SemaTemplate.cpp revision dec0984fce504a39a7f085774fb67cfd9957be58
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 441 SourceLocation EllipsisLoc) const { 442 assert(Kind == Template && 443 "Only template template arguments can be pack expansions here"); 444 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 445 "Template template argument pack expansion without packs"); 446 ParsedTemplateArgument Result(*this); 447 Result.EllipsisLoc = EllipsisLoc; 448 return Result; 449} 450 451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 452 const ParsedTemplateArgument &Arg) { 453 454 switch (Arg.getKind()) { 455 case ParsedTemplateArgument::Type: { 456 TypeSourceInfo *DI; 457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 458 if (!DI) 459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 460 return TemplateArgumentLoc(TemplateArgument(T), DI); 461 } 462 463 case ParsedTemplateArgument::NonType: { 464 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 465 return TemplateArgumentLoc(TemplateArgument(E), E); 466 } 467 468 case ParsedTemplateArgument::Template: { 469 TemplateName Template = Arg.getAsTemplate().get(); 470 TemplateArgument TArg; 471 if (Arg.getEllipsisLoc().isValid()) 472 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 473 else 474 TArg = Template; 475 return TemplateArgumentLoc(TArg, 476 Arg.getScopeSpec().getRange(), 477 Arg.getLocation(), 478 Arg.getEllipsisLoc()); 479 } 480 } 481 482 llvm_unreachable("Unhandled parsed template argument"); 483 return TemplateArgumentLoc(); 484} 485 486/// \brief Translates template arguments as provided by the parser 487/// into template arguments used by semantic analysis. 488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 489 TemplateArgumentListInfo &TemplateArgs) { 490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 491 TemplateArgs.addArgument(translateTemplateArgument(*this, 492 TemplateArgsIn[I])); 493} 494 495/// ActOnTypeParameter - Called when a C++ template type parameter 496/// (e.g., "typename T") has been parsed. Typename specifies whether 497/// the keyword "typename" was used to declare the type parameter 498/// (otherwise, "class" was used), and KeyLoc is the location of the 499/// "class" or "typename" keyword. ParamName is the name of the 500/// parameter (NULL indicates an unnamed template parameter) and 501/// ParamName is the location of the parameter name (if any). 502/// If the type parameter has a default argument, it will be added 503/// later via ActOnTypeParameterDefault. 504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 505 SourceLocation EllipsisLoc, 506 SourceLocation KeyLoc, 507 IdentifierInfo *ParamName, 508 SourceLocation ParamNameLoc, 509 unsigned Depth, unsigned Position, 510 SourceLocation EqualLoc, 511 ParsedType DefaultArg) { 512 assert(S->isTemplateParamScope() && 513 "Template type parameter not in template parameter scope!"); 514 bool Invalid = false; 515 516 if (ParamName) { 517 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 518 LookupOrdinaryName, 519 ForRedeclaration); 520 if (PrevDecl && PrevDecl->isTemplateParameter()) 521 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 522 PrevDecl); 523 } 524 525 SourceLocation Loc = ParamNameLoc; 526 if (!ParamName) 527 Loc = KeyLoc; 528 529 TemplateTypeParmDecl *Param 530 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 531 Loc, Depth, Position, ParamName, Typename, 532 Ellipsis); 533 if (Invalid) 534 Param->setInvalidDecl(); 535 536 if (ParamName) { 537 // Add the template parameter into the current scope. 538 S->AddDecl(Param); 539 IdResolver.AddDecl(Param); 540 } 541 542 // C++0x [temp.param]p9: 543 // A default template-argument may be specified for any kind of 544 // template-parameter that is not a template parameter pack. 545 if (DefaultArg && Ellipsis) { 546 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 547 DefaultArg = ParsedType(); 548 } 549 550 // Handle the default argument, if provided. 551 if (DefaultArg) { 552 TypeSourceInfo *DefaultTInfo; 553 GetTypeFromParser(DefaultArg, &DefaultTInfo); 554 555 assert(DefaultTInfo && "expected source information for type"); 556 557 // Check for unexpanded parameter packs. 558 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 559 UPPC_DefaultArgument)) 560 return Param; 561 562 // Check the template argument itself. 563 if (CheckTemplateArgument(Param, DefaultTInfo)) { 564 Param->setInvalidDecl(); 565 return Param; 566 } 567 568 Param->setDefaultArgument(DefaultTInfo, false); 569 } 570 571 return Param; 572} 573 574/// \brief Check that the type of a non-type template parameter is 575/// well-formed. 576/// 577/// \returns the (possibly-promoted) parameter type if valid; 578/// otherwise, produces a diagnostic and returns a NULL type. 579QualType 580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 581 // We don't allow variably-modified types as the type of non-type template 582 // parameters. 583 if (T->isVariablyModifiedType()) { 584 Diag(Loc, diag::err_variably_modified_nontype_template_param) 585 << T; 586 return QualType(); 587 } 588 589 // C++ [temp.param]p4: 590 // 591 // A non-type template-parameter shall have one of the following 592 // (optionally cv-qualified) types: 593 // 594 // -- integral or enumeration type, 595 if (T->isIntegralOrEnumerationType() || 596 // -- pointer to object or pointer to function, 597 T->isPointerType() || 598 // -- reference to object or reference to function, 599 T->isReferenceType() || 600 // -- pointer to member. 601 T->isMemberPointerType() || 602 // If T is a dependent type, we can't do the check now, so we 603 // assume that it is well-formed. 604 T->isDependentType()) 605 return T; 606 // C++ [temp.param]p8: 607 // 608 // A non-type template-parameter of type "array of T" or 609 // "function returning T" is adjusted to be of type "pointer to 610 // T" or "pointer to function returning T", respectively. 611 else if (T->isArrayType()) 612 // FIXME: Keep the type prior to promotion? 613 return Context.getArrayDecayedType(T); 614 else if (T->isFunctionType()) 615 // FIXME: Keep the type prior to promotion? 616 return Context.getPointerType(T); 617 618 Diag(Loc, diag::err_template_nontype_parm_bad_type) 619 << T; 620 621 return QualType(); 622} 623 624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 625 unsigned Depth, 626 unsigned Position, 627 SourceLocation EqualLoc, 628 Expr *Default) { 629 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 630 QualType T = TInfo->getType(); 631 632 assert(S->isTemplateParamScope() && 633 "Non-type template parameter not in template parameter scope!"); 634 bool Invalid = false; 635 636 IdentifierInfo *ParamName = D.getIdentifier(); 637 if (ParamName) { 638 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 639 LookupOrdinaryName, 640 ForRedeclaration); 641 if (PrevDecl && PrevDecl->isTemplateParameter()) 642 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 643 PrevDecl); 644 } 645 646 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 647 if (T.isNull()) { 648 T = Context.IntTy; // Recover with an 'int' type. 649 Invalid = true; 650 } 651 652 bool IsParameterPack = D.hasEllipsis(); 653 NonTypeTemplateParmDecl *Param 654 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 655 D.getIdentifierLoc(), 656 Depth, Position, ParamName, T, 657 IsParameterPack, TInfo); 658 if (Invalid) 659 Param->setInvalidDecl(); 660 661 if (D.getIdentifier()) { 662 // Add the template parameter into the current scope. 663 S->AddDecl(Param); 664 IdResolver.AddDecl(Param); 665 } 666 667 // C++0x [temp.param]p9: 668 // A default template-argument may be specified for any kind of 669 // template-parameter that is not a template parameter pack. 670 if (Default && IsParameterPack) { 671 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 672 Default = 0; 673 } 674 675 // Check the well-formedness of the default template argument, if provided. 676 if (Default) { 677 // Check for unexpanded parameter packs. 678 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 679 return Param; 680 681 TemplateArgument Converted; 682 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 683 Param->setInvalidDecl(); 684 return Param; 685 } 686 687 Param->setDefaultArgument(Default, false); 688 } 689 690 return Param; 691} 692 693/// ActOnTemplateTemplateParameter - Called when a C++ template template 694/// parameter (e.g. T in template <template <typename> class T> class array) 695/// has been parsed. S is the current scope. 696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 697 SourceLocation TmpLoc, 698 TemplateParamsTy *Params, 699 SourceLocation EllipsisLoc, 700 IdentifierInfo *Name, 701 SourceLocation NameLoc, 702 unsigned Depth, 703 unsigned Position, 704 SourceLocation EqualLoc, 705 ParsedTemplateArgument Default) { 706 assert(S->isTemplateParamScope() && 707 "Template template parameter not in template parameter scope!"); 708 709 // Construct the parameter object. 710 bool IsParameterPack = EllipsisLoc.isValid(); 711 // FIXME: Pack-ness is dropped 712 TemplateTemplateParmDecl *Param = 713 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 714 NameLoc.isInvalid()? TmpLoc : NameLoc, 715 Depth, Position, IsParameterPack, 716 Name, Params); 717 718 // If the template template parameter has a name, then link the identifier 719 // into the scope and lookup mechanisms. 720 if (Name) { 721 S->AddDecl(Param); 722 IdResolver.AddDecl(Param); 723 } 724 725 if (Params->size() == 0) { 726 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 727 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 728 Param->setInvalidDecl(); 729 } 730 731 // C++0x [temp.param]p9: 732 // A default template-argument may be specified for any kind of 733 // template-parameter that is not a template parameter pack. 734 if (IsParameterPack && !Default.isInvalid()) { 735 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 736 Default = ParsedTemplateArgument(); 737 } 738 739 if (!Default.isInvalid()) { 740 // Check only that we have a template template argument. We don't want to 741 // try to check well-formedness now, because our template template parameter 742 // might have dependent types in its template parameters, which we wouldn't 743 // be able to match now. 744 // 745 // If none of the template template parameter's template arguments mention 746 // other template parameters, we could actually perform more checking here. 747 // However, it isn't worth doing. 748 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 749 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 750 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 751 << DefaultArg.getSourceRange(); 752 return Param; 753 } 754 755 // Check for unexpanded parameter packs. 756 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 757 DefaultArg.getArgument().getAsTemplate(), 758 UPPC_DefaultArgument)) 759 return Param; 760 761 Param->setDefaultArgument(DefaultArg, false); 762 } 763 764 return Param; 765} 766 767/// ActOnTemplateParameterList - Builds a TemplateParameterList that 768/// contains the template parameters in Params/NumParams. 769Sema::TemplateParamsTy * 770Sema::ActOnTemplateParameterList(unsigned Depth, 771 SourceLocation ExportLoc, 772 SourceLocation TemplateLoc, 773 SourceLocation LAngleLoc, 774 Decl **Params, unsigned NumParams, 775 SourceLocation RAngleLoc) { 776 if (ExportLoc.isValid()) 777 Diag(ExportLoc, diag::warn_template_export_unsupported); 778 779 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 780 (NamedDecl**)Params, NumParams, 781 RAngleLoc); 782} 783 784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 785 if (SS.isSet()) 786 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 787 SS.getRange()); 788} 789 790DeclResult 791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 792 SourceLocation KWLoc, CXXScopeSpec &SS, 793 IdentifierInfo *Name, SourceLocation NameLoc, 794 AttributeList *Attr, 795 TemplateParameterList *TemplateParams, 796 AccessSpecifier AS) { 797 assert(TemplateParams && TemplateParams->size() > 0 && 798 "No template parameters"); 799 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 800 bool Invalid = false; 801 802 // Check that we can declare a template here. 803 if (CheckTemplateDeclScope(S, TemplateParams)) 804 return true; 805 806 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 807 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 808 809 // There is no such thing as an unnamed class template. 810 if (!Name) { 811 Diag(KWLoc, diag::err_template_unnamed_class); 812 return true; 813 } 814 815 // Find any previous declaration with this name. 816 DeclContext *SemanticContext; 817 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 818 ForRedeclaration); 819 if (SS.isNotEmpty() && !SS.isInvalid()) { 820 SemanticContext = computeDeclContext(SS, true); 821 if (!SemanticContext) { 822 // FIXME: Produce a reasonable diagnostic here 823 return true; 824 } 825 826 if (RequireCompleteDeclContext(SS, SemanticContext)) 827 return true; 828 829 LookupQualifiedName(Previous, SemanticContext); 830 } else { 831 SemanticContext = CurContext; 832 LookupName(Previous, S); 833 } 834 835 if (Previous.isAmbiguous()) 836 return true; 837 838 NamedDecl *PrevDecl = 0; 839 if (Previous.begin() != Previous.end()) 840 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 841 842 // If there is a previous declaration with the same name, check 843 // whether this is a valid redeclaration. 844 ClassTemplateDecl *PrevClassTemplate 845 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 846 847 // We may have found the injected-class-name of a class template, 848 // class template partial specialization, or class template specialization. 849 // In these cases, grab the template that is being defined or specialized. 850 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 851 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 852 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 853 PrevClassTemplate 854 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 855 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 856 PrevClassTemplate 857 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 858 ->getSpecializedTemplate(); 859 } 860 } 861 862 if (TUK == TUK_Friend) { 863 // C++ [namespace.memdef]p3: 864 // [...] When looking for a prior declaration of a class or a function 865 // declared as a friend, and when the name of the friend class or 866 // function is neither a qualified name nor a template-id, scopes outside 867 // the innermost enclosing namespace scope are not considered. 868 if (!SS.isSet()) { 869 DeclContext *OutermostContext = CurContext; 870 while (!OutermostContext->isFileContext()) 871 OutermostContext = OutermostContext->getLookupParent(); 872 873 if (PrevDecl && 874 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 875 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 876 SemanticContext = PrevDecl->getDeclContext(); 877 } else { 878 // Declarations in outer scopes don't matter. However, the outermost 879 // context we computed is the semantic context for our new 880 // declaration. 881 PrevDecl = PrevClassTemplate = 0; 882 SemanticContext = OutermostContext; 883 } 884 } 885 886 if (CurContext->isDependentContext()) { 887 // If this is a dependent context, we don't want to link the friend 888 // class template to the template in scope, because that would perform 889 // checking of the template parameter lists that can't be performed 890 // until the outer context is instantiated. 891 PrevDecl = PrevClassTemplate = 0; 892 } 893 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 894 PrevDecl = PrevClassTemplate = 0; 895 896 if (PrevClassTemplate) { 897 // Ensure that the template parameter lists are compatible. 898 if (!TemplateParameterListsAreEqual(TemplateParams, 899 PrevClassTemplate->getTemplateParameters(), 900 /*Complain=*/true, 901 TPL_TemplateMatch)) 902 return true; 903 904 // C++ [temp.class]p4: 905 // In a redeclaration, partial specialization, explicit 906 // specialization or explicit instantiation of a class template, 907 // the class-key shall agree in kind with the original class 908 // template declaration (7.1.5.3). 909 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 910 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 911 Diag(KWLoc, diag::err_use_with_wrong_tag) 912 << Name 913 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 914 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 915 Kind = PrevRecordDecl->getTagKind(); 916 } 917 918 // Check for redefinition of this class template. 919 if (TUK == TUK_Definition) { 920 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 921 Diag(NameLoc, diag::err_redefinition) << Name; 922 Diag(Def->getLocation(), diag::note_previous_definition); 923 // FIXME: Would it make sense to try to "forget" the previous 924 // definition, as part of error recovery? 925 return true; 926 } 927 } 928 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 929 // Maybe we will complain about the shadowed template parameter. 930 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 931 // Just pretend that we didn't see the previous declaration. 932 PrevDecl = 0; 933 } else if (PrevDecl) { 934 // C++ [temp]p5: 935 // A class template shall not have the same name as any other 936 // template, class, function, object, enumeration, enumerator, 937 // namespace, or type in the same scope (3.3), except as specified 938 // in (14.5.4). 939 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 940 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 941 return true; 942 } 943 944 // Check the template parameter list of this declaration, possibly 945 // merging in the template parameter list from the previous class 946 // template declaration. 947 if (CheckTemplateParameterList(TemplateParams, 948 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 949 TPC_ClassTemplate)) 950 Invalid = true; 951 952 if (SS.isSet()) { 953 // If the name of the template was qualified, we must be defining the 954 // template out-of-line. 955 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 956 !(TUK == TUK_Friend && CurContext->isDependentContext())) 957 Diag(NameLoc, diag::err_member_def_does_not_match) 958 << Name << SemanticContext << SS.getRange(); 959 } 960 961 CXXRecordDecl *NewClass = 962 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 963 PrevClassTemplate? 964 PrevClassTemplate->getTemplatedDecl() : 0, 965 /*DelayTypeCreation=*/true); 966 SetNestedNameSpecifier(NewClass, SS); 967 968 ClassTemplateDecl *NewTemplate 969 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 970 DeclarationName(Name), TemplateParams, 971 NewClass, PrevClassTemplate); 972 NewClass->setDescribedClassTemplate(NewTemplate); 973 974 // Build the type for the class template declaration now. 975 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 976 T = Context.getInjectedClassNameType(NewClass, T); 977 assert(T->isDependentType() && "Class template type is not dependent?"); 978 (void)T; 979 980 // If we are providing an explicit specialization of a member that is a 981 // class template, make a note of that. 982 if (PrevClassTemplate && 983 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 984 PrevClassTemplate->setMemberSpecialization(); 985 986 // Set the access specifier. 987 if (!Invalid && TUK != TUK_Friend) 988 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 989 990 // Set the lexical context of these templates 991 NewClass->setLexicalDeclContext(CurContext); 992 NewTemplate->setLexicalDeclContext(CurContext); 993 994 if (TUK == TUK_Definition) 995 NewClass->startDefinition(); 996 997 if (Attr) 998 ProcessDeclAttributeList(S, NewClass, Attr); 999 1000 if (TUK != TUK_Friend) 1001 PushOnScopeChains(NewTemplate, S); 1002 else { 1003 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1004 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1005 NewClass->setAccess(PrevClassTemplate->getAccess()); 1006 } 1007 1008 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1009 PrevClassTemplate != NULL); 1010 1011 // Friend templates are visible in fairly strange ways. 1012 if (!CurContext->isDependentContext()) { 1013 DeclContext *DC = SemanticContext->getRedeclContext(); 1014 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1015 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1016 PushOnScopeChains(NewTemplate, EnclosingScope, 1017 /* AddToContext = */ false); 1018 } 1019 1020 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1021 NewClass->getLocation(), 1022 NewTemplate, 1023 /*FIXME:*/NewClass->getLocation()); 1024 Friend->setAccess(AS_public); 1025 CurContext->addDecl(Friend); 1026 } 1027 1028 if (Invalid) { 1029 NewTemplate->setInvalidDecl(); 1030 NewClass->setInvalidDecl(); 1031 } 1032 return NewTemplate; 1033} 1034 1035/// \brief Diagnose the presence of a default template argument on a 1036/// template parameter, which is ill-formed in certain contexts. 1037/// 1038/// \returns true if the default template argument should be dropped. 1039static bool DiagnoseDefaultTemplateArgument(Sema &S, 1040 Sema::TemplateParamListContext TPC, 1041 SourceLocation ParamLoc, 1042 SourceRange DefArgRange) { 1043 switch (TPC) { 1044 case Sema::TPC_ClassTemplate: 1045 return false; 1046 1047 case Sema::TPC_FunctionTemplate: 1048 // C++ [temp.param]p9: 1049 // A default template-argument shall not be specified in a 1050 // function template declaration or a function template 1051 // definition [...] 1052 // (This sentence is not in C++0x, per DR226). 1053 if (!S.getLangOptions().CPlusPlus0x) 1054 S.Diag(ParamLoc, 1055 diag::err_template_parameter_default_in_function_template) 1056 << DefArgRange; 1057 return false; 1058 1059 case Sema::TPC_ClassTemplateMember: 1060 // C++0x [temp.param]p9: 1061 // A default template-argument shall not be specified in the 1062 // template-parameter-lists of the definition of a member of a 1063 // class template that appears outside of the member's class. 1064 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1065 << DefArgRange; 1066 return true; 1067 1068 case Sema::TPC_FriendFunctionTemplate: 1069 // C++ [temp.param]p9: 1070 // A default template-argument shall not be specified in a 1071 // friend template declaration. 1072 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1073 << DefArgRange; 1074 return true; 1075 1076 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1077 // for friend function templates if there is only a single 1078 // declaration (and it is a definition). Strange! 1079 } 1080 1081 return false; 1082} 1083 1084/// \brief Check for unexpanded parameter packs within the template parameters 1085/// of a template template parameter, recursively. 1086bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){ 1087 TemplateParameterList *Params = TTP->getTemplateParameters(); 1088 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1089 NamedDecl *P = Params->getParam(I); 1090 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1091 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1092 NTTP->getTypeSourceInfo(), 1093 Sema::UPPC_NonTypeTemplateParameterType)) 1094 return true; 1095 1096 continue; 1097 } 1098 1099 if (TemplateTemplateParmDecl *InnerTTP 1100 = dyn_cast<TemplateTemplateParmDecl>(P)) 1101 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1102 return true; 1103 } 1104 1105 return false; 1106} 1107 1108/// \brief Checks the validity of a template parameter list, possibly 1109/// considering the template parameter list from a previous 1110/// declaration. 1111/// 1112/// If an "old" template parameter list is provided, it must be 1113/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1114/// template parameter list. 1115/// 1116/// \param NewParams Template parameter list for a new template 1117/// declaration. This template parameter list will be updated with any 1118/// default arguments that are carried through from the previous 1119/// template parameter list. 1120/// 1121/// \param OldParams If provided, template parameter list from a 1122/// previous declaration of the same template. Default template 1123/// arguments will be merged from the old template parameter list to 1124/// the new template parameter list. 1125/// 1126/// \param TPC Describes the context in which we are checking the given 1127/// template parameter list. 1128/// 1129/// \returns true if an error occurred, false otherwise. 1130bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1131 TemplateParameterList *OldParams, 1132 TemplateParamListContext TPC) { 1133 bool Invalid = false; 1134 1135 // C++ [temp.param]p10: 1136 // The set of default template-arguments available for use with a 1137 // template declaration or definition is obtained by merging the 1138 // default arguments from the definition (if in scope) and all 1139 // declarations in scope in the same way default function 1140 // arguments are (8.3.6). 1141 bool SawDefaultArgument = false; 1142 SourceLocation PreviousDefaultArgLoc; 1143 1144 bool SawParameterPack = false; 1145 SourceLocation ParameterPackLoc; 1146 1147 // Dummy initialization to avoid warnings. 1148 TemplateParameterList::iterator OldParam = NewParams->end(); 1149 if (OldParams) 1150 OldParam = OldParams->begin(); 1151 1152 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1153 NewParamEnd = NewParams->end(); 1154 NewParam != NewParamEnd; ++NewParam) { 1155 // Variables used to diagnose redundant default arguments 1156 bool RedundantDefaultArg = false; 1157 SourceLocation OldDefaultLoc; 1158 SourceLocation NewDefaultLoc; 1159 1160 // Variables used to diagnose missing default arguments 1161 bool MissingDefaultArg = false; 1162 1163 // C++0x [temp.param]p11: 1164 // If a template parameter of a primary class template is a template 1165 // parameter pack, it shall be the last template parameter. 1166 if (SawParameterPack && TPC == TPC_ClassTemplate) { 1167 Diag(ParameterPackLoc, 1168 diag::err_template_param_pack_must_be_last_template_parameter); 1169 Invalid = true; 1170 } 1171 1172 if (TemplateTypeParmDecl *NewTypeParm 1173 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1174 // Check the presence of a default argument here. 1175 if (NewTypeParm->hasDefaultArgument() && 1176 DiagnoseDefaultTemplateArgument(*this, TPC, 1177 NewTypeParm->getLocation(), 1178 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1179 .getSourceRange())) 1180 NewTypeParm->removeDefaultArgument(); 1181 1182 // Merge default arguments for template type parameters. 1183 TemplateTypeParmDecl *OldTypeParm 1184 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1185 1186 if (NewTypeParm->isParameterPack()) { 1187 assert(!NewTypeParm->hasDefaultArgument() && 1188 "Parameter packs can't have a default argument!"); 1189 SawParameterPack = true; 1190 ParameterPackLoc = NewTypeParm->getLocation(); 1191 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1192 NewTypeParm->hasDefaultArgument()) { 1193 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1194 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1195 SawDefaultArgument = true; 1196 RedundantDefaultArg = true; 1197 PreviousDefaultArgLoc = NewDefaultLoc; 1198 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1199 // Merge the default argument from the old declaration to the 1200 // new declaration. 1201 SawDefaultArgument = true; 1202 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1203 true); 1204 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1205 } else if (NewTypeParm->hasDefaultArgument()) { 1206 SawDefaultArgument = true; 1207 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1208 } else if (SawDefaultArgument) 1209 MissingDefaultArg = true; 1210 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1211 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1212 // Check for unexpanded parameter packs. 1213 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1214 NewNonTypeParm->getTypeSourceInfo(), 1215 UPPC_NonTypeTemplateParameterType)) { 1216 Invalid = true; 1217 continue; 1218 } 1219 1220 // Check the presence of a default argument here. 1221 if (NewNonTypeParm->hasDefaultArgument() && 1222 DiagnoseDefaultTemplateArgument(*this, TPC, 1223 NewNonTypeParm->getLocation(), 1224 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1225 NewNonTypeParm->removeDefaultArgument(); 1226 } 1227 1228 // Merge default arguments for non-type template parameters 1229 NonTypeTemplateParmDecl *OldNonTypeParm 1230 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1231 if (NewNonTypeParm->isParameterPack()) { 1232 assert(!NewNonTypeParm->hasDefaultArgument() && 1233 "Parameter packs can't have a default argument!"); 1234 SawParameterPack = true; 1235 ParameterPackLoc = NewNonTypeParm->getLocation(); 1236 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1237 NewNonTypeParm->hasDefaultArgument()) { 1238 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1239 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1240 SawDefaultArgument = true; 1241 RedundantDefaultArg = true; 1242 PreviousDefaultArgLoc = NewDefaultLoc; 1243 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1244 // Merge the default argument from the old declaration to the 1245 // new declaration. 1246 SawDefaultArgument = true; 1247 // FIXME: We need to create a new kind of "default argument" 1248 // expression that points to a previous non-type template 1249 // parameter. 1250 NewNonTypeParm->setDefaultArgument( 1251 OldNonTypeParm->getDefaultArgument(), 1252 /*Inherited=*/ true); 1253 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1254 } else if (NewNonTypeParm->hasDefaultArgument()) { 1255 SawDefaultArgument = true; 1256 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1257 } else if (SawDefaultArgument) 1258 MissingDefaultArg = true; 1259 } else { 1260 // Check the presence of a default argument here. 1261 TemplateTemplateParmDecl *NewTemplateParm 1262 = cast<TemplateTemplateParmDecl>(*NewParam); 1263 1264 // Check for unexpanded parameter packs, recursively. 1265 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1266 Invalid = true; 1267 continue; 1268 } 1269 1270 if (NewTemplateParm->hasDefaultArgument() && 1271 DiagnoseDefaultTemplateArgument(*this, TPC, 1272 NewTemplateParm->getLocation(), 1273 NewTemplateParm->getDefaultArgument().getSourceRange())) 1274 NewTemplateParm->removeDefaultArgument(); 1275 1276 // Merge default arguments for template template parameters 1277 TemplateTemplateParmDecl *OldTemplateParm 1278 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1279 if (NewTemplateParm->isParameterPack()) { 1280 assert(!NewTemplateParm->hasDefaultArgument() && 1281 "Parameter packs can't have a default argument!"); 1282 SawParameterPack = true; 1283 ParameterPackLoc = NewTemplateParm->getLocation(); 1284 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1285 NewTemplateParm->hasDefaultArgument()) { 1286 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1287 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1288 SawDefaultArgument = true; 1289 RedundantDefaultArg = true; 1290 PreviousDefaultArgLoc = NewDefaultLoc; 1291 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1292 // Merge the default argument from the old declaration to the 1293 // new declaration. 1294 SawDefaultArgument = true; 1295 // FIXME: We need to create a new kind of "default argument" expression 1296 // that points to a previous template template parameter. 1297 NewTemplateParm->setDefaultArgument( 1298 OldTemplateParm->getDefaultArgument(), 1299 /*Inherited=*/ true); 1300 PreviousDefaultArgLoc 1301 = OldTemplateParm->getDefaultArgument().getLocation(); 1302 } else if (NewTemplateParm->hasDefaultArgument()) { 1303 SawDefaultArgument = true; 1304 PreviousDefaultArgLoc 1305 = NewTemplateParm->getDefaultArgument().getLocation(); 1306 } else if (SawDefaultArgument) 1307 MissingDefaultArg = true; 1308 } 1309 1310 if (RedundantDefaultArg) { 1311 // C++ [temp.param]p12: 1312 // A template-parameter shall not be given default arguments 1313 // by two different declarations in the same scope. 1314 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1315 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1316 Invalid = true; 1317 } else if (MissingDefaultArg) { 1318 // C++ [temp.param]p11: 1319 // If a template-parameter of a class template has a default 1320 // template-argument, each subsequent template- parameter shall either 1321 // have a default template-argument supplied or be a template parameter 1322 // pack. 1323 Diag((*NewParam)->getLocation(), 1324 diag::err_template_param_default_arg_missing); 1325 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1326 Invalid = true; 1327 } 1328 1329 // If we have an old template parameter list that we're merging 1330 // in, move on to the next parameter. 1331 if (OldParams) 1332 ++OldParam; 1333 } 1334 1335 return Invalid; 1336} 1337 1338namespace { 1339 1340/// A class which looks for a use of a certain level of template 1341/// parameter. 1342struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1343 typedef RecursiveASTVisitor<DependencyChecker> super; 1344 1345 unsigned Depth; 1346 bool Match; 1347 1348 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1349 NamedDecl *ND = Params->getParam(0); 1350 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1351 Depth = PD->getDepth(); 1352 } else if (NonTypeTemplateParmDecl *PD = 1353 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1354 Depth = PD->getDepth(); 1355 } else { 1356 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1357 } 1358 } 1359 1360 bool Matches(unsigned ParmDepth) { 1361 if (ParmDepth >= Depth) { 1362 Match = true; 1363 return true; 1364 } 1365 return false; 1366 } 1367 1368 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1369 return !Matches(T->getDepth()); 1370 } 1371 1372 bool TraverseTemplateName(TemplateName N) { 1373 if (TemplateTemplateParmDecl *PD = 1374 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1375 if (Matches(PD->getDepth())) return false; 1376 return super::TraverseTemplateName(N); 1377 } 1378 1379 bool VisitDeclRefExpr(DeclRefExpr *E) { 1380 if (NonTypeTemplateParmDecl *PD = 1381 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1382 if (PD->getDepth() == Depth) { 1383 Match = true; 1384 return false; 1385 } 1386 } 1387 return super::VisitDeclRefExpr(E); 1388 } 1389}; 1390} 1391 1392/// Determines whether a template-id depends on the given parameter 1393/// list. 1394static bool 1395DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1396 TemplateParameterList *Params) { 1397 DependencyChecker Checker(Params); 1398 Checker.TraverseType(QualType(TemplateId, 0)); 1399 return Checker.Match; 1400} 1401 1402/// \brief Match the given template parameter lists to the given scope 1403/// specifier, returning the template parameter list that applies to the 1404/// name. 1405/// 1406/// \param DeclStartLoc the start of the declaration that has a scope 1407/// specifier or a template parameter list. 1408/// 1409/// \param SS the scope specifier that will be matched to the given template 1410/// parameter lists. This scope specifier precedes a qualified name that is 1411/// being declared. 1412/// 1413/// \param ParamLists the template parameter lists, from the outermost to the 1414/// innermost template parameter lists. 1415/// 1416/// \param NumParamLists the number of template parameter lists in ParamLists. 1417/// 1418/// \param IsFriend Whether to apply the slightly different rules for 1419/// matching template parameters to scope specifiers in friend 1420/// declarations. 1421/// 1422/// \param IsExplicitSpecialization will be set true if the entity being 1423/// declared is an explicit specialization, false otherwise. 1424/// 1425/// \returns the template parameter list, if any, that corresponds to the 1426/// name that is preceded by the scope specifier @p SS. This template 1427/// parameter list may be have template parameters (if we're declaring a 1428/// template) or may have no template parameters (if we're declaring a 1429/// template specialization), or may be NULL (if we were's declaring isn't 1430/// itself a template). 1431TemplateParameterList * 1432Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1433 const CXXScopeSpec &SS, 1434 TemplateParameterList **ParamLists, 1435 unsigned NumParamLists, 1436 bool IsFriend, 1437 bool &IsExplicitSpecialization, 1438 bool &Invalid) { 1439 IsExplicitSpecialization = false; 1440 1441 // Find the template-ids that occur within the nested-name-specifier. These 1442 // template-ids will match up with the template parameter lists. 1443 llvm::SmallVector<const TemplateSpecializationType *, 4> 1444 TemplateIdsInSpecifier; 1445 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1446 ExplicitSpecializationsInSpecifier; 1447 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1448 NNS; NNS = NNS->getPrefix()) { 1449 const Type *T = NNS->getAsType(); 1450 if (!T) break; 1451 1452 // C++0x [temp.expl.spec]p17: 1453 // A member or a member template may be nested within many 1454 // enclosing class templates. In an explicit specialization for 1455 // such a member, the member declaration shall be preceded by a 1456 // template<> for each enclosing class template that is 1457 // explicitly specialized. 1458 // 1459 // Following the existing practice of GNU and EDG, we allow a typedef of a 1460 // template specialization type. 1461 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1462 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1463 1464 if (const TemplateSpecializationType *SpecType 1465 = dyn_cast<TemplateSpecializationType>(T)) { 1466 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1467 if (!Template) 1468 continue; // FIXME: should this be an error? probably... 1469 1470 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1471 ClassTemplateSpecializationDecl *SpecDecl 1472 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1473 // If the nested name specifier refers to an explicit specialization, 1474 // we don't need a template<> header. 1475 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1476 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1477 continue; 1478 } 1479 } 1480 1481 TemplateIdsInSpecifier.push_back(SpecType); 1482 } 1483 } 1484 1485 // Reverse the list of template-ids in the scope specifier, so that we can 1486 // more easily match up the template-ids and the template parameter lists. 1487 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1488 1489 SourceLocation FirstTemplateLoc = DeclStartLoc; 1490 if (NumParamLists) 1491 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1492 1493 // Match the template-ids found in the specifier to the template parameter 1494 // lists. 1495 unsigned ParamIdx = 0, TemplateIdx = 0; 1496 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1497 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1498 const TemplateSpecializationType *TemplateId 1499 = TemplateIdsInSpecifier[TemplateIdx]; 1500 bool DependentTemplateId = TemplateId->isDependentType(); 1501 1502 // In friend declarations we can have template-ids which don't 1503 // depend on the corresponding template parameter lists. But 1504 // assume that empty parameter lists are supposed to match this 1505 // template-id. 1506 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1507 if (!DependentTemplateId || 1508 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1509 continue; 1510 } 1511 1512 if (ParamIdx >= NumParamLists) { 1513 // We have a template-id without a corresponding template parameter 1514 // list. 1515 1516 // ...which is fine if this is a friend declaration. 1517 if (IsFriend) { 1518 IsExplicitSpecialization = true; 1519 break; 1520 } 1521 1522 if (DependentTemplateId) { 1523 // FIXME: the location information here isn't great. 1524 Diag(SS.getRange().getBegin(), 1525 diag::err_template_spec_needs_template_parameters) 1526 << QualType(TemplateId, 0) 1527 << SS.getRange(); 1528 Invalid = true; 1529 } else { 1530 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1531 << SS.getRange() 1532 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1533 IsExplicitSpecialization = true; 1534 } 1535 return 0; 1536 } 1537 1538 // Check the template parameter list against its corresponding template-id. 1539 if (DependentTemplateId) { 1540 TemplateParameterList *ExpectedTemplateParams = 0; 1541 1542 // Are there cases in (e.g.) friends where this won't match? 1543 if (const InjectedClassNameType *Injected 1544 = TemplateId->getAs<InjectedClassNameType>()) { 1545 CXXRecordDecl *Record = Injected->getDecl(); 1546 if (ClassTemplatePartialSpecializationDecl *Partial = 1547 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1548 ExpectedTemplateParams = Partial->getTemplateParameters(); 1549 else 1550 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1551 ->getTemplateParameters(); 1552 } 1553 1554 if (ExpectedTemplateParams) 1555 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1556 ExpectedTemplateParams, 1557 true, TPL_TemplateMatch); 1558 1559 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1560 TPC_ClassTemplateMember); 1561 } else if (ParamLists[ParamIdx]->size() > 0) 1562 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1563 diag::err_template_param_list_matches_nontemplate) 1564 << TemplateId 1565 << ParamLists[ParamIdx]->getSourceRange(); 1566 else 1567 IsExplicitSpecialization = true; 1568 1569 ++ParamIdx; 1570 } 1571 1572 // If there were at least as many template-ids as there were template 1573 // parameter lists, then there are no template parameter lists remaining for 1574 // the declaration itself. 1575 if (ParamIdx >= NumParamLists) 1576 return 0; 1577 1578 // If there were too many template parameter lists, complain about that now. 1579 if (ParamIdx != NumParamLists - 1) { 1580 while (ParamIdx < NumParamLists - 1) { 1581 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1582 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1583 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1584 : diag::err_template_spec_extra_headers) 1585 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1586 ParamLists[ParamIdx]->getRAngleLoc()); 1587 1588 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1589 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1590 diag::note_explicit_template_spec_does_not_need_header) 1591 << ExplicitSpecializationsInSpecifier.back(); 1592 ExplicitSpecializationsInSpecifier.pop_back(); 1593 } 1594 1595 // We have a template parameter list with no corresponding scope, which 1596 // means that the resulting template declaration can't be instantiated 1597 // properly (we'll end up with dependent nodes when we shouldn't). 1598 if (!isExplicitSpecHeader) 1599 Invalid = true; 1600 1601 ++ParamIdx; 1602 } 1603 } 1604 1605 // Return the last template parameter list, which corresponds to the 1606 // entity being declared. 1607 return ParamLists[NumParamLists - 1]; 1608} 1609 1610QualType Sema::CheckTemplateIdType(TemplateName Name, 1611 SourceLocation TemplateLoc, 1612 const TemplateArgumentListInfo &TemplateArgs) { 1613 TemplateDecl *Template = Name.getAsTemplateDecl(); 1614 if (!Template) { 1615 // The template name does not resolve to a template, so we just 1616 // build a dependent template-id type. 1617 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1618 } 1619 1620 // Check that the template argument list is well-formed for this 1621 // template. 1622 llvm::SmallVector<TemplateArgument, 4> Converted; 1623 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1624 false, Converted)) 1625 return QualType(); 1626 1627 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1628 "Converted template argument list is too short!"); 1629 1630 QualType CanonType; 1631 1632 if (Name.isDependent() || 1633 TemplateSpecializationType::anyDependentTemplateArguments( 1634 TemplateArgs)) { 1635 // This class template specialization is a dependent 1636 // type. Therefore, its canonical type is another class template 1637 // specialization type that contains all of the converted 1638 // arguments in canonical form. This ensures that, e.g., A<T> and 1639 // A<T, T> have identical types when A is declared as: 1640 // 1641 // template<typename T, typename U = T> struct A; 1642 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1643 CanonType = Context.getTemplateSpecializationType(CanonName, 1644 Converted.data(), 1645 Converted.size()); 1646 1647 // FIXME: CanonType is not actually the canonical type, and unfortunately 1648 // it is a TemplateSpecializationType that we will never use again. 1649 // In the future, we need to teach getTemplateSpecializationType to only 1650 // build the canonical type and return that to us. 1651 CanonType = Context.getCanonicalType(CanonType); 1652 1653 // This might work out to be a current instantiation, in which 1654 // case the canonical type needs to be the InjectedClassNameType. 1655 // 1656 // TODO: in theory this could be a simple hashtable lookup; most 1657 // changes to CurContext don't change the set of current 1658 // instantiations. 1659 if (isa<ClassTemplateDecl>(Template)) { 1660 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1661 // If we get out to a namespace, we're done. 1662 if (Ctx->isFileContext()) break; 1663 1664 // If this isn't a record, keep looking. 1665 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1666 if (!Record) continue; 1667 1668 // Look for one of the two cases with InjectedClassNameTypes 1669 // and check whether it's the same template. 1670 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1671 !Record->getDescribedClassTemplate()) 1672 continue; 1673 1674 // Fetch the injected class name type and check whether its 1675 // injected type is equal to the type we just built. 1676 QualType ICNT = Context.getTypeDeclType(Record); 1677 QualType Injected = cast<InjectedClassNameType>(ICNT) 1678 ->getInjectedSpecializationType(); 1679 1680 if (CanonType != Injected->getCanonicalTypeInternal()) 1681 continue; 1682 1683 // If so, the canonical type of this TST is the injected 1684 // class name type of the record we just found. 1685 assert(ICNT.isCanonical()); 1686 CanonType = ICNT; 1687 break; 1688 } 1689 } 1690 } else if (ClassTemplateDecl *ClassTemplate 1691 = dyn_cast<ClassTemplateDecl>(Template)) { 1692 // Find the class template specialization declaration that 1693 // corresponds to these arguments. 1694 void *InsertPos = 0; 1695 ClassTemplateSpecializationDecl *Decl 1696 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1697 InsertPos); 1698 if (!Decl) { 1699 // This is the first time we have referenced this class template 1700 // specialization. Create the canonical declaration and add it to 1701 // the set of specializations. 1702 Decl = ClassTemplateSpecializationDecl::Create(Context, 1703 ClassTemplate->getTemplatedDecl()->getTagKind(), 1704 ClassTemplate->getDeclContext(), 1705 ClassTemplate->getLocation(), 1706 ClassTemplate, 1707 Converted.data(), 1708 Converted.size(), 0); 1709 ClassTemplate->AddSpecialization(Decl, InsertPos); 1710 Decl->setLexicalDeclContext(CurContext); 1711 } 1712 1713 CanonType = Context.getTypeDeclType(Decl); 1714 assert(isa<RecordType>(CanonType) && 1715 "type of non-dependent specialization is not a RecordType"); 1716 } 1717 1718 // Build the fully-sugared type for this class template 1719 // specialization, which refers back to the class template 1720 // specialization we created or found. 1721 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1722} 1723 1724TypeResult 1725Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1726 SourceLocation LAngleLoc, 1727 ASTTemplateArgsPtr TemplateArgsIn, 1728 SourceLocation RAngleLoc) { 1729 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1730 1731 // Translate the parser's template argument list in our AST format. 1732 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1733 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1734 1735 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1736 TemplateArgsIn.release(); 1737 1738 if (Result.isNull()) 1739 return true; 1740 1741 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1742 TemplateSpecializationTypeLoc TL 1743 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1744 TL.setTemplateNameLoc(TemplateLoc); 1745 TL.setLAngleLoc(LAngleLoc); 1746 TL.setRAngleLoc(RAngleLoc); 1747 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1748 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1749 1750 return CreateParsedType(Result, DI); 1751} 1752 1753TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1754 TypeResult TypeResult, 1755 TagUseKind TUK, 1756 TypeSpecifierType TagSpec, 1757 SourceLocation TagLoc) { 1758 if (TypeResult.isInvalid()) 1759 return ::TypeResult(); 1760 1761 TypeSourceInfo *DI; 1762 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1763 1764 // Verify the tag specifier. 1765 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1766 1767 if (const RecordType *RT = Type->getAs<RecordType>()) { 1768 RecordDecl *D = RT->getDecl(); 1769 1770 IdentifierInfo *Id = D->getIdentifier(); 1771 assert(Id && "templated class must have an identifier"); 1772 1773 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1774 Diag(TagLoc, diag::err_use_with_wrong_tag) 1775 << Type 1776 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1777 Diag(D->getLocation(), diag::note_previous_use); 1778 } 1779 } 1780 1781 ElaboratedTypeKeyword Keyword 1782 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1783 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1784 1785 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1786 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1787 TL.setKeywordLoc(TagLoc); 1788 TL.setQualifierRange(SS.getRange()); 1789 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1790 return CreateParsedType(ElabType, ElabDI); 1791} 1792 1793ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1794 LookupResult &R, 1795 bool RequiresADL, 1796 const TemplateArgumentListInfo &TemplateArgs) { 1797 // FIXME: Can we do any checking at this point? I guess we could check the 1798 // template arguments that we have against the template name, if the template 1799 // name refers to a single template. That's not a terribly common case, 1800 // though. 1801 1802 // These should be filtered out by our callers. 1803 assert(!R.empty() && "empty lookup results when building templateid"); 1804 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1805 1806 NestedNameSpecifier *Qualifier = 0; 1807 SourceRange QualifierRange; 1808 if (SS.isSet()) { 1809 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1810 QualifierRange = SS.getRange(); 1811 } 1812 1813 // We don't want lookup warnings at this point. 1814 R.suppressDiagnostics(); 1815 1816 UnresolvedLookupExpr *ULE 1817 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 1818 Qualifier, QualifierRange, 1819 R.getLookupNameInfo(), 1820 RequiresADL, TemplateArgs, 1821 R.begin(), R.end()); 1822 1823 return Owned(ULE); 1824} 1825 1826// We actually only call this from template instantiation. 1827ExprResult 1828Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1829 const DeclarationNameInfo &NameInfo, 1830 const TemplateArgumentListInfo &TemplateArgs) { 1831 DeclContext *DC; 1832 if (!(DC = computeDeclContext(SS, false)) || 1833 DC->isDependentContext() || 1834 RequireCompleteDeclContext(SS, DC)) 1835 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1836 1837 bool MemberOfUnknownSpecialization; 1838 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1839 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1840 MemberOfUnknownSpecialization); 1841 1842 if (R.isAmbiguous()) 1843 return ExprError(); 1844 1845 if (R.empty()) { 1846 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1847 << NameInfo.getName() << SS.getRange(); 1848 return ExprError(); 1849 } 1850 1851 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1852 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1853 << (NestedNameSpecifier*) SS.getScopeRep() 1854 << NameInfo.getName() << SS.getRange(); 1855 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1856 return ExprError(); 1857 } 1858 1859 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1860} 1861 1862/// \brief Form a dependent template name. 1863/// 1864/// This action forms a dependent template name given the template 1865/// name and its (presumably dependent) scope specifier. For 1866/// example, given "MetaFun::template apply", the scope specifier \p 1867/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1868/// of the "template" keyword, and "apply" is the \p Name. 1869TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1870 SourceLocation TemplateKWLoc, 1871 CXXScopeSpec &SS, 1872 UnqualifiedId &Name, 1873 ParsedType ObjectType, 1874 bool EnteringContext, 1875 TemplateTy &Result) { 1876 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1877 !getLangOptions().CPlusPlus0x) 1878 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1879 << FixItHint::CreateRemoval(TemplateKWLoc); 1880 1881 DeclContext *LookupCtx = 0; 1882 if (SS.isSet()) 1883 LookupCtx = computeDeclContext(SS, EnteringContext); 1884 if (!LookupCtx && ObjectType) 1885 LookupCtx = computeDeclContext(ObjectType.get()); 1886 if (LookupCtx) { 1887 // C++0x [temp.names]p5: 1888 // If a name prefixed by the keyword template is not the name of 1889 // a template, the program is ill-formed. [Note: the keyword 1890 // template may not be applied to non-template members of class 1891 // templates. -end note ] [ Note: as is the case with the 1892 // typename prefix, the template prefix is allowed in cases 1893 // where it is not strictly necessary; i.e., when the 1894 // nested-name-specifier or the expression on the left of the -> 1895 // or . is not dependent on a template-parameter, or the use 1896 // does not appear in the scope of a template. -end note] 1897 // 1898 // Note: C++03 was more strict here, because it banned the use of 1899 // the "template" keyword prior to a template-name that was not a 1900 // dependent name. C++ DR468 relaxed this requirement (the 1901 // "template" keyword is now permitted). We follow the C++0x 1902 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1903 bool MemberOfUnknownSpecialization; 1904 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1905 ObjectType, EnteringContext, Result, 1906 MemberOfUnknownSpecialization); 1907 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1908 isa<CXXRecordDecl>(LookupCtx) && 1909 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1910 // This is a dependent template. Handle it below. 1911 } else if (TNK == TNK_Non_template) { 1912 Diag(Name.getSourceRange().getBegin(), 1913 diag::err_template_kw_refers_to_non_template) 1914 << GetNameFromUnqualifiedId(Name).getName() 1915 << Name.getSourceRange() 1916 << TemplateKWLoc; 1917 return TNK_Non_template; 1918 } else { 1919 // We found something; return it. 1920 return TNK; 1921 } 1922 } 1923 1924 NestedNameSpecifier *Qualifier 1925 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1926 1927 switch (Name.getKind()) { 1928 case UnqualifiedId::IK_Identifier: 1929 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1930 Name.Identifier)); 1931 return TNK_Dependent_template_name; 1932 1933 case UnqualifiedId::IK_OperatorFunctionId: 1934 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1935 Name.OperatorFunctionId.Operator)); 1936 return TNK_Dependent_template_name; 1937 1938 case UnqualifiedId::IK_LiteralOperatorId: 1939 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1940 1941 default: 1942 break; 1943 } 1944 1945 Diag(Name.getSourceRange().getBegin(), 1946 diag::err_template_kw_refers_to_non_template) 1947 << GetNameFromUnqualifiedId(Name).getName() 1948 << Name.getSourceRange() 1949 << TemplateKWLoc; 1950 return TNK_Non_template; 1951} 1952 1953bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1954 const TemplateArgumentLoc &AL, 1955 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1956 const TemplateArgument &Arg = AL.getArgument(); 1957 1958 // Check template type parameter. 1959 switch(Arg.getKind()) { 1960 case TemplateArgument::Type: 1961 // C++ [temp.arg.type]p1: 1962 // A template-argument for a template-parameter which is a 1963 // type shall be a type-id. 1964 break; 1965 case TemplateArgument::Template: { 1966 // We have a template type parameter but the template argument 1967 // is a template without any arguments. 1968 SourceRange SR = AL.getSourceRange(); 1969 TemplateName Name = Arg.getAsTemplate(); 1970 Diag(SR.getBegin(), diag::err_template_missing_args) 1971 << Name << SR; 1972 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1973 Diag(Decl->getLocation(), diag::note_template_decl_here); 1974 1975 return true; 1976 } 1977 default: { 1978 // We have a template type parameter but the template argument 1979 // is not a type. 1980 SourceRange SR = AL.getSourceRange(); 1981 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1982 Diag(Param->getLocation(), diag::note_template_param_here); 1983 1984 return true; 1985 } 1986 } 1987 1988 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1989 return true; 1990 1991 // Add the converted template type argument. 1992 Converted.push_back( 1993 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1994 return false; 1995} 1996 1997/// \brief Substitute template arguments into the default template argument for 1998/// the given template type parameter. 1999/// 2000/// \param SemaRef the semantic analysis object for which we are performing 2001/// the substitution. 2002/// 2003/// \param Template the template that we are synthesizing template arguments 2004/// for. 2005/// 2006/// \param TemplateLoc the location of the template name that started the 2007/// template-id we are checking. 2008/// 2009/// \param RAngleLoc the location of the right angle bracket ('>') that 2010/// terminates the template-id. 2011/// 2012/// \param Param the template template parameter whose default we are 2013/// substituting into. 2014/// 2015/// \param Converted the list of template arguments provided for template 2016/// parameters that precede \p Param in the template parameter list. 2017/// 2018/// \returns the substituted template argument, or NULL if an error occurred. 2019static TypeSourceInfo * 2020SubstDefaultTemplateArgument(Sema &SemaRef, 2021 TemplateDecl *Template, 2022 SourceLocation TemplateLoc, 2023 SourceLocation RAngleLoc, 2024 TemplateTypeParmDecl *Param, 2025 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2026 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2027 2028 // If the argument type is dependent, instantiate it now based 2029 // on the previously-computed template arguments. 2030 if (ArgType->getType()->isDependentType()) { 2031 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2032 Converted.data(), Converted.size()); 2033 2034 MultiLevelTemplateArgumentList AllTemplateArgs 2035 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2036 2037 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2038 Template, Converted.data(), 2039 Converted.size(), 2040 SourceRange(TemplateLoc, RAngleLoc)); 2041 2042 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2043 Param->getDefaultArgumentLoc(), 2044 Param->getDeclName()); 2045 } 2046 2047 return ArgType; 2048} 2049 2050/// \brief Substitute template arguments into the default template argument for 2051/// the given non-type template parameter. 2052/// 2053/// \param SemaRef the semantic analysis object for which we are performing 2054/// the substitution. 2055/// 2056/// \param Template the template that we are synthesizing template arguments 2057/// for. 2058/// 2059/// \param TemplateLoc the location of the template name that started the 2060/// template-id we are checking. 2061/// 2062/// \param RAngleLoc the location of the right angle bracket ('>') that 2063/// terminates the template-id. 2064/// 2065/// \param Param the non-type template parameter whose default we are 2066/// substituting into. 2067/// 2068/// \param Converted the list of template arguments provided for template 2069/// parameters that precede \p Param in the template parameter list. 2070/// 2071/// \returns the substituted template argument, or NULL if an error occurred. 2072static ExprResult 2073SubstDefaultTemplateArgument(Sema &SemaRef, 2074 TemplateDecl *Template, 2075 SourceLocation TemplateLoc, 2076 SourceLocation RAngleLoc, 2077 NonTypeTemplateParmDecl *Param, 2078 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2079 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2080 Converted.data(), Converted.size()); 2081 2082 MultiLevelTemplateArgumentList AllTemplateArgs 2083 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2084 2085 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2086 Template, Converted.data(), 2087 Converted.size(), 2088 SourceRange(TemplateLoc, RAngleLoc)); 2089 2090 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2091} 2092 2093/// \brief Substitute template arguments into the default template argument for 2094/// the given template template parameter. 2095/// 2096/// \param SemaRef the semantic analysis object for which we are performing 2097/// the substitution. 2098/// 2099/// \param Template the template that we are synthesizing template arguments 2100/// for. 2101/// 2102/// \param TemplateLoc the location of the template name that started the 2103/// template-id we are checking. 2104/// 2105/// \param RAngleLoc the location of the right angle bracket ('>') that 2106/// terminates the template-id. 2107/// 2108/// \param Param the template template parameter whose default we are 2109/// substituting into. 2110/// 2111/// \param Converted the list of template arguments provided for template 2112/// parameters that precede \p Param in the template parameter list. 2113/// 2114/// \returns the substituted template argument, or NULL if an error occurred. 2115static TemplateName 2116SubstDefaultTemplateArgument(Sema &SemaRef, 2117 TemplateDecl *Template, 2118 SourceLocation TemplateLoc, 2119 SourceLocation RAngleLoc, 2120 TemplateTemplateParmDecl *Param, 2121 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2122 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2123 Converted.data(), Converted.size()); 2124 2125 MultiLevelTemplateArgumentList AllTemplateArgs 2126 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2127 2128 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2129 Template, Converted.data(), 2130 Converted.size(), 2131 SourceRange(TemplateLoc, RAngleLoc)); 2132 2133 return SemaRef.SubstTemplateName( 2134 Param->getDefaultArgument().getArgument().getAsTemplate(), 2135 Param->getDefaultArgument().getTemplateNameLoc(), 2136 AllTemplateArgs); 2137} 2138 2139/// \brief If the given template parameter has a default template 2140/// argument, substitute into that default template argument and 2141/// return the corresponding template argument. 2142TemplateArgumentLoc 2143Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2144 SourceLocation TemplateLoc, 2145 SourceLocation RAngleLoc, 2146 Decl *Param, 2147 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2148 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2149 if (!TypeParm->hasDefaultArgument()) 2150 return TemplateArgumentLoc(); 2151 2152 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2153 TemplateLoc, 2154 RAngleLoc, 2155 TypeParm, 2156 Converted); 2157 if (DI) 2158 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2159 2160 return TemplateArgumentLoc(); 2161 } 2162 2163 if (NonTypeTemplateParmDecl *NonTypeParm 2164 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2165 if (!NonTypeParm->hasDefaultArgument()) 2166 return TemplateArgumentLoc(); 2167 2168 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2169 TemplateLoc, 2170 RAngleLoc, 2171 NonTypeParm, 2172 Converted); 2173 if (Arg.isInvalid()) 2174 return TemplateArgumentLoc(); 2175 2176 Expr *ArgE = Arg.takeAs<Expr>(); 2177 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2178 } 2179 2180 TemplateTemplateParmDecl *TempTempParm 2181 = cast<TemplateTemplateParmDecl>(Param); 2182 if (!TempTempParm->hasDefaultArgument()) 2183 return TemplateArgumentLoc(); 2184 2185 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2186 TemplateLoc, 2187 RAngleLoc, 2188 TempTempParm, 2189 Converted); 2190 if (TName.isNull()) 2191 return TemplateArgumentLoc(); 2192 2193 return TemplateArgumentLoc(TemplateArgument(TName), 2194 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2195 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2196} 2197 2198/// \brief Check that the given template argument corresponds to the given 2199/// template parameter. 2200bool Sema::CheckTemplateArgument(NamedDecl *Param, 2201 const TemplateArgumentLoc &Arg, 2202 NamedDecl *Template, 2203 SourceLocation TemplateLoc, 2204 SourceLocation RAngleLoc, 2205 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2206 CheckTemplateArgumentKind CTAK) { 2207 // Check template type parameters. 2208 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2209 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2210 2211 // Check non-type template parameters. 2212 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2213 // Do substitution on the type of the non-type template parameter 2214 // with the template arguments we've seen thus far. But if the 2215 // template has a dependent context then we cannot substitute yet. 2216 QualType NTTPType = NTTP->getType(); 2217 if (NTTPType->isDependentType() && 2218 !isa<TemplateTemplateParmDecl>(Template) && 2219 !Template->getDeclContext()->isDependentContext()) { 2220 // Do substitution on the type of the non-type template parameter. 2221 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2222 NTTP, Converted.data(), Converted.size(), 2223 SourceRange(TemplateLoc, RAngleLoc)); 2224 2225 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2226 Converted.data(), Converted.size()); 2227 NTTPType = SubstType(NTTPType, 2228 MultiLevelTemplateArgumentList(TemplateArgs), 2229 NTTP->getLocation(), 2230 NTTP->getDeclName()); 2231 // If that worked, check the non-type template parameter type 2232 // for validity. 2233 if (!NTTPType.isNull()) 2234 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2235 NTTP->getLocation()); 2236 if (NTTPType.isNull()) 2237 return true; 2238 } 2239 2240 switch (Arg.getArgument().getKind()) { 2241 case TemplateArgument::Null: 2242 assert(false && "Should never see a NULL template argument here"); 2243 return true; 2244 2245 case TemplateArgument::Expression: { 2246 Expr *E = Arg.getArgument().getAsExpr(); 2247 TemplateArgument Result; 2248 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2249 return true; 2250 2251 Converted.push_back(Result); 2252 break; 2253 } 2254 2255 case TemplateArgument::Declaration: 2256 case TemplateArgument::Integral: 2257 // We've already checked this template argument, so just copy 2258 // it to the list of converted arguments. 2259 Converted.push_back(Arg.getArgument()); 2260 break; 2261 2262 case TemplateArgument::Template: 2263 case TemplateArgument::TemplateExpansion: 2264 // We were given a template template argument. It may not be ill-formed; 2265 // see below. 2266 if (DependentTemplateName *DTN 2267 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2268 .getAsDependentTemplateName()) { 2269 // We have a template argument such as \c T::template X, which we 2270 // parsed as a template template argument. However, since we now 2271 // know that we need a non-type template argument, convert this 2272 // template name into an expression. 2273 2274 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2275 Arg.getTemplateNameLoc()); 2276 2277 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2278 DTN->getQualifier(), 2279 Arg.getTemplateQualifierRange(), 2280 NameInfo); 2281 2282 // If we parsed the template argument as a pack expansion, create a 2283 // pack expansion expression. 2284 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2285 ExprResult Expansion = ActOnPackExpansion(E, 2286 Arg.getTemplateEllipsisLoc()); 2287 if (Expansion.isInvalid()) 2288 return true; 2289 2290 E = Expansion.get(); 2291 } 2292 2293 TemplateArgument Result; 2294 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2295 return true; 2296 2297 Converted.push_back(Result); 2298 break; 2299 } 2300 2301 // We have a template argument that actually does refer to a class 2302 // template, template alias, or template template parameter, and 2303 // therefore cannot be a non-type template argument. 2304 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2305 << Arg.getSourceRange(); 2306 2307 Diag(Param->getLocation(), diag::note_template_param_here); 2308 return true; 2309 2310 case TemplateArgument::Type: { 2311 // We have a non-type template parameter but the template 2312 // argument is a type. 2313 2314 // C++ [temp.arg]p2: 2315 // In a template-argument, an ambiguity between a type-id and 2316 // an expression is resolved to a type-id, regardless of the 2317 // form of the corresponding template-parameter. 2318 // 2319 // We warn specifically about this case, since it can be rather 2320 // confusing for users. 2321 QualType T = Arg.getArgument().getAsType(); 2322 SourceRange SR = Arg.getSourceRange(); 2323 if (T->isFunctionType()) 2324 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2325 else 2326 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2327 Diag(Param->getLocation(), diag::note_template_param_here); 2328 return true; 2329 } 2330 2331 case TemplateArgument::Pack: 2332 llvm_unreachable("Caller must expand template argument packs"); 2333 break; 2334 } 2335 2336 return false; 2337 } 2338 2339 2340 // Check template template parameters. 2341 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2342 2343 // Substitute into the template parameter list of the template 2344 // template parameter, since previously-supplied template arguments 2345 // may appear within the template template parameter. 2346 { 2347 // Set up a template instantiation context. 2348 LocalInstantiationScope Scope(*this); 2349 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2350 TempParm, Converted.data(), Converted.size(), 2351 SourceRange(TemplateLoc, RAngleLoc)); 2352 2353 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2354 Converted.data(), Converted.size()); 2355 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2356 SubstDecl(TempParm, CurContext, 2357 MultiLevelTemplateArgumentList(TemplateArgs))); 2358 if (!TempParm) 2359 return true; 2360 } 2361 2362 switch (Arg.getArgument().getKind()) { 2363 case TemplateArgument::Null: 2364 assert(false && "Should never see a NULL template argument here"); 2365 return true; 2366 2367 case TemplateArgument::Template: 2368 case TemplateArgument::TemplateExpansion: 2369 if (CheckTemplateArgument(TempParm, Arg)) 2370 return true; 2371 2372 Converted.push_back(Arg.getArgument()); 2373 break; 2374 2375 case TemplateArgument::Expression: 2376 case TemplateArgument::Type: 2377 // We have a template template parameter but the template 2378 // argument does not refer to a template. 2379 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2380 return true; 2381 2382 case TemplateArgument::Declaration: 2383 llvm_unreachable( 2384 "Declaration argument with template template parameter"); 2385 break; 2386 case TemplateArgument::Integral: 2387 llvm_unreachable( 2388 "Integral argument with template template parameter"); 2389 break; 2390 2391 case TemplateArgument::Pack: 2392 llvm_unreachable("Caller must expand template argument packs"); 2393 break; 2394 } 2395 2396 return false; 2397} 2398 2399/// \brief Check that the given template argument list is well-formed 2400/// for specializing the given template. 2401bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2402 SourceLocation TemplateLoc, 2403 const TemplateArgumentListInfo &TemplateArgs, 2404 bool PartialTemplateArgs, 2405 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2406 TemplateParameterList *Params = Template->getTemplateParameters(); 2407 unsigned NumParams = Params->size(); 2408 unsigned NumArgs = TemplateArgs.size(); 2409 bool Invalid = false; 2410 2411 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2412 2413 bool HasParameterPack = 2414 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2415 2416 if ((NumArgs > NumParams && !HasParameterPack) || 2417 (NumArgs < Params->getMinRequiredArguments() && 2418 !PartialTemplateArgs)) { 2419 // FIXME: point at either the first arg beyond what we can handle, 2420 // or the '>', depending on whether we have too many or too few 2421 // arguments. 2422 SourceRange Range; 2423 if (NumArgs > NumParams) 2424 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2425 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2426 << (NumArgs > NumParams) 2427 << (isa<ClassTemplateDecl>(Template)? 0 : 2428 isa<FunctionTemplateDecl>(Template)? 1 : 2429 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2430 << Template << Range; 2431 Diag(Template->getLocation(), diag::note_template_decl_here) 2432 << Params->getSourceRange(); 2433 Invalid = true; 2434 } 2435 2436 // C++ [temp.arg]p1: 2437 // [...] The type and form of each template-argument specified in 2438 // a template-id shall match the type and form specified for the 2439 // corresponding parameter declared by the template in its 2440 // template-parameter-list. 2441 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2442 TemplateParameterList::iterator Param = Params->begin(), 2443 ParamEnd = Params->end(); 2444 unsigned ArgIdx = 0; 2445 while (Param != ParamEnd) { 2446 if (ArgIdx > NumArgs && PartialTemplateArgs) 2447 break; 2448 2449 if (ArgIdx < NumArgs) { 2450 // Check the template argument we were given. 2451 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2452 TemplateLoc, RAngleLoc, Converted)) 2453 return true; 2454 2455 if ((*Param)->isTemplateParameterPack()) { 2456 // The template parameter was a template parameter pack, so take the 2457 // deduced argument and place it on the argument pack. Note that we 2458 // stay on the same template parameter so that we can deduce more 2459 // arguments. 2460 ArgumentPack.push_back(Converted.back()); 2461 Converted.pop_back(); 2462 } else { 2463 // Move to the next template parameter. 2464 ++Param; 2465 } 2466 ++ArgIdx; 2467 continue; 2468 } 2469 2470 // If we have a template parameter pack with no more corresponding 2471 // arguments, just break out now and we'll fill in the argument pack below. 2472 if ((*Param)->isTemplateParameterPack()) 2473 break; 2474 2475 // We have a default template argument that we will use. 2476 TemplateArgumentLoc Arg; 2477 2478 // Retrieve the default template argument from the template 2479 // parameter. For each kind of template parameter, we substitute the 2480 // template arguments provided thus far and any "outer" template arguments 2481 // (when the template parameter was part of a nested template) into 2482 // the default argument. 2483 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2484 if (!TTP->hasDefaultArgument()) { 2485 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2486 break; 2487 } 2488 2489 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2490 Template, 2491 TemplateLoc, 2492 RAngleLoc, 2493 TTP, 2494 Converted); 2495 if (!ArgType) 2496 return true; 2497 2498 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2499 ArgType); 2500 } else if (NonTypeTemplateParmDecl *NTTP 2501 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2502 if (!NTTP->hasDefaultArgument()) { 2503 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2504 break; 2505 } 2506 2507 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2508 TemplateLoc, 2509 RAngleLoc, 2510 NTTP, 2511 Converted); 2512 if (E.isInvalid()) 2513 return true; 2514 2515 Expr *Ex = E.takeAs<Expr>(); 2516 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2517 } else { 2518 TemplateTemplateParmDecl *TempParm 2519 = cast<TemplateTemplateParmDecl>(*Param); 2520 2521 if (!TempParm->hasDefaultArgument()) { 2522 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2523 break; 2524 } 2525 2526 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2527 TemplateLoc, 2528 RAngleLoc, 2529 TempParm, 2530 Converted); 2531 if (Name.isNull()) 2532 return true; 2533 2534 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2535 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2536 TempParm->getDefaultArgument().getTemplateNameLoc()); 2537 } 2538 2539 // Introduce an instantiation record that describes where we are using 2540 // the default template argument. 2541 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2542 Converted.data(), Converted.size(), 2543 SourceRange(TemplateLoc, RAngleLoc)); 2544 2545 // Check the default template argument. 2546 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2547 RAngleLoc, Converted)) 2548 return true; 2549 2550 // Move to the next template parameter and argument. 2551 ++Param; 2552 ++ArgIdx; 2553 } 2554 2555 // Form argument packs for each of the parameter packs remaining. 2556 while (Param != ParamEnd) { 2557 // If we're checking a partial list of template arguments, don't fill 2558 // in arguments for non-template parameter packs. 2559 2560 if ((*Param)->isTemplateParameterPack()) { 2561 if (PartialTemplateArgs && ArgumentPack.empty()) { 2562 Converted.push_back(TemplateArgument()); 2563 } else if (ArgumentPack.empty()) 2564 Converted.push_back(TemplateArgument(0, 0)); 2565 else { 2566 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2567 ArgumentPack.data(), 2568 ArgumentPack.size())); 2569 ArgumentPack.clear(); 2570 } 2571 } 2572 2573 ++Param; 2574 } 2575 2576 return Invalid; 2577} 2578 2579namespace { 2580 class UnnamedLocalNoLinkageFinder 2581 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2582 { 2583 Sema &S; 2584 SourceRange SR; 2585 2586 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2587 2588 public: 2589 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2590 2591 bool Visit(QualType T) { 2592 return inherited::Visit(T.getTypePtr()); 2593 } 2594 2595#define TYPE(Class, Parent) \ 2596 bool Visit##Class##Type(const Class##Type *); 2597#define ABSTRACT_TYPE(Class, Parent) \ 2598 bool Visit##Class##Type(const Class##Type *) { return false; } 2599#define NON_CANONICAL_TYPE(Class, Parent) \ 2600 bool Visit##Class##Type(const Class##Type *) { return false; } 2601#include "clang/AST/TypeNodes.def" 2602 2603 bool VisitTagDecl(const TagDecl *Tag); 2604 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2605 }; 2606} 2607 2608bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2609 return false; 2610} 2611 2612bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2613 return Visit(T->getElementType()); 2614} 2615 2616bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2617 return Visit(T->getPointeeType()); 2618} 2619 2620bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2621 const BlockPointerType* T) { 2622 return Visit(T->getPointeeType()); 2623} 2624 2625bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2626 const LValueReferenceType* T) { 2627 return Visit(T->getPointeeType()); 2628} 2629 2630bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2631 const RValueReferenceType* T) { 2632 return Visit(T->getPointeeType()); 2633} 2634 2635bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2636 const MemberPointerType* T) { 2637 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2638} 2639 2640bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2641 const ConstantArrayType* T) { 2642 return Visit(T->getElementType()); 2643} 2644 2645bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2646 const IncompleteArrayType* T) { 2647 return Visit(T->getElementType()); 2648} 2649 2650bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2651 const VariableArrayType* T) { 2652 return Visit(T->getElementType()); 2653} 2654 2655bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2656 const DependentSizedArrayType* T) { 2657 return Visit(T->getElementType()); 2658} 2659 2660bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2661 const DependentSizedExtVectorType* T) { 2662 return Visit(T->getElementType()); 2663} 2664 2665bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2666 return Visit(T->getElementType()); 2667} 2668 2669bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2670 return Visit(T->getElementType()); 2671} 2672 2673bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2674 const FunctionProtoType* T) { 2675 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2676 AEnd = T->arg_type_end(); 2677 A != AEnd; ++A) { 2678 if (Visit(*A)) 2679 return true; 2680 } 2681 2682 return Visit(T->getResultType()); 2683} 2684 2685bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2686 const FunctionNoProtoType* T) { 2687 return Visit(T->getResultType()); 2688} 2689 2690bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2691 const UnresolvedUsingType*) { 2692 return false; 2693} 2694 2695bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2696 return false; 2697} 2698 2699bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2700 return Visit(T->getUnderlyingType()); 2701} 2702 2703bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2704 return false; 2705} 2706 2707bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2708 return VisitTagDecl(T->getDecl()); 2709} 2710 2711bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2712 return VisitTagDecl(T->getDecl()); 2713} 2714 2715bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2716 const TemplateTypeParmType*) { 2717 return false; 2718} 2719 2720bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 2721 const SubstTemplateTypeParmPackType *) { 2722 return false; 2723} 2724 2725bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2726 const TemplateSpecializationType*) { 2727 return false; 2728} 2729 2730bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2731 const InjectedClassNameType* T) { 2732 return VisitTagDecl(T->getDecl()); 2733} 2734 2735bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2736 const DependentNameType* T) { 2737 return VisitNestedNameSpecifier(T->getQualifier()); 2738} 2739 2740bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2741 const DependentTemplateSpecializationType* T) { 2742 return VisitNestedNameSpecifier(T->getQualifier()); 2743} 2744 2745bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 2746 const PackExpansionType* T) { 2747 return Visit(T->getPattern()); 2748} 2749 2750bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2751 return false; 2752} 2753 2754bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2755 const ObjCInterfaceType *) { 2756 return false; 2757} 2758 2759bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2760 const ObjCObjectPointerType *) { 2761 return false; 2762} 2763 2764bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2765 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2766 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2767 << S.Context.getTypeDeclType(Tag) << SR; 2768 return true; 2769 } 2770 2771 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2772 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2773 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2774 return true; 2775 } 2776 2777 return false; 2778} 2779 2780bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2781 NestedNameSpecifier *NNS) { 2782 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2783 return true; 2784 2785 switch (NNS->getKind()) { 2786 case NestedNameSpecifier::Identifier: 2787 case NestedNameSpecifier::Namespace: 2788 case NestedNameSpecifier::Global: 2789 return false; 2790 2791 case NestedNameSpecifier::TypeSpec: 2792 case NestedNameSpecifier::TypeSpecWithTemplate: 2793 return Visit(QualType(NNS->getAsType(), 0)); 2794 } 2795 return false; 2796} 2797 2798 2799/// \brief Check a template argument against its corresponding 2800/// template type parameter. 2801/// 2802/// This routine implements the semantics of C++ [temp.arg.type]. It 2803/// returns true if an error occurred, and false otherwise. 2804bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2805 TypeSourceInfo *ArgInfo) { 2806 assert(ArgInfo && "invalid TypeSourceInfo"); 2807 QualType Arg = ArgInfo->getType(); 2808 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2809 2810 if (Arg->isVariablyModifiedType()) { 2811 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2812 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2813 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2814 } 2815 2816 // C++03 [temp.arg.type]p2: 2817 // A local type, a type with no linkage, an unnamed type or a type 2818 // compounded from any of these types shall not be used as a 2819 // template-argument for a template type-parameter. 2820 // 2821 // C++0x allows these, and even in C++03 we allow them as an extension with 2822 // a warning. 2823 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2824 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2825 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2826 } 2827 2828 return false; 2829} 2830 2831/// \brief Checks whether the given template argument is the address 2832/// of an object or function according to C++ [temp.arg.nontype]p1. 2833static bool 2834CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2835 NonTypeTemplateParmDecl *Param, 2836 QualType ParamType, 2837 Expr *ArgIn, 2838 TemplateArgument &Converted) { 2839 bool Invalid = false; 2840 Expr *Arg = ArgIn; 2841 QualType ArgType = Arg->getType(); 2842 2843 // See through any implicit casts we added to fix the type. 2844 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2845 Arg = Cast->getSubExpr(); 2846 2847 // C++ [temp.arg.nontype]p1: 2848 // 2849 // A template-argument for a non-type, non-template 2850 // template-parameter shall be one of: [...] 2851 // 2852 // -- the address of an object or function with external 2853 // linkage, including function templates and function 2854 // template-ids but excluding non-static class members, 2855 // expressed as & id-expression where the & is optional if 2856 // the name refers to a function or array, or if the 2857 // corresponding template-parameter is a reference; or 2858 DeclRefExpr *DRE = 0; 2859 2860 // In C++98/03 mode, give an extension warning on any extra parentheses. 2861 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2862 bool ExtraParens = false; 2863 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2864 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2865 S.Diag(Arg->getSourceRange().getBegin(), 2866 diag::ext_template_arg_extra_parens) 2867 << Arg->getSourceRange(); 2868 ExtraParens = true; 2869 } 2870 2871 Arg = Parens->getSubExpr(); 2872 } 2873 2874 bool AddressTaken = false; 2875 SourceLocation AddrOpLoc; 2876 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2877 if (UnOp->getOpcode() == UO_AddrOf) { 2878 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2879 AddressTaken = true; 2880 AddrOpLoc = UnOp->getOperatorLoc(); 2881 } 2882 } else 2883 DRE = dyn_cast<DeclRefExpr>(Arg); 2884 2885 if (!DRE) { 2886 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2887 << Arg->getSourceRange(); 2888 S.Diag(Param->getLocation(), diag::note_template_param_here); 2889 return true; 2890 } 2891 2892 // Stop checking the precise nature of the argument if it is value dependent, 2893 // it should be checked when instantiated. 2894 if (Arg->isValueDependent()) { 2895 Converted = TemplateArgument(ArgIn); 2896 return false; 2897 } 2898 2899 if (!isa<ValueDecl>(DRE->getDecl())) { 2900 S.Diag(Arg->getSourceRange().getBegin(), 2901 diag::err_template_arg_not_object_or_func_form) 2902 << Arg->getSourceRange(); 2903 S.Diag(Param->getLocation(), diag::note_template_param_here); 2904 return true; 2905 } 2906 2907 NamedDecl *Entity = 0; 2908 2909 // Cannot refer to non-static data members 2910 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2911 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2912 << Field << Arg->getSourceRange(); 2913 S.Diag(Param->getLocation(), diag::note_template_param_here); 2914 return true; 2915 } 2916 2917 // Cannot refer to non-static member functions 2918 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2919 if (!Method->isStatic()) { 2920 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2921 << Method << Arg->getSourceRange(); 2922 S.Diag(Param->getLocation(), diag::note_template_param_here); 2923 return true; 2924 } 2925 2926 // Functions must have external linkage. 2927 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2928 if (!isExternalLinkage(Func->getLinkage())) { 2929 S.Diag(Arg->getSourceRange().getBegin(), 2930 diag::err_template_arg_function_not_extern) 2931 << Func << Arg->getSourceRange(); 2932 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2933 << true; 2934 return true; 2935 } 2936 2937 // Okay: we've named a function with external linkage. 2938 Entity = Func; 2939 2940 // If the template parameter has pointer type, the function decays. 2941 if (ParamType->isPointerType() && !AddressTaken) 2942 ArgType = S.Context.getPointerType(Func->getType()); 2943 else if (AddressTaken && ParamType->isReferenceType()) { 2944 // If we originally had an address-of operator, but the 2945 // parameter has reference type, complain and (if things look 2946 // like they will work) drop the address-of operator. 2947 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2948 ParamType.getNonReferenceType())) { 2949 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2950 << ParamType; 2951 S.Diag(Param->getLocation(), diag::note_template_param_here); 2952 return true; 2953 } 2954 2955 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2956 << ParamType 2957 << FixItHint::CreateRemoval(AddrOpLoc); 2958 S.Diag(Param->getLocation(), diag::note_template_param_here); 2959 2960 ArgType = Func->getType(); 2961 } 2962 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2963 if (!isExternalLinkage(Var->getLinkage())) { 2964 S.Diag(Arg->getSourceRange().getBegin(), 2965 diag::err_template_arg_object_not_extern) 2966 << Var << Arg->getSourceRange(); 2967 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2968 << true; 2969 return true; 2970 } 2971 2972 // A value of reference type is not an object. 2973 if (Var->getType()->isReferenceType()) { 2974 S.Diag(Arg->getSourceRange().getBegin(), 2975 diag::err_template_arg_reference_var) 2976 << Var->getType() << Arg->getSourceRange(); 2977 S.Diag(Param->getLocation(), diag::note_template_param_here); 2978 return true; 2979 } 2980 2981 // Okay: we've named an object with external linkage 2982 Entity = Var; 2983 2984 // If the template parameter has pointer type, we must have taken 2985 // the address of this object. 2986 if (ParamType->isReferenceType()) { 2987 if (AddressTaken) { 2988 // If we originally had an address-of operator, but the 2989 // parameter has reference type, complain and (if things look 2990 // like they will work) drop the address-of operator. 2991 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2992 ParamType.getNonReferenceType())) { 2993 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2994 << ParamType; 2995 S.Diag(Param->getLocation(), diag::note_template_param_here); 2996 return true; 2997 } 2998 2999 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3000 << ParamType 3001 << FixItHint::CreateRemoval(AddrOpLoc); 3002 S.Diag(Param->getLocation(), diag::note_template_param_here); 3003 3004 ArgType = Var->getType(); 3005 } 3006 } else if (!AddressTaken && ParamType->isPointerType()) { 3007 if (Var->getType()->isArrayType()) { 3008 // Array-to-pointer decay. 3009 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3010 } else { 3011 // If the template parameter has pointer type but the address of 3012 // this object was not taken, complain and (possibly) recover by 3013 // taking the address of the entity. 3014 ArgType = S.Context.getPointerType(Var->getType()); 3015 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3016 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3017 << ParamType; 3018 S.Diag(Param->getLocation(), diag::note_template_param_here); 3019 return true; 3020 } 3021 3022 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3023 << ParamType 3024 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3025 3026 S.Diag(Param->getLocation(), diag::note_template_param_here); 3027 } 3028 } 3029 } else { 3030 // We found something else, but we don't know specifically what it is. 3031 S.Diag(Arg->getSourceRange().getBegin(), 3032 diag::err_template_arg_not_object_or_func) 3033 << Arg->getSourceRange(); 3034 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3035 return true; 3036 } 3037 3038 if (ParamType->isPointerType() && 3039 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3040 S.IsQualificationConversion(ArgType, ParamType)) { 3041 // For pointer-to-object types, qualification conversions are 3042 // permitted. 3043 } else { 3044 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3045 if (!ParamRef->getPointeeType()->isFunctionType()) { 3046 // C++ [temp.arg.nontype]p5b3: 3047 // For a non-type template-parameter of type reference to 3048 // object, no conversions apply. The type referred to by the 3049 // reference may be more cv-qualified than the (otherwise 3050 // identical) type of the template- argument. The 3051 // template-parameter is bound directly to the 3052 // template-argument, which shall be an lvalue. 3053 3054 // FIXME: Other qualifiers? 3055 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3056 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3057 3058 if ((ParamQuals | ArgQuals) != ParamQuals) { 3059 S.Diag(Arg->getSourceRange().getBegin(), 3060 diag::err_template_arg_ref_bind_ignores_quals) 3061 << ParamType << Arg->getType() 3062 << Arg->getSourceRange(); 3063 S.Diag(Param->getLocation(), diag::note_template_param_here); 3064 return true; 3065 } 3066 } 3067 } 3068 3069 // At this point, the template argument refers to an object or 3070 // function with external linkage. We now need to check whether the 3071 // argument and parameter types are compatible. 3072 if (!S.Context.hasSameUnqualifiedType(ArgType, 3073 ParamType.getNonReferenceType())) { 3074 // We can't perform this conversion or binding. 3075 if (ParamType->isReferenceType()) 3076 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3077 << ParamType << Arg->getType() << Arg->getSourceRange(); 3078 else 3079 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3080 << Arg->getType() << ParamType << Arg->getSourceRange(); 3081 S.Diag(Param->getLocation(), diag::note_template_param_here); 3082 return true; 3083 } 3084 } 3085 3086 // Create the template argument. 3087 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3088 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3089 return false; 3090} 3091 3092/// \brief Checks whether the given template argument is a pointer to 3093/// member constant according to C++ [temp.arg.nontype]p1. 3094bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3095 TemplateArgument &Converted) { 3096 bool Invalid = false; 3097 3098 // See through any implicit casts we added to fix the type. 3099 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3100 Arg = Cast->getSubExpr(); 3101 3102 // C++ [temp.arg.nontype]p1: 3103 // 3104 // A template-argument for a non-type, non-template 3105 // template-parameter shall be one of: [...] 3106 // 3107 // -- a pointer to member expressed as described in 5.3.1. 3108 DeclRefExpr *DRE = 0; 3109 3110 // In C++98/03 mode, give an extension warning on any extra parentheses. 3111 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3112 bool ExtraParens = false; 3113 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3114 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3115 Diag(Arg->getSourceRange().getBegin(), 3116 diag::ext_template_arg_extra_parens) 3117 << Arg->getSourceRange(); 3118 ExtraParens = true; 3119 } 3120 3121 Arg = Parens->getSubExpr(); 3122 } 3123 3124 // A pointer-to-member constant written &Class::member. 3125 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3126 if (UnOp->getOpcode() == UO_AddrOf) { 3127 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3128 if (DRE && !DRE->getQualifier()) 3129 DRE = 0; 3130 } 3131 } 3132 // A constant of pointer-to-member type. 3133 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3134 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3135 if (VD->getType()->isMemberPointerType()) { 3136 if (isa<NonTypeTemplateParmDecl>(VD) || 3137 (isa<VarDecl>(VD) && 3138 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3139 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3140 Converted = TemplateArgument(Arg); 3141 else 3142 Converted = TemplateArgument(VD->getCanonicalDecl()); 3143 return Invalid; 3144 } 3145 } 3146 } 3147 3148 DRE = 0; 3149 } 3150 3151 if (!DRE) 3152 return Diag(Arg->getSourceRange().getBegin(), 3153 diag::err_template_arg_not_pointer_to_member_form) 3154 << Arg->getSourceRange(); 3155 3156 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3157 assert((isa<FieldDecl>(DRE->getDecl()) || 3158 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3159 "Only non-static member pointers can make it here"); 3160 3161 // Okay: this is the address of a non-static member, and therefore 3162 // a member pointer constant. 3163 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3164 Converted = TemplateArgument(Arg); 3165 else 3166 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3167 return Invalid; 3168 } 3169 3170 // We found something else, but we don't know specifically what it is. 3171 Diag(Arg->getSourceRange().getBegin(), 3172 diag::err_template_arg_not_pointer_to_member_form) 3173 << Arg->getSourceRange(); 3174 Diag(DRE->getDecl()->getLocation(), 3175 diag::note_template_arg_refers_here); 3176 return true; 3177} 3178 3179/// \brief Check a template argument against its corresponding 3180/// non-type template parameter. 3181/// 3182/// This routine implements the semantics of C++ [temp.arg.nontype]. 3183/// It returns true if an error occurred, and false otherwise. \p 3184/// InstantiatedParamType is the type of the non-type template 3185/// parameter after it has been instantiated. 3186/// 3187/// If no error was detected, Converted receives the converted template argument. 3188bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3189 QualType InstantiatedParamType, Expr *&Arg, 3190 TemplateArgument &Converted, 3191 CheckTemplateArgumentKind CTAK) { 3192 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3193 3194 // If either the parameter has a dependent type or the argument is 3195 // type-dependent, there's nothing we can check now. 3196 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3197 // FIXME: Produce a cloned, canonical expression? 3198 Converted = TemplateArgument(Arg); 3199 return false; 3200 } 3201 3202 // C++ [temp.arg.nontype]p5: 3203 // The following conversions are performed on each expression used 3204 // as a non-type template-argument. If a non-type 3205 // template-argument cannot be converted to the type of the 3206 // corresponding template-parameter then the program is 3207 // ill-formed. 3208 // 3209 // -- for a non-type template-parameter of integral or 3210 // enumeration type, integral promotions (4.5) and integral 3211 // conversions (4.7) are applied. 3212 QualType ParamType = InstantiatedParamType; 3213 QualType ArgType = Arg->getType(); 3214 if (ParamType->isIntegralOrEnumerationType()) { 3215 // C++ [temp.arg.nontype]p1: 3216 // A template-argument for a non-type, non-template 3217 // template-parameter shall be one of: 3218 // 3219 // -- an integral constant-expression of integral or enumeration 3220 // type; or 3221 // -- the name of a non-type template-parameter; or 3222 SourceLocation NonConstantLoc; 3223 llvm::APSInt Value; 3224 if (!ArgType->isIntegralOrEnumerationType()) { 3225 Diag(Arg->getSourceRange().getBegin(), 3226 diag::err_template_arg_not_integral_or_enumeral) 3227 << ArgType << Arg->getSourceRange(); 3228 Diag(Param->getLocation(), diag::note_template_param_here); 3229 return true; 3230 } else if (!Arg->isValueDependent() && 3231 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3232 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3233 << ArgType << Arg->getSourceRange(); 3234 return true; 3235 } 3236 3237 // From here on out, all we care about are the unqualified forms 3238 // of the parameter and argument types. 3239 ParamType = ParamType.getUnqualifiedType(); 3240 ArgType = ArgType.getUnqualifiedType(); 3241 3242 // Try to convert the argument to the parameter's type. 3243 if (Context.hasSameType(ParamType, ArgType)) { 3244 // Okay: no conversion necessary 3245 } else if (CTAK == CTAK_Deduced) { 3246 // C++ [temp.deduct.type]p17: 3247 // If, in the declaration of a function template with a non-type 3248 // template-parameter, the non-type template- parameter is used 3249 // in an expression in the function parameter-list and, if the 3250 // corresponding template-argument is deduced, the 3251 // template-argument type shall match the type of the 3252 // template-parameter exactly, except that a template-argument 3253 // deduced from an array bound may be of any integral type. 3254 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3255 << ArgType << ParamType; 3256 Diag(Param->getLocation(), diag::note_template_param_here); 3257 return true; 3258 } else if (ParamType->isBooleanType()) { 3259 // This is an integral-to-boolean conversion. 3260 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3261 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3262 !ParamType->isEnumeralType()) { 3263 // This is an integral promotion or conversion. 3264 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3265 } else { 3266 // We can't perform this conversion. 3267 Diag(Arg->getSourceRange().getBegin(), 3268 diag::err_template_arg_not_convertible) 3269 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3270 Diag(Param->getLocation(), diag::note_template_param_here); 3271 return true; 3272 } 3273 3274 QualType IntegerType = Context.getCanonicalType(ParamType); 3275 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3276 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3277 3278 if (!Arg->isValueDependent()) { 3279 llvm::APSInt OldValue = Value; 3280 3281 // Coerce the template argument's value to the value it will have 3282 // based on the template parameter's type. 3283 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3284 if (Value.getBitWidth() != AllowedBits) 3285 Value = Value.extOrTrunc(AllowedBits); 3286 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3287 3288 // Complain if an unsigned parameter received a negative value. 3289 if (IntegerType->isUnsignedIntegerType() 3290 && (OldValue.isSigned() && OldValue.isNegative())) { 3291 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3292 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3293 << Arg->getSourceRange(); 3294 Diag(Param->getLocation(), diag::note_template_param_here); 3295 } 3296 3297 // Complain if we overflowed the template parameter's type. 3298 unsigned RequiredBits; 3299 if (IntegerType->isUnsignedIntegerType()) 3300 RequiredBits = OldValue.getActiveBits(); 3301 else if (OldValue.isUnsigned()) 3302 RequiredBits = OldValue.getActiveBits() + 1; 3303 else 3304 RequiredBits = OldValue.getMinSignedBits(); 3305 if (RequiredBits > AllowedBits) { 3306 Diag(Arg->getSourceRange().getBegin(), 3307 diag::warn_template_arg_too_large) 3308 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3309 << Arg->getSourceRange(); 3310 Diag(Param->getLocation(), diag::note_template_param_here); 3311 } 3312 } 3313 3314 // Add the value of this argument to the list of converted 3315 // arguments. We use the bitwidth and signedness of the template 3316 // parameter. 3317 if (Arg->isValueDependent()) { 3318 // The argument is value-dependent. Create a new 3319 // TemplateArgument with the converted expression. 3320 Converted = TemplateArgument(Arg); 3321 return false; 3322 } 3323 3324 Converted = TemplateArgument(Value, 3325 ParamType->isEnumeralType() ? ParamType 3326 : IntegerType); 3327 return false; 3328 } 3329 3330 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3331 3332 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3333 // from a template argument of type std::nullptr_t to a non-type 3334 // template parameter of type pointer to object, pointer to 3335 // function, or pointer-to-member, respectively. 3336 if (ArgType->isNullPtrType() && 3337 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3338 Converted = TemplateArgument((NamedDecl *)0); 3339 return false; 3340 } 3341 3342 // Handle pointer-to-function, reference-to-function, and 3343 // pointer-to-member-function all in (roughly) the same way. 3344 if (// -- For a non-type template-parameter of type pointer to 3345 // function, only the function-to-pointer conversion (4.3) is 3346 // applied. If the template-argument represents a set of 3347 // overloaded functions (or a pointer to such), the matching 3348 // function is selected from the set (13.4). 3349 (ParamType->isPointerType() && 3350 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3351 // -- For a non-type template-parameter of type reference to 3352 // function, no conversions apply. If the template-argument 3353 // represents a set of overloaded functions, the matching 3354 // function is selected from the set (13.4). 3355 (ParamType->isReferenceType() && 3356 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3357 // -- For a non-type template-parameter of type pointer to 3358 // member function, no conversions apply. If the 3359 // template-argument represents a set of overloaded member 3360 // functions, the matching member function is selected from 3361 // the set (13.4). 3362 (ParamType->isMemberPointerType() && 3363 ParamType->getAs<MemberPointerType>()->getPointeeType() 3364 ->isFunctionType())) { 3365 3366 if (Arg->getType() == Context.OverloadTy) { 3367 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3368 true, 3369 FoundResult)) { 3370 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3371 return true; 3372 3373 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3374 ArgType = Arg->getType(); 3375 } else 3376 return true; 3377 } 3378 3379 if (!ParamType->isMemberPointerType()) 3380 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3381 ParamType, 3382 Arg, Converted); 3383 3384 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 3385 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3386 } else if (!Context.hasSameUnqualifiedType(ArgType, 3387 ParamType.getNonReferenceType())) { 3388 // We can't perform this conversion. 3389 Diag(Arg->getSourceRange().getBegin(), 3390 diag::err_template_arg_not_convertible) 3391 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3392 Diag(Param->getLocation(), diag::note_template_param_here); 3393 return true; 3394 } 3395 3396 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3397 } 3398 3399 if (ParamType->isPointerType()) { 3400 // -- for a non-type template-parameter of type pointer to 3401 // object, qualification conversions (4.4) and the 3402 // array-to-pointer conversion (4.2) are applied. 3403 // C++0x also allows a value of std::nullptr_t. 3404 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3405 "Only object pointers allowed here"); 3406 3407 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3408 ParamType, 3409 Arg, Converted); 3410 } 3411 3412 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3413 // -- For a non-type template-parameter of type reference to 3414 // object, no conversions apply. The type referred to by the 3415 // reference may be more cv-qualified than the (otherwise 3416 // identical) type of the template-argument. The 3417 // template-parameter is bound directly to the 3418 // template-argument, which must be an lvalue. 3419 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3420 "Only object references allowed here"); 3421 3422 if (Arg->getType() == Context.OverloadTy) { 3423 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3424 ParamRefType->getPointeeType(), 3425 true, 3426 FoundResult)) { 3427 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3428 return true; 3429 3430 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3431 ArgType = Arg->getType(); 3432 } else 3433 return true; 3434 } 3435 3436 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3437 ParamType, 3438 Arg, Converted); 3439 } 3440 3441 // -- For a non-type template-parameter of type pointer to data 3442 // member, qualification conversions (4.4) are applied. 3443 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3444 3445 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3446 // Types match exactly: nothing more to do here. 3447 } else if (IsQualificationConversion(ArgType, ParamType)) { 3448 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3449 } else { 3450 // We can't perform this conversion. 3451 Diag(Arg->getSourceRange().getBegin(), 3452 diag::err_template_arg_not_convertible) 3453 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3454 Diag(Param->getLocation(), diag::note_template_param_here); 3455 return true; 3456 } 3457 3458 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3459} 3460 3461/// \brief Check a template argument against its corresponding 3462/// template template parameter. 3463/// 3464/// This routine implements the semantics of C++ [temp.arg.template]. 3465/// It returns true if an error occurred, and false otherwise. 3466bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3467 const TemplateArgumentLoc &Arg) { 3468 TemplateName Name = Arg.getArgument().getAsTemplate(); 3469 TemplateDecl *Template = Name.getAsTemplateDecl(); 3470 if (!Template) { 3471 // Any dependent template name is fine. 3472 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3473 return false; 3474 } 3475 3476 // C++ [temp.arg.template]p1: 3477 // A template-argument for a template template-parameter shall be 3478 // the name of a class template, expressed as id-expression. Only 3479 // primary class templates are considered when matching the 3480 // template template argument with the corresponding parameter; 3481 // partial specializations are not considered even if their 3482 // parameter lists match that of the template template parameter. 3483 // 3484 // Note that we also allow template template parameters here, which 3485 // will happen when we are dealing with, e.g., class template 3486 // partial specializations. 3487 if (!isa<ClassTemplateDecl>(Template) && 3488 !isa<TemplateTemplateParmDecl>(Template)) { 3489 assert(isa<FunctionTemplateDecl>(Template) && 3490 "Only function templates are possible here"); 3491 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3492 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3493 << Template; 3494 } 3495 3496 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3497 Param->getTemplateParameters(), 3498 true, 3499 TPL_TemplateTemplateArgumentMatch, 3500 Arg.getLocation()); 3501} 3502 3503/// \brief Given a non-type template argument that refers to a 3504/// declaration and the type of its corresponding non-type template 3505/// parameter, produce an expression that properly refers to that 3506/// declaration. 3507ExprResult 3508Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3509 QualType ParamType, 3510 SourceLocation Loc) { 3511 assert(Arg.getKind() == TemplateArgument::Declaration && 3512 "Only declaration template arguments permitted here"); 3513 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3514 3515 if (VD->getDeclContext()->isRecord() && 3516 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3517 // If the value is a class member, we might have a pointer-to-member. 3518 // Determine whether the non-type template template parameter is of 3519 // pointer-to-member type. If so, we need to build an appropriate 3520 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3521 // would refer to the member itself. 3522 if (ParamType->isMemberPointerType()) { 3523 QualType ClassType 3524 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3525 NestedNameSpecifier *Qualifier 3526 = NestedNameSpecifier::Create(Context, 0, false, 3527 ClassType.getTypePtr()); 3528 CXXScopeSpec SS; 3529 SS.setScopeRep(Qualifier); 3530 3531 // The actual value-ness of this is unimportant, but for 3532 // internal consistency's sake, references to instance methods 3533 // are r-values. 3534 ExprValueKind VK = VK_LValue; 3535 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3536 VK = VK_RValue; 3537 3538 ExprResult RefExpr = BuildDeclRefExpr(VD, 3539 VD->getType().getNonReferenceType(), 3540 VK, 3541 Loc, 3542 &SS); 3543 if (RefExpr.isInvalid()) 3544 return ExprError(); 3545 3546 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3547 3548 // We might need to perform a trailing qualification conversion, since 3549 // the element type on the parameter could be more qualified than the 3550 // element type in the expression we constructed. 3551 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3552 ParamType.getUnqualifiedType())) { 3553 Expr *RefE = RefExpr.takeAs<Expr>(); 3554 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3555 RefExpr = Owned(RefE); 3556 } 3557 3558 assert(!RefExpr.isInvalid() && 3559 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3560 ParamType.getUnqualifiedType())); 3561 return move(RefExpr); 3562 } 3563 } 3564 3565 QualType T = VD->getType().getNonReferenceType(); 3566 if (ParamType->isPointerType()) { 3567 // When the non-type template parameter is a pointer, take the 3568 // address of the declaration. 3569 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3570 if (RefExpr.isInvalid()) 3571 return ExprError(); 3572 3573 if (T->isFunctionType() || T->isArrayType()) { 3574 // Decay functions and arrays. 3575 Expr *RefE = (Expr *)RefExpr.get(); 3576 DefaultFunctionArrayConversion(RefE); 3577 if (RefE != RefExpr.get()) { 3578 RefExpr.release(); 3579 RefExpr = Owned(RefE); 3580 } 3581 3582 return move(RefExpr); 3583 } 3584 3585 // Take the address of everything else 3586 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3587 } 3588 3589 ExprValueKind VK = VK_RValue; 3590 3591 // If the non-type template parameter has reference type, qualify the 3592 // resulting declaration reference with the extra qualifiers on the 3593 // type that the reference refers to. 3594 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3595 VK = VK_LValue; 3596 T = Context.getQualifiedType(T, 3597 TargetRef->getPointeeType().getQualifiers()); 3598 } 3599 3600 return BuildDeclRefExpr(VD, T, VK, Loc); 3601} 3602 3603/// \brief Construct a new expression that refers to the given 3604/// integral template argument with the given source-location 3605/// information. 3606/// 3607/// This routine takes care of the mapping from an integral template 3608/// argument (which may have any integral type) to the appropriate 3609/// literal value. 3610ExprResult 3611Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3612 SourceLocation Loc) { 3613 assert(Arg.getKind() == TemplateArgument::Integral && 3614 "Operation is only valid for integral template arguments"); 3615 QualType T = Arg.getIntegralType(); 3616 if (T->isCharType() || T->isWideCharType()) 3617 return Owned(new (Context) CharacterLiteral( 3618 Arg.getAsIntegral()->getZExtValue(), 3619 T->isWideCharType(), 3620 T, 3621 Loc)); 3622 if (T->isBooleanType()) 3623 return Owned(new (Context) CXXBoolLiteralExpr( 3624 Arg.getAsIntegral()->getBoolValue(), 3625 T, 3626 Loc)); 3627 3628 QualType BT; 3629 if (const EnumType *ET = T->getAs<EnumType>()) 3630 BT = ET->getDecl()->getPromotionType(); 3631 else 3632 BT = T; 3633 3634 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 3635 ImpCastExprToType(E, T, CK_IntegralCast); 3636 3637 return Owned(E); 3638} 3639 3640/// \brief Match two template parameters within template parameter lists. 3641static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 3642 bool Complain, 3643 Sema::TemplateParameterListEqualKind Kind, 3644 SourceLocation TemplateArgLoc) { 3645 // Check the actual kind (type, non-type, template). 3646 if (Old->getKind() != New->getKind()) { 3647 if (Complain) { 3648 unsigned NextDiag = diag::err_template_param_different_kind; 3649 if (TemplateArgLoc.isValid()) { 3650 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3651 NextDiag = diag::note_template_param_different_kind; 3652 } 3653 S.Diag(New->getLocation(), NextDiag) 3654 << (Kind != Sema::TPL_TemplateMatch); 3655 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 3656 << (Kind != Sema::TPL_TemplateMatch); 3657 } 3658 3659 return false; 3660 } 3661 3662 // Check that both are parameter packs are neither are parameter packs. 3663 // However, if we are matching a template template argument to a 3664 // template template parameter, the template template parameter can have 3665 // a parameter pack where the template template argument does not. 3666 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 3667 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3668 Old->isTemplateParameterPack())) { 3669 if (Complain) { 3670 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3671 if (TemplateArgLoc.isValid()) { 3672 S.Diag(TemplateArgLoc, 3673 diag::err_template_arg_template_params_mismatch); 3674 NextDiag = diag::note_template_parameter_pack_non_pack; 3675 } 3676 3677 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 3678 : isa<NonTypeTemplateParmDecl>(New)? 1 3679 : 2; 3680 S.Diag(New->getLocation(), NextDiag) 3681 << ParamKind << New->isParameterPack(); 3682 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 3683 << ParamKind << Old->isParameterPack(); 3684 } 3685 3686 return false; 3687 } 3688 3689 // For non-type template parameters, check the type of the parameter. 3690 if (NonTypeTemplateParmDecl *OldNTTP 3691 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 3692 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 3693 3694 // If we are matching a template template argument to a template 3695 // template parameter and one of the non-type template parameter types 3696 // is dependent, then we must wait until template instantiation time 3697 // to actually compare the arguments. 3698 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3699 (OldNTTP->getType()->isDependentType() || 3700 NewNTTP->getType()->isDependentType())) 3701 return true; 3702 3703 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 3704 if (Complain) { 3705 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3706 if (TemplateArgLoc.isValid()) { 3707 S.Diag(TemplateArgLoc, 3708 diag::err_template_arg_template_params_mismatch); 3709 NextDiag = diag::note_template_nontype_parm_different_type; 3710 } 3711 S.Diag(NewNTTP->getLocation(), NextDiag) 3712 << NewNTTP->getType() 3713 << (Kind != Sema::TPL_TemplateMatch); 3714 S.Diag(OldNTTP->getLocation(), 3715 diag::note_template_nontype_parm_prev_declaration) 3716 << OldNTTP->getType(); 3717 } 3718 3719 return false; 3720 } 3721 3722 return true; 3723 } 3724 3725 // For template template parameters, check the template parameter types. 3726 // The template parameter lists of template template 3727 // parameters must agree. 3728 if (TemplateTemplateParmDecl *OldTTP 3729 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 3730 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 3731 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3732 OldTTP->getTemplateParameters(), 3733 Complain, 3734 (Kind == Sema::TPL_TemplateMatch 3735 ? Sema::TPL_TemplateTemplateParmMatch 3736 : Kind), 3737 TemplateArgLoc); 3738 } 3739 3740 return true; 3741} 3742 3743/// \brief Diagnose a known arity mismatch when comparing template argument 3744/// lists. 3745static 3746void DiagnoseTemplateParameterListArityMismatch(Sema &S, 3747 TemplateParameterList *New, 3748 TemplateParameterList *Old, 3749 Sema::TemplateParameterListEqualKind Kind, 3750 SourceLocation TemplateArgLoc) { 3751 unsigned NextDiag = diag::err_template_param_list_different_arity; 3752 if (TemplateArgLoc.isValid()) { 3753 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3754 NextDiag = diag::note_template_param_list_different_arity; 3755 } 3756 S.Diag(New->getTemplateLoc(), NextDiag) 3757 << (New->size() > Old->size()) 3758 << (Kind != Sema::TPL_TemplateMatch) 3759 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3760 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3761 << (Kind != Sema::TPL_TemplateMatch) 3762 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3763} 3764 3765/// \brief Determine whether the given template parameter lists are 3766/// equivalent. 3767/// 3768/// \param New The new template parameter list, typically written in the 3769/// source code as part of a new template declaration. 3770/// 3771/// \param Old The old template parameter list, typically found via 3772/// name lookup of the template declared with this template parameter 3773/// list. 3774/// 3775/// \param Complain If true, this routine will produce a diagnostic if 3776/// the template parameter lists are not equivalent. 3777/// 3778/// \param Kind describes how we are to match the template parameter lists. 3779/// 3780/// \param TemplateArgLoc If this source location is valid, then we 3781/// are actually checking the template parameter list of a template 3782/// argument (New) against the template parameter list of its 3783/// corresponding template template parameter (Old). We produce 3784/// slightly different diagnostics in this scenario. 3785/// 3786/// \returns True if the template parameter lists are equal, false 3787/// otherwise. 3788bool 3789Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3790 TemplateParameterList *Old, 3791 bool Complain, 3792 TemplateParameterListEqualKind Kind, 3793 SourceLocation TemplateArgLoc) { 3794 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 3795 if (Complain) 3796 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3797 TemplateArgLoc); 3798 3799 return false; 3800 } 3801 3802 // C++0x [temp.arg.template]p3: 3803 // A template-argument matches a template template-parameter (call it P) 3804 // when each of the template parameters in the template-parameter-list of 3805 // the template-argument’s corresponding class template or template alias 3806 // (call it A) matches the corresponding template parameter in the 3807 // template-parameter-list of P. [...] 3808 TemplateParameterList::iterator NewParm = New->begin(); 3809 TemplateParameterList::iterator NewParmEnd = New->end(); 3810 for (TemplateParameterList::iterator OldParm = Old->begin(), 3811 OldParmEnd = Old->end(); 3812 OldParm != OldParmEnd; ++OldParm) { 3813 if (Kind != TPL_TemplateTemplateArgumentMatch || 3814 !(*OldParm)->isTemplateParameterPack()) { 3815 if (NewParm == NewParmEnd) { 3816 if (Complain) 3817 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3818 TemplateArgLoc); 3819 3820 return false; 3821 } 3822 3823 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3824 Kind, TemplateArgLoc)) 3825 return false; 3826 3827 ++NewParm; 3828 continue; 3829 } 3830 3831 // C++0x [temp.arg.template]p3: 3832 // [...] When P’s template- parameter-list contains a template parameter 3833 // pack (14.5.3), the template parameter pack will match zero or more 3834 // template parameters or template parameter packs in the 3835 // template-parameter-list of A with the same type and form as the 3836 // template parameter pack in P (ignoring whether those template 3837 // parameters are template parameter packs). 3838 for (; NewParm != NewParmEnd; ++NewParm) { 3839 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3840 Kind, TemplateArgLoc)) 3841 return false; 3842 } 3843 } 3844 3845 // Make sure we exhausted all of the arguments. 3846 if (NewParm != NewParmEnd) { 3847 if (Complain) 3848 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3849 TemplateArgLoc); 3850 3851 return false; 3852 } 3853 3854 return true; 3855} 3856 3857/// \brief Check whether a template can be declared within this scope. 3858/// 3859/// If the template declaration is valid in this scope, returns 3860/// false. Otherwise, issues a diagnostic and returns true. 3861bool 3862Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3863 // Find the nearest enclosing declaration scope. 3864 while ((S->getFlags() & Scope::DeclScope) == 0 || 3865 (S->getFlags() & Scope::TemplateParamScope) != 0) 3866 S = S->getParent(); 3867 3868 // C++ [temp]p2: 3869 // A template-declaration can appear only as a namespace scope or 3870 // class scope declaration. 3871 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3872 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3873 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3874 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3875 << TemplateParams->getSourceRange(); 3876 3877 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3878 Ctx = Ctx->getParent(); 3879 3880 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3881 return false; 3882 3883 return Diag(TemplateParams->getTemplateLoc(), 3884 diag::err_template_outside_namespace_or_class_scope) 3885 << TemplateParams->getSourceRange(); 3886} 3887 3888/// \brief Determine what kind of template specialization the given declaration 3889/// is. 3890static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3891 if (!D) 3892 return TSK_Undeclared; 3893 3894 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3895 return Record->getTemplateSpecializationKind(); 3896 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3897 return Function->getTemplateSpecializationKind(); 3898 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3899 return Var->getTemplateSpecializationKind(); 3900 3901 return TSK_Undeclared; 3902} 3903 3904/// \brief Check whether a specialization is well-formed in the current 3905/// context. 3906/// 3907/// This routine determines whether a template specialization can be declared 3908/// in the current context (C++ [temp.expl.spec]p2). 3909/// 3910/// \param S the semantic analysis object for which this check is being 3911/// performed. 3912/// 3913/// \param Specialized the entity being specialized or instantiated, which 3914/// may be a kind of template (class template, function template, etc.) or 3915/// a member of a class template (member function, static data member, 3916/// member class). 3917/// 3918/// \param PrevDecl the previous declaration of this entity, if any. 3919/// 3920/// \param Loc the location of the explicit specialization or instantiation of 3921/// this entity. 3922/// 3923/// \param IsPartialSpecialization whether this is a partial specialization of 3924/// a class template. 3925/// 3926/// \returns true if there was an error that we cannot recover from, false 3927/// otherwise. 3928static bool CheckTemplateSpecializationScope(Sema &S, 3929 NamedDecl *Specialized, 3930 NamedDecl *PrevDecl, 3931 SourceLocation Loc, 3932 bool IsPartialSpecialization) { 3933 // Keep these "kind" numbers in sync with the %select statements in the 3934 // various diagnostics emitted by this routine. 3935 int EntityKind = 0; 3936 if (isa<ClassTemplateDecl>(Specialized)) 3937 EntityKind = IsPartialSpecialization? 1 : 0; 3938 else if (isa<FunctionTemplateDecl>(Specialized)) 3939 EntityKind = 2; 3940 else if (isa<CXXMethodDecl>(Specialized)) 3941 EntityKind = 3; 3942 else if (isa<VarDecl>(Specialized)) 3943 EntityKind = 4; 3944 else if (isa<RecordDecl>(Specialized)) 3945 EntityKind = 5; 3946 else { 3947 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3948 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3949 return true; 3950 } 3951 3952 // C++ [temp.expl.spec]p2: 3953 // An explicit specialization shall be declared in the namespace 3954 // of which the template is a member, or, for member templates, in 3955 // the namespace of which the enclosing class or enclosing class 3956 // template is a member. An explicit specialization of a member 3957 // function, member class or static data member of a class 3958 // template shall be declared in the namespace of which the class 3959 // template is a member. Such a declaration may also be a 3960 // definition. If the declaration is not a definition, the 3961 // specialization may be defined later in the name- space in which 3962 // the explicit specialization was declared, or in a namespace 3963 // that encloses the one in which the explicit specialization was 3964 // declared. 3965 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 3966 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3967 << Specialized; 3968 return true; 3969 } 3970 3971 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3972 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3973 << Specialized; 3974 return true; 3975 } 3976 3977 // C++ [temp.class.spec]p6: 3978 // A class template partial specialization may be declared or redeclared 3979 // in any namespace scope in which its definition may be defined (14.5.1 3980 // and 14.5.2). 3981 bool ComplainedAboutScope = false; 3982 DeclContext *SpecializedContext 3983 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3984 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3985 if ((!PrevDecl || 3986 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3987 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3988 // C++ [temp.exp.spec]p2: 3989 // An explicit specialization shall be declared in the namespace of which 3990 // the template is a member, or, for member templates, in the namespace 3991 // of which the enclosing class or enclosing class template is a member. 3992 // An explicit specialization of a member function, member class or 3993 // static data member of a class template shall be declared in the 3994 // namespace of which the class template is a member. 3995 // 3996 // C++0x [temp.expl.spec]p2: 3997 // An explicit specialization shall be declared in a namespace enclosing 3998 // the specialized template. 3999 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4000 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4001 bool IsCPlusPlus0xExtension 4002 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4003 if (isa<TranslationUnitDecl>(SpecializedContext)) 4004 S.Diag(Loc, IsCPlusPlus0xExtension 4005 ? diag::ext_template_spec_decl_out_of_scope_global 4006 : diag::err_template_spec_decl_out_of_scope_global) 4007 << EntityKind << Specialized; 4008 else if (isa<NamespaceDecl>(SpecializedContext)) 4009 S.Diag(Loc, IsCPlusPlus0xExtension 4010 ? diag::ext_template_spec_decl_out_of_scope 4011 : diag::err_template_spec_decl_out_of_scope) 4012 << EntityKind << Specialized 4013 << cast<NamedDecl>(SpecializedContext); 4014 4015 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4016 ComplainedAboutScope = true; 4017 } 4018 } 4019 4020 // Make sure that this redeclaration (or definition) occurs in an enclosing 4021 // namespace. 4022 // Note that HandleDeclarator() performs this check for explicit 4023 // specializations of function templates, static data members, and member 4024 // functions, so we skip the check here for those kinds of entities. 4025 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4026 // Should we refactor that check, so that it occurs later? 4027 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4028 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4029 isa<FunctionDecl>(Specialized))) { 4030 if (isa<TranslationUnitDecl>(SpecializedContext)) 4031 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4032 << EntityKind << Specialized; 4033 else if (isa<NamespaceDecl>(SpecializedContext)) 4034 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4035 << EntityKind << Specialized 4036 << cast<NamedDecl>(SpecializedContext); 4037 4038 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4039 } 4040 4041 // FIXME: check for specialization-after-instantiation errors and such. 4042 4043 return false; 4044} 4045 4046/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4047/// that checks non-type template partial specialization arguments. 4048static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4049 NonTypeTemplateParmDecl *Param, 4050 const TemplateArgument *Args, 4051 unsigned NumArgs) { 4052 for (unsigned I = 0; I != NumArgs; ++I) { 4053 if (Args[I].getKind() == TemplateArgument::Pack) { 4054 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4055 Args[I].pack_begin(), 4056 Args[I].pack_size())) 4057 return true; 4058 4059 continue; 4060 } 4061 4062 Expr *ArgExpr = Args[I].getAsExpr(); 4063 if (!ArgExpr) { 4064 continue; 4065 } 4066 4067 // We can have a pack expansion of any of the bullets below. 4068 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4069 ArgExpr = Expansion->getPattern(); 4070 4071 // Strip off any implicit casts we added as part of type checking. 4072 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4073 ArgExpr = ICE->getSubExpr(); 4074 4075 // C++ [temp.class.spec]p8: 4076 // A non-type argument is non-specialized if it is the name of a 4077 // non-type parameter. All other non-type arguments are 4078 // specialized. 4079 // 4080 // Below, we check the two conditions that only apply to 4081 // specialized non-type arguments, so skip any non-specialized 4082 // arguments. 4083 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4084 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4085 continue; 4086 4087 // C++ [temp.class.spec]p9: 4088 // Within the argument list of a class template partial 4089 // specialization, the following restrictions apply: 4090 // -- A partially specialized non-type argument expression 4091 // shall not involve a template parameter of the partial 4092 // specialization except when the argument expression is a 4093 // simple identifier. 4094 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4095 S.Diag(ArgExpr->getLocStart(), 4096 diag::err_dependent_non_type_arg_in_partial_spec) 4097 << ArgExpr->getSourceRange(); 4098 return true; 4099 } 4100 4101 // -- The type of a template parameter corresponding to a 4102 // specialized non-type argument shall not be dependent on a 4103 // parameter of the specialization. 4104 if (Param->getType()->isDependentType()) { 4105 S.Diag(ArgExpr->getLocStart(), 4106 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4107 << Param->getType() 4108 << ArgExpr->getSourceRange(); 4109 S.Diag(Param->getLocation(), diag::note_template_param_here); 4110 return true; 4111 } 4112 } 4113 4114 return false; 4115} 4116 4117/// \brief Check the non-type template arguments of a class template 4118/// partial specialization according to C++ [temp.class.spec]p9. 4119/// 4120/// \param TemplateParams the template parameters of the primary class 4121/// template. 4122/// 4123/// \param TemplateArg the template arguments of the class template 4124/// partial specialization. 4125/// 4126/// \returns true if there was an error, false otherwise. 4127static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4128 TemplateParameterList *TemplateParams, 4129 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4130 const TemplateArgument *ArgList = TemplateArgs.data(); 4131 4132 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4133 NonTypeTemplateParmDecl *Param 4134 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4135 if (!Param) 4136 continue; 4137 4138 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4139 &ArgList[I], 1)) 4140 return true; 4141 } 4142 4143 return false; 4144} 4145 4146/// \brief Retrieve the previous declaration of the given declaration. 4147static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4148 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4149 return VD->getPreviousDeclaration(); 4150 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4151 return FD->getPreviousDeclaration(); 4152 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4153 return TD->getPreviousDeclaration(); 4154 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 4155 return TD->getPreviousDeclaration(); 4156 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4157 return FTD->getPreviousDeclaration(); 4158 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4159 return CTD->getPreviousDeclaration(); 4160 return 0; 4161} 4162 4163DeclResult 4164Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4165 TagUseKind TUK, 4166 SourceLocation KWLoc, 4167 CXXScopeSpec &SS, 4168 TemplateTy TemplateD, 4169 SourceLocation TemplateNameLoc, 4170 SourceLocation LAngleLoc, 4171 ASTTemplateArgsPtr TemplateArgsIn, 4172 SourceLocation RAngleLoc, 4173 AttributeList *Attr, 4174 MultiTemplateParamsArg TemplateParameterLists) { 4175 assert(TUK != TUK_Reference && "References are not specializations"); 4176 4177 // Find the class template we're specializing 4178 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4179 ClassTemplateDecl *ClassTemplate 4180 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4181 4182 if (!ClassTemplate) { 4183 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4184 << (Name.getAsTemplateDecl() && 4185 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4186 return true; 4187 } 4188 4189 bool isExplicitSpecialization = false; 4190 bool isPartialSpecialization = false; 4191 4192 // Check the validity of the template headers that introduce this 4193 // template. 4194 // FIXME: We probably shouldn't complain about these headers for 4195 // friend declarations. 4196 bool Invalid = false; 4197 TemplateParameterList *TemplateParams 4198 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 4199 (TemplateParameterList**)TemplateParameterLists.get(), 4200 TemplateParameterLists.size(), 4201 TUK == TUK_Friend, 4202 isExplicitSpecialization, 4203 Invalid); 4204 if (Invalid) 4205 return true; 4206 4207 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 4208 if (TemplateParams) 4209 --NumMatchedTemplateParamLists; 4210 4211 if (TemplateParams && TemplateParams->size() > 0) { 4212 isPartialSpecialization = true; 4213 4214 if (TUK == TUK_Friend) { 4215 Diag(KWLoc, diag::err_partial_specialization_friend) 4216 << SourceRange(LAngleLoc, RAngleLoc); 4217 return true; 4218 } 4219 4220 // C++ [temp.class.spec]p10: 4221 // The template parameter list of a specialization shall not 4222 // contain default template argument values. 4223 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4224 Decl *Param = TemplateParams->getParam(I); 4225 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4226 if (TTP->hasDefaultArgument()) { 4227 Diag(TTP->getDefaultArgumentLoc(), 4228 diag::err_default_arg_in_partial_spec); 4229 TTP->removeDefaultArgument(); 4230 } 4231 } else if (NonTypeTemplateParmDecl *NTTP 4232 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4233 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4234 Diag(NTTP->getDefaultArgumentLoc(), 4235 diag::err_default_arg_in_partial_spec) 4236 << DefArg->getSourceRange(); 4237 NTTP->removeDefaultArgument(); 4238 } 4239 } else { 4240 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4241 if (TTP->hasDefaultArgument()) { 4242 Diag(TTP->getDefaultArgument().getLocation(), 4243 diag::err_default_arg_in_partial_spec) 4244 << TTP->getDefaultArgument().getSourceRange(); 4245 TTP->removeDefaultArgument(); 4246 } 4247 } 4248 } 4249 } else if (TemplateParams) { 4250 if (TUK == TUK_Friend) 4251 Diag(KWLoc, diag::err_template_spec_friend) 4252 << FixItHint::CreateRemoval( 4253 SourceRange(TemplateParams->getTemplateLoc(), 4254 TemplateParams->getRAngleLoc())) 4255 << SourceRange(LAngleLoc, RAngleLoc); 4256 else 4257 isExplicitSpecialization = true; 4258 } else if (TUK != TUK_Friend) { 4259 Diag(KWLoc, diag::err_template_spec_needs_header) 4260 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4261 isExplicitSpecialization = true; 4262 } 4263 4264 // Check that the specialization uses the same tag kind as the 4265 // original template. 4266 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4267 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4268 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4269 Kind, KWLoc, 4270 *ClassTemplate->getIdentifier())) { 4271 Diag(KWLoc, diag::err_use_with_wrong_tag) 4272 << ClassTemplate 4273 << FixItHint::CreateReplacement(KWLoc, 4274 ClassTemplate->getTemplatedDecl()->getKindName()); 4275 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4276 diag::note_previous_use); 4277 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4278 } 4279 4280 // Translate the parser's template argument list in our AST format. 4281 TemplateArgumentListInfo TemplateArgs; 4282 TemplateArgs.setLAngleLoc(LAngleLoc); 4283 TemplateArgs.setRAngleLoc(RAngleLoc); 4284 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4285 4286 // Check for unexpanded parameter packs in any of the template arguments. 4287 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4288 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4289 UPPC_PartialSpecialization)) 4290 return true; 4291 4292 // Check that the template argument list is well-formed for this 4293 // template. 4294 llvm::SmallVector<TemplateArgument, 4> Converted; 4295 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4296 TemplateArgs, false, Converted)) 4297 return true; 4298 4299 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4300 "Converted template argument list is too short!"); 4301 4302 // Find the class template (partial) specialization declaration that 4303 // corresponds to these arguments. 4304 if (isPartialSpecialization) { 4305 if (CheckClassTemplatePartialSpecializationArgs(*this, 4306 ClassTemplate->getTemplateParameters(), 4307 Converted)) 4308 return true; 4309 4310 if (!Name.isDependent() && 4311 !TemplateSpecializationType::anyDependentTemplateArguments( 4312 TemplateArgs.getArgumentArray(), 4313 TemplateArgs.size())) { 4314 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4315 << ClassTemplate->getDeclName(); 4316 isPartialSpecialization = false; 4317 } 4318 } 4319 4320 void *InsertPos = 0; 4321 ClassTemplateSpecializationDecl *PrevDecl = 0; 4322 4323 if (isPartialSpecialization) 4324 // FIXME: Template parameter list matters, too 4325 PrevDecl 4326 = ClassTemplate->findPartialSpecialization(Converted.data(), 4327 Converted.size(), 4328 InsertPos); 4329 else 4330 PrevDecl 4331 = ClassTemplate->findSpecialization(Converted.data(), 4332 Converted.size(), InsertPos); 4333 4334 ClassTemplateSpecializationDecl *Specialization = 0; 4335 4336 // Check whether we can declare a class template specialization in 4337 // the current scope. 4338 if (TUK != TUK_Friend && 4339 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4340 TemplateNameLoc, 4341 isPartialSpecialization)) 4342 return true; 4343 4344 // The canonical type 4345 QualType CanonType; 4346 if (PrevDecl && 4347 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4348 TUK == TUK_Friend)) { 4349 // Since the only prior class template specialization with these 4350 // arguments was referenced but not declared, or we're only 4351 // referencing this specialization as a friend, reuse that 4352 // declaration node as our own, updating its source location to 4353 // reflect our new declaration. 4354 Specialization = PrevDecl; 4355 Specialization->setLocation(TemplateNameLoc); 4356 PrevDecl = 0; 4357 CanonType = Context.getTypeDeclType(Specialization); 4358 } else if (isPartialSpecialization) { 4359 // Build the canonical type that describes the converted template 4360 // arguments of the class template partial specialization. 4361 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4362 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4363 Converted.data(), 4364 Converted.size()); 4365 4366 if (Context.hasSameType(CanonType, 4367 ClassTemplate->getInjectedClassNameSpecialization())) { 4368 // C++ [temp.class.spec]p9b3: 4369 // 4370 // -- The argument list of the specialization shall not be identical 4371 // to the implicit argument list of the primary template. 4372 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4373 << (TUK == TUK_Definition) 4374 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4375 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4376 ClassTemplate->getIdentifier(), 4377 TemplateNameLoc, 4378 Attr, 4379 TemplateParams, 4380 AS_none); 4381 } 4382 4383 // Create a new class template partial specialization declaration node. 4384 ClassTemplatePartialSpecializationDecl *PrevPartial 4385 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4386 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4387 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4388 ClassTemplatePartialSpecializationDecl *Partial 4389 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4390 ClassTemplate->getDeclContext(), 4391 TemplateNameLoc, 4392 TemplateParams, 4393 ClassTemplate, 4394 Converted.data(), 4395 Converted.size(), 4396 TemplateArgs, 4397 CanonType, 4398 PrevPartial, 4399 SequenceNumber); 4400 SetNestedNameSpecifier(Partial, SS); 4401 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4402 Partial->setTemplateParameterListsInfo(Context, 4403 NumMatchedTemplateParamLists, 4404 (TemplateParameterList**) TemplateParameterLists.release()); 4405 } 4406 4407 if (!PrevPartial) 4408 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4409 Specialization = Partial; 4410 4411 // If we are providing an explicit specialization of a member class 4412 // template specialization, make a note of that. 4413 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4414 PrevPartial->setMemberSpecialization(); 4415 4416 // Check that all of the template parameters of the class template 4417 // partial specialization are deducible from the template 4418 // arguments. If not, this class template partial specialization 4419 // will never be used. 4420 llvm::SmallVector<bool, 8> DeducibleParams; 4421 DeducibleParams.resize(TemplateParams->size()); 4422 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4423 TemplateParams->getDepth(), 4424 DeducibleParams); 4425 unsigned NumNonDeducible = 0; 4426 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4427 if (!DeducibleParams[I]) 4428 ++NumNonDeducible; 4429 4430 if (NumNonDeducible) { 4431 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4432 << (NumNonDeducible > 1) 4433 << SourceRange(TemplateNameLoc, RAngleLoc); 4434 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4435 if (!DeducibleParams[I]) { 4436 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4437 if (Param->getDeclName()) 4438 Diag(Param->getLocation(), 4439 diag::note_partial_spec_unused_parameter) 4440 << Param->getDeclName(); 4441 else 4442 Diag(Param->getLocation(), 4443 diag::note_partial_spec_unused_parameter) 4444 << "<anonymous>"; 4445 } 4446 } 4447 } 4448 } else { 4449 // Create a new class template specialization declaration node for 4450 // this explicit specialization or friend declaration. 4451 Specialization 4452 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4453 ClassTemplate->getDeclContext(), 4454 TemplateNameLoc, 4455 ClassTemplate, 4456 Converted.data(), 4457 Converted.size(), 4458 PrevDecl); 4459 SetNestedNameSpecifier(Specialization, SS); 4460 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4461 Specialization->setTemplateParameterListsInfo(Context, 4462 NumMatchedTemplateParamLists, 4463 (TemplateParameterList**) TemplateParameterLists.release()); 4464 } 4465 4466 if (!PrevDecl) 4467 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4468 4469 CanonType = Context.getTypeDeclType(Specialization); 4470 } 4471 4472 // C++ [temp.expl.spec]p6: 4473 // If a template, a member template or the member of a class template is 4474 // explicitly specialized then that specialization shall be declared 4475 // before the first use of that specialization that would cause an implicit 4476 // instantiation to take place, in every translation unit in which such a 4477 // use occurs; no diagnostic is required. 4478 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4479 bool Okay = false; 4480 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4481 // Is there any previous explicit specialization declaration? 4482 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4483 Okay = true; 4484 break; 4485 } 4486 } 4487 4488 if (!Okay) { 4489 SourceRange Range(TemplateNameLoc, RAngleLoc); 4490 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4491 << Context.getTypeDeclType(Specialization) << Range; 4492 4493 Diag(PrevDecl->getPointOfInstantiation(), 4494 diag::note_instantiation_required_here) 4495 << (PrevDecl->getTemplateSpecializationKind() 4496 != TSK_ImplicitInstantiation); 4497 return true; 4498 } 4499 } 4500 4501 // If this is not a friend, note that this is an explicit specialization. 4502 if (TUK != TUK_Friend) 4503 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4504 4505 // Check that this isn't a redefinition of this specialization. 4506 if (TUK == TUK_Definition) { 4507 if (RecordDecl *Def = Specialization->getDefinition()) { 4508 SourceRange Range(TemplateNameLoc, RAngleLoc); 4509 Diag(TemplateNameLoc, diag::err_redefinition) 4510 << Context.getTypeDeclType(Specialization) << Range; 4511 Diag(Def->getLocation(), diag::note_previous_definition); 4512 Specialization->setInvalidDecl(); 4513 return true; 4514 } 4515 } 4516 4517 if (Attr) 4518 ProcessDeclAttributeList(S, Specialization, Attr); 4519 4520 // Build the fully-sugared type for this class template 4521 // specialization as the user wrote in the specialization 4522 // itself. This means that we'll pretty-print the type retrieved 4523 // from the specialization's declaration the way that the user 4524 // actually wrote the specialization, rather than formatting the 4525 // name based on the "canonical" representation used to store the 4526 // template arguments in the specialization. 4527 TypeSourceInfo *WrittenTy 4528 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4529 TemplateArgs, CanonType); 4530 if (TUK != TUK_Friend) { 4531 Specialization->setTypeAsWritten(WrittenTy); 4532 if (TemplateParams) 4533 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4534 } 4535 TemplateArgsIn.release(); 4536 4537 // C++ [temp.expl.spec]p9: 4538 // A template explicit specialization is in the scope of the 4539 // namespace in which the template was defined. 4540 // 4541 // We actually implement this paragraph where we set the semantic 4542 // context (in the creation of the ClassTemplateSpecializationDecl), 4543 // but we also maintain the lexical context where the actual 4544 // definition occurs. 4545 Specialization->setLexicalDeclContext(CurContext); 4546 4547 // We may be starting the definition of this specialization. 4548 if (TUK == TUK_Definition) 4549 Specialization->startDefinition(); 4550 4551 if (TUK == TUK_Friend) { 4552 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4553 TemplateNameLoc, 4554 WrittenTy, 4555 /*FIXME:*/KWLoc); 4556 Friend->setAccess(AS_public); 4557 CurContext->addDecl(Friend); 4558 } else { 4559 // Add the specialization into its lexical context, so that it can 4560 // be seen when iterating through the list of declarations in that 4561 // context. However, specializations are not found by name lookup. 4562 CurContext->addDecl(Specialization); 4563 } 4564 return Specialization; 4565} 4566 4567Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4568 MultiTemplateParamsArg TemplateParameterLists, 4569 Declarator &D) { 4570 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4571} 4572 4573Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4574 MultiTemplateParamsArg TemplateParameterLists, 4575 Declarator &D) { 4576 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4577 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4578 4579 if (FTI.hasPrototype) { 4580 // FIXME: Diagnose arguments without names in C. 4581 } 4582 4583 Scope *ParentScope = FnBodyScope->getParent(); 4584 4585 Decl *DP = HandleDeclarator(ParentScope, D, 4586 move(TemplateParameterLists), 4587 /*IsFunctionDefinition=*/true); 4588 if (FunctionTemplateDecl *FunctionTemplate 4589 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4590 return ActOnStartOfFunctionDef(FnBodyScope, 4591 FunctionTemplate->getTemplatedDecl()); 4592 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4593 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4594 return 0; 4595} 4596 4597/// \brief Strips various properties off an implicit instantiation 4598/// that has just been explicitly specialized. 4599static void StripImplicitInstantiation(NamedDecl *D) { 4600 D->dropAttrs(); 4601 4602 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4603 FD->setInlineSpecified(false); 4604 } 4605} 4606 4607/// \brief Diagnose cases where we have an explicit template specialization 4608/// before/after an explicit template instantiation, producing diagnostics 4609/// for those cases where they are required and determining whether the 4610/// new specialization/instantiation will have any effect. 4611/// 4612/// \param NewLoc the location of the new explicit specialization or 4613/// instantiation. 4614/// 4615/// \param NewTSK the kind of the new explicit specialization or instantiation. 4616/// 4617/// \param PrevDecl the previous declaration of the entity. 4618/// 4619/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4620/// 4621/// \param PrevPointOfInstantiation if valid, indicates where the previus 4622/// declaration was instantiated (either implicitly or explicitly). 4623/// 4624/// \param HasNoEffect will be set to true to indicate that the new 4625/// specialization or instantiation has no effect and should be ignored. 4626/// 4627/// \returns true if there was an error that should prevent the introduction of 4628/// the new declaration into the AST, false otherwise. 4629bool 4630Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4631 TemplateSpecializationKind NewTSK, 4632 NamedDecl *PrevDecl, 4633 TemplateSpecializationKind PrevTSK, 4634 SourceLocation PrevPointOfInstantiation, 4635 bool &HasNoEffect) { 4636 HasNoEffect = false; 4637 4638 switch (NewTSK) { 4639 case TSK_Undeclared: 4640 case TSK_ImplicitInstantiation: 4641 assert(false && "Don't check implicit instantiations here"); 4642 return false; 4643 4644 case TSK_ExplicitSpecialization: 4645 switch (PrevTSK) { 4646 case TSK_Undeclared: 4647 case TSK_ExplicitSpecialization: 4648 // Okay, we're just specializing something that is either already 4649 // explicitly specialized or has merely been mentioned without any 4650 // instantiation. 4651 return false; 4652 4653 case TSK_ImplicitInstantiation: 4654 if (PrevPointOfInstantiation.isInvalid()) { 4655 // The declaration itself has not actually been instantiated, so it is 4656 // still okay to specialize it. 4657 StripImplicitInstantiation(PrevDecl); 4658 return false; 4659 } 4660 // Fall through 4661 4662 case TSK_ExplicitInstantiationDeclaration: 4663 case TSK_ExplicitInstantiationDefinition: 4664 assert((PrevTSK == TSK_ImplicitInstantiation || 4665 PrevPointOfInstantiation.isValid()) && 4666 "Explicit instantiation without point of instantiation?"); 4667 4668 // C++ [temp.expl.spec]p6: 4669 // If a template, a member template or the member of a class template 4670 // is explicitly specialized then that specialization shall be declared 4671 // before the first use of that specialization that would cause an 4672 // implicit instantiation to take place, in every translation unit in 4673 // which such a use occurs; no diagnostic is required. 4674 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4675 // Is there any previous explicit specialization declaration? 4676 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4677 return false; 4678 } 4679 4680 Diag(NewLoc, diag::err_specialization_after_instantiation) 4681 << PrevDecl; 4682 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4683 << (PrevTSK != TSK_ImplicitInstantiation); 4684 4685 return true; 4686 } 4687 break; 4688 4689 case TSK_ExplicitInstantiationDeclaration: 4690 switch (PrevTSK) { 4691 case TSK_ExplicitInstantiationDeclaration: 4692 // This explicit instantiation declaration is redundant (that's okay). 4693 HasNoEffect = true; 4694 return false; 4695 4696 case TSK_Undeclared: 4697 case TSK_ImplicitInstantiation: 4698 // We're explicitly instantiating something that may have already been 4699 // implicitly instantiated; that's fine. 4700 return false; 4701 4702 case TSK_ExplicitSpecialization: 4703 // C++0x [temp.explicit]p4: 4704 // For a given set of template parameters, if an explicit instantiation 4705 // of a template appears after a declaration of an explicit 4706 // specialization for that template, the explicit instantiation has no 4707 // effect. 4708 HasNoEffect = true; 4709 return false; 4710 4711 case TSK_ExplicitInstantiationDefinition: 4712 // C++0x [temp.explicit]p10: 4713 // If an entity is the subject of both an explicit instantiation 4714 // declaration and an explicit instantiation definition in the same 4715 // translation unit, the definition shall follow the declaration. 4716 Diag(NewLoc, 4717 diag::err_explicit_instantiation_declaration_after_definition); 4718 Diag(PrevPointOfInstantiation, 4719 diag::note_explicit_instantiation_definition_here); 4720 assert(PrevPointOfInstantiation.isValid() && 4721 "Explicit instantiation without point of instantiation?"); 4722 HasNoEffect = true; 4723 return false; 4724 } 4725 break; 4726 4727 case TSK_ExplicitInstantiationDefinition: 4728 switch (PrevTSK) { 4729 case TSK_Undeclared: 4730 case TSK_ImplicitInstantiation: 4731 // We're explicitly instantiating something that may have already been 4732 // implicitly instantiated; that's fine. 4733 return false; 4734 4735 case TSK_ExplicitSpecialization: 4736 // C++ DR 259, C++0x [temp.explicit]p4: 4737 // For a given set of template parameters, if an explicit 4738 // instantiation of a template appears after a declaration of 4739 // an explicit specialization for that template, the explicit 4740 // instantiation has no effect. 4741 // 4742 // In C++98/03 mode, we only give an extension warning here, because it 4743 // is not harmful to try to explicitly instantiate something that 4744 // has been explicitly specialized. 4745 if (!getLangOptions().CPlusPlus0x) { 4746 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4747 << PrevDecl; 4748 Diag(PrevDecl->getLocation(), 4749 diag::note_previous_template_specialization); 4750 } 4751 HasNoEffect = true; 4752 return false; 4753 4754 case TSK_ExplicitInstantiationDeclaration: 4755 // We're explicity instantiating a definition for something for which we 4756 // were previously asked to suppress instantiations. That's fine. 4757 return false; 4758 4759 case TSK_ExplicitInstantiationDefinition: 4760 // C++0x [temp.spec]p5: 4761 // For a given template and a given set of template-arguments, 4762 // - an explicit instantiation definition shall appear at most once 4763 // in a program, 4764 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4765 << PrevDecl; 4766 Diag(PrevPointOfInstantiation, 4767 diag::note_previous_explicit_instantiation); 4768 HasNoEffect = true; 4769 return false; 4770 } 4771 break; 4772 } 4773 4774 assert(false && "Missing specialization/instantiation case?"); 4775 4776 return false; 4777} 4778 4779/// \brief Perform semantic analysis for the given dependent function 4780/// template specialization. The only possible way to get a dependent 4781/// function template specialization is with a friend declaration, 4782/// like so: 4783/// 4784/// template <class T> void foo(T); 4785/// template <class T> class A { 4786/// friend void foo<>(T); 4787/// }; 4788/// 4789/// There really isn't any useful analysis we can do here, so we 4790/// just store the information. 4791bool 4792Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4793 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4794 LookupResult &Previous) { 4795 // Remove anything from Previous that isn't a function template in 4796 // the correct context. 4797 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4798 LookupResult::Filter F = Previous.makeFilter(); 4799 while (F.hasNext()) { 4800 NamedDecl *D = F.next()->getUnderlyingDecl(); 4801 if (!isa<FunctionTemplateDecl>(D) || 4802 !FDLookupContext->InEnclosingNamespaceSetOf( 4803 D->getDeclContext()->getRedeclContext())) 4804 F.erase(); 4805 } 4806 F.done(); 4807 4808 // Should this be diagnosed here? 4809 if (Previous.empty()) return true; 4810 4811 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4812 ExplicitTemplateArgs); 4813 return false; 4814} 4815 4816/// \brief Perform semantic analysis for the given function template 4817/// specialization. 4818/// 4819/// This routine performs all of the semantic analysis required for an 4820/// explicit function template specialization. On successful completion, 4821/// the function declaration \p FD will become a function template 4822/// specialization. 4823/// 4824/// \param FD the function declaration, which will be updated to become a 4825/// function template specialization. 4826/// 4827/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4828/// if any. Note that this may be valid info even when 0 arguments are 4829/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4830/// as it anyway contains info on the angle brackets locations. 4831/// 4832/// \param PrevDecl the set of declarations that may be specialized by 4833/// this function specialization. 4834bool 4835Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4836 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4837 LookupResult &Previous) { 4838 // The set of function template specializations that could match this 4839 // explicit function template specialization. 4840 UnresolvedSet<8> Candidates; 4841 4842 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4843 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4844 I != E; ++I) { 4845 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4846 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4847 // Only consider templates found within the same semantic lookup scope as 4848 // FD. 4849 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4850 Ovl->getDeclContext()->getRedeclContext())) 4851 continue; 4852 4853 // C++ [temp.expl.spec]p11: 4854 // A trailing template-argument can be left unspecified in the 4855 // template-id naming an explicit function template specialization 4856 // provided it can be deduced from the function argument type. 4857 // Perform template argument deduction to determine whether we may be 4858 // specializing this template. 4859 // FIXME: It is somewhat wasteful to build 4860 TemplateDeductionInfo Info(Context, FD->getLocation()); 4861 FunctionDecl *Specialization = 0; 4862 if (TemplateDeductionResult TDK 4863 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4864 FD->getType(), 4865 Specialization, 4866 Info)) { 4867 // FIXME: Template argument deduction failed; record why it failed, so 4868 // that we can provide nifty diagnostics. 4869 (void)TDK; 4870 continue; 4871 } 4872 4873 // Record this candidate. 4874 Candidates.addDecl(Specialization, I.getAccess()); 4875 } 4876 } 4877 4878 // Find the most specialized function template. 4879 UnresolvedSetIterator Result 4880 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4881 TPOC_Other, 0, FD->getLocation(), 4882 PDiag(diag::err_function_template_spec_no_match) 4883 << FD->getDeclName(), 4884 PDiag(diag::err_function_template_spec_ambiguous) 4885 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4886 PDiag(diag::note_function_template_spec_matched)); 4887 if (Result == Candidates.end()) 4888 return true; 4889 4890 // Ignore access information; it doesn't figure into redeclaration checking. 4891 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4892 Specialization->setLocation(FD->getLocation()); 4893 4894 // FIXME: Check if the prior specialization has a point of instantiation. 4895 // If so, we have run afoul of . 4896 4897 // If this is a friend declaration, then we're not really declaring 4898 // an explicit specialization. 4899 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4900 4901 // Check the scope of this explicit specialization. 4902 if (!isFriend && 4903 CheckTemplateSpecializationScope(*this, 4904 Specialization->getPrimaryTemplate(), 4905 Specialization, FD->getLocation(), 4906 false)) 4907 return true; 4908 4909 // C++ [temp.expl.spec]p6: 4910 // If a template, a member template or the member of a class template is 4911 // explicitly specialized then that specialization shall be declared 4912 // before the first use of that specialization that would cause an implicit 4913 // instantiation to take place, in every translation unit in which such a 4914 // use occurs; no diagnostic is required. 4915 FunctionTemplateSpecializationInfo *SpecInfo 4916 = Specialization->getTemplateSpecializationInfo(); 4917 assert(SpecInfo && "Function template specialization info missing?"); 4918 4919 bool HasNoEffect = false; 4920 if (!isFriend && 4921 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4922 TSK_ExplicitSpecialization, 4923 Specialization, 4924 SpecInfo->getTemplateSpecializationKind(), 4925 SpecInfo->getPointOfInstantiation(), 4926 HasNoEffect)) 4927 return true; 4928 4929 // Mark the prior declaration as an explicit specialization, so that later 4930 // clients know that this is an explicit specialization. 4931 if (!isFriend) { 4932 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4933 MarkUnusedFileScopedDecl(Specialization); 4934 } 4935 4936 // Turn the given function declaration into a function template 4937 // specialization, with the template arguments from the previous 4938 // specialization. 4939 // Take copies of (semantic and syntactic) template argument lists. 4940 const TemplateArgumentList* TemplArgs = new (Context) 4941 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4942 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4943 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4944 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4945 TemplArgs, /*InsertPos=*/0, 4946 SpecInfo->getTemplateSpecializationKind(), 4947 TemplArgsAsWritten); 4948 4949 // The "previous declaration" for this function template specialization is 4950 // the prior function template specialization. 4951 Previous.clear(); 4952 Previous.addDecl(Specialization); 4953 return false; 4954} 4955 4956/// \brief Perform semantic analysis for the given non-template member 4957/// specialization. 4958/// 4959/// This routine performs all of the semantic analysis required for an 4960/// explicit member function specialization. On successful completion, 4961/// the function declaration \p FD will become a member function 4962/// specialization. 4963/// 4964/// \param Member the member declaration, which will be updated to become a 4965/// specialization. 4966/// 4967/// \param Previous the set of declarations, one of which may be specialized 4968/// by this function specialization; the set will be modified to contain the 4969/// redeclared member. 4970bool 4971Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4972 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4973 4974 // Try to find the member we are instantiating. 4975 NamedDecl *Instantiation = 0; 4976 NamedDecl *InstantiatedFrom = 0; 4977 MemberSpecializationInfo *MSInfo = 0; 4978 4979 if (Previous.empty()) { 4980 // Nowhere to look anyway. 4981 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4982 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4983 I != E; ++I) { 4984 NamedDecl *D = (*I)->getUnderlyingDecl(); 4985 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4986 if (Context.hasSameType(Function->getType(), Method->getType())) { 4987 Instantiation = Method; 4988 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4989 MSInfo = Method->getMemberSpecializationInfo(); 4990 break; 4991 } 4992 } 4993 } 4994 } else if (isa<VarDecl>(Member)) { 4995 VarDecl *PrevVar; 4996 if (Previous.isSingleResult() && 4997 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4998 if (PrevVar->isStaticDataMember()) { 4999 Instantiation = PrevVar; 5000 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5001 MSInfo = PrevVar->getMemberSpecializationInfo(); 5002 } 5003 } else if (isa<RecordDecl>(Member)) { 5004 CXXRecordDecl *PrevRecord; 5005 if (Previous.isSingleResult() && 5006 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5007 Instantiation = PrevRecord; 5008 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5009 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5010 } 5011 } 5012 5013 if (!Instantiation) { 5014 // There is no previous declaration that matches. Since member 5015 // specializations are always out-of-line, the caller will complain about 5016 // this mismatch later. 5017 return false; 5018 } 5019 5020 // If this is a friend, just bail out here before we start turning 5021 // things into explicit specializations. 5022 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5023 // Preserve instantiation information. 5024 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5025 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5026 cast<CXXMethodDecl>(InstantiatedFrom), 5027 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5028 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5029 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5030 cast<CXXRecordDecl>(InstantiatedFrom), 5031 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5032 } 5033 5034 Previous.clear(); 5035 Previous.addDecl(Instantiation); 5036 return false; 5037 } 5038 5039 // Make sure that this is a specialization of a member. 5040 if (!InstantiatedFrom) { 5041 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5042 << Member; 5043 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5044 return true; 5045 } 5046 5047 // C++ [temp.expl.spec]p6: 5048 // If a template, a member template or the member of a class template is 5049 // explicitly specialized then that spe- cialization shall be declared 5050 // before the first use of that specialization that would cause an implicit 5051 // instantiation to take place, in every translation unit in which such a 5052 // use occurs; no diagnostic is required. 5053 assert(MSInfo && "Member specialization info missing?"); 5054 5055 bool HasNoEffect = false; 5056 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5057 TSK_ExplicitSpecialization, 5058 Instantiation, 5059 MSInfo->getTemplateSpecializationKind(), 5060 MSInfo->getPointOfInstantiation(), 5061 HasNoEffect)) 5062 return true; 5063 5064 // Check the scope of this explicit specialization. 5065 if (CheckTemplateSpecializationScope(*this, 5066 InstantiatedFrom, 5067 Instantiation, Member->getLocation(), 5068 false)) 5069 return true; 5070 5071 // Note that this is an explicit instantiation of a member. 5072 // the original declaration to note that it is an explicit specialization 5073 // (if it was previously an implicit instantiation). This latter step 5074 // makes bookkeeping easier. 5075 if (isa<FunctionDecl>(Member)) { 5076 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5077 if (InstantiationFunction->getTemplateSpecializationKind() == 5078 TSK_ImplicitInstantiation) { 5079 InstantiationFunction->setTemplateSpecializationKind( 5080 TSK_ExplicitSpecialization); 5081 InstantiationFunction->setLocation(Member->getLocation()); 5082 } 5083 5084 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5085 cast<CXXMethodDecl>(InstantiatedFrom), 5086 TSK_ExplicitSpecialization); 5087 MarkUnusedFileScopedDecl(InstantiationFunction); 5088 } else if (isa<VarDecl>(Member)) { 5089 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5090 if (InstantiationVar->getTemplateSpecializationKind() == 5091 TSK_ImplicitInstantiation) { 5092 InstantiationVar->setTemplateSpecializationKind( 5093 TSK_ExplicitSpecialization); 5094 InstantiationVar->setLocation(Member->getLocation()); 5095 } 5096 5097 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5098 cast<VarDecl>(InstantiatedFrom), 5099 TSK_ExplicitSpecialization); 5100 MarkUnusedFileScopedDecl(InstantiationVar); 5101 } else { 5102 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5103 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5104 if (InstantiationClass->getTemplateSpecializationKind() == 5105 TSK_ImplicitInstantiation) { 5106 InstantiationClass->setTemplateSpecializationKind( 5107 TSK_ExplicitSpecialization); 5108 InstantiationClass->setLocation(Member->getLocation()); 5109 } 5110 5111 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5112 cast<CXXRecordDecl>(InstantiatedFrom), 5113 TSK_ExplicitSpecialization); 5114 } 5115 5116 // Save the caller the trouble of having to figure out which declaration 5117 // this specialization matches. 5118 Previous.clear(); 5119 Previous.addDecl(Instantiation); 5120 return false; 5121} 5122 5123/// \brief Check the scope of an explicit instantiation. 5124/// 5125/// \returns true if a serious error occurs, false otherwise. 5126static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5127 SourceLocation InstLoc, 5128 bool WasQualifiedName) { 5129 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5130 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5131 5132 if (CurContext->isRecord()) { 5133 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5134 << D; 5135 return true; 5136 } 5137 5138 // C++0x [temp.explicit]p2: 5139 // An explicit instantiation shall appear in an enclosing namespace of its 5140 // template. 5141 // 5142 // This is DR275, which we do not retroactively apply to C++98/03. 5143 if (S.getLangOptions().CPlusPlus0x && 5144 !CurContext->Encloses(OrigContext)) { 5145 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5146 S.Diag(InstLoc, 5147 S.getLangOptions().CPlusPlus0x? 5148 diag::err_explicit_instantiation_out_of_scope 5149 : diag::warn_explicit_instantiation_out_of_scope_0x) 5150 << D << NS; 5151 else 5152 S.Diag(InstLoc, 5153 S.getLangOptions().CPlusPlus0x? 5154 diag::err_explicit_instantiation_must_be_global 5155 : diag::warn_explicit_instantiation_out_of_scope_0x) 5156 << D; 5157 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5158 return false; 5159 } 5160 5161 // C++0x [temp.explicit]p2: 5162 // If the name declared in the explicit instantiation is an unqualified 5163 // name, the explicit instantiation shall appear in the namespace where 5164 // its template is declared or, if that namespace is inline (7.3.1), any 5165 // namespace from its enclosing namespace set. 5166 if (WasQualifiedName) 5167 return false; 5168 5169 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5170 return false; 5171 5172 S.Diag(InstLoc, 5173 S.getLangOptions().CPlusPlus0x? 5174 diag::err_explicit_instantiation_unqualified_wrong_namespace 5175 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5176 << D << OrigContext; 5177 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5178 return false; 5179} 5180 5181/// \brief Determine whether the given scope specifier has a template-id in it. 5182static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5183 if (!SS.isSet()) 5184 return false; 5185 5186 // C++0x [temp.explicit]p2: 5187 // If the explicit instantiation is for a member function, a member class 5188 // or a static data member of a class template specialization, the name of 5189 // the class template specialization in the qualified-id for the member 5190 // name shall be a simple-template-id. 5191 // 5192 // C++98 has the same restriction, just worded differently. 5193 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5194 NNS; NNS = NNS->getPrefix()) 5195 if (Type *T = NNS->getAsType()) 5196 if (isa<TemplateSpecializationType>(T)) 5197 return true; 5198 5199 return false; 5200} 5201 5202// Explicit instantiation of a class template specialization 5203DeclResult 5204Sema::ActOnExplicitInstantiation(Scope *S, 5205 SourceLocation ExternLoc, 5206 SourceLocation TemplateLoc, 5207 unsigned TagSpec, 5208 SourceLocation KWLoc, 5209 const CXXScopeSpec &SS, 5210 TemplateTy TemplateD, 5211 SourceLocation TemplateNameLoc, 5212 SourceLocation LAngleLoc, 5213 ASTTemplateArgsPtr TemplateArgsIn, 5214 SourceLocation RAngleLoc, 5215 AttributeList *Attr) { 5216 // Find the class template we're specializing 5217 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5218 ClassTemplateDecl *ClassTemplate 5219 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5220 5221 // Check that the specialization uses the same tag kind as the 5222 // original template. 5223 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5224 assert(Kind != TTK_Enum && 5225 "Invalid enum tag in class template explicit instantiation!"); 5226 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5227 Kind, KWLoc, 5228 *ClassTemplate->getIdentifier())) { 5229 Diag(KWLoc, diag::err_use_with_wrong_tag) 5230 << ClassTemplate 5231 << FixItHint::CreateReplacement(KWLoc, 5232 ClassTemplate->getTemplatedDecl()->getKindName()); 5233 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5234 diag::note_previous_use); 5235 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5236 } 5237 5238 // C++0x [temp.explicit]p2: 5239 // There are two forms of explicit instantiation: an explicit instantiation 5240 // definition and an explicit instantiation declaration. An explicit 5241 // instantiation declaration begins with the extern keyword. [...] 5242 TemplateSpecializationKind TSK 5243 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5244 : TSK_ExplicitInstantiationDeclaration; 5245 5246 // Translate the parser's template argument list in our AST format. 5247 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5248 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5249 5250 // Check that the template argument list is well-formed for this 5251 // template. 5252 llvm::SmallVector<TemplateArgument, 4> Converted; 5253 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5254 TemplateArgs, false, Converted)) 5255 return true; 5256 5257 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5258 "Converted template argument list is too short!"); 5259 5260 // Find the class template specialization declaration that 5261 // corresponds to these arguments. 5262 void *InsertPos = 0; 5263 ClassTemplateSpecializationDecl *PrevDecl 5264 = ClassTemplate->findSpecialization(Converted.data(), 5265 Converted.size(), InsertPos); 5266 5267 TemplateSpecializationKind PrevDecl_TSK 5268 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5269 5270 // C++0x [temp.explicit]p2: 5271 // [...] An explicit instantiation shall appear in an enclosing 5272 // namespace of its template. [...] 5273 // 5274 // This is C++ DR 275. 5275 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5276 SS.isSet())) 5277 return true; 5278 5279 ClassTemplateSpecializationDecl *Specialization = 0; 5280 5281 bool HasNoEffect = false; 5282 if (PrevDecl) { 5283 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5284 PrevDecl, PrevDecl_TSK, 5285 PrevDecl->getPointOfInstantiation(), 5286 HasNoEffect)) 5287 return PrevDecl; 5288 5289 // Even though HasNoEffect == true means that this explicit instantiation 5290 // has no effect on semantics, we go on to put its syntax in the AST. 5291 5292 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5293 PrevDecl_TSK == TSK_Undeclared) { 5294 // Since the only prior class template specialization with these 5295 // arguments was referenced but not declared, reuse that 5296 // declaration node as our own, updating the source location 5297 // for the template name to reflect our new declaration. 5298 // (Other source locations will be updated later.) 5299 Specialization = PrevDecl; 5300 Specialization->setLocation(TemplateNameLoc); 5301 PrevDecl = 0; 5302 } 5303 } 5304 5305 if (!Specialization) { 5306 // Create a new class template specialization declaration node for 5307 // this explicit specialization. 5308 Specialization 5309 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5310 ClassTemplate->getDeclContext(), 5311 TemplateNameLoc, 5312 ClassTemplate, 5313 Converted.data(), 5314 Converted.size(), 5315 PrevDecl); 5316 SetNestedNameSpecifier(Specialization, SS); 5317 5318 if (!HasNoEffect && !PrevDecl) { 5319 // Insert the new specialization. 5320 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5321 } 5322 } 5323 5324 // Build the fully-sugared type for this explicit instantiation as 5325 // the user wrote in the explicit instantiation itself. This means 5326 // that we'll pretty-print the type retrieved from the 5327 // specialization's declaration the way that the user actually wrote 5328 // the explicit instantiation, rather than formatting the name based 5329 // on the "canonical" representation used to store the template 5330 // arguments in the specialization. 5331 TypeSourceInfo *WrittenTy 5332 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5333 TemplateArgs, 5334 Context.getTypeDeclType(Specialization)); 5335 Specialization->setTypeAsWritten(WrittenTy); 5336 TemplateArgsIn.release(); 5337 5338 // Set source locations for keywords. 5339 Specialization->setExternLoc(ExternLoc); 5340 Specialization->setTemplateKeywordLoc(TemplateLoc); 5341 5342 // Add the explicit instantiation into its lexical context. However, 5343 // since explicit instantiations are never found by name lookup, we 5344 // just put it into the declaration context directly. 5345 Specialization->setLexicalDeclContext(CurContext); 5346 CurContext->addDecl(Specialization); 5347 5348 // Syntax is now OK, so return if it has no other effect on semantics. 5349 if (HasNoEffect) { 5350 // Set the template specialization kind. 5351 Specialization->setTemplateSpecializationKind(TSK); 5352 return Specialization; 5353 } 5354 5355 // C++ [temp.explicit]p3: 5356 // A definition of a class template or class member template 5357 // shall be in scope at the point of the explicit instantiation of 5358 // the class template or class member template. 5359 // 5360 // This check comes when we actually try to perform the 5361 // instantiation. 5362 ClassTemplateSpecializationDecl *Def 5363 = cast_or_null<ClassTemplateSpecializationDecl>( 5364 Specialization->getDefinition()); 5365 if (!Def) 5366 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5367 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5368 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5369 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5370 } 5371 5372 // Instantiate the members of this class template specialization. 5373 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5374 Specialization->getDefinition()); 5375 if (Def) { 5376 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5377 5378 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5379 // TSK_ExplicitInstantiationDefinition 5380 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5381 TSK == TSK_ExplicitInstantiationDefinition) 5382 Def->setTemplateSpecializationKind(TSK); 5383 5384 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5385 } 5386 5387 // Set the template specialization kind. 5388 Specialization->setTemplateSpecializationKind(TSK); 5389 return Specialization; 5390} 5391 5392// Explicit instantiation of a member class of a class template. 5393DeclResult 5394Sema::ActOnExplicitInstantiation(Scope *S, 5395 SourceLocation ExternLoc, 5396 SourceLocation TemplateLoc, 5397 unsigned TagSpec, 5398 SourceLocation KWLoc, 5399 CXXScopeSpec &SS, 5400 IdentifierInfo *Name, 5401 SourceLocation NameLoc, 5402 AttributeList *Attr) { 5403 5404 bool Owned = false; 5405 bool IsDependent = false; 5406 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5407 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5408 MultiTemplateParamsArg(*this, 0, 0), 5409 Owned, IsDependent, false, false, 5410 TypeResult()); 5411 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5412 5413 if (!TagD) 5414 return true; 5415 5416 TagDecl *Tag = cast<TagDecl>(TagD); 5417 if (Tag->isEnum()) { 5418 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5419 << Context.getTypeDeclType(Tag); 5420 return true; 5421 } 5422 5423 if (Tag->isInvalidDecl()) 5424 return true; 5425 5426 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5427 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5428 if (!Pattern) { 5429 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5430 << Context.getTypeDeclType(Record); 5431 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5432 return true; 5433 } 5434 5435 // C++0x [temp.explicit]p2: 5436 // If the explicit instantiation is for a class or member class, the 5437 // elaborated-type-specifier in the declaration shall include a 5438 // simple-template-id. 5439 // 5440 // C++98 has the same restriction, just worded differently. 5441 if (!ScopeSpecifierHasTemplateId(SS)) 5442 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5443 << Record << SS.getRange(); 5444 5445 // C++0x [temp.explicit]p2: 5446 // There are two forms of explicit instantiation: an explicit instantiation 5447 // definition and an explicit instantiation declaration. An explicit 5448 // instantiation declaration begins with the extern keyword. [...] 5449 TemplateSpecializationKind TSK 5450 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5451 : TSK_ExplicitInstantiationDeclaration; 5452 5453 // C++0x [temp.explicit]p2: 5454 // [...] An explicit instantiation shall appear in an enclosing 5455 // namespace of its template. [...] 5456 // 5457 // This is C++ DR 275. 5458 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5459 5460 // Verify that it is okay to explicitly instantiate here. 5461 CXXRecordDecl *PrevDecl 5462 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5463 if (!PrevDecl && Record->getDefinition()) 5464 PrevDecl = Record; 5465 if (PrevDecl) { 5466 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5467 bool HasNoEffect = false; 5468 assert(MSInfo && "No member specialization information?"); 5469 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5470 PrevDecl, 5471 MSInfo->getTemplateSpecializationKind(), 5472 MSInfo->getPointOfInstantiation(), 5473 HasNoEffect)) 5474 return true; 5475 if (HasNoEffect) 5476 return TagD; 5477 } 5478 5479 CXXRecordDecl *RecordDef 5480 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5481 if (!RecordDef) { 5482 // C++ [temp.explicit]p3: 5483 // A definition of a member class of a class template shall be in scope 5484 // at the point of an explicit instantiation of the member class. 5485 CXXRecordDecl *Def 5486 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5487 if (!Def) { 5488 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5489 << 0 << Record->getDeclName() << Record->getDeclContext(); 5490 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5491 << Pattern; 5492 return true; 5493 } else { 5494 if (InstantiateClass(NameLoc, Record, Def, 5495 getTemplateInstantiationArgs(Record), 5496 TSK)) 5497 return true; 5498 5499 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5500 if (!RecordDef) 5501 return true; 5502 } 5503 } 5504 5505 // Instantiate all of the members of the class. 5506 InstantiateClassMembers(NameLoc, RecordDef, 5507 getTemplateInstantiationArgs(Record), TSK); 5508 5509 if (TSK == TSK_ExplicitInstantiationDefinition) 5510 MarkVTableUsed(NameLoc, RecordDef, true); 5511 5512 // FIXME: We don't have any representation for explicit instantiations of 5513 // member classes. Such a representation is not needed for compilation, but it 5514 // should be available for clients that want to see all of the declarations in 5515 // the source code. 5516 return TagD; 5517} 5518 5519DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5520 SourceLocation ExternLoc, 5521 SourceLocation TemplateLoc, 5522 Declarator &D) { 5523 // Explicit instantiations always require a name. 5524 // TODO: check if/when DNInfo should replace Name. 5525 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5526 DeclarationName Name = NameInfo.getName(); 5527 if (!Name) { 5528 if (!D.isInvalidType()) 5529 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5530 diag::err_explicit_instantiation_requires_name) 5531 << D.getDeclSpec().getSourceRange() 5532 << D.getSourceRange(); 5533 5534 return true; 5535 } 5536 5537 // The scope passed in may not be a decl scope. Zip up the scope tree until 5538 // we find one that is. 5539 while ((S->getFlags() & Scope::DeclScope) == 0 || 5540 (S->getFlags() & Scope::TemplateParamScope) != 0) 5541 S = S->getParent(); 5542 5543 // Determine the type of the declaration. 5544 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5545 QualType R = T->getType(); 5546 if (R.isNull()) 5547 return true; 5548 5549 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5550 // Cannot explicitly instantiate a typedef. 5551 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5552 << Name; 5553 return true; 5554 } 5555 5556 // C++0x [temp.explicit]p1: 5557 // [...] An explicit instantiation of a function template shall not use the 5558 // inline or constexpr specifiers. 5559 // Presumably, this also applies to member functions of class templates as 5560 // well. 5561 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5562 Diag(D.getDeclSpec().getInlineSpecLoc(), 5563 diag::err_explicit_instantiation_inline) 5564 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5565 5566 // FIXME: check for constexpr specifier. 5567 5568 // C++0x [temp.explicit]p2: 5569 // There are two forms of explicit instantiation: an explicit instantiation 5570 // definition and an explicit instantiation declaration. An explicit 5571 // instantiation declaration begins with the extern keyword. [...] 5572 TemplateSpecializationKind TSK 5573 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5574 : TSK_ExplicitInstantiationDeclaration; 5575 5576 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5577 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5578 5579 if (!R->isFunctionType()) { 5580 // C++ [temp.explicit]p1: 5581 // A [...] static data member of a class template can be explicitly 5582 // instantiated from the member definition associated with its class 5583 // template. 5584 if (Previous.isAmbiguous()) 5585 return true; 5586 5587 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5588 if (!Prev || !Prev->isStaticDataMember()) { 5589 // We expect to see a data data member here. 5590 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5591 << Name; 5592 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5593 P != PEnd; ++P) 5594 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5595 return true; 5596 } 5597 5598 if (!Prev->getInstantiatedFromStaticDataMember()) { 5599 // FIXME: Check for explicit specialization? 5600 Diag(D.getIdentifierLoc(), 5601 diag::err_explicit_instantiation_data_member_not_instantiated) 5602 << Prev; 5603 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5604 // FIXME: Can we provide a note showing where this was declared? 5605 return true; 5606 } 5607 5608 // C++0x [temp.explicit]p2: 5609 // If the explicit instantiation is for a member function, a member class 5610 // or a static data member of a class template specialization, the name of 5611 // the class template specialization in the qualified-id for the member 5612 // name shall be a simple-template-id. 5613 // 5614 // C++98 has the same restriction, just worded differently. 5615 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5616 Diag(D.getIdentifierLoc(), 5617 diag::ext_explicit_instantiation_without_qualified_id) 5618 << Prev << D.getCXXScopeSpec().getRange(); 5619 5620 // Check the scope of this explicit instantiation. 5621 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5622 5623 // Verify that it is okay to explicitly instantiate here. 5624 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5625 assert(MSInfo && "Missing static data member specialization info?"); 5626 bool HasNoEffect = false; 5627 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5628 MSInfo->getTemplateSpecializationKind(), 5629 MSInfo->getPointOfInstantiation(), 5630 HasNoEffect)) 5631 return true; 5632 if (HasNoEffect) 5633 return (Decl*) 0; 5634 5635 // Instantiate static data member. 5636 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5637 if (TSK == TSK_ExplicitInstantiationDefinition) 5638 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5639 5640 // FIXME: Create an ExplicitInstantiation node? 5641 return (Decl*) 0; 5642 } 5643 5644 // If the declarator is a template-id, translate the parser's template 5645 // argument list into our AST format. 5646 bool HasExplicitTemplateArgs = false; 5647 TemplateArgumentListInfo TemplateArgs; 5648 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5649 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5650 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5651 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5652 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5653 TemplateId->getTemplateArgs(), 5654 TemplateId->NumArgs); 5655 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5656 HasExplicitTemplateArgs = true; 5657 TemplateArgsPtr.release(); 5658 } 5659 5660 // C++ [temp.explicit]p1: 5661 // A [...] function [...] can be explicitly instantiated from its template. 5662 // A member function [...] of a class template can be explicitly 5663 // instantiated from the member definition associated with its class 5664 // template. 5665 UnresolvedSet<8> Matches; 5666 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5667 P != PEnd; ++P) { 5668 NamedDecl *Prev = *P; 5669 if (!HasExplicitTemplateArgs) { 5670 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5671 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5672 Matches.clear(); 5673 5674 Matches.addDecl(Method, P.getAccess()); 5675 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5676 break; 5677 } 5678 } 5679 } 5680 5681 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5682 if (!FunTmpl) 5683 continue; 5684 5685 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5686 FunctionDecl *Specialization = 0; 5687 if (TemplateDeductionResult TDK 5688 = DeduceTemplateArguments(FunTmpl, 5689 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5690 R, Specialization, Info)) { 5691 // FIXME: Keep track of almost-matches? 5692 (void)TDK; 5693 continue; 5694 } 5695 5696 Matches.addDecl(Specialization, P.getAccess()); 5697 } 5698 5699 // Find the most specialized function template specialization. 5700 UnresolvedSetIterator Result 5701 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 5702 D.getIdentifierLoc(), 5703 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5704 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5705 PDiag(diag::note_explicit_instantiation_candidate)); 5706 5707 if (Result == Matches.end()) 5708 return true; 5709 5710 // Ignore access control bits, we don't need them for redeclaration checking. 5711 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5712 5713 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5714 Diag(D.getIdentifierLoc(), 5715 diag::err_explicit_instantiation_member_function_not_instantiated) 5716 << Specialization 5717 << (Specialization->getTemplateSpecializationKind() == 5718 TSK_ExplicitSpecialization); 5719 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5720 return true; 5721 } 5722 5723 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5724 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5725 PrevDecl = Specialization; 5726 5727 if (PrevDecl) { 5728 bool HasNoEffect = false; 5729 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5730 PrevDecl, 5731 PrevDecl->getTemplateSpecializationKind(), 5732 PrevDecl->getPointOfInstantiation(), 5733 HasNoEffect)) 5734 return true; 5735 5736 // FIXME: We may still want to build some representation of this 5737 // explicit specialization. 5738 if (HasNoEffect) 5739 return (Decl*) 0; 5740 } 5741 5742 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5743 5744 if (TSK == TSK_ExplicitInstantiationDefinition) 5745 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5746 5747 // C++0x [temp.explicit]p2: 5748 // If the explicit instantiation is for a member function, a member class 5749 // or a static data member of a class template specialization, the name of 5750 // the class template specialization in the qualified-id for the member 5751 // name shall be a simple-template-id. 5752 // 5753 // C++98 has the same restriction, just worded differently. 5754 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5755 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5756 D.getCXXScopeSpec().isSet() && 5757 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5758 Diag(D.getIdentifierLoc(), 5759 diag::ext_explicit_instantiation_without_qualified_id) 5760 << Specialization << D.getCXXScopeSpec().getRange(); 5761 5762 CheckExplicitInstantiationScope(*this, 5763 FunTmpl? (NamedDecl *)FunTmpl 5764 : Specialization->getInstantiatedFromMemberFunction(), 5765 D.getIdentifierLoc(), 5766 D.getCXXScopeSpec().isSet()); 5767 5768 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5769 return (Decl*) 0; 5770} 5771 5772TypeResult 5773Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5774 const CXXScopeSpec &SS, IdentifierInfo *Name, 5775 SourceLocation TagLoc, SourceLocation NameLoc) { 5776 // This has to hold, because SS is expected to be defined. 5777 assert(Name && "Expected a name in a dependent tag"); 5778 5779 NestedNameSpecifier *NNS 5780 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5781 if (!NNS) 5782 return true; 5783 5784 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5785 5786 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5787 Diag(NameLoc, diag::err_dependent_tag_decl) 5788 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5789 return true; 5790 } 5791 5792 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5793 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5794} 5795 5796TypeResult 5797Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5798 const CXXScopeSpec &SS, const IdentifierInfo &II, 5799 SourceLocation IdLoc) { 5800 NestedNameSpecifier *NNS 5801 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5802 if (!NNS) 5803 return true; 5804 5805 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5806 !getLangOptions().CPlusPlus0x) 5807 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5808 << FixItHint::CreateRemoval(TypenameLoc); 5809 5810 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5811 TypenameLoc, SS.getRange(), IdLoc); 5812 if (T.isNull()) 5813 return true; 5814 5815 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5816 if (isa<DependentNameType>(T)) { 5817 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5818 TL.setKeywordLoc(TypenameLoc); 5819 TL.setQualifierRange(SS.getRange()); 5820 TL.setNameLoc(IdLoc); 5821 } else { 5822 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5823 TL.setKeywordLoc(TypenameLoc); 5824 TL.setQualifierRange(SS.getRange()); 5825 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5826 } 5827 5828 return CreateParsedType(T, TSI); 5829} 5830 5831TypeResult 5832Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5833 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5834 ParsedType Ty) { 5835 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5836 !getLangOptions().CPlusPlus0x) 5837 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5838 << FixItHint::CreateRemoval(TypenameLoc); 5839 5840 TypeSourceInfo *InnerTSI = 0; 5841 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5842 5843 assert(isa<TemplateSpecializationType>(T) && 5844 "Expected a template specialization type"); 5845 5846 if (computeDeclContext(SS, false)) { 5847 // If we can compute a declaration context, then the "typename" 5848 // keyword was superfluous. Just build an ElaboratedType to keep 5849 // track of the nested-name-specifier. 5850 5851 // Push the inner type, preserving its source locations if possible. 5852 TypeLocBuilder Builder; 5853 if (InnerTSI) 5854 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5855 else 5856 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5857 5858 /* Note: NNS already embedded in template specialization type T. */ 5859 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5860 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5861 TL.setKeywordLoc(TypenameLoc); 5862 TL.setQualifierRange(SS.getRange()); 5863 5864 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5865 return CreateParsedType(T, TSI); 5866 } 5867 5868 // TODO: it's really silly that we make a template specialization 5869 // type earlier only to drop it again here. 5870 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5871 DependentTemplateName *DTN = 5872 TST->getTemplateName().getAsDependentTemplateName(); 5873 assert(DTN && "dependent template has non-dependent name?"); 5874 assert(DTN->getQualifier() 5875 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5876 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5877 DTN->getQualifier(), 5878 DTN->getIdentifier(), 5879 TST->getNumArgs(), 5880 TST->getArgs()); 5881 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5882 DependentTemplateSpecializationTypeLoc TL = 5883 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5884 if (InnerTSI) { 5885 TemplateSpecializationTypeLoc TSTL = 5886 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5887 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5888 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5889 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5890 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5891 } else { 5892 TL.initializeLocal(SourceLocation()); 5893 } 5894 TL.setKeywordLoc(TypenameLoc); 5895 TL.setQualifierRange(SS.getRange()); 5896 return CreateParsedType(T, TSI); 5897} 5898 5899/// \brief Build the type that describes a C++ typename specifier, 5900/// e.g., "typename T::type". 5901QualType 5902Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5903 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5904 SourceLocation KeywordLoc, SourceRange NNSRange, 5905 SourceLocation IILoc) { 5906 CXXScopeSpec SS; 5907 SS.setScopeRep(NNS); 5908 SS.setRange(NNSRange); 5909 5910 DeclContext *Ctx = computeDeclContext(SS); 5911 if (!Ctx) { 5912 // If the nested-name-specifier is dependent and couldn't be 5913 // resolved to a type, build a typename type. 5914 assert(NNS->isDependent()); 5915 return Context.getDependentNameType(Keyword, NNS, &II); 5916 } 5917 5918 // If the nested-name-specifier refers to the current instantiation, 5919 // the "typename" keyword itself is superfluous. In C++03, the 5920 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5921 // allows such extraneous "typename" keywords, and we retroactively 5922 // apply this DR to C++03 code with only a warning. In any case we continue. 5923 5924 if (RequireCompleteDeclContext(SS, Ctx)) 5925 return QualType(); 5926 5927 DeclarationName Name(&II); 5928 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5929 LookupQualifiedName(Result, Ctx); 5930 unsigned DiagID = 0; 5931 Decl *Referenced = 0; 5932 switch (Result.getResultKind()) { 5933 case LookupResult::NotFound: 5934 DiagID = diag::err_typename_nested_not_found; 5935 break; 5936 5937 case LookupResult::FoundUnresolvedValue: { 5938 // We found a using declaration that is a value. Most likely, the using 5939 // declaration itself is meant to have the 'typename' keyword. 5940 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5941 IILoc); 5942 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 5943 << Name << Ctx << FullRange; 5944 if (UnresolvedUsingValueDecl *Using 5945 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 5946 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 5947 Diag(Loc, diag::note_using_value_decl_missing_typename) 5948 << FixItHint::CreateInsertion(Loc, "typename "); 5949 } 5950 } 5951 // Fall through to create a dependent typename type, from which we can recover 5952 // better. 5953 5954 case LookupResult::NotFoundInCurrentInstantiation: 5955 // Okay, it's a member of an unknown instantiation. 5956 return Context.getDependentNameType(Keyword, NNS, &II); 5957 5958 case LookupResult::Found: 5959 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5960 // We found a type. Build an ElaboratedType, since the 5961 // typename-specifier was just sugar. 5962 return Context.getElaboratedType(ETK_Typename, NNS, 5963 Context.getTypeDeclType(Type)); 5964 } 5965 5966 DiagID = diag::err_typename_nested_not_type; 5967 Referenced = Result.getFoundDecl(); 5968 break; 5969 5970 5971 llvm_unreachable("unresolved using decl in non-dependent context"); 5972 return QualType(); 5973 5974 case LookupResult::FoundOverloaded: 5975 DiagID = diag::err_typename_nested_not_type; 5976 Referenced = *Result.begin(); 5977 break; 5978 5979 case LookupResult::Ambiguous: 5980 return QualType(); 5981 } 5982 5983 // If we get here, it's because name lookup did not find a 5984 // type. Emit an appropriate diagnostic and return an error. 5985 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5986 IILoc); 5987 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5988 if (Referenced) 5989 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5990 << Name; 5991 return QualType(); 5992} 5993 5994namespace { 5995 // See Sema::RebuildTypeInCurrentInstantiation 5996 class CurrentInstantiationRebuilder 5997 : public TreeTransform<CurrentInstantiationRebuilder> { 5998 SourceLocation Loc; 5999 DeclarationName Entity; 6000 6001 public: 6002 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6003 6004 CurrentInstantiationRebuilder(Sema &SemaRef, 6005 SourceLocation Loc, 6006 DeclarationName Entity) 6007 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6008 Loc(Loc), Entity(Entity) { } 6009 6010 /// \brief Determine whether the given type \p T has already been 6011 /// transformed. 6012 /// 6013 /// For the purposes of type reconstruction, a type has already been 6014 /// transformed if it is NULL or if it is not dependent. 6015 bool AlreadyTransformed(QualType T) { 6016 return T.isNull() || !T->isDependentType(); 6017 } 6018 6019 /// \brief Returns the location of the entity whose type is being 6020 /// rebuilt. 6021 SourceLocation getBaseLocation() { return Loc; } 6022 6023 /// \brief Returns the name of the entity whose type is being rebuilt. 6024 DeclarationName getBaseEntity() { return Entity; } 6025 6026 /// \brief Sets the "base" location and entity when that 6027 /// information is known based on another transformation. 6028 void setBase(SourceLocation Loc, DeclarationName Entity) { 6029 this->Loc = Loc; 6030 this->Entity = Entity; 6031 } 6032 }; 6033} 6034 6035/// \brief Rebuilds a type within the context of the current instantiation. 6036/// 6037/// The type \p T is part of the type of an out-of-line member definition of 6038/// a class template (or class template partial specialization) that was parsed 6039/// and constructed before we entered the scope of the class template (or 6040/// partial specialization thereof). This routine will rebuild that type now 6041/// that we have entered the declarator's scope, which may produce different 6042/// canonical types, e.g., 6043/// 6044/// \code 6045/// template<typename T> 6046/// struct X { 6047/// typedef T* pointer; 6048/// pointer data(); 6049/// }; 6050/// 6051/// template<typename T> 6052/// typename X<T>::pointer X<T>::data() { ... } 6053/// \endcode 6054/// 6055/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6056/// since we do not know that we can look into X<T> when we parsed the type. 6057/// This function will rebuild the type, performing the lookup of "pointer" 6058/// in X<T> and returning an ElaboratedType whose canonical type is the same 6059/// as the canonical type of T*, allowing the return types of the out-of-line 6060/// definition and the declaration to match. 6061TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6062 SourceLocation Loc, 6063 DeclarationName Name) { 6064 if (!T || !T->getType()->isDependentType()) 6065 return T; 6066 6067 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6068 return Rebuilder.TransformType(T); 6069} 6070 6071ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6072 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6073 DeclarationName()); 6074 return Rebuilder.TransformExpr(E); 6075} 6076 6077bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6078 if (SS.isInvalid()) return true; 6079 6080 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 6081 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6082 DeclarationName()); 6083 NestedNameSpecifier *Rebuilt = 6084 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 6085 if (!Rebuilt) return true; 6086 6087 SS.setScopeRep(Rebuilt); 6088 return false; 6089} 6090 6091/// \brief Produces a formatted string that describes the binding of 6092/// template parameters to template arguments. 6093std::string 6094Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6095 const TemplateArgumentList &Args) { 6096 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6097} 6098 6099std::string 6100Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6101 const TemplateArgument *Args, 6102 unsigned NumArgs) { 6103 llvm::SmallString<128> Str; 6104 llvm::raw_svector_ostream Out(Str); 6105 6106 if (!Params || Params->size() == 0 || NumArgs == 0) 6107 return std::string(); 6108 6109 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6110 if (I >= NumArgs) 6111 break; 6112 6113 if (I == 0) 6114 Out << "[with "; 6115 else 6116 Out << ", "; 6117 6118 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6119 Out << Id->getName(); 6120 } else { 6121 Out << '$' << I; 6122 } 6123 6124 Out << " = "; 6125 Args[I].print(Context.PrintingPolicy, Out); 6126 } 6127 6128 Out << ']'; 6129 return Out.str(); 6130} 6131