    //   the template is a member, or, for member templates, in the namespace
3991    //   of which the enclosing class or enclosing class template is a member.
3992    //   An explicit specialization of a member function, member class or
3993    //   static data member of a class template shall be declared in the
3994    //   namespace of which the class template is a member.
3995    //
3996    // C++0x [temp.expl.spec]p2:
3997    //   An explicit specialization shall be declared in a namespace enclosing
3998    //   the specialized template.
3999    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4000        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4001      bool IsCPlusPlus0xExtension
4002        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4003      if (isa<TranslationUnitDecl>(SpecializedContext))
4004        S.Diag(Loc, IsCPlusPlus0xExtension
4005                      ? diag::ext_template_spec_decl_out_of_scope_global
4006                      : diag::err_template_spec_decl_out_of_scope_global)
4007          << EntityKind << Specialized;
4008      else if (isa<NamespaceDecl>(SpecializedContext))
4009        S.Diag(Loc, IsCPlusPlus0xExtension
4010                      ? diag::ext_template_spec_decl_out_of_scope
4011                      : diag::err_template_spec_decl_out_of_scope)
4012          << EntityKind << Specialized
4013          << cast<NamedDecl>(SpecializedContext);
4014
4015      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4016      ComplainedAboutScope = true;
4017    }
4018  }
4019
4020  // Make sure that this redeclaration (or definition) occurs in an enclosing
4021  // namespace.
4022  // Note that HandleDeclarator() performs this check for explicit
4023  // specializations of function templates, static data members, and member
4024  // functions, so we skip the check here for those kinds of entities.
4025  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4026  // Should we refactor that check, so that it occurs later?
4027  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4028      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4029        isa<FunctionDecl>(Specialized))) {
4030    if (isa<TranslationUnitDecl>(SpecializedContext))
4031      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4032        << EntityKind << Specialized;
4033    else if (isa<NamespaceDecl>(SpecializedContext))
4034      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4035        << EntityKind << Specialized
4036        << cast<NamedDecl>(SpecializedContext);
4037
4038    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4039  }
4040
4041  // FIXME: check for specialization-after-instantiation errors and such.
4042
4043  return false;
4044}
4045
4046/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4047/// that checks non-type template partial specialization arguments.
4048static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4049                                                NonTypeTemplateParmDecl *Param,
4050                                                  const TemplateArgument *Args,
4051                                                        unsigned NumArgs) {
4052  for (unsigned I = 0; I != NumArgs; ++I) {
4053    if (Args[I].getKind() == TemplateArgument::Pack) {
4054      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4055                                                           Args[I].pack_begin(),
4056                                                           Args[I].pack_size()))
4057        return true;
4058
4059      continue;
4060    }
4061
4062    Expr *ArgExpr = Args[I].getAsExpr();
4063    if (!ArgExpr) {
4064      continue;
4065    }
4066
4067    // We can have a pack expansion of any of the bullets below.
4068    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4069      ArgExpr = Expansion->getPattern();
4070
4071    // Strip off any implicit casts we added as part of type checking.
4072    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4073      ArgExpr = ICE->getSubExpr();
4074
4075    // C++ [temp.class.spec]p8:
4076    //   A non-type argument is non-specialized if it is the name of a
4077    //   non-type parameter. All other non-type arguments are
4078    //   specialized.
4079    //
4080    // Below, we check the two conditions that only apply to
4081    // specialized non-type arguments, so skip any non-specialized
4082    // arguments.
4083    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4084      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4085        continue;
4086
4087    // C++ [temp.class.spec]p9:
4088    //   Within the argument list of a class template partial
4089    //   specialization, the following restrictions apply:
4090    //     -- A partially specialized non-type argument expression
4091    //        shall not involve a template parameter of the partial
4092    //        specialization except when the argument expression is a
4093    //        simple identifier.
4094    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4095      S.Diag(ArgExpr->getLocStart(),
4096           diag::err_dependent_non_type_arg_in_partial_spec)
4097        << ArgExpr->getSourceRange();
4098      return true;
4099    }
4100
4101    //     -- The type of a template parameter corresponding to a
4102    //        specialized non-type argument shall not be dependent on a
4103    //        parameter of the specialization.
4104    if (Param->getType()->isDependentType()) {
4105      S.Diag(ArgExpr->getLocStart(),
4106           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4107        << Param->getType()
4108        << ArgExpr->getSourceRange();
4109      S.Diag(Param->getLocation(), diag::note_template_param_here);
4110      return true;
4111    }
4112  }
4113
4114  return false;
4115}
4116
4117/// \brief Check the non-type template arguments of a class template
4118/// partial specialization according to C++ [temp.class.spec]p9.
4119///
4120/// \param TemplateParams the template parameters of the primary class
4121/// template.
4122///
4123/// \param TemplateArg the template arguments of the class template
4124/// partial specialization.
4125///
4126/// \returns true if there was an error, false otherwise.
4127static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4128                                        TemplateParameterList *TemplateParams,
4129                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4130  const TemplateArgument *ArgList = TemplateArgs.data();
4131
4132  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4133    NonTypeTemplateParmDecl *Param
4134      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4135    if (!Param)
4136      continue;
4137
4138    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4139                                                           &ArgList[I], 1))
4140      return true;
4141  }
4142
4143  return false;
4144}
4145
4146/// \brief Retrieve the previous declaration of the given declaration.
4147static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4148  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4149    return VD->getPreviousDeclaration();
4150  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4151    return FD->getPreviousDeclaration();
4152  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4153    return TD->getPreviousDeclaration();
4154  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4155    return TD->getPreviousDeclaration();
4156  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4157    return FTD->getPreviousDeclaration();
4158  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4159    return CTD->getPreviousDeclaration();
4160  return 0;
4161}
4162
4163DeclResult
4164Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4165                                       TagUseKind TUK,
4166                                       SourceLocation KWLoc,
4167                                       CXXScopeSpec &SS,
4168                                       TemplateTy TemplateD,
4169                                       SourceLocation TemplateNameLoc,
4170                                       SourceLocation LAngleLoc,
4171                                       ASTTemplateArgsPtr TemplateArgsIn,
4172                                       SourceLocation RAngleLoc,
4173                                       AttributeList *Attr,
4174                               MultiTemplateParamsArg TemplateParameterLists) {
4175  assert(TUK != TUK_Reference && "References are not specializations");
4176
4177  // Find the class template we're specializing
4178  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4179  ClassTemplateDecl *ClassTemplate
4180    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4181
4182  if (!ClassTemplate) {
4183    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4184      << (Name.getAsTemplateDecl() &&
4185          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4186    return true;
4187  }
4188
4189  bool isExplicitSpecialization = false;
4190  bool isPartialSpecialization = false;
4191
4192  // Check the validity of the template headers that introduce this
4193  // template.
4194  // FIXME: We probably shouldn't complain about these headers for
4195  // friend declarations.
4196  bool Invalid = false;
4197  TemplateParameterList *TemplateParams
4198    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4199                        (TemplateParameterList**)TemplateParameterLists.get(),
4200                                              TemplateParameterLists.size(),
4201                                              TUK == TUK_Friend,
4202                                              isExplicitSpecialization,
4203                                              Invalid);
4204  if (Invalid)
4205    return true;
4206
4207  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4208  if (TemplateParams)
4209    --NumMatchedTemplateParamLists;
4210
4211  if (TemplateParams && TemplateParams->size() > 0) {
4212    isPartialSpecialization = true;
4213
4214    if (TUK == TUK_Friend) {
4215      Diag(KWLoc, diag::err_partial_specialization_friend)
4216        << SourceRange(LAngleLoc, RAngleLoc);
4217      return true;
4218    }
4219
4220    // C++ [temp.class.spec]p10:
4221    //   The template parameter list of a specialization shall not
4222    //   contain default template argument values.
4223    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4224      Decl *Param = TemplateParams->getParam(I);
4225      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4226        if (TTP->hasDefaultArgument()) {
4227          Diag(TTP->getDefaultArgumentLoc(),
4228               diag::err_default_arg_in_partial_spec);
4229          TTP->removeDefaultArgument();
4230        }
4231      } else if (NonTypeTemplateParmDecl *NTTP
4232                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4233        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4234          Diag(NTTP->getDefaultArgumentLoc(),
4235               diag::err_default_arg_in_partial_spec)
4236            << DefArg->getSourceRange();
4237          NTTP->removeDefaultArgument();
4238        }
4239      } else {
4240        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4241        if (TTP->hasDefaultArgument()) {
4242          Diag(TTP->getDefaultArgument().getLocation(),
4243               diag::err_default_arg_in_partial_spec)
4244            << TTP->getDefaultArgument().getSourceRange();
4245          TTP->removeDefaultArgument();
4246        }
4247      }
4248    }
4249  } else if (TemplateParams) {
4250    if (TUK == TUK_Friend)
4251      Diag(KWLoc, diag::err_template_spec_friend)
4252        << FixItHint::CreateRemoval(
4253                                SourceRange(TemplateParams->getTemplateLoc(),
4254                                            TemplateParams->getRAngleLoc()))
4255        << SourceRange(LAngleLoc, RAngleLoc);
4256    else
4257      isExplicitSpecialization = true;
4258  } else if (TUK != TUK_Friend) {
4259    Diag(KWLoc, diag::err_template_spec_needs_header)
4260      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4261    isExplicitSpecialization = true;
4262  }
4263
4264  // Check that the specialization uses the same tag kind as the
4265  // original template.
4266  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4267  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4268  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4269                                    Kind, KWLoc,
4270                                    *ClassTemplate->getIdentifier())) {
4271    Diag(KWLoc, diag::err_use_with_wrong_tag)
4272      << ClassTemplate
4273      << FixItHint::CreateReplacement(KWLoc,
4274                            ClassTemplate->getTemplatedDecl()->getKindName());
4275    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4276         diag::note_previous_use);
4277    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4278  }
4279
4280  // Translate the parser's template argument list in our AST format.
4281  TemplateArgumentListInfo TemplateArgs;
4282  TemplateArgs.setLAngleLoc(LAngleLoc);
4283  TemplateArgs.setRAngleLoc(RAngleLoc);
4284  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4285
4286  // Check for unexpanded parameter packs in any of the template arguments.
4287  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4288    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4289                                        UPPC_PartialSpecialization))
4290      return true;
4291
4292  // Check that the template argument list is well-formed for this
4293  // template.
4294  llvm::SmallVector<TemplateArgument, 4> Converted;
4295  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4296                                TemplateArgs, false, Converted))
4297    return true;
4298
4299  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4300         "Converted template argument list is too short!");
4301
4302  // Find the class template (partial) specialization declaration that
4303  // corresponds to these arguments.
4304  if (isPartialSpecialization) {
4305    if (CheckClassTemplatePartialSpecializationArgs(*this,
4306                                         ClassTemplate->getTemplateParameters(),
4307                                         Converted))
4308      return true;
4309
4310    if (!Name.isDependent() &&
4311        !TemplateSpecializationType::anyDependentTemplateArguments(
4312                                             TemplateArgs.getArgumentArray(),
4313                                                         TemplateArgs.size())) {
4314      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4315        << ClassTemplate->getDeclName();
4316      isPartialSpecialization = false;
4317    }
4318  }
4319
4320  void *InsertPos = 0;
4321  ClassTemplateSpecializationDecl *PrevDecl = 0;
4322
4323  if (isPartialSpecialization)
4324    // FIXME: Template parameter list matters, too
4325    PrevDecl
4326      = ClassTemplate->findPartialSpecialization(Converted.data(),
4327                                                 Converted.size(),
4328                                                 InsertPos);
4329  else
4330    PrevDecl
4331      = ClassTemplate->findSpecialization(Converted.data(),
4332                                          Converted.size(), InsertPos);
4333
4334  ClassTemplateSpecializationDecl *Specialization = 0;
4335
4336  // Check whether we can declare a class template specialization in
4337  // the current scope.
4338  if (TUK != TUK_Friend &&
4339      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4340                                       TemplateNameLoc,
4341                                       isPartialSpecialization))
4342    return true;
4343
4344  // The canonical type
4345  QualType CanonType;
4346  if (PrevDecl &&
4347      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4348               TUK == TUK_Friend)) {
4349    // Since the only prior class template specialization with these
4350    // arguments was referenced but not declared, or we're only
4351    // referencing this specialization as a friend, reuse that
4352    // declaration node as our own, updating its source location to
4353    // reflect our new declaration.
4354    Specialization = PrevDecl;
4355    Specialization->setLocation(TemplateNameLoc);
4356    PrevDecl = 0;
4357    CanonType = Context.getTypeDeclType(Specialization);
4358  } else if (isPartialSpecialization) {
4359    // Build the canonical type that describes the converted template
4360    // arguments of the class template partial specialization.
4361    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4362    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4363                                                      Converted.data(),
4364                                                      Converted.size());
4365
4366    if (Context.hasSameType(CanonType,
4367                        ClassTemplate->getInjectedClassNameSpecialization())) {
4368      // C++ [temp.class.spec]p9b3:
4369      //
4370      //   -- The argument list of the specialization shall not be identical
4371      //      to the implicit argument list of the primary template.
4372      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4373      << (TUK == TUK_Definition)
4374      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4375      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4376                                ClassTemplate->getIdentifier(),
4377                                TemplateNameLoc,
4378                                Attr,
4379                                TemplateParams,
4380                                AS_none);
4381    }
4382
4383    // Create a new class template partial specialization declaration node.
4384    ClassTemplatePartialSpecializationDecl *PrevPartial
4385      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4386    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4387                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4388    ClassTemplatePartialSpecializationDecl *Partial
4389      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4390                                             ClassTemplate->getDeclContext(),
4391                                                       TemplateNameLoc,
4392                                                       TemplateParams,
4393                                                       ClassTemplate,
4394                                                       Converted.data(),
4395                                                       Converted.size(),
4396                                                       TemplateArgs,
4397                                                       CanonType,
4398                                                       PrevPartial,
4399                                                       SequenceNumber);
4400    SetNestedNameSpecifier(Partial, SS);
4401    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4402      Partial->setTemplateParameterListsInfo(Context,
4403                                             NumMatchedTemplateParamLists,
4404                    (TemplateParameterList**) TemplateParameterLists.release());
4405    }
4406
4407    if (!PrevPartial)
4408      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4409    Specialization = Partial;
4410
4411    // If we are providing an explicit specialization of a member class
4412    // template specialization, make a note of that.
4413    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4414      PrevPartial->setMemberSpecialization();
4415
4416    // Check that all of the template parameters of the class template
4417    // partial specialization are deducible from the template
4418    // arguments. If not, this class template partial specialization
4419    // will never be used.
4420    llvm::SmallVector<bool, 8> DeducibleParams;
4421    DeducibleParams.resize(TemplateParams->size());
4422    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4423                               TemplateParams->getDepth(),
4424                               DeducibleParams);
4425    unsigned NumNonDeducible = 0;
4426    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4427      if (!DeducibleParams[I])
4428        ++NumNonDeducible;
4429
4430    if (NumNonDeducible) {
4431      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4432        << (NumNonDeducible > 1)
4433        << SourceRange(TemplateNameLoc, RAngleLoc);
4434      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4435        if (!DeducibleParams[I]) {
4436          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4437          if (Param->getDeclName())
4438            Diag(Param->getLocation(),
4439                 diag::note_partial_spec_unused_parameter)
4440              << Param->getDeclName();
4441          else
4442            Diag(Param->getLocation(),
4443                 diag::note_partial_spec_unused_parameter)
4444              << "<anonymous>";
4445        }
4446      }
4447    }
4448  } else {
4449    // Create a new class template specialization declaration node for
4450    // this explicit specialization or friend declaration.
4451    Specialization
4452      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4453                                             ClassTemplate->getDeclContext(),
4454                                                TemplateNameLoc,
4455                                                ClassTemplate,
4456                                                Converted.data(),
4457                                                Converted.size(),
4458                                                PrevDecl);
4459    SetNestedNameSpecifier(Specialization, SS);
4460    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4461      Specialization->setTemplateParameterListsInfo(Context,
4462                                                  NumMatchedTemplateParamLists,
4463                    (TemplateParameterList**) TemplateParameterLists.release());
4464    }
4465
4466    if (!PrevDecl)
4467      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4468
4469    CanonType = Context.getTypeDeclType(Specialization);
4470  }
4471
4472  // C++ [temp.expl.spec]p6:
4473  //   If a template, a member template or the member of a class template is
4474  //   explicitly specialized then that specialization shall be declared
4475  //   before the first use of that specialization that would cause an implicit
4476  //   instantiation to take place, in every translation unit in which such a
4477  //   use occurs; no diagnostic is required.
4478  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4479    bool Okay = false;
4480    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4481      // Is there any previous explicit specialization declaration?
4482      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4483        Okay = true;
4484        break;
4485      }
4486    }
4487
4488    if (!Okay) {
4489      SourceRange Range(TemplateNameLoc, RAngleLoc);
4490      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4491        << Context.getTypeDeclType(Specialization) << Range;
4492
4493      Diag(PrevDecl->getPointOfInstantiation(),
4494           diag::note_instantiation_required_here)
4495        << (PrevDecl->getTemplateSpecializationKind()
4496                                                != TSK_ImplicitInstantiation);
4497      return true;
4498    }
4499  }
4500
4501  // If this is not a friend, note that this is an explicit specialization.
4502  if (TUK != TUK_Friend)
4503    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4504
4505  // Check that this isn't a redefinition of this specialization.
4506  if (TUK == TUK_Definition) {
4507    if (RecordDecl *Def = Specialization->getDefinition()) {
4508      SourceRange Range(TemplateNameLoc, RAngleLoc);
4509      Diag(TemplateNameLoc, diag::err_redefinition)
4510        << Context.getTypeDeclType(Specialization) << Range;
4511      Diag(Def->getLocation(), diag::note_previous_definition);
4512      Specialization->setInvalidDecl();
4513      return true;
4514    }
4515  }
4516
4517  if (Attr)
4518    ProcessDeclAttributeList(S, Specialization, Attr);
4519
4520  // Build the fully-sugared type for this class template
4521  // specialization as the user wrote in the specialization
4522  // itself. This means that we'll pretty-print the type retrieved
4523  // from the specialization's declaration the way that the user
4524  // actually wrote the specialization, rather than formatting the
4525  // name based on the "canonical" representation used to store the
4526  // template arguments in the specialization.
4527  TypeSourceInfo *WrittenTy
4528    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4529                                                TemplateArgs, CanonType);
4530  if (TUK != TUK_Friend) {
4531    Specialization->setTypeAsWritten(WrittenTy);
4532    if (TemplateParams)
4533      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4534  }
4535  TemplateArgsIn.release();
4536
4537  // C++ [temp.expl.spec]p9:
4538  //   A template explicit specialization is in the scope of the
4539  //   namespace in which the template was defined.
4540  //
4541  // We actually implement this paragraph where we set the semantic
4542  // context (in the creation of the ClassTemplateSpecializationDecl),
4543  // but we also maintain the lexical context where the actual
4544  // definition occurs.
4545  Specialization->setLexicalDeclContext(CurContext);
4546
4547  // We may be starting the definition of this specialization.
4548  if (TUK == TUK_Definition)
4549    Specialization->startDefinition();
4550
4551  if (TUK == TUK_Friend) {
4552    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4553                                            TemplateNameLoc,
4554                                            WrittenTy,
4555                                            /*FIXME:*/KWLoc);
4556    Friend->setAccess(AS_public);
4557    CurContext->addDecl(Friend);
4558  } else {
4559    // Add the specialization into its lexical context, so that it can
4560    // be seen when iterating through the list of declarations in that
4561    // context. However, specializations are not found by name lookup.
4562    CurContext->addDecl(Specialization);
4563  }
4564  return Specialization;
4565}
4566
4567Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4568                              MultiTemplateParamsArg TemplateParameterLists,
4569                                    Declarator &D) {
4570  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4571}
4572
4573Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4574                               MultiTemplateParamsArg TemplateParameterLists,
4575                                            Declarator &D) {
4576  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4577  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4578
4579  if (FTI.hasPrototype) {
4580    // FIXME: Diagnose arguments without names in C.
4581  }
4582
4583  Scope *ParentScope = FnBodyScope->getParent();
4584
4585  Decl *DP = HandleDeclarator(ParentScope, D,
4586                              move(TemplateParameterLists),
4587                              /*IsFunctionDefinition=*/true);
4588  if (FunctionTemplateDecl *FunctionTemplate
4589        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4590    return ActOnStartOfFunctionDef(FnBodyScope,
4591                                   FunctionTemplate->getTemplatedDecl());
4592  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4593    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4594  return 0;
4595}
4596
4597/// \brief Strips various properties off an implicit instantiation
4598/// that has just been explicitly specialized.
4599static void StripImplicitInstantiation(NamedDecl *D) {
4600  D->dropAttrs();
4601
4602  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4603    FD->setInlineSpecified(false);
4604  }
4605}
4606
4607/// \brief Diagnose cases where we have an explicit template specialization
4608/// before/after an explicit template instantiation, producing diagnostics
4609/// for those cases where they are required and determining whether the
4610/// new specialization/instantiation will have any effect.
4611///
4612/// \param NewLoc the location of the new explicit specialization or
4613/// instantiation.
4614///
4615/// \param NewTSK the kind of the new explicit specialization or instantiation.
4616///
4617/// \param PrevDecl the previous declaration of the entity.
4618///
4619/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4620///
4621/// \param PrevPointOfInstantiation if valid, indicates where the previus
4622/// declaration was instantiated (either implicitly or explicitly).
4623///
4624/// \param HasNoEffect will be set to true to indicate that the new
4625/// specialization or instantiation has no effect and should be ignored.
4626///
4627/// \returns true if there was an error that should prevent the introduction of
4628/// the new declaration into the AST, false otherwise.
4629bool
4630Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4631                                             TemplateSpecializationKind NewTSK,
4632                                             NamedDecl *PrevDecl,
4633                                             TemplateSpecializationKind PrevTSK,
4634                                        SourceLocation PrevPointOfInstantiation,
4635                                             bool &HasNoEffect) {
4636  HasNoEffect = false;
4637
4638  switch (NewTSK) {
4639  case TSK_Undeclared:
4640  case TSK_ImplicitInstantiation:
4641    assert(false && "Don't check implicit instantiations here");
4642    return false;
4643
4644  case TSK_ExplicitSpecialization:
4645    switch (PrevTSK) {
4646    case TSK_Undeclared:
4647    case TSK_ExplicitSpecialization:
4648      // Okay, we're just specializing something that is either already
4649      // explicitly specialized or has merely been mentioned without any
4650      // instantiation.
4651      return false;
4652
4653    case TSK_ImplicitInstantiation:
4654      if (PrevPointOfInstantiation.isInvalid()) {
4655        // The declaration itself has not actually been instantiated, so it is
4656        // still okay to specialize it.
4657        StripImplicitInstantiation(PrevDecl);
4658        return false;
4659      }
4660      // Fall through
4661
4662    case TSK_ExplicitInstantiationDeclaration:
4663    case TSK_ExplicitInstantiationDefinition:
4664      assert((PrevTSK == TSK_ImplicitInstantiation ||
4665              PrevPointOfInstantiation.isValid()) &&
4666             "Explicit instantiation without point of instantiation?");
4667
4668      // C++ [temp.expl.spec]p6:
4669      //   If a template, a member template or the member of a class template
4670      //   is explicitly specialized then that specialization shall be declared
4671      //   before the first use of that specialization that would cause an
4672      //   implicit instantiation to take place, in every translation unit in
4673      //   which such a use occurs; no diagnostic is required.
4674      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4675        // Is there any previous explicit specialization declaration?
4676        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4677          return false;
4678      }
4679
4680      Diag(NewLoc, diag::err_specialization_after_instantiation)
4681        << PrevDecl;
4682      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4683        << (PrevTSK != TSK_ImplicitInstantiation);
4684
4685      return true;
4686    }
4687    break;
4688
4689  case TSK_ExplicitInstantiationDeclaration:
4690    switch (PrevTSK) {
4691    case TSK_ExplicitInstantiationDeclaration:
4692      // This explicit instantiation declaration is redundant (that's okay).
4693      HasNoEffect = true;
4694      return false;
4695
4696    case TSK_Undeclared:
4697    case TSK_ImplicitInstantiation:
4698      // We're explicitly instantiating something that may have already been
4699      // implicitly instantiated; that's fine.
4700      return false;
4701
4702    case TSK_ExplicitSpecialization:
4703      // C++0x [temp.explicit]p4:
4704      //   For a given set of template parameters, if an explicit instantiation
4705      //   of a template appears after a declaration of an explicit
4706      //   specialization for that template, the explicit instantiation has no
4707      //   effect.
4708      HasNoEffect = true;
4709      return false;
4710
4711    case TSK_ExplicitInstantiationDefinition:
4712      // C++0x [temp.explicit]p10:
4713      //   If an entity is the subject of both an explicit instantiation
4714      //   declaration and an explicit instantiation definition in the same
4715      //   translation unit, the definition shall follow the declaration.
4716      Diag(NewLoc,
4717           diag::err_explicit_instantiation_declaration_after_definition);
4718      Diag(PrevPointOfInstantiation,
4719           diag::note_explicit_instantiation_definition_here);
4720      assert(PrevPointOfInstantiation.isValid() &&
4721             "Explicit instantiation without point of instantiation?");
4722      HasNoEffect = true;
4723      return false;
4724    }
4725    break;
4726
4727  case TSK_ExplicitInstantiationDefinition:
4728    switch (PrevTSK) {
4729    case TSK_Undeclared:
4730    case TSK_ImplicitInstantiation:
4731      // We're explicitly instantiating something that may have already been
4732      // implicitly instantiated; that's fine.
4733      return false;
4734
4735    case TSK_ExplicitSpecialization:
4736      // C++ DR 259, C++0x [temp.explicit]p4:
4737      //   For a given set of template parameters, if an explicit
4738      //   instantiation of a template appears after a declaration of
4739      //   an explicit specialization for that template, the explicit
4740      //   instantiation has no effect.
4741      //
4742      // In C++98/03 mode, we only give an extension warning here, because it
4743      // is not harmful to try to explicitly instantiate something that
4744      // has been explicitly specialized.
4745      if (!getLangOptions().CPlusPlus0x) {
4746        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4747          << PrevDecl;
4748        Diag(PrevDecl->getLocation(),
4749             diag::note_previous_template_specialization);
4750      }
4751      HasNoEffect = true;
4752      return false;
4753
4754    case TSK_ExplicitInstantiationDeclaration:
4755      // We're explicity instantiating a definition for something for which we
4756      // were previously asked to suppress instantiations. That's fine.
4757      return false;
4758
4759    case TSK_ExplicitInstantiationDefinition:
4760      // C++0x [temp.spec]p5:
4761      //   For a given template and a given set of template-arguments,
4762      //     - an explicit instantiation definition shall appear at most once
4763      //       in a program,
4764      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4765        << PrevDecl;
4766      Diag(PrevPointOfInstantiation,
4767           diag::note_previous_explicit_instantiation);
4768      HasNoEffect = true;
4769      return false;
4770    }
4771    break;
4772  }
4773
4774  assert(false && "Missing specialization/instantiation case?");
4775
4776  return false;
4777}
4778
4779/// \brief Perform semantic analysis for the given dependent function
4780/// template specialization.  The only possible way to get a dependent
4781/// function template specialization is with a friend declaration,
4782/// like so:
4783///
4784///   template <class T> void foo(T);
4785///   template <class T> class A {
4786///     friend void foo<>(T);
4787///   };
4788///
4789/// There really isn't any useful analysis we can do here, so we
4790/// just store the information.
4791bool
4792Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4793                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4794                                                   LookupResult &Previous) {
4795  // Remove anything from Previous that isn't a function template in
4796  // the correct context.
4797  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4798  LookupResult::Filter F = Previous.makeFilter();
4799  while (F.hasNext()) {
4800    NamedDecl *D = F.next()->getUnderlyingDecl();
4801    if (!isa<FunctionTemplateDecl>(D) ||
4802        !FDLookupContext->InEnclosingNamespaceSetOf(
4803                              D->getDeclContext()->getRedeclContext()))
4804      F.erase();
4805  }
4806  F.done();
4807
4808  // Should this be diagnosed here?
4809  if (Previous.empty()) return true;
4810
4811  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4812                                         ExplicitTemplateArgs);
4813  return false;
4814}
4815
4816/// \brief Perform semantic analysis for the given function template
4817/// specialization.
4818///
4819/// This routine performs all of the semantic analysis required for an
4820/// explicit function template specialization. On successful completion,
4821/// the function declaration \p FD will become a function template
4822/// specialization.
4823///
4824/// \param FD the function declaration, which will be updated to become a
4825/// function template specialization.
4826///
4827/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4828/// if any. Note that this may be valid info even when 0 arguments are
4829/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4830/// as it anyway contains info on the angle brackets locations.
4831///
4832/// \param PrevDecl the set of declarations that may be specialized by
4833/// this function specialization.
4834bool
4835Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4836                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4837                                          LookupResult &Previous) {
4838  // The set of function template specializations that could match this
4839  // explicit function template specialization.
4840  UnresolvedSet<8> Candidates;
4841
4842  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4843  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4844         I != E; ++I) {
4845    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4846    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4847      // Only consider templates found within the same semantic lookup scope as
4848      // FD.
4849      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4850                                Ovl->getDeclContext()->getRedeclContext()))
4851        continue;
4852
4853      // C++ [temp.expl.spec]p11:
4854      //   A trailing template-argument can be left unspecified in the
4855      //   template-id naming an explicit function template specialization
4856      //   provided it can be deduced from the function argument type.
4857      // Perform template argument deduction to determine whether we may be
4858      // specializing this template.
4859      // FIXME: It is somewhat wasteful to build
4860      TemplateDeductionInfo Info(Context, FD->getLocation());
4861      FunctionDecl *Specialization = 0;
4862      if (TemplateDeductionResult TDK
4863            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4864                                      FD->getType(),
4865                                      Specialization,
4866                                      Info)) {
4867        // FIXME: Template argument deduction failed; record why it failed, so
4868        // that we can provide nifty diagnostics.
4869        (void)TDK;
4870        continue;
4871      }
4872
4873      // Record this candidate.
4874      Candidates.addDecl(Specialization, I.getAccess());
4875    }
4876  }
4877
4878  // Find the most specialized function template.
4879  UnresolvedSetIterator Result
4880    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4881                         TPOC_Other, 0, FD->getLocation(),
4882                  PDiag(diag::err_function_template_spec_no_match)
4883                    << FD->getDeclName(),
4884                  PDiag(diag::err_function_template_spec_ambiguous)
4885                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4886                  PDiag(diag::note_function_template_spec_matched));
4887  if (Result == Candidates.end())
4888    return true;
4889
4890  // Ignore access information;  it doesn't figure into redeclaration checking.
4891  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4892  Specialization->setLocation(FD->getLocation());
4893
4894  // FIXME: Check if the prior specialization has a point of instantiation.
4895  // If so, we have run afoul of .
4896
4897  // If this is a friend declaration, then we're not really declaring
4898  // an explicit specialization.
4899  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4900
4901  // Check the scope of this explicit specialization.
4902  if (!isFriend &&
4903      CheckTemplateSpecializationScope(*this,
4904                                       Specialization->getPrimaryTemplate(),
4905                                       Specialization, FD->getLocation(),
4906                                       false))
4907    return true;
4908
4909  // C++ [temp.expl.spec]p6:
4910  //   If a template, a member template or the member of a class template is
4911  //   explicitly specialized then that specialization shall be declared
4912  //   before the first use of that specialization that would cause an implicit
4913  //   instantiation to take place, in every translation unit in which such a
4914  //   use occurs; no diagnostic is required.
4915  FunctionTemplateSpecializationInfo *SpecInfo
4916    = Specialization->getTemplateSpecializationInfo();
4917  assert(SpecInfo && "Function template specialization info missing?");
4918
4919  bool HasNoEffect = false;
4920  if (!isFriend &&
4921      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4922                                             TSK_ExplicitSpecialization,
4923                                             Specialization,
4924                                   SpecInfo->getTemplateSpecializationKind(),
4925                                         SpecInfo->getPointOfInstantiation(),
4926                                             HasNoEffect))
4927    return true;
4928
4929  // Mark the prior declaration as an explicit specialization, so that later
4930  // clients know that this is an explicit specialization.
4931  if (!isFriend) {
4932    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4933    MarkUnusedFileScopedDecl(Specialization);
4934  }
4935
4936  // Turn the given function declaration into a function template
4937  // specialization, with the template arguments from the previous
4938  // specialization.
4939  // Take copies of (semantic and syntactic) template argument lists.
4940  const TemplateArgumentList* TemplArgs = new (Context)
4941    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4942  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4943    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4944  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4945                                        TemplArgs, /*InsertPos=*/0,
4946                                    SpecInfo->getTemplateSpecializationKind(),
4947                                        TemplArgsAsWritten);
4948
4949  // The "previous declaration" for this function template specialization is
4950  // the prior function template specialization.
4951  Previous.clear();
4952  Previous.addDecl(Specialization);
4953  return false;
4954}
4955
4956/// \brief Perform semantic analysis for the given non-template member
4957/// specialization.
4958///
4959/// This routine performs all of the semantic analysis required for an
4960/// explicit member function specialization. On successful completion,
4961/// the function declaration \p FD will become a member function
4962/// specialization.
4963///
4964/// \param Member the member declaration, which will be updated to become a
4965/// specialization.
4966///
4967/// \param Previous the set of declarations, one of which may be specialized
4968/// by this function specialization;  the set will be modified to contain the
4969/// redeclared member.
4970bool
4971Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4972  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4973
4974  // Try to find the member we are instantiating.
4975  NamedDecl *Instantiation = 0;
4976  NamedDecl *InstantiatedFrom = 0;
4977  MemberSpecializationInfo *MSInfo = 0;
4978
4979  if (Previous.empty()) {
4980    // Nowhere to look anyway.
4981  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4982    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4983           I != E; ++I) {
4984      NamedDecl *D = (*I)->getUnderlyingDecl();
4985      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4986        if (Context.hasSameType(Function->getType(), Method->getType())) {
4987          Instantiation = Method;
4988          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4989          MSInfo = Method->getMemberSpecializationInfo();
4990          break;
4991        }
4992      }
4993    }
4994  } else if (isa<VarDecl>(Member)) {
4995    VarDecl *PrevVar;
4996    if (Previous.isSingleResult() &&
4997        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4998      if (PrevVar->isStaticDataMember()) {
4999        Instantiation = PrevVar;
5000        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5001        MSInfo = PrevVar->getMemberSpecializationInfo();
5002      }
5003  } else if (isa<RecordDecl>(Member)) {
5004    CXXRecordDecl *PrevRecord;
5005    if (Previous.isSingleResult() &&
5006        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5007      Instantiation = PrevRecord;
5008      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5009      MSInfo = PrevRecord->getMemberSpecializationInfo();
5010    }
5011  }
5012
5013  if (!Instantiation) {
5014    // There is no previous declaration that matches. Since member
5015    // specializations are always out-of-line, the caller will complain about
5016    // this mismatch later.
5017    return false;
5018  }
5019
5020  // If this is a friend, just bail out here before we start turning
5021  // things into explicit specializations.
5022  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5023    // Preserve instantiation information.
5024    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5025      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5026                                      cast<CXXMethodDecl>(InstantiatedFrom),
5027        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5028    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5029      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5030                                      cast<CXXRecordDecl>(InstantiatedFrom),
5031        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5032    }
5033
5034    Previous.clear();
5035    Previous.addDecl(Instantiation);
5036    return false;
5037  }
5038
5039  // Make sure that this is a specialization of a member.
5040  if (!InstantiatedFrom) {
5041    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5042      << Member;
5043    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5044    return true;
5045  }
5046
5047  // C++ [temp.expl.spec]p6:
5048  //   If a template, a member template or the member of a class template is
5049  //   explicitly specialized then that spe- cialization shall be declared
5050  //   before the first use of that specialization that would cause an implicit
5051  //   instantiation to take place, in every translation unit in which such a
5052  //   use occurs; no diagnostic is required.
5053  assert(MSInfo && "Member specialization info missing?");
5054
5055  bool HasNoEffect = false;
5056  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5057                                             TSK_ExplicitSpecialization,
5058                                             Instantiation,
5059                                     MSInfo->getTemplateSpecializationKind(),
5060                                           MSInfo->getPointOfInstantiation(),
5061                                             HasNoEffect))
5062    return true;
5063
5064  // Check the scope of this explicit specialization.
5065  if (CheckTemplateSpecializationScope(*this,
5066                                       InstantiatedFrom,
5067                                       Instantiation, Member->getLocation(),
5068                                       false))
5069    return true;
5070
5071  // Note that this is an explicit instantiation of a member.
5072  // the original declaration to note that it is an explicit specialization
5073  // (if it was previously an implicit instantiation). This latter step
5074  // makes bookkeeping easier.
5075  if (isa<FunctionDecl>(Member)) {
5076    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5077    if (InstantiationFunction->getTemplateSpecializationKind() ==
5078          TSK_ImplicitInstantiation) {
5079      InstantiationFunction->setTemplateSpecializationKind(
5080                                                  TSK_ExplicitSpecialization);
5081      InstantiationFunction->setLocation(Member->getLocation());
5082    }
5083
5084    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5085                                        cast<CXXMethodDecl>(InstantiatedFrom),
5086                                                  TSK_ExplicitSpecialization);
5087    MarkUnusedFileScopedDecl(InstantiationFunction);
5088  } else if (isa<VarDecl>(Member)) {
5089    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5090    if (InstantiationVar->getTemplateSpecializationKind() ==
5091          TSK_ImplicitInstantiation) {
5092      InstantiationVar->setTemplateSpecializationKind(
5093                                                  TSK_ExplicitSpecialization);
5094      InstantiationVar->setLocation(Member->getLocation());
5095    }
5096
5097    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5098                                                cast<VarDecl>(InstantiatedFrom),
5099                                                TSK_ExplicitSpecialization);
5100    MarkUnusedFileScopedDecl(InstantiationVar);
5101  } else {
5102    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5103    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5104    if (InstantiationClass->getTemplateSpecializationKind() ==
5105          TSK_ImplicitInstantiation) {
5106      InstantiationClass->setTemplateSpecializationKind(
5107                                                   TSK_ExplicitSpecialization);
5108      InstantiationClass->setLocation(Member->getLocation());
5109    }
5110
5111    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5112                                        cast<CXXRecordDecl>(InstantiatedFrom),
5113                                                   TSK_ExplicitSpecialization);
5114  }
5115
5116  // Save the caller the trouble of having to figure out which declaration
5117  // this specialization matches.
5118  Previous.clear();
5119  Previous.addDecl(Instantiation);
5120  return false;
5121}
5122
5123/// \brief Check the scope of an explicit instantiation.
5124///
5125/// \returns true if a serious error occurs, false otherwise.
5126static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5127                                            SourceLocation InstLoc,
5128                                            bool WasQualifiedName) {
5129  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5130  DeclContext *CurContext = S.CurContext->getRedeclContext();
5131
5132  if (CurContext->isRecord()) {
5133    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5134      << D;
5135    return true;
5136  }
5137
5138  // C++0x [temp.explicit]p2:
5139  //   An explicit instantiation shall appear in an enclosing namespace of its
5140  //   template.
5141  //
5142  // This is DR275, which we do not retroactively apply to C++98/03.
5143  if (S.getLangOptions().CPlusPlus0x &&
5144      !CurContext->Encloses(OrigContext)) {
5145    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5146      S.Diag(InstLoc,
5147             S.getLangOptions().CPlusPlus0x?
5148                 diag::err_explicit_instantiation_out_of_scope
5149               : diag::warn_explicit_instantiation_out_of_scope_0x)
5150        << D << NS;
5151    else
5152      S.Diag(InstLoc,
5153             S.getLangOptions().CPlusPlus0x?
5154                 diag::err_explicit_instantiation_must_be_global
5155               : diag::warn_explicit_instantiation_out_of_scope_0x)
5156        << D;
5157    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5158    return false;
5159  }
5160
5161  // C++0x [temp.explicit]p2:
5162  //   If the name declared in the explicit instantiation is an unqualified
5163  //   name, the explicit instantiation shall appear in the namespace where
5164  //   its template is declared or, if that namespace is inline (7.3.1), any
5165  //   namespace from its enclosing namespace set.
5166  if (WasQualifiedName)
5167    return false;
5168
5169  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5170    return false;
5171
5172  S.Diag(InstLoc,
5173         S.getLangOptions().CPlusPlus0x?
5174             diag::err_explicit_instantiation_unqualified_wrong_namespace
5175           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5176    << D << OrigContext;
5177  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5178  return false;
5179}
5180
5181/// \brief Determine whether the given scope specifier has a template-id in it.
5182static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5183  if (!SS.isSet())
5184    return false;
5185
5186  // C++0x [temp.explicit]p2:
5187  //   If the explicit instantiation is for a member function, a member class
5188  //   or a static data member of a class template specialization, the name of
5189  //   the class template specialization in the qualified-id for the member
5190  //   name shall be a simple-template-id.
5191  //
5192  // C++98 has the same restriction, just worded differently.
5193  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5194       NNS; NNS = NNS->getPrefix())
5195    if (Type *T = NNS->getAsType())
5196      if (isa<TemplateSpecializationType>(T))
5197        return true;
5198
5199  return false;
5200}
5201
5202// Explicit instantiation of a class template specialization
5203DeclResult
5204Sema::ActOnExplicitInstantiation(Scope *S,
5205                                 SourceLocation ExternLoc,
5206                                 SourceLocation TemplateLoc,
5207                                 unsigned TagSpec,
5208                                 SourceLocation KWLoc,
5209                                 const CXXScopeSpec &SS,
5210                                 TemplateTy TemplateD,
5211                                 SourceLocation TemplateNameLoc,
5212                                 SourceLocation LAngleLoc,
5213                                 ASTTemplateArgsPtr TemplateArgsIn,
5214                                 SourceLocation RAngleLoc,
5215                                 AttributeList *Attr) {
5216  // Find the class template we're specializing
5217  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5218  ClassTemplateDecl *ClassTemplate
5219    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5220
5221  // Check that the specialization uses the same tag kind as the
5222  // original template.
5223  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5224  assert(Kind != TTK_Enum &&
5225         "Invalid enum tag in class template explicit instantiation!");
5226  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5227                                    Kind, KWLoc,
5228                                    *ClassTemplate->getIdentifier())) {
5229    Diag(KWLoc, diag::err_use_with_wrong_tag)
5230      << ClassTemplate
5231      << FixItHint::CreateReplacement(KWLoc,
5232                            ClassTemplate->getTemplatedDecl()->getKindName());
5233    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5234         diag::note_previous_use);
5235    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5236  }
5237
5238  // C++0x [temp.explicit]p2:
5239  //   There are two forms of explicit instantiation: an explicit instantiation
5240  //   definition and an explicit instantiation declaration. An explicit
5241  //   instantiation declaration begins with the extern keyword. [...]
5242  TemplateSpecializationKind TSK
5243    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5244                           : TSK_ExplicitInstantiationDeclaration;
5245
5246  // Translate the parser's template argument list in our AST format.
5247  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5248  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5249
5250  // Check that the template argument list is well-formed for this
5251  // template.
5252  llvm::SmallVector<TemplateArgument, 4> Converted;
5253  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5254                                TemplateArgs, false, Converted))
5255    return true;
5256
5257  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5258         "Converted template argument list is too short!");
5259
5260  // Find the class template specialization declaration that
5261  // corresponds to these arguments.
5262  void *InsertPos = 0;
5263  ClassTemplateSpecializationDecl *PrevDecl
5264    = ClassTemplate->findSpecialization(Converted.data(),
5265                                        Converted.size(), InsertPos);
5266
5267  TemplateSpecializationKind PrevDecl_TSK
5268    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5269
5270  // C++0x [temp.explicit]p2:
5271  //   [...] An explicit instantiation shall appear in an enclosing
5272  //   namespace of its template. [...]
5273  //
5274  // This is C++ DR 275.
5275  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5276                                      SS.isSet()))
5277    return true;
5278
5279  ClassTemplateSpecializationDecl *Specialization = 0;
5280
5281  bool HasNoEffect = false;
5282  if (PrevDecl) {
5283    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5284                                               PrevDecl, PrevDecl_TSK,
5285                                            PrevDecl->getPointOfInstantiation(),
5286                                               HasNoEffect))
5287      return PrevDecl;
5288
5289    // Even though HasNoEffect == true means that this explicit instantiation
5290    // has no effect on semantics, we go on to put its syntax in the AST.
5291
5292    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5293        PrevDecl_TSK == TSK_Undeclared) {
5294      // Since the only prior class template specialization with these
5295      // arguments was referenced but not declared, reuse that
5296      // declaration node as our own, updating the source location
5297      // for the template name to reflect our new declaration.
5298      // (Other source locations will be updated later.)
5299      Specialization = PrevDecl;
5300      Specialization->setLocation(TemplateNameLoc);
5301      PrevDecl = 0;
5302    }
5303  }
5304
5305  if (!Specialization) {
5306    // Create a new class template specialization declaration node for
5307    // this explicit specialization.
5308    Specialization
5309      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5310                                             ClassTemplate->getDeclContext(),
5311                                                TemplateNameLoc,
5312                                                ClassTemplate,
5313                                                Converted.data(),
5314                                                Converted.size(),
5315                                                PrevDecl);
5316    SetNestedNameSpecifier(Specialization, SS);
5317
5318    if (!HasNoEffect && !PrevDecl) {
5319      // Insert the new specialization.
5320      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5321    }
5322  }
5323
5324  // Build the fully-sugared type for this explicit instantiation as
5325  // the user wrote in the explicit instantiation itself. This means
5326  // that we'll pretty-print the type retrieved from the
5327  // specialization's declaration the way that the user actually wrote
5328  // the explicit instantiation, rather than formatting the name based
5329  // on the "canonical" representation used to store the template
5330  // arguments in the specialization.
5331  TypeSourceInfo *WrittenTy
5332    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5333                                                TemplateArgs,
5334                                  Context.getTypeDeclType(Specialization));
5335  Specialization->setTypeAsWritten(WrittenTy);
5336  TemplateArgsIn.release();
5337
5338  // Set source locations for keywords.
5339  Specialization->setExternLoc(ExternLoc);
5340  Specialization->setTemplateKeywordLoc(TemplateLoc);
5341
5342  // Add the explicit instantiation into its lexical context. However,
5343  // since explicit instantiations are never found by name lookup, we
5344  // just put it into the declaration context directly.
5345  Specialization->setLexicalDeclContext(CurContext);
5346  CurContext->addDecl(Specialization);
5347
5348  // Syntax is now OK, so return if it has no other effect on semantics.
5349  if (HasNoEffect) {
5350    // Set the template specialization kind.
5351    Specialization->setTemplateSpecializationKind(TSK);
5352    return Specialization;
5353  }
5354
5355  // C++ [temp.explicit]p3:
5356  //   A definition of a class template or class member template
5357  //   shall be in scope at the point of the explicit instantiation of
5358  //   the class template or class member template.
5359  //
5360  // This check comes when we actually try to perform the
5361  // instantiation.
5362  ClassTemplateSpecializationDecl *Def
5363    = cast_or_null<ClassTemplateSpecializationDecl>(
5364                                              Specialization->getDefinition());
5365  if (!Def)
5366    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5367  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5368    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5369    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5370  }
5371
5372  // Instantiate the members of this class template specialization.
5373  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5374                                       Specialization->getDefinition());
5375  if (Def) {
5376    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5377
5378    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5379    // TSK_ExplicitInstantiationDefinition
5380    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5381        TSK == TSK_ExplicitInstantiationDefinition)
5382      Def->setTemplateSpecializationKind(TSK);
5383
5384    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5385  }
5386
5387  // Set the template specialization kind.
5388  Specialization->setTemplateSpecializationKind(TSK);
5389  return Specialization;
5390}
5391
5392// Explicit instantiation of a member class of a class template.
5393DeclResult
5394Sema::ActOnExplicitInstantiation(Scope *S,
5395                                 SourceLocation ExternLoc,
5396                                 SourceLocation TemplateLoc,
5397                                 unsigned TagSpec,
5398                                 SourceLocation KWLoc,
5399                                 CXXScopeSpec &SS,
5400                                 IdentifierInfo *Name,
5401                                 SourceLocation NameLoc,
5402                                 AttributeList *Attr) {
5403
5404  bool Owned = false;
5405  bool IsDependent = false;
5406  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5407                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5408                        MultiTemplateParamsArg(*this, 0, 0),
5409                        Owned, IsDependent, false, false,
5410                        TypeResult());
5411  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5412
5413  if (!TagD)
5414    return true;
5415
5416  TagDecl *Tag = cast<TagDecl>(TagD);
5417  if (Tag->isEnum()) {
5418    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5419      << Context.getTypeDeclType(Tag);
5420    return true;
5421  }
5422
5423  if (Tag->isInvalidDecl())
5424    return true;
5425
5426  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5427  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5428  if (!Pattern) {
5429    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5430      << Context.getTypeDeclType(Record);
5431    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5432    return true;
5433  }
5434
5435  // C++0x [temp.explicit]p2:
5436  //   If the explicit instantiation is for a class or member class, the
5437  //   elaborated-type-specifier in the declaration shall include a
5438  //   simple-template-id.
5439  //
5440  // C++98 has the same restriction, just worded differently.
5441  if (!ScopeSpecifierHasTemplateId(SS))
5442    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5443      << Record << SS.getRange();
5444
5445  // C++0x [temp.explicit]p2:
5446  //   There are two forms of explicit instantiation: an explicit instantiation
5447  //   definition and an explicit instantiation declaration. An explicit
5448  //   instantiation declaration begins with the extern keyword. [...]
5449  TemplateSpecializationKind TSK
5450    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5451                           : TSK_ExplicitInstantiationDeclaration;
5452
5453  // C++0x [temp.explicit]p2:
5454  //   [...] An explicit instantiation shall appear in an enclosing
5455  //   namespace of its template. [...]
5456  //
5457  // This is C++ DR 275.
5458  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5459
5460  // Verify that it is okay to explicitly instantiate here.
5461  CXXRecordDecl *PrevDecl
5462    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5463  if (!PrevDecl && Record->getDefinition())
5464    PrevDecl = Record;
5465  if (PrevDecl) {
5466    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5467    bool HasNoEffect = false;
5468    assert(MSInfo && "No member specialization information?");
5469    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5470                                               PrevDecl,
5471                                        MSInfo->getTemplateSpecializationKind(),
5472                                             MSInfo->getPointOfInstantiation(),
5473                                               HasNoEffect))
5474      return true;
5475    if (HasNoEffect)
5476      return TagD;
5477  }
5478
5479  CXXRecordDecl *RecordDef
5480    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5481  if (!RecordDef) {
5482    // C++ [temp.explicit]p3:
5483    //   A definition of a member class of a class template shall be in scope
5484    //   at the point of an explicit instantiation of the member class.
5485    CXXRecordDecl *Def
5486      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5487    if (!Def) {
5488      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5489        << 0 << Record->getDeclName() << Record->getDeclContext();
5490      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5491        << Pattern;
5492      return true;
5493    } else {
5494      if (InstantiateClass(NameLoc, Record, Def,
5495                           getTemplateInstantiationArgs(Record),
5496                           TSK))
5497        return true;
5498
5499      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5500      if (!RecordDef)
5501        return true;
5502    }
5503  }
5504
5505  // Instantiate all of the members of the class.
5506  InstantiateClassMembers(NameLoc, RecordDef,
5507                          getTemplateInstantiationArgs(Record), TSK);
5508
5509  if (TSK == TSK_ExplicitInstantiationDefinition)
5510    MarkVTableUsed(NameLoc, RecordDef, true);
5511
5512  // FIXME: We don't have any representation for explicit instantiations of
5513  // member classes. Such a representation is not needed for compilation, but it
5514  // should be available for clients that want to see all of the declarations in
5515  // the source code.
5516  return TagD;
5517}
5518
5519DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5520                                            SourceLocation ExternLoc,
5521                                            SourceLocation TemplateLoc,
5522                                            Declarator &D) {
5523  // Explicit instantiations always require a name.
5524  // TODO: check if/when DNInfo should replace Name.
5525  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5526  DeclarationName Name = NameInfo.getName();
5527  if (!Name) {
5528    if (!D.isInvalidType())
5529      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5530           diag::err_explicit_instantiation_requires_name)
5531        << D.getDeclSpec().getSourceRange()
5532        << D.getSourceRange();
5533
5534    return true;
5535  }
5536
5537  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5538  // we find one that is.
5539  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5540         (S->getFlags() & Scope::TemplateParamScope) != 0)
5541    S = S->getParent();
5542
5543  // Determine the type of the declaration.
5544  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5545  QualType R = T->getType();
5546  if (R.isNull())
5547    return true;
5548
5549  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5550    // Cannot explicitly instantiate a typedef.
5551    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5552      << Name;
5553    return true;
5554  }
5555
5556  // C++0x [temp.explicit]p1:
5557  //   [...] An explicit instantiation of a function template shall not use the
5558  //   inline or constexpr specifiers.
5559  // Presumably, this also applies to member functions of class templates as
5560  // well.
5561  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5562    Diag(D.getDeclSpec().getInlineSpecLoc(),
5563         diag::err_explicit_instantiation_inline)
5564      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5565
5566  // FIXME: check for constexpr specifier.
5567
5568  // C++0x [temp.explicit]p2:
5569  //   There are two forms of explicit instantiation: an explicit instantiation
5570  //   definition and an explicit instantiation declaration. An explicit
5571  //   instantiation declaration begins with the extern keyword. [...]
5572  TemplateSpecializationKind TSK
5573    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5574                           : TSK_ExplicitInstantiationDeclaration;
5575
5576  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5577  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5578
5579  if (!R->isFunctionType()) {
5580    // C++ [temp.explicit]p1:
5581    //   A [...] static data member of a class template can be explicitly
5582    //   instantiated from the member definition associated with its class
5583    //   template.
5584    if (Previous.isAmbiguous())
5585      return true;
5586
5587    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5588    if (!Prev || !Prev->isStaticDataMember()) {
5589      // We expect to see a data data member here.
5590      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5591        << Name;
5592      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5593           P != PEnd; ++P)
5594        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5595      return true;
5596    }
5597
5598    if (!Prev->getInstantiatedFromStaticDataMember()) {
5599      // FIXME: Check for explicit specialization?
5600      Diag(D.getIdentifierLoc(),
5601           diag::err_explicit_instantiation_data_member_not_instantiated)
5602        << Prev;
5603      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5604      // FIXME: Can we provide a note showing where this was declared?
5605      return true;
5606    }
5607
5608    // C++0x [temp.explicit]p2:
5609    //   If the explicit instantiation is for a member function, a member class
5610    //   or a static data member of a class template specialization, the name of
5611    //   the class template specialization in the qualified-id for the member
5612    //   name shall be a simple-template-id.
5613    //
5614    // C++98 has the same restriction, just worded differently.
5615    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5616      Diag(D.getIdentifierLoc(),
5617           diag::ext_explicit_instantiation_without_qualified_id)
5618        << Prev << D.getCXXScopeSpec().getRange();
5619
5620    // Check the scope of this explicit instantiation.
5621    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5622
5623    // Verify that it is okay to explicitly instantiate here.
5624    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5625    assert(MSInfo && "Missing static data member specialization info?");
5626    bool HasNoEffect = false;
5627    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5628                                        MSInfo->getTemplateSpecializationKind(),
5629                                              MSInfo->getPointOfInstantiation(),
5630                                               HasNoEffect))
5631      return true;
5632    if (HasNoEffect)
5633      return (Decl*) 0;
5634
5635    // Instantiate static data member.
5636    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5637    if (TSK == TSK_ExplicitInstantiationDefinition)
5638      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5639
5640    // FIXME: Create an ExplicitInstantiation node?
5641    return (Decl*) 0;
5642  }
5643
5644  // If the declarator is a template-id, translate the parser's template
5645  // argument list into our AST format.
5646  bool HasExplicitTemplateArgs = false;
5647  TemplateArgumentListInfo TemplateArgs;
5648  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5649    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5650    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5651    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5652    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5653                                       TemplateId->getTemplateArgs(),
5654                                       TemplateId->NumArgs);
5655    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5656    HasExplicitTemplateArgs = true;
5657    TemplateArgsPtr.release();
5658  }
5659
5660  // C++ [temp.explicit]p1:
5661  //   A [...] function [...] can be explicitly instantiated from its template.
5662  //   A member function [...] of a class template can be explicitly
5663  //  instantiated from the member definition associated with its class
5664  //  template.
5665  UnresolvedSet<8> Matches;
5666  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5667       P != PEnd; ++P) {
5668    NamedDecl *Prev = *P;
5669    if (!HasExplicitTemplateArgs) {
5670      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5671        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5672          Matches.clear();
5673
5674          Matches.addDecl(Method, P.getAccess());
5675          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5676            break;
5677        }
5678      }
5679    }
5680
5681    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5682    if (!FunTmpl)
5683      continue;
5684
5685    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5686    FunctionDecl *Specialization = 0;
5687    if (TemplateDeductionResult TDK
5688          = DeduceTemplateArguments(FunTmpl,
5689                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5690                                    R, Specialization, Info)) {
5691      // FIXME: Keep track of almost-matches?
5692      (void)TDK;
5693      continue;
5694    }
5695
5696    Matches.addDecl(Specialization, P.getAccess());
5697  }
5698
5699  // Find the most specialized function template specialization.
5700  UnresolvedSetIterator Result
5701    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5702                         D.getIdentifierLoc(),
5703                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5704                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5705                         PDiag(diag::note_explicit_instantiation_candidate));
5706
5707  if (Result == Matches.end())
5708    return true;
5709
5710  // Ignore access control bits, we don't need them for redeclaration checking.
5711  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5712
5713  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5714    Diag(D.getIdentifierLoc(),
5715         diag::err_explicit_instantiation_member_function_not_instantiated)
5716      << Specialization
5717      << (Specialization->getTemplateSpecializationKind() ==
5718          TSK_ExplicitSpecialization);
5719    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5720    return true;
5721  }
5722
5723  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5724  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5725    PrevDecl = Specialization;
5726
5727  if (PrevDecl) {
5728    bool HasNoEffect = false;
5729    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5730                                               PrevDecl,
5731                                     PrevDecl->getTemplateSpecializationKind(),
5732                                          PrevDecl->getPointOfInstantiation(),
5733                                               HasNoEffect))
5734      return true;
5735
5736    // FIXME: We may still want to build some representation of this
5737    // explicit specialization.
5738    if (HasNoEffect)
5739      return (Decl*) 0;
5740  }
5741
5742  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5743
5744  if (TSK == TSK_ExplicitInstantiationDefinition)
5745    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5746
5747  // C++0x [temp.explicit]p2:
5748  //   If the explicit instantiation is for a member function, a member class
5749  //   or a static data member of a class template specialization, the name of
5750  //   the class template specialization in the qualified-id for the member
5751  //   name shall be a simple-template-id.
5752  //
5753  // C++98 has the same restriction, just worded differently.
5754  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5755  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5756      D.getCXXScopeSpec().isSet() &&
5757      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5758    Diag(D.getIdentifierLoc(),
5759         diag::ext_explicit_instantiation_without_qualified_id)
5760    << Specialization << D.getCXXScopeSpec().getRange();
5761
5762  CheckExplicitInstantiationScope(*this,
5763                   FunTmpl? (NamedDecl *)FunTmpl
5764                          : Specialization->getInstantiatedFromMemberFunction(),
5765                                  D.getIdentifierLoc(),
5766                                  D.getCXXScopeSpec().isSet());
5767
5768  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5769  return (Decl*) 0;
5770}
5771
5772TypeResult
5773Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5774                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5775                        SourceLocation TagLoc, SourceLocation NameLoc) {
5776  // This has to hold, because SS is expected to be defined.
5777  assert(Name && "Expected a name in a dependent tag");
5778
5779  NestedNameSpecifier *NNS
5780    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5781  if (!NNS)
5782    return true;
5783
5784  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5785
5786  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5787    Diag(NameLoc, diag::err_dependent_tag_decl)
5788      << (TUK == TUK_Definition) << Kind << SS.getRange();
5789    return true;
5790  }
5791
5792  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5793  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5794}
5795
5796TypeResult
5797Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5798                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5799                        SourceLocation IdLoc) {
5800  NestedNameSpecifier *NNS
5801    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5802  if (!NNS)
5803    return true;
5804
5805  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5806      !getLangOptions().CPlusPlus0x)
5807    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5808      << FixItHint::CreateRemoval(TypenameLoc);
5809
5810  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5811                                 TypenameLoc, SS.getRange(), IdLoc);
5812  if (T.isNull())
5813    return true;
5814
5815  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5816  if (isa<DependentNameType>(T)) {
5817    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5818    TL.setKeywordLoc(TypenameLoc);
5819    TL.setQualifierRange(SS.getRange());
5820    TL.setNameLoc(IdLoc);
5821  } else {
5822    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5823    TL.setKeywordLoc(TypenameLoc);
5824    TL.setQualifierRange(SS.getRange());
5825    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5826  }
5827
5828  return CreateParsedType(T, TSI);
5829}
5830
5831TypeResult
5832Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5833                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5834                        ParsedType Ty) {
5835  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5836      !getLangOptions().CPlusPlus0x)
5837    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5838      << FixItHint::CreateRemoval(TypenameLoc);
5839
5840  TypeSourceInfo *InnerTSI = 0;
5841  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5842
5843  assert(isa<TemplateSpecializationType>(T) &&
5844         "Expected a template specialization type");
5845
5846  if (computeDeclContext(SS, false)) {
5847    // If we can compute a declaration context, then the "typename"
5848    // keyword was superfluous. Just build an ElaboratedType to keep
5849    // track of the nested-name-specifier.
5850
5851    // Push the inner type, preserving its source locations if possible.
5852    TypeLocBuilder Builder;
5853    if (InnerTSI)
5854      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5855    else
5856      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5857
5858    /* Note: NNS already embedded in template specialization type T. */
5859    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5860    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5861    TL.setKeywordLoc(TypenameLoc);
5862    TL.setQualifierRange(SS.getRange());
5863
5864    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5865    return CreateParsedType(T, TSI);
5866  }
5867
5868  // TODO: it's really silly that we make a template specialization
5869  // type earlier only to drop it again here.
5870  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5871  DependentTemplateName *DTN =
5872    TST->getTemplateName().getAsDependentTemplateName();
5873  assert(DTN && "dependent template has non-dependent name?");
5874  assert(DTN->getQualifier()
5875         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5876  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5877                                                     DTN->getQualifier(),
5878                                                     DTN->getIdentifier(),
5879                                                     TST->getNumArgs(),
5880                                                     TST->getArgs());
5881  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5882  DependentTemplateSpecializationTypeLoc TL =
5883    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5884  if (InnerTSI) {
5885    TemplateSpecializationTypeLoc TSTL =
5886      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5887    TL.setLAngleLoc(TSTL.getLAngleLoc());
5888    TL.setRAngleLoc(TSTL.getRAngleLoc());
5889    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5890      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5891  } else {
5892    TL.initializeLocal(SourceLocation());
5893  }
5894  TL.setKeywordLoc(TypenameLoc);
5895  TL.setQualifierRange(SS.getRange());
5896  return CreateParsedType(T, TSI);
5897}
5898
5899/// \brief Build the type that describes a C++ typename specifier,
5900/// e.g., "typename T::type".
5901QualType
5902Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5903                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5904                        SourceLocation KeywordLoc, SourceRange NNSRange,
5905                        SourceLocation IILoc) {
5906  CXXScopeSpec SS;
5907  SS.setScopeRep(NNS);
5908  SS.setRange(NNSRange);
5909
5910  DeclContext *Ctx = computeDeclContext(SS);
5911  if (!Ctx) {
5912    // If the nested-name-specifier is dependent and couldn't be
5913    // resolved to a type, build a typename type.
5914    assert(NNS->isDependent());
5915    return Context.getDependentNameType(Keyword, NNS, &II);
5916  }
5917
5918  // If the nested-name-specifier refers to the current instantiation,
5919  // the "typename" keyword itself is superfluous. In C++03, the
5920  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5921  // allows such extraneous "typename" keywords, and we retroactively
5922  // apply this DR to C++03 code with only a warning. In any case we continue.
5923
5924  if (RequireCompleteDeclContext(SS, Ctx))
5925    return QualType();
5926
5927  DeclarationName Name(&II);
5928  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5929  LookupQualifiedName(Result, Ctx);
5930  unsigned DiagID = 0;
5931  Decl *Referenced = 0;
5932  switch (Result.getResultKind()) {
5933  case LookupResult::NotFound:
5934    DiagID = diag::err_typename_nested_not_found;
5935    break;
5936
5937  case LookupResult::FoundUnresolvedValue: {
5938    // We found a using declaration that is a value. Most likely, the using
5939    // declaration itself is meant to have the 'typename' keyword.
5940    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5941                          IILoc);
5942    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5943      << Name << Ctx << FullRange;
5944    if (UnresolvedUsingValueDecl *Using
5945          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5946      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5947      Diag(Loc, diag::note_using_value_decl_missing_typename)
5948        << FixItHint::CreateInsertion(Loc, "typename ");
5949    }
5950  }
5951  // Fall through to create a dependent typename type, from which we can recover
5952  // better.
5953
5954  case LookupResult::NotFoundInCurrentInstantiation:
5955    // Okay, it's a member of an unknown instantiation.
5956    return Context.getDependentNameType(Keyword, NNS, &II);
5957
5958  case LookupResult::Found:
5959    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5960      // We found a type. Build an ElaboratedType, since the
5961      // typename-specifier was just sugar.
5962      return Context.getElaboratedType(ETK_Typename, NNS,
5963                                       Context.getTypeDeclType(Type));
5964    }
5965
5966    DiagID = diag::err_typename_nested_not_type;
5967    Referenced = Result.getFoundDecl();
5968    break;
5969
5970
5971    llvm_unreachable("unresolved using decl in non-dependent context");
5972    return QualType();
5973
5974  case LookupResult::FoundOverloaded:
5975    DiagID = diag::err_typename_nested_not_type;
5976    Referenced = *Result.begin();
5977    break;
5978
5979  case LookupResult::Ambiguous:
5980    return QualType();
5981  }
5982
5983  // If we get here, it's because name lookup did not find a
5984  // type. Emit an appropriate diagnostic and return an error.
5985  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5986                        IILoc);
5987  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5988  if (Referenced)
5989    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5990      << Name;
5991  return QualType();
5992}
5993
5994namespace {
5995  // See Sema::RebuildTypeInCurrentInstantiation
5996  class CurrentInstantiationRebuilder
5997    : public TreeTransform<CurrentInstantiationRebuilder> {
5998    SourceLocation Loc;
5999    DeclarationName Entity;
6000
6001  public:
6002    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6003
6004    CurrentInstantiationRebuilder(Sema &SemaRef,
6005                                  SourceLocation Loc,
6006                                  DeclarationName Entity)
6007    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6008      Loc(Loc), Entity(Entity) { }
6009
6010    /// \brief Determine whether the given type \p T has already been
6011    /// transformed.
6012    ///
6013    /// For the purposes of type reconstruction, a type has already been
6014    /// transformed if it is NULL or if it is not dependent.
6015    bool AlreadyTransformed(QualType T) {
6016      return T.isNull() || !T->isDependentType();
6017    }
6018
6019    /// \brief Returns the location of the entity whose type is being
6020    /// rebuilt.
6021    SourceLocation getBaseLocation() { return Loc; }
6022
6023    /// \brief Returns the name of the entity whose type is being rebuilt.
6024    DeclarationName getBaseEntity() { return Entity; }
6025
6026    /// \brief Sets the "base" location and entity when that
6027    /// information is known based on another transformation.
6028    void setBase(SourceLocation Loc, DeclarationName Entity) {
6029      this->Loc = Loc;
6030      this->Entity = Entity;
6031    }
6032  };
6033}
6034
6035/// \brief Rebuilds a type within the context of the current instantiation.
6036///
6037/// The type \p T is part of the type of an out-of-line member definition of
6038/// a class template (or class template partial specialization) that was parsed
6039/// and constructed before we entered the scope of the class template (or
6040/// partial specialization thereof). This routine will rebuild that type now
6041/// that we have entered the declarator's scope, which may produce different
6042/// canonical types, e.g.,
6043///
6044/// \code
6045/// template<typename T>
6046/// struct X {
6047///   typedef T* pointer;
6048///   pointer data();
6049/// };
6050///
6051/// template<typename T>
6052/// typename X<T>::pointer X<T>::data() { ... }
6053/// \endcode
6054///
6055/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6056/// since we do not know that we can look into X<T> when we parsed the type.
6057/// This function will rebuild the type, performing the lookup of "pointer"
6058/// in X<T> and returning an ElaboratedType whose canonical type is the same
6059/// as the canonical type of T*, allowing the return types of the out-of-line
6060/// definition and the declaration to match.
6061TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6062                                                        SourceLocation Loc,
6063                                                        DeclarationName Name) {
6064  if (!T || !T->getType()->isDependentType())
6065    return T;
6066
6067  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6068  return Rebuilder.TransformType(T);
6069}
6070
6071ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6072  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6073                                          DeclarationName());
6074  return Rebuilder.TransformExpr(E);
6075}
6076
6077bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6078  if (SS.isInvalid()) return true;
6079
6080  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6081  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6082                                          DeclarationName());
6083  NestedNameSpecifier *Rebuilt =
6084    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
6085  if (!Rebuilt) return true;
6086
6087  SS.setScopeRep(Rebuilt);
6088  return false;
6089}
6090
6091/// \brief Produces a formatted string that describes the binding of
6092/// template parameters to template arguments.
6093std::string
6094Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6095                                      const TemplateArgumentList &Args) {
6096  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6097}
6098
6099std::string
6100Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6101                                      const TemplateArgument *Args,
6102                                      unsigned NumArgs) {
6103  llvm::SmallString<128> Str;
6104  llvm::raw_svector_ostream Out(Str);
6105
6106  if (!Params || Params->size() == 0 || NumArgs == 0)
6107    return std::string();
6108
6109  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6110    if (I >= NumArgs)
6111      break;
6112
6113    if (I == 0)
6114      Out << "[with ";
6115    else
6116      Out << ", ";
6117
6118    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6119      Out << Id->getName();
6120    } else {
6121      Out << '$' << I;
6122    }
6123
6124    Out << " = ";
6125    Args[I].print(Context.PrintingPolicy, Out);
6126  }
6127
6128  Out << ']';
6129  return Out.str();
6130}
6131