SemaTemplate.cpp revision e559ca1672ecef59345a928af0a6809b09282d2c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252  } else if (SS.isSet()) {
253    // This nested-name-specifier occurs after another nested-name-specifier,
254    // so long into the context associated with the prior nested-name-specifier.
255    LookupCtx = computeDeclContext(SS, EnteringContext);
256    isDependent = isDependentScopeSpecifier(SS);
257
258    // The declaration context must be complete.
259    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
260      return;
261  }
262
263  bool ObjectTypeSearchedInScope = false;
264  if (LookupCtx) {
265    // Perform "qualified" name lookup into the declaration context we
266    // computed, which is either the type of the base of a member access
267    // expression or the declaration context associated with a prior
268    // nested-name-specifier.
269    LookupQualifiedName(Found, LookupCtx);
270
271    if (!ObjectType.isNull() && Found.empty()) {
272      // C++ [basic.lookup.classref]p1:
273      //   In a class member access expression (5.2.5), if the . or -> token is
274      //   immediately followed by an identifier followed by a <, the
275      //   identifier must be looked up to determine whether the < is the
276      //   beginning of a template argument list (14.2) or a less-than operator.
277      //   The identifier is first looked up in the class of the object
278      //   expression. If the identifier is not found, it is then looked up in
279      //   the context of the entire postfix-expression and shall name a class
280      //   or function template.
281      if (S) LookupName(Found, S);
282      ObjectTypeSearchedInScope = true;
283    }
284  } else if (isDependent && (!S || ObjectType.isNull())) {
285    // We cannot look into a dependent object type or nested nme
286    // specifier.
287    MemberOfUnknownSpecialization = true;
288    return;
289  } else {
290    // Perform unqualified name lookup in the current scope.
291    LookupName(Found, S);
292  }
293
294  if (Found.empty() && !isDependent) {
295    // If we did not find any names, attempt to correct any typos.
296    DeclarationName Name = Found.getLookupName();
297    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
298                                                false, CTC_CXXCasts)) {
299      FilterAcceptableTemplateNames(Found);
300      if (!Found.empty()) {
301        if (LookupCtx)
302          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
303            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
304            << FixItHint::CreateReplacement(Found.getNameLoc(),
305                                          Found.getLookupName().getAsString());
306        else
307          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
308            << Name << Found.getLookupName()
309            << FixItHint::CreateReplacement(Found.getNameLoc(),
310                                          Found.getLookupName().getAsString());
311        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
312          Diag(Template->getLocation(), diag::note_previous_decl)
313            << Template->getDeclName();
314      }
315    } else {
316      Found.clear();
317      Found.setLookupName(Name);
318    }
319  }
320
321  FilterAcceptableTemplateNames(Found);
322  if (Found.empty()) {
323    if (isDependent)
324      MemberOfUnknownSpecialization = true;
325    return;
326  }
327
328  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
329    // C++ [basic.lookup.classref]p1:
330    //   [...] If the lookup in the class of the object expression finds a
331    //   template, the name is also looked up in the context of the entire
332    //   postfix-expression and [...]
333    //
334    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
335                            LookupOrdinaryName);
336    LookupName(FoundOuter, S);
337    FilterAcceptableTemplateNames(FoundOuter);
338
339    if (FoundOuter.empty()) {
340      //   - if the name is not found, the name found in the class of the
341      //     object expression is used, otherwise
342    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
343      //   - if the name is found in the context of the entire
344      //     postfix-expression and does not name a class template, the name
345      //     found in the class of the object expression is used, otherwise
346    } else if (!Found.isSuppressingDiagnostics()) {
347      //   - if the name found is a class template, it must refer to the same
348      //     entity as the one found in the class of the object expression,
349      //     otherwise the program is ill-formed.
350      if (!Found.isSingleResult() ||
351          Found.getFoundDecl()->getCanonicalDecl()
352            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
353        Diag(Found.getNameLoc(),
354             diag::ext_nested_name_member_ref_lookup_ambiguous)
355          << Found.getLookupName()
356          << ObjectType;
357        Diag(Found.getRepresentativeDecl()->getLocation(),
358             diag::note_ambig_member_ref_object_type)
359          << ObjectType;
360        Diag(FoundOuter.getFoundDecl()->getLocation(),
361             diag::note_ambig_member_ref_scope);
362
363        // Recover by taking the template that we found in the object
364        // expression's type.
365      }
366    }
367  }
368}
369
370/// ActOnDependentIdExpression - Handle a dependent id-expression that
371/// was just parsed.  This is only possible with an explicit scope
372/// specifier naming a dependent type.
373ExprResult
374Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
375                                 const DeclarationNameInfo &NameInfo,
376                                 bool isAddressOfOperand,
377                           const TemplateArgumentListInfo *TemplateArgs) {
378  DeclContext *DC = getFunctionLevelDeclContext();
379
380  if (!isAddressOfOperand &&
381      isa<CXXMethodDecl>(DC) &&
382      cast<CXXMethodDecl>(DC)->isInstance()) {
383    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
384
385    // Since the 'this' expression is synthesized, we don't need to
386    // perform the double-lookup check.
387    NamedDecl *FirstQualifierInScope = 0;
388
389    return Owned(CXXDependentScopeMemberExpr::Create(Context,
390                                                     /*This*/ 0, ThisType,
391                                                     /*IsArrow*/ true,
392                                                     /*Op*/ SourceLocation(),
393                                               SS.getWithLocInContext(Context),
394                                                     FirstQualifierInScope,
395                                                     NameInfo,
396                                                     TemplateArgs));
397  }
398
399  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
400}
401
402ExprResult
403Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
404                                const DeclarationNameInfo &NameInfo,
405                                const TemplateArgumentListInfo *TemplateArgs) {
406  return Owned(DependentScopeDeclRefExpr::Create(Context,
407                                               SS.getWithLocInContext(Context),
408                                                 NameInfo,
409                                                 TemplateArgs));
410}
411
412/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
413/// that the template parameter 'PrevDecl' is being shadowed by a new
414/// declaration at location Loc. Returns true to indicate that this is
415/// an error, and false otherwise.
416bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
417  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
418
419  // Microsoft Visual C++ permits template parameters to be shadowed.
420  if (getLangOptions().Microsoft)
421    return false;
422
423  // C++ [temp.local]p4:
424  //   A template-parameter shall not be redeclared within its
425  //   scope (including nested scopes).
426  Diag(Loc, diag::err_template_param_shadow)
427    << cast<NamedDecl>(PrevDecl)->getDeclName();
428  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
429  return true;
430}
431
432/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
433/// the parameter D to reference the templated declaration and return a pointer
434/// to the template declaration. Otherwise, do nothing to D and return null.
435TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
436  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
437    D = Temp->getTemplatedDecl();
438    return Temp;
439  }
440  return 0;
441}
442
443ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
444                                             SourceLocation EllipsisLoc) const {
445  assert(Kind == Template &&
446         "Only template template arguments can be pack expansions here");
447  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
448         "Template template argument pack expansion without packs");
449  ParsedTemplateArgument Result(*this);
450  Result.EllipsisLoc = EllipsisLoc;
451  return Result;
452}
453
454static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
455                                            const ParsedTemplateArgument &Arg) {
456
457  switch (Arg.getKind()) {
458  case ParsedTemplateArgument::Type: {
459    TypeSourceInfo *DI;
460    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
461    if (!DI)
462      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
463    return TemplateArgumentLoc(TemplateArgument(T), DI);
464  }
465
466  case ParsedTemplateArgument::NonType: {
467    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
468    return TemplateArgumentLoc(TemplateArgument(E), E);
469  }
470
471  case ParsedTemplateArgument::Template: {
472    TemplateName Template = Arg.getAsTemplate().get();
473    TemplateArgument TArg;
474    if (Arg.getEllipsisLoc().isValid())
475      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
476    else
477      TArg = Template;
478    return TemplateArgumentLoc(TArg,
479                               Arg.getScopeSpec().getWithLocInContext(
480                                                              SemaRef.Context),
481                               Arg.getLocation(),
482                               Arg.getEllipsisLoc());
483  }
484  }
485
486  llvm_unreachable("Unhandled parsed template argument");
487  return TemplateArgumentLoc();
488}
489
490/// \brief Translates template arguments as provided by the parser
491/// into template arguments used by semantic analysis.
492void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
493                                      TemplateArgumentListInfo &TemplateArgs) {
494 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
495   TemplateArgs.addArgument(translateTemplateArgument(*this,
496                                                      TemplateArgsIn[I]));
497}
498
499/// ActOnTypeParameter - Called when a C++ template type parameter
500/// (e.g., "typename T") has been parsed. Typename specifies whether
501/// the keyword "typename" was used to declare the type parameter
502/// (otherwise, "class" was used), and KeyLoc is the location of the
503/// "class" or "typename" keyword. ParamName is the name of the
504/// parameter (NULL indicates an unnamed template parameter) and
505/// ParamNameLoc is the location of the parameter name (if any).
506/// If the type parameter has a default argument, it will be added
507/// later via ActOnTypeParameterDefault.
508Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
509                               SourceLocation EllipsisLoc,
510                               SourceLocation KeyLoc,
511                               IdentifierInfo *ParamName,
512                               SourceLocation ParamNameLoc,
513                               unsigned Depth, unsigned Position,
514                               SourceLocation EqualLoc,
515                               ParsedType DefaultArg) {
516  assert(S->isTemplateParamScope() &&
517         "Template type parameter not in template parameter scope!");
518  bool Invalid = false;
519
520  if (ParamName) {
521    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
522                                           LookupOrdinaryName,
523                                           ForRedeclaration);
524    if (PrevDecl && PrevDecl->isTemplateParameter())
525      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
526                                                           PrevDecl);
527  }
528
529  SourceLocation Loc = ParamNameLoc;
530  if (!ParamName)
531    Loc = KeyLoc;
532
533  TemplateTypeParmDecl *Param
534    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
535                                   KeyLoc, Loc, Depth, Position, ParamName,
536                                   Typename, Ellipsis);
537  Param->setAccess(AS_public);
538  if (Invalid)
539    Param->setInvalidDecl();
540
541  if (ParamName) {
542    // Add the template parameter into the current scope.
543    S->AddDecl(Param);
544    IdResolver.AddDecl(Param);
545  }
546
547  // C++0x [temp.param]p9:
548  //   A default template-argument may be specified for any kind of
549  //   template-parameter that is not a template parameter pack.
550  if (DefaultArg && Ellipsis) {
551    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
552    DefaultArg = ParsedType();
553  }
554
555  // Handle the default argument, if provided.
556  if (DefaultArg) {
557    TypeSourceInfo *DefaultTInfo;
558    GetTypeFromParser(DefaultArg, &DefaultTInfo);
559
560    assert(DefaultTInfo && "expected source information for type");
561
562    // Check for unexpanded parameter packs.
563    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
564                                        UPPC_DefaultArgument))
565      return Param;
566
567    // Check the template argument itself.
568    if (CheckTemplateArgument(Param, DefaultTInfo)) {
569      Param->setInvalidDecl();
570      return Param;
571    }
572
573    Param->setDefaultArgument(DefaultTInfo, false);
574  }
575
576  return Param;
577}
578
579/// \brief Check that the type of a non-type template parameter is
580/// well-formed.
581///
582/// \returns the (possibly-promoted) parameter type if valid;
583/// otherwise, produces a diagnostic and returns a NULL type.
584QualType
585Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
586  // We don't allow variably-modified types as the type of non-type template
587  // parameters.
588  if (T->isVariablyModifiedType()) {
589    Diag(Loc, diag::err_variably_modified_nontype_template_param)
590      << T;
591    return QualType();
592  }
593
594  // C++ [temp.param]p4:
595  //
596  // A non-type template-parameter shall have one of the following
597  // (optionally cv-qualified) types:
598  //
599  //       -- integral or enumeration type,
600  if (T->isIntegralOrEnumerationType() ||
601      //   -- pointer to object or pointer to function,
602      T->isPointerType() ||
603      //   -- reference to object or reference to function,
604      T->isReferenceType() ||
605      //   -- pointer to member,
606      T->isMemberPointerType() ||
607      //   -- std::nullptr_t.
608      T->isNullPtrType() ||
609      // If T is a dependent type, we can't do the check now, so we
610      // assume that it is well-formed.
611      T->isDependentType())
612    return T;
613  // C++ [temp.param]p8:
614  //
615  //   A non-type template-parameter of type "array of T" or
616  //   "function returning T" is adjusted to be of type "pointer to
617  //   T" or "pointer to function returning T", respectively.
618  else if (T->isArrayType())
619    // FIXME: Keep the type prior to promotion?
620    return Context.getArrayDecayedType(T);
621  else if (T->isFunctionType())
622    // FIXME: Keep the type prior to promotion?
623    return Context.getPointerType(T);
624
625  Diag(Loc, diag::err_template_nontype_parm_bad_type)
626    << T;
627
628  return QualType();
629}
630
631Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
632                                          unsigned Depth,
633                                          unsigned Position,
634                                          SourceLocation EqualLoc,
635                                          Expr *Default) {
636  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
637  QualType T = TInfo->getType();
638
639  assert(S->isTemplateParamScope() &&
640         "Non-type template parameter not in template parameter scope!");
641  bool Invalid = false;
642
643  IdentifierInfo *ParamName = D.getIdentifier();
644  if (ParamName) {
645    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
646                                           LookupOrdinaryName,
647                                           ForRedeclaration);
648    if (PrevDecl && PrevDecl->isTemplateParameter())
649      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
650                                                           PrevDecl);
651  }
652
653  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
654  if (T.isNull()) {
655    T = Context.IntTy; // Recover with an 'int' type.
656    Invalid = true;
657  }
658
659  bool IsParameterPack = D.hasEllipsis();
660  NonTypeTemplateParmDecl *Param
661    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
662                                      D.getSourceRange().getBegin(),
663                                      D.getIdentifierLoc(),
664                                      Depth, Position, ParamName, T,
665                                      IsParameterPack, TInfo);
666  Param->setAccess(AS_public);
667
668  if (Invalid)
669    Param->setInvalidDecl();
670
671  if (D.getIdentifier()) {
672    // Add the template parameter into the current scope.
673    S->AddDecl(Param);
674    IdResolver.AddDecl(Param);
675  }
676
677  // C++0x [temp.param]p9:
678  //   A default template-argument may be specified for any kind of
679  //   template-parameter that is not a template parameter pack.
680  if (Default && IsParameterPack) {
681    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
682    Default = 0;
683  }
684
685  // Check the well-formedness of the default template argument, if provided.
686  if (Default) {
687    // Check for unexpanded parameter packs.
688    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
689      return Param;
690
691    TemplateArgument Converted;
692    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
693    if (DefaultRes.isInvalid()) {
694      Param->setInvalidDecl();
695      return Param;
696    }
697    Default = DefaultRes.take();
698
699    Param->setDefaultArgument(Default, false);
700  }
701
702  return Param;
703}
704
705/// ActOnTemplateTemplateParameter - Called when a C++ template template
706/// parameter (e.g. T in template <template <typename> class T> class array)
707/// has been parsed. S is the current scope.
708Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
709                                           SourceLocation TmpLoc,
710                                           TemplateParamsTy *Params,
711                                           SourceLocation EllipsisLoc,
712                                           IdentifierInfo *Name,
713                                           SourceLocation NameLoc,
714                                           unsigned Depth,
715                                           unsigned Position,
716                                           SourceLocation EqualLoc,
717                                           ParsedTemplateArgument Default) {
718  assert(S->isTemplateParamScope() &&
719         "Template template parameter not in template parameter scope!");
720
721  // Construct the parameter object.
722  bool IsParameterPack = EllipsisLoc.isValid();
723  TemplateTemplateParmDecl *Param =
724    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
725                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
726                                     Depth, Position, IsParameterPack,
727                                     Name, Params);
728  Param->setAccess(AS_public);
729
730  // If the template template parameter has a name, then link the identifier
731  // into the scope and lookup mechanisms.
732  if (Name) {
733    S->AddDecl(Param);
734    IdResolver.AddDecl(Param);
735  }
736
737  if (Params->size() == 0) {
738    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
739    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
740    Param->setInvalidDecl();
741  }
742
743  // C++0x [temp.param]p9:
744  //   A default template-argument may be specified for any kind of
745  //   template-parameter that is not a template parameter pack.
746  if (IsParameterPack && !Default.isInvalid()) {
747    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
748    Default = ParsedTemplateArgument();
749  }
750
751  if (!Default.isInvalid()) {
752    // Check only that we have a template template argument. We don't want to
753    // try to check well-formedness now, because our template template parameter
754    // might have dependent types in its template parameters, which we wouldn't
755    // be able to match now.
756    //
757    // If none of the template template parameter's template arguments mention
758    // other template parameters, we could actually perform more checking here.
759    // However, it isn't worth doing.
760    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
761    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
762      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
763        << DefaultArg.getSourceRange();
764      return Param;
765    }
766
767    // Check for unexpanded parameter packs.
768    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
769                                        DefaultArg.getArgument().getAsTemplate(),
770                                        UPPC_DefaultArgument))
771      return Param;
772
773    Param->setDefaultArgument(DefaultArg, false);
774  }
775
776  return Param;
777}
778
779/// ActOnTemplateParameterList - Builds a TemplateParameterList that
780/// contains the template parameters in Params/NumParams.
781Sema::TemplateParamsTy *
782Sema::ActOnTemplateParameterList(unsigned Depth,
783                                 SourceLocation ExportLoc,
784                                 SourceLocation TemplateLoc,
785                                 SourceLocation LAngleLoc,
786                                 Decl **Params, unsigned NumParams,
787                                 SourceLocation RAngleLoc) {
788  if (ExportLoc.isValid())
789    Diag(ExportLoc, diag::warn_template_export_unsupported);
790
791  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
792                                       (NamedDecl**)Params, NumParams,
793                                       RAngleLoc);
794}
795
796static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
797  if (SS.isSet())
798    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
799}
800
801DeclResult
802Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
803                         SourceLocation KWLoc, CXXScopeSpec &SS,
804                         IdentifierInfo *Name, SourceLocation NameLoc,
805                         AttributeList *Attr,
806                         TemplateParameterList *TemplateParams,
807                         AccessSpecifier AS,
808                         unsigned NumOuterTemplateParamLists,
809                         TemplateParameterList** OuterTemplateParamLists) {
810  assert(TemplateParams && TemplateParams->size() > 0 &&
811         "No template parameters");
812  assert(TUK != TUK_Reference && "Can only declare or define class templates");
813  bool Invalid = false;
814
815  // Check that we can declare a template here.
816  if (CheckTemplateDeclScope(S, TemplateParams))
817    return true;
818
819  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
820  assert(Kind != TTK_Enum && "can't build template of enumerated type");
821
822  // There is no such thing as an unnamed class template.
823  if (!Name) {
824    Diag(KWLoc, diag::err_template_unnamed_class);
825    return true;
826  }
827
828  // Find any previous declaration with this name.
829  DeclContext *SemanticContext;
830  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
831                        ForRedeclaration);
832  if (SS.isNotEmpty() && !SS.isInvalid()) {
833    SemanticContext = computeDeclContext(SS, true);
834    if (!SemanticContext) {
835      // FIXME: Produce a reasonable diagnostic here
836      return true;
837    }
838
839    if (RequireCompleteDeclContext(SS, SemanticContext))
840      return true;
841
842    LookupQualifiedName(Previous, SemanticContext);
843  } else {
844    SemanticContext = CurContext;
845    LookupName(Previous, S);
846  }
847
848  if (Previous.isAmbiguous())
849    return true;
850
851  NamedDecl *PrevDecl = 0;
852  if (Previous.begin() != Previous.end())
853    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
854
855  // If there is a previous declaration with the same name, check
856  // whether this is a valid redeclaration.
857  ClassTemplateDecl *PrevClassTemplate
858    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
859
860  // We may have found the injected-class-name of a class template,
861  // class template partial specialization, or class template specialization.
862  // In these cases, grab the template that is being defined or specialized.
863  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
864      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
865    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
866    PrevClassTemplate
867      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
868    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
869      PrevClassTemplate
870        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
871            ->getSpecializedTemplate();
872    }
873  }
874
875  if (TUK == TUK_Friend) {
876    // C++ [namespace.memdef]p3:
877    //   [...] When looking for a prior declaration of a class or a function
878    //   declared as a friend, and when the name of the friend class or
879    //   function is neither a qualified name nor a template-id, scopes outside
880    //   the innermost enclosing namespace scope are not considered.
881    if (!SS.isSet()) {
882      DeclContext *OutermostContext = CurContext;
883      while (!OutermostContext->isFileContext())
884        OutermostContext = OutermostContext->getLookupParent();
885
886      if (PrevDecl &&
887          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
888           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
889        SemanticContext = PrevDecl->getDeclContext();
890      } else {
891        // Declarations in outer scopes don't matter. However, the outermost
892        // context we computed is the semantic context for our new
893        // declaration.
894        PrevDecl = PrevClassTemplate = 0;
895        SemanticContext = OutermostContext;
896      }
897    }
898
899    if (CurContext->isDependentContext()) {
900      // If this is a dependent context, we don't want to link the friend
901      // class template to the template in scope, because that would perform
902      // checking of the template parameter lists that can't be performed
903      // until the outer context is instantiated.
904      PrevDecl = PrevClassTemplate = 0;
905    }
906  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
907    PrevDecl = PrevClassTemplate = 0;
908
909  if (PrevClassTemplate) {
910    // Ensure that the template parameter lists are compatible.
911    if (!TemplateParameterListsAreEqual(TemplateParams,
912                                   PrevClassTemplate->getTemplateParameters(),
913                                        /*Complain=*/true,
914                                        TPL_TemplateMatch))
915      return true;
916
917    // C++ [temp.class]p4:
918    //   In a redeclaration, partial specialization, explicit
919    //   specialization or explicit instantiation of a class template,
920    //   the class-key shall agree in kind with the original class
921    //   template declaration (7.1.5.3).
922    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
923    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
924                                      TUK == TUK_Definition,  KWLoc, *Name)) {
925      Diag(KWLoc, diag::err_use_with_wrong_tag)
926        << Name
927        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
928      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
929      Kind = PrevRecordDecl->getTagKind();
930    }
931
932    // Check for redefinition of this class template.
933    if (TUK == TUK_Definition) {
934      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
935        Diag(NameLoc, diag::err_redefinition) << Name;
936        Diag(Def->getLocation(), diag::note_previous_definition);
937        // FIXME: Would it make sense to try to "forget" the previous
938        // definition, as part of error recovery?
939        return true;
940      }
941    }
942  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
943    // Maybe we will complain about the shadowed template parameter.
944    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
945    // Just pretend that we didn't see the previous declaration.
946    PrevDecl = 0;
947  } else if (PrevDecl) {
948    // C++ [temp]p5:
949    //   A class template shall not have the same name as any other
950    //   template, class, function, object, enumeration, enumerator,
951    //   namespace, or type in the same scope (3.3), except as specified
952    //   in (14.5.4).
953    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
954    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
955    return true;
956  }
957
958  // Check the template parameter list of this declaration, possibly
959  // merging in the template parameter list from the previous class
960  // template declaration.
961  if (CheckTemplateParameterList(TemplateParams,
962            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
963                                 (SS.isSet() && SemanticContext &&
964                                  SemanticContext->isRecord() &&
965                                  SemanticContext->isDependentContext())
966                                   ? TPC_ClassTemplateMember
967                                   : TPC_ClassTemplate))
968    Invalid = true;
969
970  if (SS.isSet()) {
971    // If the name of the template was qualified, we must be defining the
972    // template out-of-line.
973    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
974        !(TUK == TUK_Friend && CurContext->isDependentContext()))
975      Diag(NameLoc, diag::err_member_def_does_not_match)
976        << Name << SemanticContext << SS.getRange();
977  }
978
979  CXXRecordDecl *NewClass =
980    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
981                          PrevClassTemplate?
982                            PrevClassTemplate->getTemplatedDecl() : 0,
983                          /*DelayTypeCreation=*/true);
984  SetNestedNameSpecifier(NewClass, SS);
985  if (NumOuterTemplateParamLists > 0)
986    NewClass->setTemplateParameterListsInfo(Context,
987                                            NumOuterTemplateParamLists,
988                                            OuterTemplateParamLists);
989
990  ClassTemplateDecl *NewTemplate
991    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
992                                DeclarationName(Name), TemplateParams,
993                                NewClass, PrevClassTemplate);
994  NewClass->setDescribedClassTemplate(NewTemplate);
995
996  // Build the type for the class template declaration now.
997  QualType T = NewTemplate->getInjectedClassNameSpecialization();
998  T = Context.getInjectedClassNameType(NewClass, T);
999  assert(T->isDependentType() && "Class template type is not dependent?");
1000  (void)T;
1001
1002  // If we are providing an explicit specialization of a member that is a
1003  // class template, make a note of that.
1004  if (PrevClassTemplate &&
1005      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1006    PrevClassTemplate->setMemberSpecialization();
1007
1008  // Set the access specifier.
1009  if (!Invalid && TUK != TUK_Friend)
1010    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1011
1012  // Set the lexical context of these templates
1013  NewClass->setLexicalDeclContext(CurContext);
1014  NewTemplate->setLexicalDeclContext(CurContext);
1015
1016  if (TUK == TUK_Definition)
1017    NewClass->startDefinition();
1018
1019  if (Attr)
1020    ProcessDeclAttributeList(S, NewClass, Attr);
1021
1022  if (TUK != TUK_Friend)
1023    PushOnScopeChains(NewTemplate, S);
1024  else {
1025    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1026      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1027      NewClass->setAccess(PrevClassTemplate->getAccess());
1028    }
1029
1030    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1031                                       PrevClassTemplate != NULL);
1032
1033    // Friend templates are visible in fairly strange ways.
1034    if (!CurContext->isDependentContext()) {
1035      DeclContext *DC = SemanticContext->getRedeclContext();
1036      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1037      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1038        PushOnScopeChains(NewTemplate, EnclosingScope,
1039                          /* AddToContext = */ false);
1040    }
1041
1042    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1043                                            NewClass->getLocation(),
1044                                            NewTemplate,
1045                                    /*FIXME:*/NewClass->getLocation());
1046    Friend->setAccess(AS_public);
1047    CurContext->addDecl(Friend);
1048  }
1049
1050  if (Invalid) {
1051    NewTemplate->setInvalidDecl();
1052    NewClass->setInvalidDecl();
1053  }
1054  return NewTemplate;
1055}
1056
1057/// \brief Diagnose the presence of a default template argument on a
1058/// template parameter, which is ill-formed in certain contexts.
1059///
1060/// \returns true if the default template argument should be dropped.
1061static bool DiagnoseDefaultTemplateArgument(Sema &S,
1062                                            Sema::TemplateParamListContext TPC,
1063                                            SourceLocation ParamLoc,
1064                                            SourceRange DefArgRange) {
1065  switch (TPC) {
1066  case Sema::TPC_ClassTemplate:
1067  case Sema::TPC_TypeAliasTemplate:
1068    return false;
1069
1070  case Sema::TPC_FunctionTemplate:
1071  case Sema::TPC_FriendFunctionTemplateDefinition:
1072    // C++ [temp.param]p9:
1073    //   A default template-argument shall not be specified in a
1074    //   function template declaration or a function template
1075    //   definition [...]
1076    //   If a friend function template declaration specifies a default
1077    //   template-argument, that declaration shall be a definition and shall be
1078    //   the only declaration of the function template in the translation unit.
1079    // (C++98/03 doesn't have this wording; see DR226).
1080    if (!S.getLangOptions().CPlusPlus0x)
1081      S.Diag(ParamLoc,
1082             diag::ext_template_parameter_default_in_function_template)
1083        << DefArgRange;
1084    return false;
1085
1086  case Sema::TPC_ClassTemplateMember:
1087    // C++0x [temp.param]p9:
1088    //   A default template-argument shall not be specified in the
1089    //   template-parameter-lists of the definition of a member of a
1090    //   class template that appears outside of the member's class.
1091    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1092      << DefArgRange;
1093    return true;
1094
1095  case Sema::TPC_FriendFunctionTemplate:
1096    // C++ [temp.param]p9:
1097    //   A default template-argument shall not be specified in a
1098    //   friend template declaration.
1099    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1100      << DefArgRange;
1101    return true;
1102
1103    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1104    // for friend function templates if there is only a single
1105    // declaration (and it is a definition). Strange!
1106  }
1107
1108  return false;
1109}
1110
1111/// \brief Check for unexpanded parameter packs within the template parameters
1112/// of a template template parameter, recursively.
1113static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1114                                             TemplateTemplateParmDecl *TTP) {
1115  TemplateParameterList *Params = TTP->getTemplateParameters();
1116  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1117    NamedDecl *P = Params->getParam(I);
1118    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1119      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1120                                            NTTP->getTypeSourceInfo(),
1121                                      Sema::UPPC_NonTypeTemplateParameterType))
1122        return true;
1123
1124      continue;
1125    }
1126
1127    if (TemplateTemplateParmDecl *InnerTTP
1128                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1129      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1130        return true;
1131  }
1132
1133  return false;
1134}
1135
1136/// \brief Checks the validity of a template parameter list, possibly
1137/// considering the template parameter list from a previous
1138/// declaration.
1139///
1140/// If an "old" template parameter list is provided, it must be
1141/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1142/// template parameter list.
1143///
1144/// \param NewParams Template parameter list for a new template
1145/// declaration. This template parameter list will be updated with any
1146/// default arguments that are carried through from the previous
1147/// template parameter list.
1148///
1149/// \param OldParams If provided, template parameter list from a
1150/// previous declaration of the same template. Default template
1151/// arguments will be merged from the old template parameter list to
1152/// the new template parameter list.
1153///
1154/// \param TPC Describes the context in which we are checking the given
1155/// template parameter list.
1156///
1157/// \returns true if an error occurred, false otherwise.
1158bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1159                                      TemplateParameterList *OldParams,
1160                                      TemplateParamListContext TPC) {
1161  bool Invalid = false;
1162
1163  // C++ [temp.param]p10:
1164  //   The set of default template-arguments available for use with a
1165  //   template declaration or definition is obtained by merging the
1166  //   default arguments from the definition (if in scope) and all
1167  //   declarations in scope in the same way default function
1168  //   arguments are (8.3.6).
1169  bool SawDefaultArgument = false;
1170  SourceLocation PreviousDefaultArgLoc;
1171
1172  bool SawParameterPack = false;
1173  SourceLocation ParameterPackLoc;
1174
1175  // Dummy initialization to avoid warnings.
1176  TemplateParameterList::iterator OldParam = NewParams->end();
1177  if (OldParams)
1178    OldParam = OldParams->begin();
1179
1180  bool RemoveDefaultArguments = false;
1181  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1182                                    NewParamEnd = NewParams->end();
1183       NewParam != NewParamEnd; ++NewParam) {
1184    // Variables used to diagnose redundant default arguments
1185    bool RedundantDefaultArg = false;
1186    SourceLocation OldDefaultLoc;
1187    SourceLocation NewDefaultLoc;
1188
1189    // Variables used to diagnose missing default arguments
1190    bool MissingDefaultArg = false;
1191
1192    // C++0x [temp.param]p11:
1193    //   If a template parameter of a primary class template or alias template
1194    //   is a template parameter pack, it shall be the last template parameter.
1195    if (SawParameterPack &&
1196        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1197      Diag(ParameterPackLoc,
1198           diag::err_template_param_pack_must_be_last_template_parameter);
1199      Invalid = true;
1200    }
1201
1202    if (TemplateTypeParmDecl *NewTypeParm
1203          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1204      // Check the presence of a default argument here.
1205      if (NewTypeParm->hasDefaultArgument() &&
1206          DiagnoseDefaultTemplateArgument(*this, TPC,
1207                                          NewTypeParm->getLocation(),
1208               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1209                                                       .getSourceRange()))
1210        NewTypeParm->removeDefaultArgument();
1211
1212      // Merge default arguments for template type parameters.
1213      TemplateTypeParmDecl *OldTypeParm
1214          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1215
1216      if (NewTypeParm->isParameterPack()) {
1217        assert(!NewTypeParm->hasDefaultArgument() &&
1218               "Parameter packs can't have a default argument!");
1219        SawParameterPack = true;
1220        ParameterPackLoc = NewTypeParm->getLocation();
1221      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1222                 NewTypeParm->hasDefaultArgument()) {
1223        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1224        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1225        SawDefaultArgument = true;
1226        RedundantDefaultArg = true;
1227        PreviousDefaultArgLoc = NewDefaultLoc;
1228      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1229        // Merge the default argument from the old declaration to the
1230        // new declaration.
1231        SawDefaultArgument = true;
1232        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1233                                        true);
1234        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1235      } else if (NewTypeParm->hasDefaultArgument()) {
1236        SawDefaultArgument = true;
1237        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1238      } else if (SawDefaultArgument)
1239        MissingDefaultArg = true;
1240    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1241               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1242      // Check for unexpanded parameter packs.
1243      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1244                                          NewNonTypeParm->getTypeSourceInfo(),
1245                                          UPPC_NonTypeTemplateParameterType)) {
1246        Invalid = true;
1247        continue;
1248      }
1249
1250      // Check the presence of a default argument here.
1251      if (NewNonTypeParm->hasDefaultArgument() &&
1252          DiagnoseDefaultTemplateArgument(*this, TPC,
1253                                          NewNonTypeParm->getLocation(),
1254                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1255        NewNonTypeParm->removeDefaultArgument();
1256      }
1257
1258      // Merge default arguments for non-type template parameters
1259      NonTypeTemplateParmDecl *OldNonTypeParm
1260        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1261      if (NewNonTypeParm->isParameterPack()) {
1262        assert(!NewNonTypeParm->hasDefaultArgument() &&
1263               "Parameter packs can't have a default argument!");
1264        SawParameterPack = true;
1265        ParameterPackLoc = NewNonTypeParm->getLocation();
1266      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1267          NewNonTypeParm->hasDefaultArgument()) {
1268        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1269        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1270        SawDefaultArgument = true;
1271        RedundantDefaultArg = true;
1272        PreviousDefaultArgLoc = NewDefaultLoc;
1273      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1274        // Merge the default argument from the old declaration to the
1275        // new declaration.
1276        SawDefaultArgument = true;
1277        // FIXME: We need to create a new kind of "default argument"
1278        // expression that points to a previous non-type template
1279        // parameter.
1280        NewNonTypeParm->setDefaultArgument(
1281                                         OldNonTypeParm->getDefaultArgument(),
1282                                         /*Inherited=*/ true);
1283        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1284      } else if (NewNonTypeParm->hasDefaultArgument()) {
1285        SawDefaultArgument = true;
1286        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1287      } else if (SawDefaultArgument)
1288        MissingDefaultArg = true;
1289    } else {
1290      // Check the presence of a default argument here.
1291      TemplateTemplateParmDecl *NewTemplateParm
1292        = cast<TemplateTemplateParmDecl>(*NewParam);
1293
1294      // Check for unexpanded parameter packs, recursively.
1295      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1296        Invalid = true;
1297        continue;
1298      }
1299
1300      if (NewTemplateParm->hasDefaultArgument() &&
1301          DiagnoseDefaultTemplateArgument(*this, TPC,
1302                                          NewTemplateParm->getLocation(),
1303                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1304        NewTemplateParm->removeDefaultArgument();
1305
1306      // Merge default arguments for template template parameters
1307      TemplateTemplateParmDecl *OldTemplateParm
1308        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1309      if (NewTemplateParm->isParameterPack()) {
1310        assert(!NewTemplateParm->hasDefaultArgument() &&
1311               "Parameter packs can't have a default argument!");
1312        SawParameterPack = true;
1313        ParameterPackLoc = NewTemplateParm->getLocation();
1314      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1315          NewTemplateParm->hasDefaultArgument()) {
1316        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1317        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1318        SawDefaultArgument = true;
1319        RedundantDefaultArg = true;
1320        PreviousDefaultArgLoc = NewDefaultLoc;
1321      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1322        // Merge the default argument from the old declaration to the
1323        // new declaration.
1324        SawDefaultArgument = true;
1325        // FIXME: We need to create a new kind of "default argument" expression
1326        // that points to a previous template template parameter.
1327        NewTemplateParm->setDefaultArgument(
1328                                          OldTemplateParm->getDefaultArgument(),
1329                                          /*Inherited=*/ true);
1330        PreviousDefaultArgLoc
1331          = OldTemplateParm->getDefaultArgument().getLocation();
1332      } else if (NewTemplateParm->hasDefaultArgument()) {
1333        SawDefaultArgument = true;
1334        PreviousDefaultArgLoc
1335          = NewTemplateParm->getDefaultArgument().getLocation();
1336      } else if (SawDefaultArgument)
1337        MissingDefaultArg = true;
1338    }
1339
1340    if (RedundantDefaultArg) {
1341      // C++ [temp.param]p12:
1342      //   A template-parameter shall not be given default arguments
1343      //   by two different declarations in the same scope.
1344      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1345      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1346      Invalid = true;
1347    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1348      // C++ [temp.param]p11:
1349      //   If a template-parameter of a class template has a default
1350      //   template-argument, each subsequent template-parameter shall either
1351      //   have a default template-argument supplied or be a template parameter
1352      //   pack.
1353      Diag((*NewParam)->getLocation(),
1354           diag::err_template_param_default_arg_missing);
1355      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1356      Invalid = true;
1357      RemoveDefaultArguments = true;
1358    }
1359
1360    // If we have an old template parameter list that we're merging
1361    // in, move on to the next parameter.
1362    if (OldParams)
1363      ++OldParam;
1364  }
1365
1366  // We were missing some default arguments at the end of the list, so remove
1367  // all of the default arguments.
1368  if (RemoveDefaultArguments) {
1369    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1370                                      NewParamEnd = NewParams->end();
1371         NewParam != NewParamEnd; ++NewParam) {
1372      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1373        TTP->removeDefaultArgument();
1374      else if (NonTypeTemplateParmDecl *NTTP
1375                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1376        NTTP->removeDefaultArgument();
1377      else
1378        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1379    }
1380  }
1381
1382  return Invalid;
1383}
1384
1385namespace {
1386
1387/// A class which looks for a use of a certain level of template
1388/// parameter.
1389struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1390  typedef RecursiveASTVisitor<DependencyChecker> super;
1391
1392  unsigned Depth;
1393  bool Match;
1394
1395  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1396    NamedDecl *ND = Params->getParam(0);
1397    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1398      Depth = PD->getDepth();
1399    } else if (NonTypeTemplateParmDecl *PD =
1400                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1401      Depth = PD->getDepth();
1402    } else {
1403      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1404    }
1405  }
1406
1407  bool Matches(unsigned ParmDepth) {
1408    if (ParmDepth >= Depth) {
1409      Match = true;
1410      return true;
1411    }
1412    return false;
1413  }
1414
1415  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1416    return !Matches(T->getDepth());
1417  }
1418
1419  bool TraverseTemplateName(TemplateName N) {
1420    if (TemplateTemplateParmDecl *PD =
1421          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1422      if (Matches(PD->getDepth())) return false;
1423    return super::TraverseTemplateName(N);
1424  }
1425
1426  bool VisitDeclRefExpr(DeclRefExpr *E) {
1427    if (NonTypeTemplateParmDecl *PD =
1428          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1429      if (PD->getDepth() == Depth) {
1430        Match = true;
1431        return false;
1432      }
1433    }
1434    return super::VisitDeclRefExpr(E);
1435  }
1436
1437  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1438    return TraverseType(T->getInjectedSpecializationType());
1439  }
1440};
1441}
1442
1443/// Determines whether a given type depends on the given parameter
1444/// list.
1445static bool
1446DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1447  DependencyChecker Checker(Params);
1448  Checker.TraverseType(T);
1449  return Checker.Match;
1450}
1451
1452// Find the source range corresponding to the named type in the given
1453// nested-name-specifier, if any.
1454static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1455                                                       QualType T,
1456                                                       const CXXScopeSpec &SS) {
1457  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1458  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1459    if (const Type *CurType = NNS->getAsType()) {
1460      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1461        return NNSLoc.getTypeLoc().getSourceRange();
1462    } else
1463      break;
1464
1465    NNSLoc = NNSLoc.getPrefix();
1466  }
1467
1468  return SourceRange();
1469}
1470
1471/// \brief Match the given template parameter lists to the given scope
1472/// specifier, returning the template parameter list that applies to the
1473/// name.
1474///
1475/// \param DeclStartLoc the start of the declaration that has a scope
1476/// specifier or a template parameter list.
1477///
1478/// \param DeclLoc The location of the declaration itself.
1479///
1480/// \param SS the scope specifier that will be matched to the given template
1481/// parameter lists. This scope specifier precedes a qualified name that is
1482/// being declared.
1483///
1484/// \param ParamLists the template parameter lists, from the outermost to the
1485/// innermost template parameter lists.
1486///
1487/// \param NumParamLists the number of template parameter lists in ParamLists.
1488///
1489/// \param IsFriend Whether to apply the slightly different rules for
1490/// matching template parameters to scope specifiers in friend
1491/// declarations.
1492///
1493/// \param IsExplicitSpecialization will be set true if the entity being
1494/// declared is an explicit specialization, false otherwise.
1495///
1496/// \returns the template parameter list, if any, that corresponds to the
1497/// name that is preceded by the scope specifier @p SS. This template
1498/// parameter list may have template parameters (if we're declaring a
1499/// template) or may have no template parameters (if we're declaring a
1500/// template specialization), or may be NULL (if what we're declaring isn't
1501/// itself a template).
1502TemplateParameterList *
1503Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1504                                              SourceLocation DeclLoc,
1505                                              const CXXScopeSpec &SS,
1506                                          TemplateParameterList **ParamLists,
1507                                              unsigned NumParamLists,
1508                                              bool IsFriend,
1509                                              bool &IsExplicitSpecialization,
1510                                              bool &Invalid) {
1511  IsExplicitSpecialization = false;
1512  Invalid = false;
1513
1514  // The sequence of nested types to which we will match up the template
1515  // parameter lists. We first build this list by starting with the type named
1516  // by the nested-name-specifier and walking out until we run out of types.
1517  llvm::SmallVector<QualType, 4> NestedTypes;
1518  QualType T;
1519  if (SS.getScopeRep()) {
1520    if (CXXRecordDecl *Record
1521              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1522      T = Context.getTypeDeclType(Record);
1523    else
1524      T = QualType(SS.getScopeRep()->getAsType(), 0);
1525  }
1526
1527  // If we found an explicit specialization that prevents us from needing
1528  // 'template<>' headers, this will be set to the location of that
1529  // explicit specialization.
1530  SourceLocation ExplicitSpecLoc;
1531
1532  while (!T.isNull()) {
1533    NestedTypes.push_back(T);
1534
1535    // Retrieve the parent of a record type.
1536    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1537      // If this type is an explicit specialization, we're done.
1538      if (ClassTemplateSpecializationDecl *Spec
1539          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1540        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1541            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1542          ExplicitSpecLoc = Spec->getLocation();
1543          break;
1544        }
1545      } else if (Record->getTemplateSpecializationKind()
1546                                                == TSK_ExplicitSpecialization) {
1547        ExplicitSpecLoc = Record->getLocation();
1548        break;
1549      }
1550
1551      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1552        T = Context.getTypeDeclType(Parent);
1553      else
1554        T = QualType();
1555      continue;
1556    }
1557
1558    if (const TemplateSpecializationType *TST
1559                                     = T->getAs<TemplateSpecializationType>()) {
1560      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1561        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1562          T = Context.getTypeDeclType(Parent);
1563        else
1564          T = QualType();
1565        continue;
1566      }
1567    }
1568
1569    // Look one step prior in a dependent template specialization type.
1570    if (const DependentTemplateSpecializationType *DependentTST
1571                          = T->getAs<DependentTemplateSpecializationType>()) {
1572      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1573        T = QualType(NNS->getAsType(), 0);
1574      else
1575        T = QualType();
1576      continue;
1577    }
1578
1579    // Look one step prior in a dependent name type.
1580    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1581      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1582        T = QualType(NNS->getAsType(), 0);
1583      else
1584        T = QualType();
1585      continue;
1586    }
1587
1588    // Retrieve the parent of an enumeration type.
1589    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1590      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1591      // check here.
1592      EnumDecl *Enum = EnumT->getDecl();
1593
1594      // Get to the parent type.
1595      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1596        T = Context.getTypeDeclType(Parent);
1597      else
1598        T = QualType();
1599      continue;
1600    }
1601
1602    T = QualType();
1603  }
1604  // Reverse the nested types list, since we want to traverse from the outermost
1605  // to the innermost while checking template-parameter-lists.
1606  std::reverse(NestedTypes.begin(), NestedTypes.end());
1607
1608  // C++0x [temp.expl.spec]p17:
1609  //   A member or a member template may be nested within many
1610  //   enclosing class templates. In an explicit specialization for
1611  //   such a member, the member declaration shall be preceded by a
1612  //   template<> for each enclosing class template that is
1613  //   explicitly specialized.
1614  bool SawNonEmptyTemplateParameterList = false;
1615  unsigned ParamIdx = 0;
1616  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1617       ++TypeIdx) {
1618    T = NestedTypes[TypeIdx];
1619
1620    // Whether we expect a 'template<>' header.
1621    bool NeedEmptyTemplateHeader = false;
1622
1623    // Whether we expect a template header with parameters.
1624    bool NeedNonemptyTemplateHeader = false;
1625
1626    // For a dependent type, the set of template parameters that we
1627    // expect to see.
1628    TemplateParameterList *ExpectedTemplateParams = 0;
1629
1630    // C++0x [temp.expl.spec]p15:
1631    //   A member or a member template may be nested within many enclosing
1632    //   class templates. In an explicit specialization for such a member, the
1633    //   member declaration shall be preceded by a template<> for each
1634    //   enclosing class template that is explicitly specialized.
1635    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1636      if (ClassTemplatePartialSpecializationDecl *Partial
1637            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1638        ExpectedTemplateParams = Partial->getTemplateParameters();
1639        NeedNonemptyTemplateHeader = true;
1640      } else if (Record->isDependentType()) {
1641        if (Record->getDescribedClassTemplate()) {
1642          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1643                                                      ->getTemplateParameters();
1644          NeedNonemptyTemplateHeader = true;
1645        }
1646      } else if (ClassTemplateSpecializationDecl *Spec
1647                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1648        // C++0x [temp.expl.spec]p4:
1649        //   Members of an explicitly specialized class template are defined
1650        //   in the same manner as members of normal classes, and not using
1651        //   the template<> syntax.
1652        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1653          NeedEmptyTemplateHeader = true;
1654        else
1655          continue;
1656      } else if (Record->getTemplateSpecializationKind()) {
1657        if (Record->getTemplateSpecializationKind()
1658                                                != TSK_ExplicitSpecialization &&
1659            TypeIdx == NumTypes - 1)
1660          IsExplicitSpecialization = true;
1661
1662        continue;
1663      }
1664    } else if (const TemplateSpecializationType *TST
1665                                     = T->getAs<TemplateSpecializationType>()) {
1666      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1667        ExpectedTemplateParams = Template->getTemplateParameters();
1668        NeedNonemptyTemplateHeader = true;
1669      }
1670    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1671      // FIXME:  We actually could/should check the template arguments here
1672      // against the corresponding template parameter list.
1673      NeedNonemptyTemplateHeader = false;
1674    }
1675
1676    // C++ [temp.expl.spec]p16:
1677    //   In an explicit specialization declaration for a member of a class
1678    //   template or a member template that ap- pears in namespace scope, the
1679    //   member template and some of its enclosing class templates may remain
1680    //   unspecialized, except that the declaration shall not explicitly
1681    //   specialize a class member template if its en- closing class templates
1682    //   are not explicitly specialized as well.
1683    if (ParamIdx < NumParamLists) {
1684      if (ParamLists[ParamIdx]->size() == 0) {
1685        if (SawNonEmptyTemplateParameterList) {
1686          Diag(DeclLoc, diag::err_specialize_member_of_template)
1687            << ParamLists[ParamIdx]->getSourceRange();
1688          Invalid = true;
1689          IsExplicitSpecialization = false;
1690          return 0;
1691        }
1692      } else
1693        SawNonEmptyTemplateParameterList = true;
1694    }
1695
1696    if (NeedEmptyTemplateHeader) {
1697      // If we're on the last of the types, and we need a 'template<>' header
1698      // here, then it's an explicit specialization.
1699      if (TypeIdx == NumTypes - 1)
1700        IsExplicitSpecialization = true;
1701
1702      if (ParamIdx < NumParamLists) {
1703        if (ParamLists[ParamIdx]->size() > 0) {
1704          // The header has template parameters when it shouldn't. Complain.
1705          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1706               diag::err_template_param_list_matches_nontemplate)
1707            << T
1708            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1709                           ParamLists[ParamIdx]->getRAngleLoc())
1710            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1711          Invalid = true;
1712          return 0;
1713        }
1714
1715        // Consume this template header.
1716        ++ParamIdx;
1717        continue;
1718      }
1719
1720      if (!IsFriend) {
1721        // We don't have a template header, but we should.
1722        SourceLocation ExpectedTemplateLoc;
1723        if (NumParamLists > 0)
1724          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1725        else
1726          ExpectedTemplateLoc = DeclStartLoc;
1727
1728        Diag(DeclLoc, diag::err_template_spec_needs_header)
1729          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1730          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1731      }
1732
1733      continue;
1734    }
1735
1736    if (NeedNonemptyTemplateHeader) {
1737      // In friend declarations we can have template-ids which don't
1738      // depend on the corresponding template parameter lists.  But
1739      // assume that empty parameter lists are supposed to match this
1740      // template-id.
1741      if (IsFriend && T->isDependentType()) {
1742        if (ParamIdx < NumParamLists &&
1743            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1744          ExpectedTemplateParams = 0;
1745        else
1746          continue;
1747      }
1748
1749      if (ParamIdx < NumParamLists) {
1750        // Check the template parameter list, if we can.
1751        if (ExpectedTemplateParams &&
1752            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1753                                            ExpectedTemplateParams,
1754                                            true, TPL_TemplateMatch))
1755          Invalid = true;
1756
1757        if (!Invalid &&
1758            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1759                                       TPC_ClassTemplateMember))
1760          Invalid = true;
1761
1762        ++ParamIdx;
1763        continue;
1764      }
1765
1766      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1767        << T
1768        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1769      Invalid = true;
1770      continue;
1771    }
1772  }
1773
1774  // If there were at least as many template-ids as there were template
1775  // parameter lists, then there are no template parameter lists remaining for
1776  // the declaration itself.
1777  if (ParamIdx >= NumParamLists)
1778    return 0;
1779
1780  // If there were too many template parameter lists, complain about that now.
1781  if (ParamIdx < NumParamLists - 1) {
1782    bool HasAnyExplicitSpecHeader = false;
1783    bool AllExplicitSpecHeaders = true;
1784    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1785      if (ParamLists[I]->size() == 0)
1786        HasAnyExplicitSpecHeader = true;
1787      else
1788        AllExplicitSpecHeaders = false;
1789    }
1790
1791    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1792         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1793                               : diag::err_template_spec_extra_headers)
1794      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1795                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1796
1797    // If there was a specialization somewhere, such that 'template<>' is
1798    // not required, and there were any 'template<>' headers, note where the
1799    // specialization occurred.
1800    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1801      Diag(ExplicitSpecLoc,
1802           diag::note_explicit_template_spec_does_not_need_header)
1803        << NestedTypes.back();
1804
1805    // We have a template parameter list with no corresponding scope, which
1806    // means that the resulting template declaration can't be instantiated
1807    // properly (we'll end up with dependent nodes when we shouldn't).
1808    if (!AllExplicitSpecHeaders)
1809      Invalid = true;
1810  }
1811
1812  // C++ [temp.expl.spec]p16:
1813  //   In an explicit specialization declaration for a member of a class
1814  //   template or a member template that ap- pears in namespace scope, the
1815  //   member template and some of its enclosing class templates may remain
1816  //   unspecialized, except that the declaration shall not explicitly
1817  //   specialize a class member template if its en- closing class templates
1818  //   are not explicitly specialized as well.
1819  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1820      SawNonEmptyTemplateParameterList) {
1821    Diag(DeclLoc, diag::err_specialize_member_of_template)
1822      << ParamLists[ParamIdx]->getSourceRange();
1823    Invalid = true;
1824    IsExplicitSpecialization = false;
1825    return 0;
1826  }
1827
1828  // Return the last template parameter list, which corresponds to the
1829  // entity being declared.
1830  return ParamLists[NumParamLists - 1];
1831}
1832
1833void Sema::NoteAllFoundTemplates(TemplateName Name) {
1834  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1835    Diag(Template->getLocation(), diag::note_template_declared_here)
1836      << (isa<FunctionTemplateDecl>(Template)? 0
1837          : isa<ClassTemplateDecl>(Template)? 1
1838          : isa<TypeAliasTemplateDecl>(Template)? 2
1839          : 3)
1840      << Template->getDeclName();
1841    return;
1842  }
1843
1844  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1845    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1846                                          IEnd = OST->end();
1847         I != IEnd; ++I)
1848      Diag((*I)->getLocation(), diag::note_template_declared_here)
1849        << 0 << (*I)->getDeclName();
1850
1851    return;
1852  }
1853}
1854
1855
1856QualType Sema::CheckTemplateIdType(TemplateName Name,
1857                                   SourceLocation TemplateLoc,
1858                                   TemplateArgumentListInfo &TemplateArgs) {
1859  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1860  if (DTN && DTN->isIdentifier())
1861    // When building a template-id where the template-name is dependent,
1862    // assume the template is a type template. Either our assumption is
1863    // correct, or the code is ill-formed and will be diagnosed when the
1864    // dependent name is substituted.
1865    return Context.getDependentTemplateSpecializationType(ETK_None,
1866                                                          DTN->getQualifier(),
1867                                                          DTN->getIdentifier(),
1868                                                          TemplateArgs);
1869
1870  TemplateDecl *Template = Name.getAsTemplateDecl();
1871  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1872    // We might have a substituted template template parameter pack. If so,
1873    // build a template specialization type for it.
1874    if (Name.getAsSubstTemplateTemplateParmPack())
1875      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1876
1877    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1878      << Name;
1879    NoteAllFoundTemplates(Name);
1880    return QualType();
1881  }
1882
1883  // Check that the template argument list is well-formed for this
1884  // template.
1885  llvm::SmallVector<TemplateArgument, 4> Converted;
1886  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1887                                false, Converted))
1888    return QualType();
1889
1890  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1891         "Converted template argument list is too short!");
1892
1893  QualType CanonType;
1894
1895  if (TypeAliasTemplateDecl *AliasTemplate
1896        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1897    // Find the canonical type for this type alias template specialization.
1898    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1899    if (Pattern->isInvalidDecl())
1900      return QualType();
1901
1902    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1903                                      Converted.data(), Converted.size());
1904
1905    // Only substitute for the innermost template argument list.
1906    MultiLevelTemplateArgumentList TemplateArgLists;
1907    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1908    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1909    for (unsigned I = 0; I < Depth; ++I)
1910      TemplateArgLists.addOuterTemplateArguments(0, 0);
1911
1912    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1913    CanonType = SubstType(Pattern->getUnderlyingType(),
1914                          TemplateArgLists, AliasTemplate->getLocation(),
1915                          AliasTemplate->getDeclName());
1916    if (CanonType.isNull())
1917      return QualType();
1918  } else if (Name.isDependent() ||
1919             TemplateSpecializationType::anyDependentTemplateArguments(
1920               TemplateArgs)) {
1921    // This class template specialization is a dependent
1922    // type. Therefore, its canonical type is another class template
1923    // specialization type that contains all of the converted
1924    // arguments in canonical form. This ensures that, e.g., A<T> and
1925    // A<T, T> have identical types when A is declared as:
1926    //
1927    //   template<typename T, typename U = T> struct A;
1928    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1929    CanonType = Context.getTemplateSpecializationType(CanonName,
1930                                                      Converted.data(),
1931                                                      Converted.size());
1932
1933    // FIXME: CanonType is not actually the canonical type, and unfortunately
1934    // it is a TemplateSpecializationType that we will never use again.
1935    // In the future, we need to teach getTemplateSpecializationType to only
1936    // build the canonical type and return that to us.
1937    CanonType = Context.getCanonicalType(CanonType);
1938
1939    // This might work out to be a current instantiation, in which
1940    // case the canonical type needs to be the InjectedClassNameType.
1941    //
1942    // TODO: in theory this could be a simple hashtable lookup; most
1943    // changes to CurContext don't change the set of current
1944    // instantiations.
1945    if (isa<ClassTemplateDecl>(Template)) {
1946      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1947        // If we get out to a namespace, we're done.
1948        if (Ctx->isFileContext()) break;
1949
1950        // If this isn't a record, keep looking.
1951        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1952        if (!Record) continue;
1953
1954        // Look for one of the two cases with InjectedClassNameTypes
1955        // and check whether it's the same template.
1956        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1957            !Record->getDescribedClassTemplate())
1958          continue;
1959
1960        // Fetch the injected class name type and check whether its
1961        // injected type is equal to the type we just built.
1962        QualType ICNT = Context.getTypeDeclType(Record);
1963        QualType Injected = cast<InjectedClassNameType>(ICNT)
1964          ->getInjectedSpecializationType();
1965
1966        if (CanonType != Injected->getCanonicalTypeInternal())
1967          continue;
1968
1969        // If so, the canonical type of this TST is the injected
1970        // class name type of the record we just found.
1971        assert(ICNT.isCanonical());
1972        CanonType = ICNT;
1973        break;
1974      }
1975    }
1976  } else if (ClassTemplateDecl *ClassTemplate
1977               = dyn_cast<ClassTemplateDecl>(Template)) {
1978    // Find the class template specialization declaration that
1979    // corresponds to these arguments.
1980    void *InsertPos = 0;
1981    ClassTemplateSpecializationDecl *Decl
1982      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1983                                          InsertPos);
1984    if (!Decl) {
1985      // This is the first time we have referenced this class template
1986      // specialization. Create the canonical declaration and add it to
1987      // the set of specializations.
1988      Decl = ClassTemplateSpecializationDecl::Create(Context,
1989                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1990                                                ClassTemplate->getDeclContext(),
1991                                                ClassTemplate->getLocation(),
1992                                                ClassTemplate->getLocation(),
1993                                                     ClassTemplate,
1994                                                     Converted.data(),
1995                                                     Converted.size(), 0);
1996      ClassTemplate->AddSpecialization(Decl, InsertPos);
1997      Decl->setLexicalDeclContext(CurContext);
1998    }
1999
2000    CanonType = Context.getTypeDeclType(Decl);
2001    assert(isa<RecordType>(CanonType) &&
2002           "type of non-dependent specialization is not a RecordType");
2003  }
2004
2005  // Build the fully-sugared type for this class template
2006  // specialization, which refers back to the class template
2007  // specialization we created or found.
2008  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2009}
2010
2011TypeResult
2012Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2013                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2014                          SourceLocation LAngleLoc,
2015                          ASTTemplateArgsPtr TemplateArgsIn,
2016                          SourceLocation RAngleLoc) {
2017  if (SS.isInvalid())
2018    return true;
2019
2020  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2021
2022  // Translate the parser's template argument list in our AST format.
2023  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2024  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2025
2026  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2027    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
2028                                                           DTN->getQualifier(),
2029                                                           DTN->getIdentifier(),
2030                                                                TemplateArgs);
2031
2032    // Build type-source information.
2033    TypeLocBuilder TLB;
2034    DependentTemplateSpecializationTypeLoc SpecTL
2035      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2036    SpecTL.setKeywordLoc(SourceLocation());
2037    SpecTL.setNameLoc(TemplateLoc);
2038    SpecTL.setLAngleLoc(LAngleLoc);
2039    SpecTL.setRAngleLoc(RAngleLoc);
2040    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2041    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2042      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2043    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2044  }
2045
2046  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2047  TemplateArgsIn.release();
2048
2049  if (Result.isNull())
2050    return true;
2051
2052  // Build type-source information.
2053  TypeLocBuilder TLB;
2054  TemplateSpecializationTypeLoc SpecTL
2055    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2056  SpecTL.setTemplateNameLoc(TemplateLoc);
2057  SpecTL.setLAngleLoc(LAngleLoc);
2058  SpecTL.setRAngleLoc(RAngleLoc);
2059  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2060    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2061
2062  if (SS.isNotEmpty()) {
2063    // Create an elaborated-type-specifier containing the nested-name-specifier.
2064    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2065    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2066    ElabTL.setKeywordLoc(SourceLocation());
2067    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2068  }
2069
2070  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2071}
2072
2073TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2074                                        TypeSpecifierType TagSpec,
2075                                        SourceLocation TagLoc,
2076                                        CXXScopeSpec &SS,
2077                                        TemplateTy TemplateD,
2078                                        SourceLocation TemplateLoc,
2079                                        SourceLocation LAngleLoc,
2080                                        ASTTemplateArgsPtr TemplateArgsIn,
2081                                        SourceLocation RAngleLoc) {
2082  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2083
2084  // Translate the parser's template argument list in our AST format.
2085  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2086  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2087
2088  // Determine the tag kind
2089  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2090  ElaboratedTypeKeyword Keyword
2091    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2092
2093  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2094    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2095                                                          DTN->getQualifier(),
2096                                                          DTN->getIdentifier(),
2097                                                                TemplateArgs);
2098
2099    // Build type-source information.
2100    TypeLocBuilder TLB;
2101    DependentTemplateSpecializationTypeLoc SpecTL
2102    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2103    SpecTL.setKeywordLoc(TagLoc);
2104    SpecTL.setNameLoc(TemplateLoc);
2105    SpecTL.setLAngleLoc(LAngleLoc);
2106    SpecTL.setRAngleLoc(RAngleLoc);
2107    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2108    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2109      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2110    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2111  }
2112
2113  if (TypeAliasTemplateDecl *TAT =
2114        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2115    // C++0x [dcl.type.elab]p2:
2116    //   If the identifier resolves to a typedef-name or the simple-template-id
2117    //   resolves to an alias template specialization, the
2118    //   elaborated-type-specifier is ill-formed.
2119    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2120    Diag(TAT->getLocation(), diag::note_declared_at);
2121  }
2122
2123  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2124  if (Result.isNull())
2125    return TypeResult();
2126
2127  // Check the tag kind
2128  if (const RecordType *RT = Result->getAs<RecordType>()) {
2129    RecordDecl *D = RT->getDecl();
2130
2131    IdentifierInfo *Id = D->getIdentifier();
2132    assert(Id && "templated class must have an identifier");
2133
2134    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2135                                      TagLoc, *Id)) {
2136      Diag(TagLoc, diag::err_use_with_wrong_tag)
2137        << Result
2138        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2139      Diag(D->getLocation(), diag::note_previous_use);
2140    }
2141  }
2142
2143  // Provide source-location information for the template specialization.
2144  TypeLocBuilder TLB;
2145  TemplateSpecializationTypeLoc SpecTL
2146    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2147  SpecTL.setTemplateNameLoc(TemplateLoc);
2148  SpecTL.setLAngleLoc(LAngleLoc);
2149  SpecTL.setRAngleLoc(RAngleLoc);
2150  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2151    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2152
2153  // Construct an elaborated type containing the nested-name-specifier (if any)
2154  // and keyword.
2155  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2156  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2157  ElabTL.setKeywordLoc(TagLoc);
2158  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2159  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2160}
2161
2162ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2163                                     LookupResult &R,
2164                                     bool RequiresADL,
2165                                 const TemplateArgumentListInfo &TemplateArgs) {
2166  // FIXME: Can we do any checking at this point? I guess we could check the
2167  // template arguments that we have against the template name, if the template
2168  // name refers to a single template. That's not a terribly common case,
2169  // though.
2170  // foo<int> could identify a single function unambiguously
2171  // This approach does NOT work, since f<int>(1);
2172  // gets resolved prior to resorting to overload resolution
2173  // i.e., template<class T> void f(double);
2174  //       vs template<class T, class U> void f(U);
2175
2176  // These should be filtered out by our callers.
2177  assert(!R.empty() && "empty lookup results when building templateid");
2178  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2179
2180  // We don't want lookup warnings at this point.
2181  R.suppressDiagnostics();
2182
2183  UnresolvedLookupExpr *ULE
2184    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2185                                   SS.getWithLocInContext(Context),
2186                                   R.getLookupNameInfo(),
2187                                   RequiresADL, TemplateArgs,
2188                                   R.begin(), R.end());
2189
2190  return Owned(ULE);
2191}
2192
2193// We actually only call this from template instantiation.
2194ExprResult
2195Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2196                                   const DeclarationNameInfo &NameInfo,
2197                             const TemplateArgumentListInfo &TemplateArgs) {
2198  DeclContext *DC;
2199  if (!(DC = computeDeclContext(SS, false)) ||
2200      DC->isDependentContext() ||
2201      RequireCompleteDeclContext(SS, DC))
2202    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2203
2204  bool MemberOfUnknownSpecialization;
2205  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2206  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2207                     MemberOfUnknownSpecialization);
2208
2209  if (R.isAmbiguous())
2210    return ExprError();
2211
2212  if (R.empty()) {
2213    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2214      << NameInfo.getName() << SS.getRange();
2215    return ExprError();
2216  }
2217
2218  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2219    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2220      << (NestedNameSpecifier*) SS.getScopeRep()
2221      << NameInfo.getName() << SS.getRange();
2222    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2223    return ExprError();
2224  }
2225
2226  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2227}
2228
2229/// \brief Form a dependent template name.
2230///
2231/// This action forms a dependent template name given the template
2232/// name and its (presumably dependent) scope specifier. For
2233/// example, given "MetaFun::template apply", the scope specifier \p
2234/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2235/// of the "template" keyword, and "apply" is the \p Name.
2236TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2237                                                  SourceLocation TemplateKWLoc,
2238                                                  CXXScopeSpec &SS,
2239                                                  UnqualifiedId &Name,
2240                                                  ParsedType ObjectType,
2241                                                  bool EnteringContext,
2242                                                  TemplateTy &Result) {
2243  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2244      !getLangOptions().CPlusPlus0x)
2245    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2246      << FixItHint::CreateRemoval(TemplateKWLoc);
2247
2248  DeclContext *LookupCtx = 0;
2249  if (SS.isSet())
2250    LookupCtx = computeDeclContext(SS, EnteringContext);
2251  if (!LookupCtx && ObjectType)
2252    LookupCtx = computeDeclContext(ObjectType.get());
2253  if (LookupCtx) {
2254    // C++0x [temp.names]p5:
2255    //   If a name prefixed by the keyword template is not the name of
2256    //   a template, the program is ill-formed. [Note: the keyword
2257    //   template may not be applied to non-template members of class
2258    //   templates. -end note ] [ Note: as is the case with the
2259    //   typename prefix, the template prefix is allowed in cases
2260    //   where it is not strictly necessary; i.e., when the
2261    //   nested-name-specifier or the expression on the left of the ->
2262    //   or . is not dependent on a template-parameter, or the use
2263    //   does not appear in the scope of a template. -end note]
2264    //
2265    // Note: C++03 was more strict here, because it banned the use of
2266    // the "template" keyword prior to a template-name that was not a
2267    // dependent name. C++ DR468 relaxed this requirement (the
2268    // "template" keyword is now permitted). We follow the C++0x
2269    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2270    bool MemberOfUnknownSpecialization;
2271    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2272                                          ObjectType, EnteringContext, Result,
2273                                          MemberOfUnknownSpecialization);
2274    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2275        isa<CXXRecordDecl>(LookupCtx) &&
2276        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2277         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2278      // This is a dependent template. Handle it below.
2279    } else if (TNK == TNK_Non_template) {
2280      Diag(Name.getSourceRange().getBegin(),
2281           diag::err_template_kw_refers_to_non_template)
2282        << GetNameFromUnqualifiedId(Name).getName()
2283        << Name.getSourceRange()
2284        << TemplateKWLoc;
2285      return TNK_Non_template;
2286    } else {
2287      // We found something; return it.
2288      return TNK;
2289    }
2290  }
2291
2292  NestedNameSpecifier *Qualifier
2293    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2294
2295  switch (Name.getKind()) {
2296  case UnqualifiedId::IK_Identifier:
2297    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2298                                                              Name.Identifier));
2299    return TNK_Dependent_template_name;
2300
2301  case UnqualifiedId::IK_OperatorFunctionId:
2302    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2303                                             Name.OperatorFunctionId.Operator));
2304    return TNK_Dependent_template_name;
2305
2306  case UnqualifiedId::IK_LiteralOperatorId:
2307    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2308
2309  default:
2310    break;
2311  }
2312
2313  Diag(Name.getSourceRange().getBegin(),
2314       diag::err_template_kw_refers_to_non_template)
2315    << GetNameFromUnqualifiedId(Name).getName()
2316    << Name.getSourceRange()
2317    << TemplateKWLoc;
2318  return TNK_Non_template;
2319}
2320
2321bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2322                                     const TemplateArgumentLoc &AL,
2323                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2324  const TemplateArgument &Arg = AL.getArgument();
2325
2326  // Check template type parameter.
2327  switch(Arg.getKind()) {
2328  case TemplateArgument::Type:
2329    // C++ [temp.arg.type]p1:
2330    //   A template-argument for a template-parameter which is a
2331    //   type shall be a type-id.
2332    break;
2333  case TemplateArgument::Template: {
2334    // We have a template type parameter but the template argument
2335    // is a template without any arguments.
2336    SourceRange SR = AL.getSourceRange();
2337    TemplateName Name = Arg.getAsTemplate();
2338    Diag(SR.getBegin(), diag::err_template_missing_args)
2339      << Name << SR;
2340    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2341      Diag(Decl->getLocation(), diag::note_template_decl_here);
2342
2343    return true;
2344  }
2345  default: {
2346    // We have a template type parameter but the template argument
2347    // is not a type.
2348    SourceRange SR = AL.getSourceRange();
2349    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2350    Diag(Param->getLocation(), diag::note_template_param_here);
2351
2352    return true;
2353  }
2354  }
2355
2356  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2357    return true;
2358
2359  // Add the converted template type argument.
2360  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2361
2362  // Objective-C ARC:
2363  //   If an explicitly-specified template argument type is a lifetime type
2364  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2365  if (getLangOptions().ObjCAutoRefCount &&
2366      ArgType->isObjCLifetimeType() &&
2367      !ArgType.getObjCLifetime()) {
2368    Qualifiers Qs;
2369    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2370    ArgType = Context.getQualifiedType(ArgType, Qs);
2371  }
2372
2373  Converted.push_back(TemplateArgument(ArgType));
2374  return false;
2375}
2376
2377/// \brief Substitute template arguments into the default template argument for
2378/// the given template type parameter.
2379///
2380/// \param SemaRef the semantic analysis object for which we are performing
2381/// the substitution.
2382///
2383/// \param Template the template that we are synthesizing template arguments
2384/// for.
2385///
2386/// \param TemplateLoc the location of the template name that started the
2387/// template-id we are checking.
2388///
2389/// \param RAngleLoc the location of the right angle bracket ('>') that
2390/// terminates the template-id.
2391///
2392/// \param Param the template template parameter whose default we are
2393/// substituting into.
2394///
2395/// \param Converted the list of template arguments provided for template
2396/// parameters that precede \p Param in the template parameter list.
2397/// \returns the substituted template argument, or NULL if an error occurred.
2398static TypeSourceInfo *
2399SubstDefaultTemplateArgument(Sema &SemaRef,
2400                             TemplateDecl *Template,
2401                             SourceLocation TemplateLoc,
2402                             SourceLocation RAngleLoc,
2403                             TemplateTypeParmDecl *Param,
2404                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2405  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2406
2407  // If the argument type is dependent, instantiate it now based
2408  // on the previously-computed template arguments.
2409  if (ArgType->getType()->isDependentType()) {
2410    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2411                                      Converted.data(), Converted.size());
2412
2413    MultiLevelTemplateArgumentList AllTemplateArgs
2414      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2415
2416    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2417                                     Template, Converted.data(),
2418                                     Converted.size(),
2419                                     SourceRange(TemplateLoc, RAngleLoc));
2420
2421    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2422                                Param->getDefaultArgumentLoc(),
2423                                Param->getDeclName());
2424  }
2425
2426  return ArgType;
2427}
2428
2429/// \brief Substitute template arguments into the default template argument for
2430/// the given non-type template parameter.
2431///
2432/// \param SemaRef the semantic analysis object for which we are performing
2433/// the substitution.
2434///
2435/// \param Template the template that we are synthesizing template arguments
2436/// for.
2437///
2438/// \param TemplateLoc the location of the template name that started the
2439/// template-id we are checking.
2440///
2441/// \param RAngleLoc the location of the right angle bracket ('>') that
2442/// terminates the template-id.
2443///
2444/// \param Param the non-type template parameter whose default we are
2445/// substituting into.
2446///
2447/// \param Converted the list of template arguments provided for template
2448/// parameters that precede \p Param in the template parameter list.
2449///
2450/// \returns the substituted template argument, or NULL if an error occurred.
2451static ExprResult
2452SubstDefaultTemplateArgument(Sema &SemaRef,
2453                             TemplateDecl *Template,
2454                             SourceLocation TemplateLoc,
2455                             SourceLocation RAngleLoc,
2456                             NonTypeTemplateParmDecl *Param,
2457                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2458  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2459                                    Converted.data(), Converted.size());
2460
2461  MultiLevelTemplateArgumentList AllTemplateArgs
2462    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2463
2464  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2465                                   Template, Converted.data(),
2466                                   Converted.size(),
2467                                   SourceRange(TemplateLoc, RAngleLoc));
2468
2469  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2470}
2471
2472/// \brief Substitute template arguments into the default template argument for
2473/// the given template template parameter.
2474///
2475/// \param SemaRef the semantic analysis object for which we are performing
2476/// the substitution.
2477///
2478/// \param Template the template that we are synthesizing template arguments
2479/// for.
2480///
2481/// \param TemplateLoc the location of the template name that started the
2482/// template-id we are checking.
2483///
2484/// \param RAngleLoc the location of the right angle bracket ('>') that
2485/// terminates the template-id.
2486///
2487/// \param Param the template template parameter whose default we are
2488/// substituting into.
2489///
2490/// \param Converted the list of template arguments provided for template
2491/// parameters that precede \p Param in the template parameter list.
2492///
2493/// \param QualifierLoc Will be set to the nested-name-specifier (with
2494/// source-location information) that precedes the template name.
2495///
2496/// \returns the substituted template argument, or NULL if an error occurred.
2497static TemplateName
2498SubstDefaultTemplateArgument(Sema &SemaRef,
2499                             TemplateDecl *Template,
2500                             SourceLocation TemplateLoc,
2501                             SourceLocation RAngleLoc,
2502                             TemplateTemplateParmDecl *Param,
2503                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2504                             NestedNameSpecifierLoc &QualifierLoc) {
2505  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2506                                    Converted.data(), Converted.size());
2507
2508  MultiLevelTemplateArgumentList AllTemplateArgs
2509    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2510
2511  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2512                                   Template, Converted.data(),
2513                                   Converted.size(),
2514                                   SourceRange(TemplateLoc, RAngleLoc));
2515
2516  // Substitute into the nested-name-specifier first,
2517  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2518  if (QualifierLoc) {
2519    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2520                                                       AllTemplateArgs);
2521    if (!QualifierLoc)
2522      return TemplateName();
2523  }
2524
2525  return SemaRef.SubstTemplateName(QualifierLoc,
2526                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2527                              Param->getDefaultArgument().getTemplateNameLoc(),
2528                                   AllTemplateArgs);
2529}
2530
2531/// \brief If the given template parameter has a default template
2532/// argument, substitute into that default template argument and
2533/// return the corresponding template argument.
2534TemplateArgumentLoc
2535Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2536                                              SourceLocation TemplateLoc,
2537                                              SourceLocation RAngleLoc,
2538                                              Decl *Param,
2539                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2540   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2541    if (!TypeParm->hasDefaultArgument())
2542      return TemplateArgumentLoc();
2543
2544    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2545                                                      TemplateLoc,
2546                                                      RAngleLoc,
2547                                                      TypeParm,
2548                                                      Converted);
2549    if (DI)
2550      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2551
2552    return TemplateArgumentLoc();
2553  }
2554
2555  if (NonTypeTemplateParmDecl *NonTypeParm
2556        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2557    if (!NonTypeParm->hasDefaultArgument())
2558      return TemplateArgumentLoc();
2559
2560    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2561                                                  TemplateLoc,
2562                                                  RAngleLoc,
2563                                                  NonTypeParm,
2564                                                  Converted);
2565    if (Arg.isInvalid())
2566      return TemplateArgumentLoc();
2567
2568    Expr *ArgE = Arg.takeAs<Expr>();
2569    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2570  }
2571
2572  TemplateTemplateParmDecl *TempTempParm
2573    = cast<TemplateTemplateParmDecl>(Param);
2574  if (!TempTempParm->hasDefaultArgument())
2575    return TemplateArgumentLoc();
2576
2577
2578  NestedNameSpecifierLoc QualifierLoc;
2579  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2580                                                    TemplateLoc,
2581                                                    RAngleLoc,
2582                                                    TempTempParm,
2583                                                    Converted,
2584                                                    QualifierLoc);
2585  if (TName.isNull())
2586    return TemplateArgumentLoc();
2587
2588  return TemplateArgumentLoc(TemplateArgument(TName),
2589                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2590                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2591}
2592
2593/// \brief Check that the given template argument corresponds to the given
2594/// template parameter.
2595///
2596/// \param Param The template parameter against which the argument will be
2597/// checked.
2598///
2599/// \param Arg The template argument.
2600///
2601/// \param Template The template in which the template argument resides.
2602///
2603/// \param TemplateLoc The location of the template name for the template
2604/// whose argument list we're matching.
2605///
2606/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2607/// the template argument list.
2608///
2609/// \param ArgumentPackIndex The index into the argument pack where this
2610/// argument will be placed. Only valid if the parameter is a parameter pack.
2611///
2612/// \param Converted The checked, converted argument will be added to the
2613/// end of this small vector.
2614///
2615/// \param CTAK Describes how we arrived at this particular template argument:
2616/// explicitly written, deduced, etc.
2617///
2618/// \returns true on error, false otherwise.
2619bool Sema::CheckTemplateArgument(NamedDecl *Param,
2620                                 const TemplateArgumentLoc &Arg,
2621                                 NamedDecl *Template,
2622                                 SourceLocation TemplateLoc,
2623                                 SourceLocation RAngleLoc,
2624                                 unsigned ArgumentPackIndex,
2625                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2626                                 CheckTemplateArgumentKind CTAK) {
2627  // Check template type parameters.
2628  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2629    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2630
2631  // Check non-type template parameters.
2632  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2633    // Do substitution on the type of the non-type template parameter
2634    // with the template arguments we've seen thus far.  But if the
2635    // template has a dependent context then we cannot substitute yet.
2636    QualType NTTPType = NTTP->getType();
2637    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2638      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2639
2640    if (NTTPType->isDependentType() &&
2641        !isa<TemplateTemplateParmDecl>(Template) &&
2642        !Template->getDeclContext()->isDependentContext()) {
2643      // Do substitution on the type of the non-type template parameter.
2644      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2645                                 NTTP, Converted.data(), Converted.size(),
2646                                 SourceRange(TemplateLoc, RAngleLoc));
2647
2648      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2649                                        Converted.data(), Converted.size());
2650      NTTPType = SubstType(NTTPType,
2651                           MultiLevelTemplateArgumentList(TemplateArgs),
2652                           NTTP->getLocation(),
2653                           NTTP->getDeclName());
2654      // If that worked, check the non-type template parameter type
2655      // for validity.
2656      if (!NTTPType.isNull())
2657        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2658                                                     NTTP->getLocation());
2659      if (NTTPType.isNull())
2660        return true;
2661    }
2662
2663    switch (Arg.getArgument().getKind()) {
2664    case TemplateArgument::Null:
2665      assert(false && "Should never see a NULL template argument here");
2666      return true;
2667
2668    case TemplateArgument::Expression: {
2669      TemplateArgument Result;
2670      ExprResult Res =
2671        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2672                              Result, CTAK);
2673      if (Res.isInvalid())
2674        return true;
2675
2676      Converted.push_back(Result);
2677      break;
2678    }
2679
2680    case TemplateArgument::Declaration:
2681    case TemplateArgument::Integral:
2682      // We've already checked this template argument, so just copy
2683      // it to the list of converted arguments.
2684      Converted.push_back(Arg.getArgument());
2685      break;
2686
2687    case TemplateArgument::Template:
2688    case TemplateArgument::TemplateExpansion:
2689      // We were given a template template argument. It may not be ill-formed;
2690      // see below.
2691      if (DependentTemplateName *DTN
2692            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2693                                              .getAsDependentTemplateName()) {
2694        // We have a template argument such as \c T::template X, which we
2695        // parsed as a template template argument. However, since we now
2696        // know that we need a non-type template argument, convert this
2697        // template name into an expression.
2698
2699        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2700                                     Arg.getTemplateNameLoc());
2701
2702        CXXScopeSpec SS;
2703        SS.Adopt(Arg.getTemplateQualifierLoc());
2704        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2705                                                SS.getWithLocInContext(Context),
2706                                                    NameInfo));
2707
2708        // If we parsed the template argument as a pack expansion, create a
2709        // pack expansion expression.
2710        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2711          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2712          if (E.isInvalid())
2713            return true;
2714        }
2715
2716        TemplateArgument Result;
2717        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2718        if (E.isInvalid())
2719          return true;
2720
2721        Converted.push_back(Result);
2722        break;
2723      }
2724
2725      // We have a template argument that actually does refer to a class
2726      // template, alias template, or template template parameter, and
2727      // therefore cannot be a non-type template argument.
2728      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2729        << Arg.getSourceRange();
2730
2731      Diag(Param->getLocation(), diag::note_template_param_here);
2732      return true;
2733
2734    case TemplateArgument::Type: {
2735      // We have a non-type template parameter but the template
2736      // argument is a type.
2737
2738      // C++ [temp.arg]p2:
2739      //   In a template-argument, an ambiguity between a type-id and
2740      //   an expression is resolved to a type-id, regardless of the
2741      //   form of the corresponding template-parameter.
2742      //
2743      // We warn specifically about this case, since it can be rather
2744      // confusing for users.
2745      QualType T = Arg.getArgument().getAsType();
2746      SourceRange SR = Arg.getSourceRange();
2747      if (T->isFunctionType())
2748        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2749      else
2750        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2751      Diag(Param->getLocation(), diag::note_template_param_here);
2752      return true;
2753    }
2754
2755    case TemplateArgument::Pack:
2756      llvm_unreachable("Caller must expand template argument packs");
2757      break;
2758    }
2759
2760    return false;
2761  }
2762
2763
2764  // Check template template parameters.
2765  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2766
2767  // Substitute into the template parameter list of the template
2768  // template parameter, since previously-supplied template arguments
2769  // may appear within the template template parameter.
2770  {
2771    // Set up a template instantiation context.
2772    LocalInstantiationScope Scope(*this);
2773    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2774                               TempParm, Converted.data(), Converted.size(),
2775                               SourceRange(TemplateLoc, RAngleLoc));
2776
2777    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2778                                      Converted.data(), Converted.size());
2779    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2780                      SubstDecl(TempParm, CurContext,
2781                                MultiLevelTemplateArgumentList(TemplateArgs)));
2782    if (!TempParm)
2783      return true;
2784  }
2785
2786  switch (Arg.getArgument().getKind()) {
2787  case TemplateArgument::Null:
2788    assert(false && "Should never see a NULL template argument here");
2789    return true;
2790
2791  case TemplateArgument::Template:
2792  case TemplateArgument::TemplateExpansion:
2793    if (CheckTemplateArgument(TempParm, Arg))
2794      return true;
2795
2796    Converted.push_back(Arg.getArgument());
2797    break;
2798
2799  case TemplateArgument::Expression:
2800  case TemplateArgument::Type:
2801    // We have a template template parameter but the template
2802    // argument does not refer to a template.
2803    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2804      << getLangOptions().CPlusPlus0x;
2805    return true;
2806
2807  case TemplateArgument::Declaration:
2808    llvm_unreachable(
2809                       "Declaration argument with template template parameter");
2810    break;
2811  case TemplateArgument::Integral:
2812    llvm_unreachable(
2813                          "Integral argument with template template parameter");
2814    break;
2815
2816  case TemplateArgument::Pack:
2817    llvm_unreachable("Caller must expand template argument packs");
2818    break;
2819  }
2820
2821  return false;
2822}
2823
2824/// \brief Check that the given template argument list is well-formed
2825/// for specializing the given template.
2826bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2827                                     SourceLocation TemplateLoc,
2828                                     TemplateArgumentListInfo &TemplateArgs,
2829                                     bool PartialTemplateArgs,
2830                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2831  TemplateParameterList *Params = Template->getTemplateParameters();
2832  unsigned NumParams = Params->size();
2833  unsigned NumArgs = TemplateArgs.size();
2834  bool Invalid = false;
2835
2836  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2837
2838  bool HasParameterPack =
2839    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2840
2841  if ((NumArgs > NumParams && !HasParameterPack) ||
2842      (NumArgs < Params->getMinRequiredArguments() &&
2843       !PartialTemplateArgs)) {
2844    // FIXME: point at either the first arg beyond what we can handle,
2845    // or the '>', depending on whether we have too many or too few
2846    // arguments.
2847    SourceRange Range;
2848    if (NumArgs > NumParams)
2849      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2850    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2851      << (NumArgs > NumParams)
2852      << (isa<ClassTemplateDecl>(Template)? 0 :
2853          isa<FunctionTemplateDecl>(Template)? 1 :
2854          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2855      << Template << Range;
2856    Diag(Template->getLocation(), diag::note_template_decl_here)
2857      << Params->getSourceRange();
2858    Invalid = true;
2859  }
2860
2861  // C++ [temp.arg]p1:
2862  //   [...] The type and form of each template-argument specified in
2863  //   a template-id shall match the type and form specified for the
2864  //   corresponding parameter declared by the template in its
2865  //   template-parameter-list.
2866  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2867  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2868  TemplateParameterList::iterator Param = Params->begin(),
2869                               ParamEnd = Params->end();
2870  unsigned ArgIdx = 0;
2871  LocalInstantiationScope InstScope(*this, true);
2872  while (Param != ParamEnd) {
2873    if (ArgIdx < NumArgs) {
2874      // If we have an expanded parameter pack, make sure we don't have too
2875      // many arguments.
2876      if (NonTypeTemplateParmDecl *NTTP
2877                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2878        if (NTTP->isExpandedParameterPack() &&
2879            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2880          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2881            << true
2882            << (isa<ClassTemplateDecl>(Template)? 0 :
2883                isa<FunctionTemplateDecl>(Template)? 1 :
2884                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2885            << Template;
2886          Diag(Template->getLocation(), diag::note_template_decl_here)
2887            << Params->getSourceRange();
2888          return true;
2889        }
2890      }
2891
2892      // Check the template argument we were given.
2893      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2894                                TemplateLoc, RAngleLoc,
2895                                ArgumentPack.size(), Converted))
2896        return true;
2897
2898      if ((*Param)->isTemplateParameterPack()) {
2899        // The template parameter was a template parameter pack, so take the
2900        // deduced argument and place it on the argument pack. Note that we
2901        // stay on the same template parameter so that we can deduce more
2902        // arguments.
2903        ArgumentPack.push_back(Converted.back());
2904        Converted.pop_back();
2905      } else {
2906        // Move to the next template parameter.
2907        ++Param;
2908      }
2909      ++ArgIdx;
2910      continue;
2911    }
2912
2913    // If we're checking a partial template argument list, we're done.
2914    if (PartialTemplateArgs) {
2915      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2916        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2917                                                         ArgumentPack.data(),
2918                                                         ArgumentPack.size()));
2919
2920      return Invalid;
2921    }
2922
2923    // If we have a template parameter pack with no more corresponding
2924    // arguments, just break out now and we'll fill in the argument pack below.
2925    if ((*Param)->isTemplateParameterPack())
2926      break;
2927
2928    // We have a default template argument that we will use.
2929    TemplateArgumentLoc Arg;
2930
2931    // Retrieve the default template argument from the template
2932    // parameter. For each kind of template parameter, we substitute the
2933    // template arguments provided thus far and any "outer" template arguments
2934    // (when the template parameter was part of a nested template) into
2935    // the default argument.
2936    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2937      if (!TTP->hasDefaultArgument()) {
2938        assert(Invalid && "Missing default argument");
2939        break;
2940      }
2941
2942      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2943                                                             Template,
2944                                                             TemplateLoc,
2945                                                             RAngleLoc,
2946                                                             TTP,
2947                                                             Converted);
2948      if (!ArgType)
2949        return true;
2950
2951      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2952                                ArgType);
2953    } else if (NonTypeTemplateParmDecl *NTTP
2954                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2955      if (!NTTP->hasDefaultArgument()) {
2956        assert(Invalid && "Missing default argument");
2957        break;
2958      }
2959
2960      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2961                                                              TemplateLoc,
2962                                                              RAngleLoc,
2963                                                              NTTP,
2964                                                              Converted);
2965      if (E.isInvalid())
2966        return true;
2967
2968      Expr *Ex = E.takeAs<Expr>();
2969      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2970    } else {
2971      TemplateTemplateParmDecl *TempParm
2972        = cast<TemplateTemplateParmDecl>(*Param);
2973
2974      if (!TempParm->hasDefaultArgument()) {
2975        assert(Invalid && "Missing default argument");
2976        break;
2977      }
2978
2979      NestedNameSpecifierLoc QualifierLoc;
2980      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2981                                                       TemplateLoc,
2982                                                       RAngleLoc,
2983                                                       TempParm,
2984                                                       Converted,
2985                                                       QualifierLoc);
2986      if (Name.isNull())
2987        return true;
2988
2989      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2990                           TempParm->getDefaultArgument().getTemplateNameLoc());
2991    }
2992
2993    // Introduce an instantiation record that describes where we are using
2994    // the default template argument.
2995    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2996                                        Converted.data(), Converted.size(),
2997                                        SourceRange(TemplateLoc, RAngleLoc));
2998
2999    // Check the default template argument.
3000    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3001                              RAngleLoc, 0, Converted))
3002      return true;
3003
3004    // Core issue 150 (assumed resolution): if this is a template template
3005    // parameter, keep track of the default template arguments from the
3006    // template definition.
3007    if (isTemplateTemplateParameter)
3008      TemplateArgs.addArgument(Arg);
3009
3010    // Move to the next template parameter and argument.
3011    ++Param;
3012    ++ArgIdx;
3013  }
3014
3015  // Form argument packs for each of the parameter packs remaining.
3016  while (Param != ParamEnd) {
3017    // If we're checking a partial list of template arguments, don't fill
3018    // in arguments for non-template parameter packs.
3019
3020    if ((*Param)->isTemplateParameterPack()) {
3021      if (ArgumentPack.empty())
3022        Converted.push_back(TemplateArgument(0, 0));
3023      else {
3024        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3025                                                          ArgumentPack.data(),
3026                                                         ArgumentPack.size()));
3027        ArgumentPack.clear();
3028      }
3029    }
3030
3031    ++Param;
3032  }
3033
3034  return Invalid;
3035}
3036
3037namespace {
3038  class UnnamedLocalNoLinkageFinder
3039    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3040  {
3041    Sema &S;
3042    SourceRange SR;
3043
3044    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3045
3046  public:
3047    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3048
3049    bool Visit(QualType T) {
3050      return inherited::Visit(T.getTypePtr());
3051    }
3052
3053#define TYPE(Class, Parent) \
3054    bool Visit##Class##Type(const Class##Type *);
3055#define ABSTRACT_TYPE(Class, Parent) \
3056    bool Visit##Class##Type(const Class##Type *) { return false; }
3057#define NON_CANONICAL_TYPE(Class, Parent) \
3058    bool Visit##Class##Type(const Class##Type *) { return false; }
3059#include "clang/AST/TypeNodes.def"
3060
3061    bool VisitTagDecl(const TagDecl *Tag);
3062    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3063  };
3064}
3065
3066bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3067  return false;
3068}
3069
3070bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3071  return Visit(T->getElementType());
3072}
3073
3074bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3075  return Visit(T->getPointeeType());
3076}
3077
3078bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3079                                                    const BlockPointerType* T) {
3080  return Visit(T->getPointeeType());
3081}
3082
3083bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3084                                                const LValueReferenceType* T) {
3085  return Visit(T->getPointeeType());
3086}
3087
3088bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3089                                                const RValueReferenceType* T) {
3090  return Visit(T->getPointeeType());
3091}
3092
3093bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3094                                                  const MemberPointerType* T) {
3095  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3096}
3097
3098bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3099                                                  const ConstantArrayType* T) {
3100  return Visit(T->getElementType());
3101}
3102
3103bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3104                                                 const IncompleteArrayType* T) {
3105  return Visit(T->getElementType());
3106}
3107
3108bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3109                                                   const VariableArrayType* T) {
3110  return Visit(T->getElementType());
3111}
3112
3113bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3114                                            const DependentSizedArrayType* T) {
3115  return Visit(T->getElementType());
3116}
3117
3118bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3119                                         const DependentSizedExtVectorType* T) {
3120  return Visit(T->getElementType());
3121}
3122
3123bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3124  return Visit(T->getElementType());
3125}
3126
3127bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3128  return Visit(T->getElementType());
3129}
3130
3131bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3132                                                  const FunctionProtoType* T) {
3133  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3134                                         AEnd = T->arg_type_end();
3135       A != AEnd; ++A) {
3136    if (Visit(*A))
3137      return true;
3138  }
3139
3140  return Visit(T->getResultType());
3141}
3142
3143bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3144                                               const FunctionNoProtoType* T) {
3145  return Visit(T->getResultType());
3146}
3147
3148bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3149                                                  const UnresolvedUsingType*) {
3150  return false;
3151}
3152
3153bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3154  return false;
3155}
3156
3157bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3158  return Visit(T->getUnderlyingType());
3159}
3160
3161bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3162  return false;
3163}
3164
3165bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3166                                                    const UnaryTransformType*) {
3167  return false;
3168}
3169
3170bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3171  return Visit(T->getDeducedType());
3172}
3173
3174bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3175  return VisitTagDecl(T->getDecl());
3176}
3177
3178bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3179  return VisitTagDecl(T->getDecl());
3180}
3181
3182bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3183                                                 const TemplateTypeParmType*) {
3184  return false;
3185}
3186
3187bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3188                                        const SubstTemplateTypeParmPackType *) {
3189  return false;
3190}
3191
3192bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3193                                            const TemplateSpecializationType*) {
3194  return false;
3195}
3196
3197bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3198                                              const InjectedClassNameType* T) {
3199  return VisitTagDecl(T->getDecl());
3200}
3201
3202bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3203                                                   const DependentNameType* T) {
3204  return VisitNestedNameSpecifier(T->getQualifier());
3205}
3206
3207bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3208                                 const DependentTemplateSpecializationType* T) {
3209  return VisitNestedNameSpecifier(T->getQualifier());
3210}
3211
3212bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3213                                                   const PackExpansionType* T) {
3214  return Visit(T->getPattern());
3215}
3216
3217bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3218  return false;
3219}
3220
3221bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3222                                                   const ObjCInterfaceType *) {
3223  return false;
3224}
3225
3226bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3227                                                const ObjCObjectPointerType *) {
3228  return false;
3229}
3230
3231bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3232  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3233    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
3234      << S.Context.getTypeDeclType(Tag) << SR;
3235    return true;
3236  }
3237
3238  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3239    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
3240    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3241    return true;
3242  }
3243
3244  return false;
3245}
3246
3247bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3248                                                    NestedNameSpecifier *NNS) {
3249  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3250    return true;
3251
3252  switch (NNS->getKind()) {
3253  case NestedNameSpecifier::Identifier:
3254  case NestedNameSpecifier::Namespace:
3255  case NestedNameSpecifier::NamespaceAlias:
3256  case NestedNameSpecifier::Global:
3257    return false;
3258
3259  case NestedNameSpecifier::TypeSpec:
3260  case NestedNameSpecifier::TypeSpecWithTemplate:
3261    return Visit(QualType(NNS->getAsType(), 0));
3262  }
3263  return false;
3264}
3265
3266
3267/// \brief Check a template argument against its corresponding
3268/// template type parameter.
3269///
3270/// This routine implements the semantics of C++ [temp.arg.type]. It
3271/// returns true if an error occurred, and false otherwise.
3272bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3273                                 TypeSourceInfo *ArgInfo) {
3274  assert(ArgInfo && "invalid TypeSourceInfo");
3275  QualType Arg = ArgInfo->getType();
3276  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3277
3278  if (Arg->isVariablyModifiedType()) {
3279    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3280  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3281    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3282  }
3283
3284  // C++03 [temp.arg.type]p2:
3285  //   A local type, a type with no linkage, an unnamed type or a type
3286  //   compounded from any of these types shall not be used as a
3287  //   template-argument for a template type-parameter.
3288  //
3289  // C++0x allows these, and even in C++03 we allow them as an extension with
3290  // a warning.
3291  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3292    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3293    (void)Finder.Visit(Context.getCanonicalType(Arg));
3294  }
3295
3296  return false;
3297}
3298
3299/// \brief Checks whether the given template argument is the address
3300/// of an object or function according to C++ [temp.arg.nontype]p1.
3301static bool
3302CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3303                                               NonTypeTemplateParmDecl *Param,
3304                                               QualType ParamType,
3305                                               Expr *ArgIn,
3306                                               TemplateArgument &Converted) {
3307  bool Invalid = false;
3308  Expr *Arg = ArgIn;
3309  QualType ArgType = Arg->getType();
3310
3311  // See through any implicit casts we added to fix the type.
3312  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3313    Arg = Cast->getSubExpr();
3314
3315  // C++ [temp.arg.nontype]p1:
3316  //
3317  //   A template-argument for a non-type, non-template
3318  //   template-parameter shall be one of: [...]
3319  //
3320  //     -- the address of an object or function with external
3321  //        linkage, including function templates and function
3322  //        template-ids but excluding non-static class members,
3323  //        expressed as & id-expression where the & is optional if
3324  //        the name refers to a function or array, or if the
3325  //        corresponding template-parameter is a reference; or
3326  DeclRefExpr *DRE = 0;
3327
3328  // In C++98/03 mode, give an extension warning on any extra parentheses.
3329  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3330  bool ExtraParens = false;
3331  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3332    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3333      S.Diag(Arg->getSourceRange().getBegin(),
3334             diag::ext_template_arg_extra_parens)
3335        << Arg->getSourceRange();
3336      ExtraParens = true;
3337    }
3338
3339    Arg = Parens->getSubExpr();
3340  }
3341
3342  bool AddressTaken = false;
3343  SourceLocation AddrOpLoc;
3344  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3345    if (UnOp->getOpcode() == UO_AddrOf) {
3346      // Support &__uuidof(class_with_uuid) as a non-type template argument.
3347      // Very common in Microsoft COM headers.
3348      if (S.getLangOptions().Microsoft &&
3349        isa<CXXUuidofExpr>(UnOp->getSubExpr())) {
3350        Converted = TemplateArgument(ArgIn);
3351        return false;
3352      }
3353
3354      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3355      AddressTaken = true;
3356      AddrOpLoc = UnOp->getOperatorLoc();
3357    }
3358  } else {
3359    if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) {
3360      Converted = TemplateArgument(ArgIn);
3361      return false;
3362    }
3363    DRE = dyn_cast<DeclRefExpr>(Arg);
3364  }
3365  if (!DRE) {
3366    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3367      << Arg->getSourceRange();
3368    S.Diag(Param->getLocation(), diag::note_template_param_here);
3369    return true;
3370  }
3371
3372  // Stop checking the precise nature of the argument if it is value dependent,
3373  // it should be checked when instantiated.
3374  if (Arg->isValueDependent()) {
3375    Converted = TemplateArgument(ArgIn);
3376    return false;
3377  }
3378
3379  if (!isa<ValueDecl>(DRE->getDecl())) {
3380    S.Diag(Arg->getSourceRange().getBegin(),
3381           diag::err_template_arg_not_object_or_func_form)
3382      << Arg->getSourceRange();
3383    S.Diag(Param->getLocation(), diag::note_template_param_here);
3384    return true;
3385  }
3386
3387  NamedDecl *Entity = 0;
3388
3389  // Cannot refer to non-static data members
3390  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3391    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3392      << Field << Arg->getSourceRange();
3393    S.Diag(Param->getLocation(), diag::note_template_param_here);
3394    return true;
3395  }
3396
3397  // Cannot refer to non-static member functions
3398  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3399    if (!Method->isStatic()) {
3400      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3401        << Method << Arg->getSourceRange();
3402      S.Diag(Param->getLocation(), diag::note_template_param_here);
3403      return true;
3404    }
3405
3406  // Functions must have external linkage.
3407  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3408    if (!isExternalLinkage(Func->getLinkage())) {
3409      S.Diag(Arg->getSourceRange().getBegin(),
3410             diag::err_template_arg_function_not_extern)
3411        << Func << Arg->getSourceRange();
3412      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3413        << true;
3414      return true;
3415    }
3416
3417    // Okay: we've named a function with external linkage.
3418    Entity = Func;
3419
3420    // If the template parameter has pointer type, the function decays.
3421    if (ParamType->isPointerType() && !AddressTaken)
3422      ArgType = S.Context.getPointerType(Func->getType());
3423    else if (AddressTaken && ParamType->isReferenceType()) {
3424      // If we originally had an address-of operator, but the
3425      // parameter has reference type, complain and (if things look
3426      // like they will work) drop the address-of operator.
3427      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3428                                            ParamType.getNonReferenceType())) {
3429        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3430          << ParamType;
3431        S.Diag(Param->getLocation(), diag::note_template_param_here);
3432        return true;
3433      }
3434
3435      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3436        << ParamType
3437        << FixItHint::CreateRemoval(AddrOpLoc);
3438      S.Diag(Param->getLocation(), diag::note_template_param_here);
3439
3440      ArgType = Func->getType();
3441    }
3442  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3443    if (!isExternalLinkage(Var->getLinkage())) {
3444      S.Diag(Arg->getSourceRange().getBegin(),
3445             diag::err_template_arg_object_not_extern)
3446        << Var << Arg->getSourceRange();
3447      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3448        << true;
3449      return true;
3450    }
3451
3452    // A value of reference type is not an object.
3453    if (Var->getType()->isReferenceType()) {
3454      S.Diag(Arg->getSourceRange().getBegin(),
3455             diag::err_template_arg_reference_var)
3456        << Var->getType() << Arg->getSourceRange();
3457      S.Diag(Param->getLocation(), diag::note_template_param_here);
3458      return true;
3459    }
3460
3461    // Okay: we've named an object with external linkage
3462    Entity = Var;
3463
3464    // If the template parameter has pointer type, we must have taken
3465    // the address of this object.
3466    if (ParamType->isReferenceType()) {
3467      if (AddressTaken) {
3468        // If we originally had an address-of operator, but the
3469        // parameter has reference type, complain and (if things look
3470        // like they will work) drop the address-of operator.
3471        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3472                                            ParamType.getNonReferenceType())) {
3473          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3474            << ParamType;
3475          S.Diag(Param->getLocation(), diag::note_template_param_here);
3476          return true;
3477        }
3478
3479        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3480          << ParamType
3481          << FixItHint::CreateRemoval(AddrOpLoc);
3482        S.Diag(Param->getLocation(), diag::note_template_param_here);
3483
3484        ArgType = Var->getType();
3485      }
3486    } else if (!AddressTaken && ParamType->isPointerType()) {
3487      if (Var->getType()->isArrayType()) {
3488        // Array-to-pointer decay.
3489        ArgType = S.Context.getArrayDecayedType(Var->getType());
3490      } else {
3491        // If the template parameter has pointer type but the address of
3492        // this object was not taken, complain and (possibly) recover by
3493        // taking the address of the entity.
3494        ArgType = S.Context.getPointerType(Var->getType());
3495        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3496          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3497            << ParamType;
3498          S.Diag(Param->getLocation(), diag::note_template_param_here);
3499          return true;
3500        }
3501
3502        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3503          << ParamType
3504          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3505
3506        S.Diag(Param->getLocation(), diag::note_template_param_here);
3507      }
3508    }
3509  } else {
3510    // We found something else, but we don't know specifically what it is.
3511    S.Diag(Arg->getSourceRange().getBegin(),
3512           diag::err_template_arg_not_object_or_func)
3513      << Arg->getSourceRange();
3514    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3515    return true;
3516  }
3517
3518  bool ObjCLifetimeConversion;
3519  if (ParamType->isPointerType() &&
3520      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3521      S.IsQualificationConversion(ArgType, ParamType, false,
3522                                  ObjCLifetimeConversion)) {
3523    // For pointer-to-object types, qualification conversions are
3524    // permitted.
3525  } else {
3526    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3527      if (!ParamRef->getPointeeType()->isFunctionType()) {
3528        // C++ [temp.arg.nontype]p5b3:
3529        //   For a non-type template-parameter of type reference to
3530        //   object, no conversions apply. The type referred to by the
3531        //   reference may be more cv-qualified than the (otherwise
3532        //   identical) type of the template- argument. The
3533        //   template-parameter is bound directly to the
3534        //   template-argument, which shall be an lvalue.
3535
3536        // FIXME: Other qualifiers?
3537        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3538        unsigned ArgQuals = ArgType.getCVRQualifiers();
3539
3540        if ((ParamQuals | ArgQuals) != ParamQuals) {
3541          S.Diag(Arg->getSourceRange().getBegin(),
3542                 diag::err_template_arg_ref_bind_ignores_quals)
3543            << ParamType << Arg->getType()
3544            << Arg->getSourceRange();
3545          S.Diag(Param->getLocation(), diag::note_template_param_here);
3546          return true;
3547        }
3548      }
3549    }
3550
3551    // At this point, the template argument refers to an object or
3552    // function with external linkage. We now need to check whether the
3553    // argument and parameter types are compatible.
3554    if (!S.Context.hasSameUnqualifiedType(ArgType,
3555                                          ParamType.getNonReferenceType())) {
3556      // We can't perform this conversion or binding.
3557      if (ParamType->isReferenceType())
3558        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3559          << ParamType << Arg->getType() << Arg->getSourceRange();
3560      else
3561        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3562          << Arg->getType() << ParamType << Arg->getSourceRange();
3563      S.Diag(Param->getLocation(), diag::note_template_param_here);
3564      return true;
3565    }
3566  }
3567
3568  // Create the template argument.
3569  Converted = TemplateArgument(Entity->getCanonicalDecl());
3570  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3571  return false;
3572}
3573
3574/// \brief Checks whether the given template argument is a pointer to
3575/// member constant according to C++ [temp.arg.nontype]p1.
3576bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3577                                                TemplateArgument &Converted) {
3578  bool Invalid = false;
3579
3580  // See through any implicit casts we added to fix the type.
3581  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3582    Arg = Cast->getSubExpr();
3583
3584  // C++ [temp.arg.nontype]p1:
3585  //
3586  //   A template-argument for a non-type, non-template
3587  //   template-parameter shall be one of: [...]
3588  //
3589  //     -- a pointer to member expressed as described in 5.3.1.
3590  DeclRefExpr *DRE = 0;
3591
3592  // In C++98/03 mode, give an extension warning on any extra parentheses.
3593  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3594  bool ExtraParens = false;
3595  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3596    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3597      Diag(Arg->getSourceRange().getBegin(),
3598           diag::ext_template_arg_extra_parens)
3599        << Arg->getSourceRange();
3600      ExtraParens = true;
3601    }
3602
3603    Arg = Parens->getSubExpr();
3604  }
3605
3606  // A pointer-to-member constant written &Class::member.
3607  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3608    if (UnOp->getOpcode() == UO_AddrOf) {
3609      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3610      if (DRE && !DRE->getQualifier())
3611        DRE = 0;
3612    }
3613  }
3614  // A constant of pointer-to-member type.
3615  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3616    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3617      if (VD->getType()->isMemberPointerType()) {
3618        if (isa<NonTypeTemplateParmDecl>(VD) ||
3619            (isa<VarDecl>(VD) &&
3620             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3621          if (Arg->isTypeDependent() || Arg->isValueDependent())
3622            Converted = TemplateArgument(Arg);
3623          else
3624            Converted = TemplateArgument(VD->getCanonicalDecl());
3625          return Invalid;
3626        }
3627      }
3628    }
3629
3630    DRE = 0;
3631  }
3632
3633  if (!DRE)
3634    return Diag(Arg->getSourceRange().getBegin(),
3635                diag::err_template_arg_not_pointer_to_member_form)
3636      << Arg->getSourceRange();
3637
3638  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3639    assert((isa<FieldDecl>(DRE->getDecl()) ||
3640            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3641           "Only non-static member pointers can make it here");
3642
3643    // Okay: this is the address of a non-static member, and therefore
3644    // a member pointer constant.
3645    if (Arg->isTypeDependent() || Arg->isValueDependent())
3646      Converted = TemplateArgument(Arg);
3647    else
3648      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3649    return Invalid;
3650  }
3651
3652  // We found something else, but we don't know specifically what it is.
3653  Diag(Arg->getSourceRange().getBegin(),
3654       diag::err_template_arg_not_pointer_to_member_form)
3655      << Arg->getSourceRange();
3656  Diag(DRE->getDecl()->getLocation(),
3657       diag::note_template_arg_refers_here);
3658  return true;
3659}
3660
3661/// \brief Check a template argument against its corresponding
3662/// non-type template parameter.
3663///
3664/// This routine implements the semantics of C++ [temp.arg.nontype].
3665/// If an error occurred, it returns ExprError(); otherwise, it
3666/// returns the converted template argument. \p
3667/// InstantiatedParamType is the type of the non-type template
3668/// parameter after it has been instantiated.
3669ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3670                                       QualType InstantiatedParamType, Expr *Arg,
3671                                       TemplateArgument &Converted,
3672                                       CheckTemplateArgumentKind CTAK) {
3673  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3674
3675  // If either the parameter has a dependent type or the argument is
3676  // type-dependent, there's nothing we can check now.
3677  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3678    // FIXME: Produce a cloned, canonical expression?
3679    Converted = TemplateArgument(Arg);
3680    return Owned(Arg);
3681  }
3682
3683  // C++ [temp.arg.nontype]p5:
3684  //   The following conversions are performed on each expression used
3685  //   as a non-type template-argument. If a non-type
3686  //   template-argument cannot be converted to the type of the
3687  //   corresponding template-parameter then the program is
3688  //   ill-formed.
3689  //
3690  //     -- for a non-type template-parameter of integral or
3691  //        enumeration type, integral promotions (4.5) and integral
3692  //        conversions (4.7) are applied.
3693  QualType ParamType = InstantiatedParamType;
3694  QualType ArgType = Arg->getType();
3695  if (ParamType->isIntegralOrEnumerationType()) {
3696    // C++ [temp.arg.nontype]p1:
3697    //   A template-argument for a non-type, non-template
3698    //   template-parameter shall be one of:
3699    //
3700    //     -- an integral constant-expression of integral or enumeration
3701    //        type; or
3702    //     -- the name of a non-type template-parameter; or
3703    SourceLocation NonConstantLoc;
3704    llvm::APSInt Value;
3705    if (!ArgType->isIntegralOrEnumerationType()) {
3706      Diag(Arg->getSourceRange().getBegin(),
3707           diag::err_template_arg_not_integral_or_enumeral)
3708        << ArgType << Arg->getSourceRange();
3709      Diag(Param->getLocation(), diag::note_template_param_here);
3710      return ExprError();
3711    } else if (!Arg->isValueDependent() &&
3712               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3713      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3714        << ArgType << Arg->getSourceRange();
3715      return ExprError();
3716    }
3717
3718    // From here on out, all we care about are the unqualified forms
3719    // of the parameter and argument types.
3720    ParamType = ParamType.getUnqualifiedType();
3721    ArgType = ArgType.getUnqualifiedType();
3722
3723    // Try to convert the argument to the parameter's type.
3724    if (Context.hasSameType(ParamType, ArgType)) {
3725      // Okay: no conversion necessary
3726    } else if (CTAK == CTAK_Deduced) {
3727      // C++ [temp.deduct.type]p17:
3728      //   If, in the declaration of a function template with a non-type
3729      //   template-parameter, the non-type template- parameter is used
3730      //   in an expression in the function parameter-list and, if the
3731      //   corresponding template-argument is deduced, the
3732      //   template-argument type shall match the type of the
3733      //   template-parameter exactly, except that a template-argument
3734      //   deduced from an array bound may be of any integral type.
3735      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3736        << ArgType << ParamType;
3737      Diag(Param->getLocation(), diag::note_template_param_here);
3738      return ExprError();
3739    } else if (ParamType->isBooleanType()) {
3740      // This is an integral-to-boolean conversion.
3741      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3742    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3743               !ParamType->isEnumeralType()) {
3744      // This is an integral promotion or conversion.
3745      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3746    } else {
3747      // We can't perform this conversion.
3748      Diag(Arg->getSourceRange().getBegin(),
3749           diag::err_template_arg_not_convertible)
3750        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3751      Diag(Param->getLocation(), diag::note_template_param_here);
3752      return ExprError();
3753    }
3754
3755    // Add the value of this argument to the list of converted
3756    // arguments. We use the bitwidth and signedness of the template
3757    // parameter.
3758    if (Arg->isValueDependent()) {
3759      // The argument is value-dependent. Create a new
3760      // TemplateArgument with the converted expression.
3761      Converted = TemplateArgument(Arg);
3762      return Owned(Arg);
3763    }
3764
3765    QualType IntegerType = Context.getCanonicalType(ParamType);
3766    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3767      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3768
3769    if (ParamType->isBooleanType()) {
3770      // Value must be zero or one.
3771      Value = Value != 0;
3772      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3773      if (Value.getBitWidth() != AllowedBits)
3774        Value = Value.extOrTrunc(AllowedBits);
3775      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3776    } else {
3777      llvm::APSInt OldValue = Value;
3778
3779      // Coerce the template argument's value to the value it will have
3780      // based on the template parameter's type.
3781      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3782      if (Value.getBitWidth() != AllowedBits)
3783        Value = Value.extOrTrunc(AllowedBits);
3784      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3785
3786      // Complain if an unsigned parameter received a negative value.
3787      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3788               && (OldValue.isSigned() && OldValue.isNegative())) {
3789        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3790          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3791          << Arg->getSourceRange();
3792        Diag(Param->getLocation(), diag::note_template_param_here);
3793      }
3794
3795      // Complain if we overflowed the template parameter's type.
3796      unsigned RequiredBits;
3797      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3798        RequiredBits = OldValue.getActiveBits();
3799      else if (OldValue.isUnsigned())
3800        RequiredBits = OldValue.getActiveBits() + 1;
3801      else
3802        RequiredBits = OldValue.getMinSignedBits();
3803      if (RequiredBits > AllowedBits) {
3804        Diag(Arg->getSourceRange().getBegin(),
3805             diag::warn_template_arg_too_large)
3806          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3807          << Arg->getSourceRange();
3808        Diag(Param->getLocation(), diag::note_template_param_here);
3809      }
3810    }
3811
3812    Converted = TemplateArgument(Value,
3813                                 ParamType->isEnumeralType() ? ParamType
3814                                                             : IntegerType);
3815    return Owned(Arg);
3816  }
3817
3818  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3819
3820  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3821  // from a template argument of type std::nullptr_t to a non-type
3822  // template parameter of type pointer to object, pointer to
3823  // function, or pointer-to-member, respectively.
3824  if (ArgType->isNullPtrType()) {
3825    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3826      Converted = TemplateArgument((NamedDecl *)0);
3827      return Owned(Arg);
3828    }
3829
3830    if (ParamType->isNullPtrType()) {
3831      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3832      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3833      return Owned(Arg);
3834    }
3835  }
3836
3837  // Handle pointer-to-function, reference-to-function, and
3838  // pointer-to-member-function all in (roughly) the same way.
3839  if (// -- For a non-type template-parameter of type pointer to
3840      //    function, only the function-to-pointer conversion (4.3) is
3841      //    applied. If the template-argument represents a set of
3842      //    overloaded functions (or a pointer to such), the matching
3843      //    function is selected from the set (13.4).
3844      (ParamType->isPointerType() &&
3845       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3846      // -- For a non-type template-parameter of type reference to
3847      //    function, no conversions apply. If the template-argument
3848      //    represents a set of overloaded functions, the matching
3849      //    function is selected from the set (13.4).
3850      (ParamType->isReferenceType() &&
3851       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3852      // -- For a non-type template-parameter of type pointer to
3853      //    member function, no conversions apply. If the
3854      //    template-argument represents a set of overloaded member
3855      //    functions, the matching member function is selected from
3856      //    the set (13.4).
3857      (ParamType->isMemberPointerType() &&
3858       ParamType->getAs<MemberPointerType>()->getPointeeType()
3859         ->isFunctionType())) {
3860
3861    if (Arg->getType() == Context.OverloadTy) {
3862      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3863                                                                true,
3864                                                                FoundResult)) {
3865        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3866          return ExprError();
3867
3868        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3869        ArgType = Arg->getType();
3870      } else
3871        return ExprError();
3872    }
3873
3874    if (!ParamType->isMemberPointerType()) {
3875      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3876                                                         ParamType,
3877                                                         Arg, Converted))
3878        return ExprError();
3879      return Owned(Arg);
3880    }
3881
3882    bool ObjCLifetimeConversion;
3883    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3884                                  false, ObjCLifetimeConversion)) {
3885      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3886    } else if (!Context.hasSameUnqualifiedType(ArgType,
3887                                           ParamType.getNonReferenceType())) {
3888      // We can't perform this conversion.
3889      Diag(Arg->getSourceRange().getBegin(),
3890           diag::err_template_arg_not_convertible)
3891        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3892      Diag(Param->getLocation(), diag::note_template_param_here);
3893      return ExprError();
3894    }
3895
3896    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3897      return ExprError();
3898    return Owned(Arg);
3899  }
3900
3901  if (ParamType->isPointerType()) {
3902    //   -- for a non-type template-parameter of type pointer to
3903    //      object, qualification conversions (4.4) and the
3904    //      array-to-pointer conversion (4.2) are applied.
3905    // C++0x also allows a value of std::nullptr_t.
3906    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3907           "Only object pointers allowed here");
3908
3909    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3910                                                       ParamType,
3911                                                       Arg, Converted))
3912      return ExprError();
3913    return Owned(Arg);
3914  }
3915
3916  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3917    //   -- For a non-type template-parameter of type reference to
3918    //      object, no conversions apply. The type referred to by the
3919    //      reference may be more cv-qualified than the (otherwise
3920    //      identical) type of the template-argument. The
3921    //      template-parameter is bound directly to the
3922    //      template-argument, which must be an lvalue.
3923    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3924           "Only object references allowed here");
3925
3926    if (Arg->getType() == Context.OverloadTy) {
3927      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3928                                                 ParamRefType->getPointeeType(),
3929                                                                true,
3930                                                                FoundResult)) {
3931        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3932          return ExprError();
3933
3934        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3935        ArgType = Arg->getType();
3936      } else
3937        return ExprError();
3938    }
3939
3940    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3941                                                       ParamType,
3942                                                       Arg, Converted))
3943      return ExprError();
3944    return Owned(Arg);
3945  }
3946
3947  //     -- For a non-type template-parameter of type pointer to data
3948  //        member, qualification conversions (4.4) are applied.
3949  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3950
3951  bool ObjCLifetimeConversion;
3952  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3953    // Types match exactly: nothing more to do here.
3954  } else if (IsQualificationConversion(ArgType, ParamType, false,
3955                                       ObjCLifetimeConversion)) {
3956    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3957  } else {
3958    // We can't perform this conversion.
3959    Diag(Arg->getSourceRange().getBegin(),
3960         diag::err_template_arg_not_convertible)
3961      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3962    Diag(Param->getLocation(), diag::note_template_param_here);
3963    return ExprError();
3964  }
3965
3966  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3967    return ExprError();
3968  return Owned(Arg);
3969}
3970
3971/// \brief Check a template argument against its corresponding
3972/// template template parameter.
3973///
3974/// This routine implements the semantics of C++ [temp.arg.template].
3975/// It returns true if an error occurred, and false otherwise.
3976bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3977                                 const TemplateArgumentLoc &Arg) {
3978  TemplateName Name = Arg.getArgument().getAsTemplate();
3979  TemplateDecl *Template = Name.getAsTemplateDecl();
3980  if (!Template) {
3981    // Any dependent template name is fine.
3982    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3983    return false;
3984  }
3985
3986  // C++0x [temp.arg.template]p1:
3987  //   A template-argument for a template template-parameter shall be
3988  //   the name of a class template or an alias template, expressed as an
3989  //   id-expression. When the template-argument names a class template, only
3990  //   primary class templates are considered when matching the
3991  //   template template argument with the corresponding parameter;
3992  //   partial specializations are not considered even if their
3993  //   parameter lists match that of the template template parameter.
3994  //
3995  // Note that we also allow template template parameters here, which
3996  // will happen when we are dealing with, e.g., class template
3997  // partial specializations.
3998  if (!isa<ClassTemplateDecl>(Template) &&
3999      !isa<TemplateTemplateParmDecl>(Template) &&
4000      !isa<TypeAliasTemplateDecl>(Template)) {
4001    assert(isa<FunctionTemplateDecl>(Template) &&
4002           "Only function templates are possible here");
4003    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4004    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4005      << Template;
4006  }
4007
4008  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4009                                         Param->getTemplateParameters(),
4010                                         true,
4011                                         TPL_TemplateTemplateArgumentMatch,
4012                                         Arg.getLocation());
4013}
4014
4015/// \brief Given a non-type template argument that refers to a
4016/// declaration and the type of its corresponding non-type template
4017/// parameter, produce an expression that properly refers to that
4018/// declaration.
4019ExprResult
4020Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4021                                              QualType ParamType,
4022                                              SourceLocation Loc) {
4023  assert(Arg.getKind() == TemplateArgument::Declaration &&
4024         "Only declaration template arguments permitted here");
4025  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4026
4027  if (VD->getDeclContext()->isRecord() &&
4028      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4029    // If the value is a class member, we might have a pointer-to-member.
4030    // Determine whether the non-type template template parameter is of
4031    // pointer-to-member type. If so, we need to build an appropriate
4032    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4033    // would refer to the member itself.
4034    if (ParamType->isMemberPointerType()) {
4035      QualType ClassType
4036        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4037      NestedNameSpecifier *Qualifier
4038        = NestedNameSpecifier::Create(Context, 0, false,
4039                                      ClassType.getTypePtr());
4040      CXXScopeSpec SS;
4041      SS.MakeTrivial(Context, Qualifier, Loc);
4042
4043      // The actual value-ness of this is unimportant, but for
4044      // internal consistency's sake, references to instance methods
4045      // are r-values.
4046      ExprValueKind VK = VK_LValue;
4047      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4048        VK = VK_RValue;
4049
4050      ExprResult RefExpr = BuildDeclRefExpr(VD,
4051                                            VD->getType().getNonReferenceType(),
4052                                            VK,
4053                                            Loc,
4054                                            &SS);
4055      if (RefExpr.isInvalid())
4056        return ExprError();
4057
4058      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4059
4060      // We might need to perform a trailing qualification conversion, since
4061      // the element type on the parameter could be more qualified than the
4062      // element type in the expression we constructed.
4063      bool ObjCLifetimeConversion;
4064      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4065                                    ParamType.getUnqualifiedType(), false,
4066                                    ObjCLifetimeConversion))
4067        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4068
4069      assert(!RefExpr.isInvalid() &&
4070             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4071                                 ParamType.getUnqualifiedType()));
4072      return move(RefExpr);
4073    }
4074  }
4075
4076  QualType T = VD->getType().getNonReferenceType();
4077  if (ParamType->isPointerType()) {
4078    // When the non-type template parameter is a pointer, take the
4079    // address of the declaration.
4080    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4081    if (RefExpr.isInvalid())
4082      return ExprError();
4083
4084    if (T->isFunctionType() || T->isArrayType()) {
4085      // Decay functions and arrays.
4086      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4087      if (RefExpr.isInvalid())
4088        return ExprError();
4089
4090      return move(RefExpr);
4091    }
4092
4093    // Take the address of everything else
4094    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4095  }
4096
4097  ExprValueKind VK = VK_RValue;
4098
4099  // If the non-type template parameter has reference type, qualify the
4100  // resulting declaration reference with the extra qualifiers on the
4101  // type that the reference refers to.
4102  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4103    VK = VK_LValue;
4104    T = Context.getQualifiedType(T,
4105                              TargetRef->getPointeeType().getQualifiers());
4106  }
4107
4108  return BuildDeclRefExpr(VD, T, VK, Loc);
4109}
4110
4111/// \brief Construct a new expression that refers to the given
4112/// integral template argument with the given source-location
4113/// information.
4114///
4115/// This routine takes care of the mapping from an integral template
4116/// argument (which may have any integral type) to the appropriate
4117/// literal value.
4118ExprResult
4119Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4120                                                  SourceLocation Loc) {
4121  assert(Arg.getKind() == TemplateArgument::Integral &&
4122         "Operation is only valid for integral template arguments");
4123  QualType T = Arg.getIntegralType();
4124  if (T->isCharType() || T->isWideCharType())
4125    return Owned(new (Context) CharacterLiteral(
4126                                             Arg.getAsIntegral()->getZExtValue(),
4127                                             T->isWideCharType(), T, Loc));
4128  if (T->isBooleanType())
4129    return Owned(new (Context) CXXBoolLiteralExpr(
4130                                            Arg.getAsIntegral()->getBoolValue(),
4131                                            T, Loc));
4132
4133  if (T->isNullPtrType())
4134    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4135
4136  // If this is an enum type that we're instantiating, we need to use an integer
4137  // type the same size as the enumerator.  We don't want to build an
4138  // IntegerLiteral with enum type.
4139  QualType BT;
4140  if (const EnumType *ET = T->getAs<EnumType>())
4141    BT = ET->getDecl()->getIntegerType();
4142  else
4143    BT = T;
4144
4145  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4146  if (T->isEnumeralType()) {
4147    // FIXME: This is a hack. We need a better way to handle substituted
4148    // non-type template parameters.
4149    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4150                               Context.getTrivialTypeSourceInfo(T, Loc),
4151                               Loc, Loc);
4152  }
4153
4154  return Owned(E);
4155}
4156
4157/// \brief Match two template parameters within template parameter lists.
4158static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4159                                       bool Complain,
4160                                     Sema::TemplateParameterListEqualKind Kind,
4161                                       SourceLocation TemplateArgLoc) {
4162  // Check the actual kind (type, non-type, template).
4163  if (Old->getKind() != New->getKind()) {
4164    if (Complain) {
4165      unsigned NextDiag = diag::err_template_param_different_kind;
4166      if (TemplateArgLoc.isValid()) {
4167        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4168        NextDiag = diag::note_template_param_different_kind;
4169      }
4170      S.Diag(New->getLocation(), NextDiag)
4171        << (Kind != Sema::TPL_TemplateMatch);
4172      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4173        << (Kind != Sema::TPL_TemplateMatch);
4174    }
4175
4176    return false;
4177  }
4178
4179  // Check that both are parameter packs are neither are parameter packs.
4180  // However, if we are matching a template template argument to a
4181  // template template parameter, the template template parameter can have
4182  // a parameter pack where the template template argument does not.
4183  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4184      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4185        Old->isTemplateParameterPack())) {
4186    if (Complain) {
4187      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4188      if (TemplateArgLoc.isValid()) {
4189        S.Diag(TemplateArgLoc,
4190             diag::err_template_arg_template_params_mismatch);
4191        NextDiag = diag::note_template_parameter_pack_non_pack;
4192      }
4193
4194      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4195                      : isa<NonTypeTemplateParmDecl>(New)? 1
4196                      : 2;
4197      S.Diag(New->getLocation(), NextDiag)
4198        << ParamKind << New->isParameterPack();
4199      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4200        << ParamKind << Old->isParameterPack();
4201    }
4202
4203    return false;
4204  }
4205
4206  // For non-type template parameters, check the type of the parameter.
4207  if (NonTypeTemplateParmDecl *OldNTTP
4208                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4209    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4210
4211    // If we are matching a template template argument to a template
4212    // template parameter and one of the non-type template parameter types
4213    // is dependent, then we must wait until template instantiation time
4214    // to actually compare the arguments.
4215    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4216        (OldNTTP->getType()->isDependentType() ||
4217         NewNTTP->getType()->isDependentType()))
4218      return true;
4219
4220    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4221      if (Complain) {
4222        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4223        if (TemplateArgLoc.isValid()) {
4224          S.Diag(TemplateArgLoc,
4225                 diag::err_template_arg_template_params_mismatch);
4226          NextDiag = diag::note_template_nontype_parm_different_type;
4227        }
4228        S.Diag(NewNTTP->getLocation(), NextDiag)
4229          << NewNTTP->getType()
4230          << (Kind != Sema::TPL_TemplateMatch);
4231        S.Diag(OldNTTP->getLocation(),
4232               diag::note_template_nontype_parm_prev_declaration)
4233          << OldNTTP->getType();
4234      }
4235
4236      return false;
4237    }
4238
4239    return true;
4240  }
4241
4242  // For template template parameters, check the template parameter types.
4243  // The template parameter lists of template template
4244  // parameters must agree.
4245  if (TemplateTemplateParmDecl *OldTTP
4246                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4247    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4248    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4249                                            OldTTP->getTemplateParameters(),
4250                                            Complain,
4251                                        (Kind == Sema::TPL_TemplateMatch
4252                                           ? Sema::TPL_TemplateTemplateParmMatch
4253                                           : Kind),
4254                                            TemplateArgLoc);
4255  }
4256
4257  return true;
4258}
4259
4260/// \brief Diagnose a known arity mismatch when comparing template argument
4261/// lists.
4262static
4263void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4264                                                TemplateParameterList *New,
4265                                                TemplateParameterList *Old,
4266                                      Sema::TemplateParameterListEqualKind Kind,
4267                                                SourceLocation TemplateArgLoc) {
4268  unsigned NextDiag = diag::err_template_param_list_different_arity;
4269  if (TemplateArgLoc.isValid()) {
4270    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4271    NextDiag = diag::note_template_param_list_different_arity;
4272  }
4273  S.Diag(New->getTemplateLoc(), NextDiag)
4274    << (New->size() > Old->size())
4275    << (Kind != Sema::TPL_TemplateMatch)
4276    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4277  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4278    << (Kind != Sema::TPL_TemplateMatch)
4279    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4280}
4281
4282/// \brief Determine whether the given template parameter lists are
4283/// equivalent.
4284///
4285/// \param New  The new template parameter list, typically written in the
4286/// source code as part of a new template declaration.
4287///
4288/// \param Old  The old template parameter list, typically found via
4289/// name lookup of the template declared with this template parameter
4290/// list.
4291///
4292/// \param Complain  If true, this routine will produce a diagnostic if
4293/// the template parameter lists are not equivalent.
4294///
4295/// \param Kind describes how we are to match the template parameter lists.
4296///
4297/// \param TemplateArgLoc If this source location is valid, then we
4298/// are actually checking the template parameter list of a template
4299/// argument (New) against the template parameter list of its
4300/// corresponding template template parameter (Old). We produce
4301/// slightly different diagnostics in this scenario.
4302///
4303/// \returns True if the template parameter lists are equal, false
4304/// otherwise.
4305bool
4306Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4307                                     TemplateParameterList *Old,
4308                                     bool Complain,
4309                                     TemplateParameterListEqualKind Kind,
4310                                     SourceLocation TemplateArgLoc) {
4311  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4312    if (Complain)
4313      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4314                                                 TemplateArgLoc);
4315
4316    return false;
4317  }
4318
4319  // C++0x [temp.arg.template]p3:
4320  //   A template-argument matches a template template-parameter (call it P)
4321  //   when each of the template parameters in the template-parameter-list of
4322  //   the template-argument's corresponding class template or alias template
4323  //   (call it A) matches the corresponding template parameter in the
4324  //   template-parameter-list of P. [...]
4325  TemplateParameterList::iterator NewParm = New->begin();
4326  TemplateParameterList::iterator NewParmEnd = New->end();
4327  for (TemplateParameterList::iterator OldParm = Old->begin(),
4328                                    OldParmEnd = Old->end();
4329       OldParm != OldParmEnd; ++OldParm) {
4330    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4331        !(*OldParm)->isTemplateParameterPack()) {
4332      if (NewParm == NewParmEnd) {
4333        if (Complain)
4334          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4335                                                     TemplateArgLoc);
4336
4337        return false;
4338      }
4339
4340      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4341                                      Kind, TemplateArgLoc))
4342        return false;
4343
4344      ++NewParm;
4345      continue;
4346    }
4347
4348    // C++0x [temp.arg.template]p3:
4349    //   [...] When P's template- parameter-list contains a template parameter
4350    //   pack (14.5.3), the template parameter pack will match zero or more
4351    //   template parameters or template parameter packs in the
4352    //   template-parameter-list of A with the same type and form as the
4353    //   template parameter pack in P (ignoring whether those template
4354    //   parameters are template parameter packs).
4355    for (; NewParm != NewParmEnd; ++NewParm) {
4356      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4357                                      Kind, TemplateArgLoc))
4358        return false;
4359    }
4360  }
4361
4362  // Make sure we exhausted all of the arguments.
4363  if (NewParm != NewParmEnd) {
4364    if (Complain)
4365      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4366                                                 TemplateArgLoc);
4367
4368    return false;
4369  }
4370
4371  return true;
4372}
4373
4374/// \brief Check whether a template can be declared within this scope.
4375///
4376/// If the template declaration is valid in this scope, returns
4377/// false. Otherwise, issues a diagnostic and returns true.
4378bool
4379Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4380  // Find the nearest enclosing declaration scope.
4381  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4382         (S->getFlags() & Scope::TemplateParamScope) != 0)
4383    S = S->getParent();
4384
4385  // C++ [temp]p2:
4386  //   A template-declaration can appear only as a namespace scope or
4387  //   class scope declaration.
4388  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4389  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4390      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4391    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4392             << TemplateParams->getSourceRange();
4393
4394  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4395    Ctx = Ctx->getParent();
4396
4397  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4398    return false;
4399
4400  return Diag(TemplateParams->getTemplateLoc(),
4401              diag::err_template_outside_namespace_or_class_scope)
4402    << TemplateParams->getSourceRange();
4403}
4404
4405/// \brief Determine what kind of template specialization the given declaration
4406/// is.
4407static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4408  if (!D)
4409    return TSK_Undeclared;
4410
4411  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4412    return Record->getTemplateSpecializationKind();
4413  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4414    return Function->getTemplateSpecializationKind();
4415  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4416    return Var->getTemplateSpecializationKind();
4417
4418  return TSK_Undeclared;
4419}
4420
4421/// \brief Check whether a specialization is well-formed in the current
4422/// context.
4423///
4424/// This routine determines whether a template specialization can be declared
4425/// in the current context (C++ [temp.expl.spec]p2).
4426///
4427/// \param S the semantic analysis object for which this check is being
4428/// performed.
4429///
4430/// \param Specialized the entity being specialized or instantiated, which
4431/// may be a kind of template (class template, function template, etc.) or
4432/// a member of a class template (member function, static data member,
4433/// member class).
4434///
4435/// \param PrevDecl the previous declaration of this entity, if any.
4436///
4437/// \param Loc the location of the explicit specialization or instantiation of
4438/// this entity.
4439///
4440/// \param IsPartialSpecialization whether this is a partial specialization of
4441/// a class template.
4442///
4443/// \returns true if there was an error that we cannot recover from, false
4444/// otherwise.
4445static bool CheckTemplateSpecializationScope(Sema &S,
4446                                             NamedDecl *Specialized,
4447                                             NamedDecl *PrevDecl,
4448                                             SourceLocation Loc,
4449                                             bool IsPartialSpecialization) {
4450  // Keep these "kind" numbers in sync with the %select statements in the
4451  // various diagnostics emitted by this routine.
4452  int EntityKind = 0;
4453  if (isa<ClassTemplateDecl>(Specialized))
4454    EntityKind = IsPartialSpecialization? 1 : 0;
4455  else if (isa<FunctionTemplateDecl>(Specialized))
4456    EntityKind = 2;
4457  else if (isa<CXXMethodDecl>(Specialized))
4458    EntityKind = 3;
4459  else if (isa<VarDecl>(Specialized))
4460    EntityKind = 4;
4461  else if (isa<RecordDecl>(Specialized))
4462    EntityKind = 5;
4463  else {
4464    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4465    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4466    return true;
4467  }
4468
4469  // C++ [temp.expl.spec]p2:
4470  //   An explicit specialization shall be declared in the namespace
4471  //   of which the template is a member, or, for member templates, in
4472  //   the namespace of which the enclosing class or enclosing class
4473  //   template is a member. An explicit specialization of a member
4474  //   function, member class or static data member of a class
4475  //   template shall be declared in the namespace of which the class
4476  //   template is a member. Such a declaration may also be a
4477  //   definition. If the declaration is not a definition, the
4478  //   specialization may be defined later in the name- space in which
4479  //   the explicit specialization was declared, or in a namespace
4480  //   that encloses the one in which the explicit specialization was
4481  //   declared.
4482  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4483    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4484      << Specialized;
4485    return true;
4486  }
4487
4488  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4489    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4490      << Specialized;
4491    return true;
4492  }
4493
4494  // C++ [temp.class.spec]p6:
4495  //   A class template partial specialization may be declared or redeclared
4496  //   in any namespace scope in which its definition may be defined (14.5.1
4497  //   and 14.5.2).
4498  bool ComplainedAboutScope = false;
4499  DeclContext *SpecializedContext
4500    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4501  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4502  if ((!PrevDecl ||
4503       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4504       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4505    // C++ [temp.exp.spec]p2:
4506    //   An explicit specialization shall be declared in the namespace of which
4507    //   the template is a member, or, for member templates, in the namespace
4508    //   of which the enclosing class or enclosing class template is a member.
4509    //   An explicit specialization of a member function, member class or
4510    //   static data member of a class template shall be declared in the
4511    //   namespace of which the class template is a member.
4512    //
4513    // C++0x [temp.expl.spec]p2:
4514    //   An explicit specialization shall be declared in a namespace enclosing
4515    //   the specialized template.
4516    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4517        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4518      bool IsCPlusPlus0xExtension
4519        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4520      if (isa<TranslationUnitDecl>(SpecializedContext))
4521        S.Diag(Loc, IsCPlusPlus0xExtension
4522                      ? diag::ext_template_spec_decl_out_of_scope_global
4523                      : diag::err_template_spec_decl_out_of_scope_global)
4524          << EntityKind << Specialized;
4525      else if (isa<NamespaceDecl>(SpecializedContext))
4526        S.Diag(Loc, IsCPlusPlus0xExtension
4527                      ? diag::ext_template_spec_decl_out_of_scope
4528                      : diag::err_template_spec_decl_out_of_scope)
4529          << EntityKind << Specialized
4530          << cast<NamedDecl>(SpecializedContext);
4531
4532      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4533      ComplainedAboutScope = true;
4534    }
4535  }
4536
4537  // Make sure that this redeclaration (or definition) occurs in an enclosing
4538  // namespace.
4539  // Note that HandleDeclarator() performs this check for explicit
4540  // specializations of function templates, static data members, and member
4541  // functions, so we skip the check here for those kinds of entities.
4542  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4543  // Should we refactor that check, so that it occurs later?
4544  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4545      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4546        isa<FunctionDecl>(Specialized))) {
4547    if (isa<TranslationUnitDecl>(SpecializedContext))
4548      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4549        << EntityKind << Specialized;
4550    else if (isa<NamespaceDecl>(SpecializedContext))
4551      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4552        << EntityKind << Specialized
4553        << cast<NamedDecl>(SpecializedContext);
4554
4555    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4556  }
4557
4558  // FIXME: check for specialization-after-instantiation errors and such.
4559
4560  return false;
4561}
4562
4563/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4564/// that checks non-type template partial specialization arguments.
4565static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4566                                                NonTypeTemplateParmDecl *Param,
4567                                                  const TemplateArgument *Args,
4568                                                        unsigned NumArgs) {
4569  for (unsigned I = 0; I != NumArgs; ++I) {
4570    if (Args[I].getKind() == TemplateArgument::Pack) {
4571      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4572                                                           Args[I].pack_begin(),
4573                                                           Args[I].pack_size()))
4574        return true;
4575
4576      continue;
4577    }
4578
4579    Expr *ArgExpr = Args[I].getAsExpr();
4580    if (!ArgExpr) {
4581      continue;
4582    }
4583
4584    // We can have a pack expansion of any of the bullets below.
4585    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4586      ArgExpr = Expansion->getPattern();
4587
4588    // Strip off any implicit casts we added as part of type checking.
4589    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4590      ArgExpr = ICE->getSubExpr();
4591
4592    // C++ [temp.class.spec]p8:
4593    //   A non-type argument is non-specialized if it is the name of a
4594    //   non-type parameter. All other non-type arguments are
4595    //   specialized.
4596    //
4597    // Below, we check the two conditions that only apply to
4598    // specialized non-type arguments, so skip any non-specialized
4599    // arguments.
4600    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4601      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4602        continue;
4603
4604    // C++ [temp.class.spec]p9:
4605    //   Within the argument list of a class template partial
4606    //   specialization, the following restrictions apply:
4607    //     -- A partially specialized non-type argument expression
4608    //        shall not involve a template parameter of the partial
4609    //        specialization except when the argument expression is a
4610    //        simple identifier.
4611    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4612      S.Diag(ArgExpr->getLocStart(),
4613           diag::err_dependent_non_type_arg_in_partial_spec)
4614        << ArgExpr->getSourceRange();
4615      return true;
4616    }
4617
4618    //     -- The type of a template parameter corresponding to a
4619    //        specialized non-type argument shall not be dependent on a
4620    //        parameter of the specialization.
4621    if (Param->getType()->isDependentType()) {
4622      S.Diag(ArgExpr->getLocStart(),
4623           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4624        << Param->getType()
4625        << ArgExpr->getSourceRange();
4626      S.Diag(Param->getLocation(), diag::note_template_param_here);
4627      return true;
4628    }
4629  }
4630
4631  return false;
4632}
4633
4634/// \brief Check the non-type template arguments of a class template
4635/// partial specialization according to C++ [temp.class.spec]p9.
4636///
4637/// \param TemplateParams the template parameters of the primary class
4638/// template.
4639///
4640/// \param TemplateArg the template arguments of the class template
4641/// partial specialization.
4642///
4643/// \returns true if there was an error, false otherwise.
4644static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4645                                        TemplateParameterList *TemplateParams,
4646                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4647  const TemplateArgument *ArgList = TemplateArgs.data();
4648
4649  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4650    NonTypeTemplateParmDecl *Param
4651      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4652    if (!Param)
4653      continue;
4654
4655    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4656                                                           &ArgList[I], 1))
4657      return true;
4658  }
4659
4660  return false;
4661}
4662
4663/// \brief Retrieve the previous declaration of the given declaration.
4664static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4665  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4666    return VD->getPreviousDeclaration();
4667  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4668    return FD->getPreviousDeclaration();
4669  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4670    return TD->getPreviousDeclaration();
4671  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4672    return TD->getPreviousDeclaration();
4673  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4674    return FTD->getPreviousDeclaration();
4675  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4676    return CTD->getPreviousDeclaration();
4677  return 0;
4678}
4679
4680DeclResult
4681Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4682                                       TagUseKind TUK,
4683                                       SourceLocation KWLoc,
4684                                       CXXScopeSpec &SS,
4685                                       TemplateTy TemplateD,
4686                                       SourceLocation TemplateNameLoc,
4687                                       SourceLocation LAngleLoc,
4688                                       ASTTemplateArgsPtr TemplateArgsIn,
4689                                       SourceLocation RAngleLoc,
4690                                       AttributeList *Attr,
4691                               MultiTemplateParamsArg TemplateParameterLists) {
4692  assert(TUK != TUK_Reference && "References are not specializations");
4693
4694  // NOTE: KWLoc is the location of the tag keyword. This will instead
4695  // store the location of the outermost template keyword in the declaration.
4696  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4697    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4698
4699  // Find the class template we're specializing
4700  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4701  ClassTemplateDecl *ClassTemplate
4702    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4703
4704  if (!ClassTemplate) {
4705    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4706      << (Name.getAsTemplateDecl() &&
4707          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4708    return true;
4709  }
4710
4711  bool isExplicitSpecialization = false;
4712  bool isPartialSpecialization = false;
4713
4714  // Check the validity of the template headers that introduce this
4715  // template.
4716  // FIXME: We probably shouldn't complain about these headers for
4717  // friend declarations.
4718  bool Invalid = false;
4719  TemplateParameterList *TemplateParams
4720    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4721                                              TemplateNameLoc,
4722                                              SS,
4723                        (TemplateParameterList**)TemplateParameterLists.get(),
4724                                              TemplateParameterLists.size(),
4725                                              TUK == TUK_Friend,
4726                                              isExplicitSpecialization,
4727                                              Invalid);
4728  if (Invalid)
4729    return true;
4730
4731  if (TemplateParams && TemplateParams->size() > 0) {
4732    isPartialSpecialization = true;
4733
4734    if (TUK == TUK_Friend) {
4735      Diag(KWLoc, diag::err_partial_specialization_friend)
4736        << SourceRange(LAngleLoc, RAngleLoc);
4737      return true;
4738    }
4739
4740    // C++ [temp.class.spec]p10:
4741    //   The template parameter list of a specialization shall not
4742    //   contain default template argument values.
4743    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4744      Decl *Param = TemplateParams->getParam(I);
4745      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4746        if (TTP->hasDefaultArgument()) {
4747          Diag(TTP->getDefaultArgumentLoc(),
4748               diag::err_default_arg_in_partial_spec);
4749          TTP->removeDefaultArgument();
4750        }
4751      } else if (NonTypeTemplateParmDecl *NTTP
4752                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4753        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4754          Diag(NTTP->getDefaultArgumentLoc(),
4755               diag::err_default_arg_in_partial_spec)
4756            << DefArg->getSourceRange();
4757          NTTP->removeDefaultArgument();
4758        }
4759      } else {
4760        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4761        if (TTP->hasDefaultArgument()) {
4762          Diag(TTP->getDefaultArgument().getLocation(),
4763               diag::err_default_arg_in_partial_spec)
4764            << TTP->getDefaultArgument().getSourceRange();
4765          TTP->removeDefaultArgument();
4766        }
4767      }
4768    }
4769  } else if (TemplateParams) {
4770    if (TUK == TUK_Friend)
4771      Diag(KWLoc, diag::err_template_spec_friend)
4772        << FixItHint::CreateRemoval(
4773                                SourceRange(TemplateParams->getTemplateLoc(),
4774                                            TemplateParams->getRAngleLoc()))
4775        << SourceRange(LAngleLoc, RAngleLoc);
4776    else
4777      isExplicitSpecialization = true;
4778  } else if (TUK != TUK_Friend) {
4779    Diag(KWLoc, diag::err_template_spec_needs_header)
4780      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4781    isExplicitSpecialization = true;
4782  }
4783
4784  // Check that the specialization uses the same tag kind as the
4785  // original template.
4786  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4787  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4788  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4789                                    Kind, TUK == TUK_Definition, KWLoc,
4790                                    *ClassTemplate->getIdentifier())) {
4791    Diag(KWLoc, diag::err_use_with_wrong_tag)
4792      << ClassTemplate
4793      << FixItHint::CreateReplacement(KWLoc,
4794                            ClassTemplate->getTemplatedDecl()->getKindName());
4795    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4796         diag::note_previous_use);
4797    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4798  }
4799
4800  // Translate the parser's template argument list in our AST format.
4801  TemplateArgumentListInfo TemplateArgs;
4802  TemplateArgs.setLAngleLoc(LAngleLoc);
4803  TemplateArgs.setRAngleLoc(RAngleLoc);
4804  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4805
4806  // Check for unexpanded parameter packs in any of the template arguments.
4807  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4808    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4809                                        UPPC_PartialSpecialization))
4810      return true;
4811
4812  // Check that the template argument list is well-formed for this
4813  // template.
4814  llvm::SmallVector<TemplateArgument, 4> Converted;
4815  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4816                                TemplateArgs, false, Converted))
4817    return true;
4818
4819  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4820         "Converted template argument list is too short!");
4821
4822  // Find the class template (partial) specialization declaration that
4823  // corresponds to these arguments.
4824  if (isPartialSpecialization) {
4825    if (CheckClassTemplatePartialSpecializationArgs(*this,
4826                                         ClassTemplate->getTemplateParameters(),
4827                                         Converted))
4828      return true;
4829
4830    if (!Name.isDependent() &&
4831        !TemplateSpecializationType::anyDependentTemplateArguments(
4832                                             TemplateArgs.getArgumentArray(),
4833                                                         TemplateArgs.size())) {
4834      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4835        << ClassTemplate->getDeclName();
4836      isPartialSpecialization = false;
4837    }
4838  }
4839
4840  void *InsertPos = 0;
4841  ClassTemplateSpecializationDecl *PrevDecl = 0;
4842
4843  if (isPartialSpecialization)
4844    // FIXME: Template parameter list matters, too
4845    PrevDecl
4846      = ClassTemplate->findPartialSpecialization(Converted.data(),
4847                                                 Converted.size(),
4848                                                 InsertPos);
4849  else
4850    PrevDecl
4851      = ClassTemplate->findSpecialization(Converted.data(),
4852                                          Converted.size(), InsertPos);
4853
4854  ClassTemplateSpecializationDecl *Specialization = 0;
4855
4856  // Check whether we can declare a class template specialization in
4857  // the current scope.
4858  if (TUK != TUK_Friend &&
4859      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4860                                       TemplateNameLoc,
4861                                       isPartialSpecialization))
4862    return true;
4863
4864  // The canonical type
4865  QualType CanonType;
4866  if (PrevDecl &&
4867      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4868               TUK == TUK_Friend)) {
4869    // Since the only prior class template specialization with these
4870    // arguments was referenced but not declared, or we're only
4871    // referencing this specialization as a friend, reuse that
4872    // declaration node as our own, updating its source location and
4873    // the list of outer template parameters to reflect our new declaration.
4874    Specialization = PrevDecl;
4875    Specialization->setLocation(TemplateNameLoc);
4876    if (TemplateParameterLists.size() > 0) {
4877      Specialization->setTemplateParameterListsInfo(Context,
4878                                              TemplateParameterLists.size(),
4879                    (TemplateParameterList**) TemplateParameterLists.release());
4880    }
4881    PrevDecl = 0;
4882    CanonType = Context.getTypeDeclType(Specialization);
4883  } else if (isPartialSpecialization) {
4884    // Build the canonical type that describes the converted template
4885    // arguments of the class template partial specialization.
4886    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4887    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4888                                                      Converted.data(),
4889                                                      Converted.size());
4890
4891    if (Context.hasSameType(CanonType,
4892                        ClassTemplate->getInjectedClassNameSpecialization())) {
4893      // C++ [temp.class.spec]p9b3:
4894      //
4895      //   -- The argument list of the specialization shall not be identical
4896      //      to the implicit argument list of the primary template.
4897      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4898      << (TUK == TUK_Definition)
4899      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4900      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4901                                ClassTemplate->getIdentifier(),
4902                                TemplateNameLoc,
4903                                Attr,
4904                                TemplateParams,
4905                                AS_none,
4906                                TemplateParameterLists.size() - 1,
4907                  (TemplateParameterList**) TemplateParameterLists.release());
4908    }
4909
4910    // Create a new class template partial specialization declaration node.
4911    ClassTemplatePartialSpecializationDecl *PrevPartial
4912      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4913    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4914                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4915    ClassTemplatePartialSpecializationDecl *Partial
4916      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4917                                             ClassTemplate->getDeclContext(),
4918                                                       KWLoc, TemplateNameLoc,
4919                                                       TemplateParams,
4920                                                       ClassTemplate,
4921                                                       Converted.data(),
4922                                                       Converted.size(),
4923                                                       TemplateArgs,
4924                                                       CanonType,
4925                                                       PrevPartial,
4926                                                       SequenceNumber);
4927    SetNestedNameSpecifier(Partial, SS);
4928    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
4929      Partial->setTemplateParameterListsInfo(Context,
4930                                             TemplateParameterLists.size() - 1,
4931                    (TemplateParameterList**) TemplateParameterLists.release());
4932    }
4933
4934    if (!PrevPartial)
4935      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4936    Specialization = Partial;
4937
4938    // If we are providing an explicit specialization of a member class
4939    // template specialization, make a note of that.
4940    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4941      PrevPartial->setMemberSpecialization();
4942
4943    // Check that all of the template parameters of the class template
4944    // partial specialization are deducible from the template
4945    // arguments. If not, this class template partial specialization
4946    // will never be used.
4947    llvm::SmallVector<bool, 8> DeducibleParams;
4948    DeducibleParams.resize(TemplateParams->size());
4949    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4950                               TemplateParams->getDepth(),
4951                               DeducibleParams);
4952    unsigned NumNonDeducible = 0;
4953    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4954      if (!DeducibleParams[I])
4955        ++NumNonDeducible;
4956
4957    if (NumNonDeducible) {
4958      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4959        << (NumNonDeducible > 1)
4960        << SourceRange(TemplateNameLoc, RAngleLoc);
4961      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4962        if (!DeducibleParams[I]) {
4963          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4964          if (Param->getDeclName())
4965            Diag(Param->getLocation(),
4966                 diag::note_partial_spec_unused_parameter)
4967              << Param->getDeclName();
4968          else
4969            Diag(Param->getLocation(),
4970                 diag::note_partial_spec_unused_parameter)
4971              << "<anonymous>";
4972        }
4973      }
4974    }
4975  } else {
4976    // Create a new class template specialization declaration node for
4977    // this explicit specialization or friend declaration.
4978    Specialization
4979      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4980                                             ClassTemplate->getDeclContext(),
4981                                                KWLoc, TemplateNameLoc,
4982                                                ClassTemplate,
4983                                                Converted.data(),
4984                                                Converted.size(),
4985                                                PrevDecl);
4986    SetNestedNameSpecifier(Specialization, SS);
4987    if (TemplateParameterLists.size() > 0) {
4988      Specialization->setTemplateParameterListsInfo(Context,
4989                                              TemplateParameterLists.size(),
4990                    (TemplateParameterList**) TemplateParameterLists.release());
4991    }
4992
4993    if (!PrevDecl)
4994      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4995
4996    CanonType = Context.getTypeDeclType(Specialization);
4997  }
4998
4999  // C++ [temp.expl.spec]p6:
5000  //   If a template, a member template or the member of a class template is
5001  //   explicitly specialized then that specialization shall be declared
5002  //   before the first use of that specialization that would cause an implicit
5003  //   instantiation to take place, in every translation unit in which such a
5004  //   use occurs; no diagnostic is required.
5005  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5006    bool Okay = false;
5007    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5008      // Is there any previous explicit specialization declaration?
5009      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5010        Okay = true;
5011        break;
5012      }
5013    }
5014
5015    if (!Okay) {
5016      SourceRange Range(TemplateNameLoc, RAngleLoc);
5017      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5018        << Context.getTypeDeclType(Specialization) << Range;
5019
5020      Diag(PrevDecl->getPointOfInstantiation(),
5021           diag::note_instantiation_required_here)
5022        << (PrevDecl->getTemplateSpecializationKind()
5023                                                != TSK_ImplicitInstantiation);
5024      return true;
5025    }
5026  }
5027
5028  // If this is not a friend, note that this is an explicit specialization.
5029  if (TUK != TUK_Friend)
5030    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5031
5032  // Check that this isn't a redefinition of this specialization.
5033  if (TUK == TUK_Definition) {
5034    if (RecordDecl *Def = Specialization->getDefinition()) {
5035      SourceRange Range(TemplateNameLoc, RAngleLoc);
5036      Diag(TemplateNameLoc, diag::err_redefinition)
5037        << Context.getTypeDeclType(Specialization) << Range;
5038      Diag(Def->getLocation(), diag::note_previous_definition);
5039      Specialization->setInvalidDecl();
5040      return true;
5041    }
5042  }
5043
5044  if (Attr)
5045    ProcessDeclAttributeList(S, Specialization, Attr);
5046
5047  // Build the fully-sugared type for this class template
5048  // specialization as the user wrote in the specialization
5049  // itself. This means that we'll pretty-print the type retrieved
5050  // from the specialization's declaration the way that the user
5051  // actually wrote the specialization, rather than formatting the
5052  // name based on the "canonical" representation used to store the
5053  // template arguments in the specialization.
5054  TypeSourceInfo *WrittenTy
5055    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5056                                                TemplateArgs, CanonType);
5057  if (TUK != TUK_Friend) {
5058    Specialization->setTypeAsWritten(WrittenTy);
5059    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5060  }
5061  TemplateArgsIn.release();
5062
5063  // C++ [temp.expl.spec]p9:
5064  //   A template explicit specialization is in the scope of the
5065  //   namespace in which the template was defined.
5066  //
5067  // We actually implement this paragraph where we set the semantic
5068  // context (in the creation of the ClassTemplateSpecializationDecl),
5069  // but we also maintain the lexical context where the actual
5070  // definition occurs.
5071  Specialization->setLexicalDeclContext(CurContext);
5072
5073  // We may be starting the definition of this specialization.
5074  if (TUK == TUK_Definition)
5075    Specialization->startDefinition();
5076
5077  if (TUK == TUK_Friend) {
5078    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5079                                            TemplateNameLoc,
5080                                            WrittenTy,
5081                                            /*FIXME:*/KWLoc);
5082    Friend->setAccess(AS_public);
5083    CurContext->addDecl(Friend);
5084  } else {
5085    // Add the specialization into its lexical context, so that it can
5086    // be seen when iterating through the list of declarations in that
5087    // context. However, specializations are not found by name lookup.
5088    CurContext->addDecl(Specialization);
5089  }
5090  return Specialization;
5091}
5092
5093Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5094                              MultiTemplateParamsArg TemplateParameterLists,
5095                                    Declarator &D) {
5096  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
5097}
5098
5099Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5100                               MultiTemplateParamsArg TemplateParameterLists,
5101                                            Declarator &D) {
5102  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5103  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5104
5105  if (FTI.hasPrototype) {
5106    // FIXME: Diagnose arguments without names in C.
5107  }
5108
5109  Scope *ParentScope = FnBodyScope->getParent();
5110
5111  Decl *DP = HandleDeclarator(ParentScope, D,
5112                              move(TemplateParameterLists),
5113                              /*IsFunctionDefinition=*/true);
5114  if (FunctionTemplateDecl *FunctionTemplate
5115        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5116    return ActOnStartOfFunctionDef(FnBodyScope,
5117                                   FunctionTemplate->getTemplatedDecl());
5118  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5119    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5120  return 0;
5121}
5122
5123/// \brief Strips various properties off an implicit instantiation
5124/// that has just been explicitly specialized.
5125static void StripImplicitInstantiation(NamedDecl *D) {
5126  D->dropAttrs();
5127
5128  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5129    FD->setInlineSpecified(false);
5130  }
5131}
5132
5133/// \brief Diagnose cases where we have an explicit template specialization
5134/// before/after an explicit template instantiation, producing diagnostics
5135/// for those cases where they are required and determining whether the
5136/// new specialization/instantiation will have any effect.
5137///
5138/// \param NewLoc the location of the new explicit specialization or
5139/// instantiation.
5140///
5141/// \param NewTSK the kind of the new explicit specialization or instantiation.
5142///
5143/// \param PrevDecl the previous declaration of the entity.
5144///
5145/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5146///
5147/// \param PrevPointOfInstantiation if valid, indicates where the previus
5148/// declaration was instantiated (either implicitly or explicitly).
5149///
5150/// \param HasNoEffect will be set to true to indicate that the new
5151/// specialization or instantiation has no effect and should be ignored.
5152///
5153/// \returns true if there was an error that should prevent the introduction of
5154/// the new declaration into the AST, false otherwise.
5155bool
5156Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5157                                             TemplateSpecializationKind NewTSK,
5158                                             NamedDecl *PrevDecl,
5159                                             TemplateSpecializationKind PrevTSK,
5160                                        SourceLocation PrevPointOfInstantiation,
5161                                             bool &HasNoEffect) {
5162  HasNoEffect = false;
5163
5164  switch (NewTSK) {
5165  case TSK_Undeclared:
5166  case TSK_ImplicitInstantiation:
5167    assert(false && "Don't check implicit instantiations here");
5168    return false;
5169
5170  case TSK_ExplicitSpecialization:
5171    switch (PrevTSK) {
5172    case TSK_Undeclared:
5173    case TSK_ExplicitSpecialization:
5174      // Okay, we're just specializing something that is either already
5175      // explicitly specialized or has merely been mentioned without any
5176      // instantiation.
5177      return false;
5178
5179    case TSK_ImplicitInstantiation:
5180      if (PrevPointOfInstantiation.isInvalid()) {
5181        // The declaration itself has not actually been instantiated, so it is
5182        // still okay to specialize it.
5183        StripImplicitInstantiation(PrevDecl);
5184        return false;
5185      }
5186      // Fall through
5187
5188    case TSK_ExplicitInstantiationDeclaration:
5189    case TSK_ExplicitInstantiationDefinition:
5190      assert((PrevTSK == TSK_ImplicitInstantiation ||
5191              PrevPointOfInstantiation.isValid()) &&
5192             "Explicit instantiation without point of instantiation?");
5193
5194      // C++ [temp.expl.spec]p6:
5195      //   If a template, a member template or the member of a class template
5196      //   is explicitly specialized then that specialization shall be declared
5197      //   before the first use of that specialization that would cause an
5198      //   implicit instantiation to take place, in every translation unit in
5199      //   which such a use occurs; no diagnostic is required.
5200      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5201        // Is there any previous explicit specialization declaration?
5202        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5203          return false;
5204      }
5205
5206      Diag(NewLoc, diag::err_specialization_after_instantiation)
5207        << PrevDecl;
5208      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5209        << (PrevTSK != TSK_ImplicitInstantiation);
5210
5211      return true;
5212    }
5213    break;
5214
5215  case TSK_ExplicitInstantiationDeclaration:
5216    switch (PrevTSK) {
5217    case TSK_ExplicitInstantiationDeclaration:
5218      // This explicit instantiation declaration is redundant (that's okay).
5219      HasNoEffect = true;
5220      return false;
5221
5222    case TSK_Undeclared:
5223    case TSK_ImplicitInstantiation:
5224      // We're explicitly instantiating something that may have already been
5225      // implicitly instantiated; that's fine.
5226      return false;
5227
5228    case TSK_ExplicitSpecialization:
5229      // C++0x [temp.explicit]p4:
5230      //   For a given set of template parameters, if an explicit instantiation
5231      //   of a template appears after a declaration of an explicit
5232      //   specialization for that template, the explicit instantiation has no
5233      //   effect.
5234      HasNoEffect = true;
5235      return false;
5236
5237    case TSK_ExplicitInstantiationDefinition:
5238      // C++0x [temp.explicit]p10:
5239      //   If an entity is the subject of both an explicit instantiation
5240      //   declaration and an explicit instantiation definition in the same
5241      //   translation unit, the definition shall follow the declaration.
5242      Diag(NewLoc,
5243           diag::err_explicit_instantiation_declaration_after_definition);
5244      Diag(PrevPointOfInstantiation,
5245           diag::note_explicit_instantiation_definition_here);
5246      assert(PrevPointOfInstantiation.isValid() &&
5247             "Explicit instantiation without point of instantiation?");
5248      HasNoEffect = true;
5249      return false;
5250    }
5251    break;
5252
5253  case TSK_ExplicitInstantiationDefinition:
5254    switch (PrevTSK) {
5255    case TSK_Undeclared:
5256    case TSK_ImplicitInstantiation:
5257      // We're explicitly instantiating something that may have already been
5258      // implicitly instantiated; that's fine.
5259      return false;
5260
5261    case TSK_ExplicitSpecialization:
5262      // C++ DR 259, C++0x [temp.explicit]p4:
5263      //   For a given set of template parameters, if an explicit
5264      //   instantiation of a template appears after a declaration of
5265      //   an explicit specialization for that template, the explicit
5266      //   instantiation has no effect.
5267      //
5268      // In C++98/03 mode, we only give an extension warning here, because it
5269      // is not harmful to try to explicitly instantiate something that
5270      // has been explicitly specialized.
5271      if (!getLangOptions().CPlusPlus0x) {
5272        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
5273          << PrevDecl;
5274        Diag(PrevDecl->getLocation(),
5275             diag::note_previous_template_specialization);
5276      }
5277      HasNoEffect = true;
5278      return false;
5279
5280    case TSK_ExplicitInstantiationDeclaration:
5281      // We're explicity instantiating a definition for something for which we
5282      // were previously asked to suppress instantiations. That's fine.
5283      return false;
5284
5285    case TSK_ExplicitInstantiationDefinition:
5286      // C++0x [temp.spec]p5:
5287      //   For a given template and a given set of template-arguments,
5288      //     - an explicit instantiation definition shall appear at most once
5289      //       in a program,
5290      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5291        << PrevDecl;
5292      Diag(PrevPointOfInstantiation,
5293           diag::note_previous_explicit_instantiation);
5294      HasNoEffect = true;
5295      return false;
5296    }
5297    break;
5298  }
5299
5300  assert(false && "Missing specialization/instantiation case?");
5301
5302  return false;
5303}
5304
5305/// \brief Perform semantic analysis for the given dependent function
5306/// template specialization.  The only possible way to get a dependent
5307/// function template specialization is with a friend declaration,
5308/// like so:
5309///
5310///   template <class T> void foo(T);
5311///   template <class T> class A {
5312///     friend void foo<>(T);
5313///   };
5314///
5315/// There really isn't any useful analysis we can do here, so we
5316/// just store the information.
5317bool
5318Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5319                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5320                                                   LookupResult &Previous) {
5321  // Remove anything from Previous that isn't a function template in
5322  // the correct context.
5323  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5324  LookupResult::Filter F = Previous.makeFilter();
5325  while (F.hasNext()) {
5326    NamedDecl *D = F.next()->getUnderlyingDecl();
5327    if (!isa<FunctionTemplateDecl>(D) ||
5328        !FDLookupContext->InEnclosingNamespaceSetOf(
5329                              D->getDeclContext()->getRedeclContext()))
5330      F.erase();
5331  }
5332  F.done();
5333
5334  // Should this be diagnosed here?
5335  if (Previous.empty()) return true;
5336
5337  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5338                                         ExplicitTemplateArgs);
5339  return false;
5340}
5341
5342/// \brief Perform semantic analysis for the given function template
5343/// specialization.
5344///
5345/// This routine performs all of the semantic analysis required for an
5346/// explicit function template specialization. On successful completion,
5347/// the function declaration \p FD will become a function template
5348/// specialization.
5349///
5350/// \param FD the function declaration, which will be updated to become a
5351/// function template specialization.
5352///
5353/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5354/// if any. Note that this may be valid info even when 0 arguments are
5355/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5356/// as it anyway contains info on the angle brackets locations.
5357///
5358/// \param PrevDecl the set of declarations that may be specialized by
5359/// this function specialization.
5360bool
5361Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5362                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5363                                          LookupResult &Previous) {
5364  // The set of function template specializations that could match this
5365  // explicit function template specialization.
5366  UnresolvedSet<8> Candidates;
5367
5368  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5369  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5370         I != E; ++I) {
5371    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5372    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5373      // Only consider templates found within the same semantic lookup scope as
5374      // FD.
5375      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5376                                Ovl->getDeclContext()->getRedeclContext()))
5377        continue;
5378
5379      // C++ [temp.expl.spec]p11:
5380      //   A trailing template-argument can be left unspecified in the
5381      //   template-id naming an explicit function template specialization
5382      //   provided it can be deduced from the function argument type.
5383      // Perform template argument deduction to determine whether we may be
5384      // specializing this template.
5385      // FIXME: It is somewhat wasteful to build
5386      TemplateDeductionInfo Info(Context, FD->getLocation());
5387      FunctionDecl *Specialization = 0;
5388      if (TemplateDeductionResult TDK
5389            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5390                                      FD->getType(),
5391                                      Specialization,
5392                                      Info)) {
5393        // FIXME: Template argument deduction failed; record why it failed, so
5394        // that we can provide nifty diagnostics.
5395        (void)TDK;
5396        continue;
5397      }
5398
5399      // Record this candidate.
5400      Candidates.addDecl(Specialization, I.getAccess());
5401    }
5402  }
5403
5404  // Find the most specialized function template.
5405  UnresolvedSetIterator Result
5406    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5407                         TPOC_Other, 0, FD->getLocation(),
5408                  PDiag(diag::err_function_template_spec_no_match)
5409                    << FD->getDeclName(),
5410                  PDiag(diag::err_function_template_spec_ambiguous)
5411                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5412                  PDiag(diag::note_function_template_spec_matched));
5413  if (Result == Candidates.end())
5414    return true;
5415
5416  // Ignore access information;  it doesn't figure into redeclaration checking.
5417  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5418
5419  FunctionTemplateSpecializationInfo *SpecInfo
5420    = Specialization->getTemplateSpecializationInfo();
5421  assert(SpecInfo && "Function template specialization info missing?");
5422  {
5423    // Note: do not overwrite location info if previous template
5424    // specialization kind was explicit.
5425    TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5426    if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5427      Specialization->setLocation(FD->getLocation());
5428  }
5429
5430  // FIXME: Check if the prior specialization has a point of instantiation.
5431  // If so, we have run afoul of .
5432
5433  // If this is a friend declaration, then we're not really declaring
5434  // an explicit specialization.
5435  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5436
5437  // Check the scope of this explicit specialization.
5438  if (!isFriend &&
5439      CheckTemplateSpecializationScope(*this,
5440                                       Specialization->getPrimaryTemplate(),
5441                                       Specialization, FD->getLocation(),
5442                                       false))
5443    return true;
5444
5445  // C++ [temp.expl.spec]p6:
5446  //   If a template, a member template or the member of a class template is
5447  //   explicitly specialized then that specialization shall be declared
5448  //   before the first use of that specialization that would cause an implicit
5449  //   instantiation to take place, in every translation unit in which such a
5450  //   use occurs; no diagnostic is required.
5451  bool HasNoEffect = false;
5452  if (!isFriend &&
5453      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5454                                             TSK_ExplicitSpecialization,
5455                                             Specialization,
5456                                   SpecInfo->getTemplateSpecializationKind(),
5457                                         SpecInfo->getPointOfInstantiation(),
5458                                             HasNoEffect))
5459    return true;
5460
5461  // Mark the prior declaration as an explicit specialization, so that later
5462  // clients know that this is an explicit specialization.
5463  if (!isFriend) {
5464    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5465    MarkUnusedFileScopedDecl(Specialization);
5466  }
5467
5468  // Turn the given function declaration into a function template
5469  // specialization, with the template arguments from the previous
5470  // specialization.
5471  // Take copies of (semantic and syntactic) template argument lists.
5472  const TemplateArgumentList* TemplArgs = new (Context)
5473    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5474  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5475    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5476  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5477                                        TemplArgs, /*InsertPos=*/0,
5478                                    SpecInfo->getTemplateSpecializationKind(),
5479                                        TemplArgsAsWritten);
5480  FD->setStorageClass(Specialization->getStorageClass());
5481
5482  // The "previous declaration" for this function template specialization is
5483  // the prior function template specialization.
5484  Previous.clear();
5485  Previous.addDecl(Specialization);
5486  return false;
5487}
5488
5489/// \brief Perform semantic analysis for the given non-template member
5490/// specialization.
5491///
5492/// This routine performs all of the semantic analysis required for an
5493/// explicit member function specialization. On successful completion,
5494/// the function declaration \p FD will become a member function
5495/// specialization.
5496///
5497/// \param Member the member declaration, which will be updated to become a
5498/// specialization.
5499///
5500/// \param Previous the set of declarations, one of which may be specialized
5501/// by this function specialization;  the set will be modified to contain the
5502/// redeclared member.
5503bool
5504Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5505  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5506
5507  // Try to find the member we are instantiating.
5508  NamedDecl *Instantiation = 0;
5509  NamedDecl *InstantiatedFrom = 0;
5510  MemberSpecializationInfo *MSInfo = 0;
5511
5512  if (Previous.empty()) {
5513    // Nowhere to look anyway.
5514  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5515    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5516           I != E; ++I) {
5517      NamedDecl *D = (*I)->getUnderlyingDecl();
5518      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5519        if (Context.hasSameType(Function->getType(), Method->getType())) {
5520          Instantiation = Method;
5521          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5522          MSInfo = Method->getMemberSpecializationInfo();
5523          break;
5524        }
5525      }
5526    }
5527  } else if (isa<VarDecl>(Member)) {
5528    VarDecl *PrevVar;
5529    if (Previous.isSingleResult() &&
5530        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5531      if (PrevVar->isStaticDataMember()) {
5532        Instantiation = PrevVar;
5533        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5534        MSInfo = PrevVar->getMemberSpecializationInfo();
5535      }
5536  } else if (isa<RecordDecl>(Member)) {
5537    CXXRecordDecl *PrevRecord;
5538    if (Previous.isSingleResult() &&
5539        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5540      Instantiation = PrevRecord;
5541      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5542      MSInfo = PrevRecord->getMemberSpecializationInfo();
5543    }
5544  }
5545
5546  if (!Instantiation) {
5547    // There is no previous declaration that matches. Since member
5548    // specializations are always out-of-line, the caller will complain about
5549    // this mismatch later.
5550    return false;
5551  }
5552
5553  // If this is a friend, just bail out here before we start turning
5554  // things into explicit specializations.
5555  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5556    // Preserve instantiation information.
5557    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5558      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5559                                      cast<CXXMethodDecl>(InstantiatedFrom),
5560        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5561    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5562      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5563                                      cast<CXXRecordDecl>(InstantiatedFrom),
5564        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5565    }
5566
5567    Previous.clear();
5568    Previous.addDecl(Instantiation);
5569    return false;
5570  }
5571
5572  // Make sure that this is a specialization of a member.
5573  if (!InstantiatedFrom) {
5574    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5575      << Member;
5576    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5577    return true;
5578  }
5579
5580  // C++ [temp.expl.spec]p6:
5581  //   If a template, a member template or the member of a class template is
5582  //   explicitly specialized then that spe- cialization shall be declared
5583  //   before the first use of that specialization that would cause an implicit
5584  //   instantiation to take place, in every translation unit in which such a
5585  //   use occurs; no diagnostic is required.
5586  assert(MSInfo && "Member specialization info missing?");
5587
5588  bool HasNoEffect = false;
5589  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5590                                             TSK_ExplicitSpecialization,
5591                                             Instantiation,
5592                                     MSInfo->getTemplateSpecializationKind(),
5593                                           MSInfo->getPointOfInstantiation(),
5594                                             HasNoEffect))
5595    return true;
5596
5597  // Check the scope of this explicit specialization.
5598  if (CheckTemplateSpecializationScope(*this,
5599                                       InstantiatedFrom,
5600                                       Instantiation, Member->getLocation(),
5601                                       false))
5602    return true;
5603
5604  // Note that this is an explicit instantiation of a member.
5605  // the original declaration to note that it is an explicit specialization
5606  // (if it was previously an implicit instantiation). This latter step
5607  // makes bookkeeping easier.
5608  if (isa<FunctionDecl>(Member)) {
5609    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5610    if (InstantiationFunction->getTemplateSpecializationKind() ==
5611          TSK_ImplicitInstantiation) {
5612      InstantiationFunction->setTemplateSpecializationKind(
5613                                                  TSK_ExplicitSpecialization);
5614      InstantiationFunction->setLocation(Member->getLocation());
5615    }
5616
5617    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5618                                        cast<CXXMethodDecl>(InstantiatedFrom),
5619                                                  TSK_ExplicitSpecialization);
5620    MarkUnusedFileScopedDecl(InstantiationFunction);
5621  } else if (isa<VarDecl>(Member)) {
5622    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5623    if (InstantiationVar->getTemplateSpecializationKind() ==
5624          TSK_ImplicitInstantiation) {
5625      InstantiationVar->setTemplateSpecializationKind(
5626                                                  TSK_ExplicitSpecialization);
5627      InstantiationVar->setLocation(Member->getLocation());
5628    }
5629
5630    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5631                                                cast<VarDecl>(InstantiatedFrom),
5632                                                TSK_ExplicitSpecialization);
5633    MarkUnusedFileScopedDecl(InstantiationVar);
5634  } else {
5635    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5636    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5637    if (InstantiationClass->getTemplateSpecializationKind() ==
5638          TSK_ImplicitInstantiation) {
5639      InstantiationClass->setTemplateSpecializationKind(
5640                                                   TSK_ExplicitSpecialization);
5641      InstantiationClass->setLocation(Member->getLocation());
5642    }
5643
5644    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5645                                        cast<CXXRecordDecl>(InstantiatedFrom),
5646                                                   TSK_ExplicitSpecialization);
5647  }
5648
5649  // Save the caller the trouble of having to figure out which declaration
5650  // this specialization matches.
5651  Previous.clear();
5652  Previous.addDecl(Instantiation);
5653  return false;
5654}
5655
5656/// \brief Check the scope of an explicit instantiation.
5657///
5658/// \returns true if a serious error occurs, false otherwise.
5659static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5660                                            SourceLocation InstLoc,
5661                                            bool WasQualifiedName) {
5662  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5663  DeclContext *CurContext = S.CurContext->getRedeclContext();
5664
5665  if (CurContext->isRecord()) {
5666    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5667      << D;
5668    return true;
5669  }
5670
5671  // C++0x [temp.explicit]p2:
5672  //   An explicit instantiation shall appear in an enclosing namespace of its
5673  //   template.
5674  //
5675  // This is DR275, which we do not retroactively apply to C++98/03.
5676  if (S.getLangOptions().CPlusPlus0x &&
5677      !CurContext->Encloses(OrigContext)) {
5678    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5679      S.Diag(InstLoc,
5680             S.getLangOptions().CPlusPlus0x?
5681                 diag::err_explicit_instantiation_out_of_scope
5682               : diag::warn_explicit_instantiation_out_of_scope_0x)
5683        << D << NS;
5684    else
5685      S.Diag(InstLoc,
5686             S.getLangOptions().CPlusPlus0x?
5687                 diag::err_explicit_instantiation_must_be_global
5688               : diag::warn_explicit_instantiation_out_of_scope_0x)
5689        << D;
5690    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5691    return false;
5692  }
5693
5694  // C++0x [temp.explicit]p2:
5695  //   If the name declared in the explicit instantiation is an unqualified
5696  //   name, the explicit instantiation shall appear in the namespace where
5697  //   its template is declared or, if that namespace is inline (7.3.1), any
5698  //   namespace from its enclosing namespace set.
5699  if (WasQualifiedName)
5700    return false;
5701
5702  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5703    return false;
5704
5705  S.Diag(InstLoc,
5706         S.getLangOptions().CPlusPlus0x?
5707             diag::err_explicit_instantiation_unqualified_wrong_namespace
5708           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5709    << D << OrigContext;
5710  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5711  return false;
5712}
5713
5714/// \brief Determine whether the given scope specifier has a template-id in it.
5715static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5716  if (!SS.isSet())
5717    return false;
5718
5719  // C++0x [temp.explicit]p2:
5720  //   If the explicit instantiation is for a member function, a member class
5721  //   or a static data member of a class template specialization, the name of
5722  //   the class template specialization in the qualified-id for the member
5723  //   name shall be a simple-template-id.
5724  //
5725  // C++98 has the same restriction, just worded differently.
5726  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5727       NNS; NNS = NNS->getPrefix())
5728    if (const Type *T = NNS->getAsType())
5729      if (isa<TemplateSpecializationType>(T))
5730        return true;
5731
5732  return false;
5733}
5734
5735// Explicit instantiation of a class template specialization
5736DeclResult
5737Sema::ActOnExplicitInstantiation(Scope *S,
5738                                 SourceLocation ExternLoc,
5739                                 SourceLocation TemplateLoc,
5740                                 unsigned TagSpec,
5741                                 SourceLocation KWLoc,
5742                                 const CXXScopeSpec &SS,
5743                                 TemplateTy TemplateD,
5744                                 SourceLocation TemplateNameLoc,
5745                                 SourceLocation LAngleLoc,
5746                                 ASTTemplateArgsPtr TemplateArgsIn,
5747                                 SourceLocation RAngleLoc,
5748                                 AttributeList *Attr) {
5749  // Find the class template we're specializing
5750  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5751  ClassTemplateDecl *ClassTemplate
5752    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5753
5754  // Check that the specialization uses the same tag kind as the
5755  // original template.
5756  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5757  assert(Kind != TTK_Enum &&
5758         "Invalid enum tag in class template explicit instantiation!");
5759  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5760                                    Kind, /*isDefinition*/false, KWLoc,
5761                                    *ClassTemplate->getIdentifier())) {
5762    Diag(KWLoc, diag::err_use_with_wrong_tag)
5763      << ClassTemplate
5764      << FixItHint::CreateReplacement(KWLoc,
5765                            ClassTemplate->getTemplatedDecl()->getKindName());
5766    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5767         diag::note_previous_use);
5768    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5769  }
5770
5771  // C++0x [temp.explicit]p2:
5772  //   There are two forms of explicit instantiation: an explicit instantiation
5773  //   definition and an explicit instantiation declaration. An explicit
5774  //   instantiation declaration begins with the extern keyword. [...]
5775  TemplateSpecializationKind TSK
5776    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5777                           : TSK_ExplicitInstantiationDeclaration;
5778
5779  // Translate the parser's template argument list in our AST format.
5780  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5781  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5782
5783  // Check that the template argument list is well-formed for this
5784  // template.
5785  llvm::SmallVector<TemplateArgument, 4> Converted;
5786  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5787                                TemplateArgs, false, Converted))
5788    return true;
5789
5790  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5791         "Converted template argument list is too short!");
5792
5793  // Find the class template specialization declaration that
5794  // corresponds to these arguments.
5795  void *InsertPos = 0;
5796  ClassTemplateSpecializationDecl *PrevDecl
5797    = ClassTemplate->findSpecialization(Converted.data(),
5798                                        Converted.size(), InsertPos);
5799
5800  TemplateSpecializationKind PrevDecl_TSK
5801    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5802
5803  // C++0x [temp.explicit]p2:
5804  //   [...] An explicit instantiation shall appear in an enclosing
5805  //   namespace of its template. [...]
5806  //
5807  // This is C++ DR 275.
5808  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5809                                      SS.isSet()))
5810    return true;
5811
5812  ClassTemplateSpecializationDecl *Specialization = 0;
5813
5814  bool HasNoEffect = false;
5815  if (PrevDecl) {
5816    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5817                                               PrevDecl, PrevDecl_TSK,
5818                                            PrevDecl->getPointOfInstantiation(),
5819                                               HasNoEffect))
5820      return PrevDecl;
5821
5822    // Even though HasNoEffect == true means that this explicit instantiation
5823    // has no effect on semantics, we go on to put its syntax in the AST.
5824
5825    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5826        PrevDecl_TSK == TSK_Undeclared) {
5827      // Since the only prior class template specialization with these
5828      // arguments was referenced but not declared, reuse that
5829      // declaration node as our own, updating the source location
5830      // for the template name to reflect our new declaration.
5831      // (Other source locations will be updated later.)
5832      Specialization = PrevDecl;
5833      Specialization->setLocation(TemplateNameLoc);
5834      PrevDecl = 0;
5835    }
5836  }
5837
5838  if (!Specialization) {
5839    // Create a new class template specialization declaration node for
5840    // this explicit specialization.
5841    Specialization
5842      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5843                                             ClassTemplate->getDeclContext(),
5844                                                KWLoc, TemplateNameLoc,
5845                                                ClassTemplate,
5846                                                Converted.data(),
5847                                                Converted.size(),
5848                                                PrevDecl);
5849    SetNestedNameSpecifier(Specialization, SS);
5850
5851    if (!HasNoEffect && !PrevDecl) {
5852      // Insert the new specialization.
5853      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5854    }
5855  }
5856
5857  // Build the fully-sugared type for this explicit instantiation as
5858  // the user wrote in the explicit instantiation itself. This means
5859  // that we'll pretty-print the type retrieved from the
5860  // specialization's declaration the way that the user actually wrote
5861  // the explicit instantiation, rather than formatting the name based
5862  // on the "canonical" representation used to store the template
5863  // arguments in the specialization.
5864  TypeSourceInfo *WrittenTy
5865    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5866                                                TemplateArgs,
5867                                  Context.getTypeDeclType(Specialization));
5868  Specialization->setTypeAsWritten(WrittenTy);
5869  TemplateArgsIn.release();
5870
5871  // Set source locations for keywords.
5872  Specialization->setExternLoc(ExternLoc);
5873  Specialization->setTemplateKeywordLoc(TemplateLoc);
5874
5875  // Add the explicit instantiation into its lexical context. However,
5876  // since explicit instantiations are never found by name lookup, we
5877  // just put it into the declaration context directly.
5878  Specialization->setLexicalDeclContext(CurContext);
5879  CurContext->addDecl(Specialization);
5880
5881  // Syntax is now OK, so return if it has no other effect on semantics.
5882  if (HasNoEffect) {
5883    // Set the template specialization kind.
5884    Specialization->setTemplateSpecializationKind(TSK);
5885    return Specialization;
5886  }
5887
5888  // C++ [temp.explicit]p3:
5889  //   A definition of a class template or class member template
5890  //   shall be in scope at the point of the explicit instantiation of
5891  //   the class template or class member template.
5892  //
5893  // This check comes when we actually try to perform the
5894  // instantiation.
5895  ClassTemplateSpecializationDecl *Def
5896    = cast_or_null<ClassTemplateSpecializationDecl>(
5897                                              Specialization->getDefinition());
5898  if (!Def)
5899    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5900  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5901    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5902    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5903  }
5904
5905  // Instantiate the members of this class template specialization.
5906  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5907                                       Specialization->getDefinition());
5908  if (Def) {
5909    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5910
5911    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5912    // TSK_ExplicitInstantiationDefinition
5913    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5914        TSK == TSK_ExplicitInstantiationDefinition)
5915      Def->setTemplateSpecializationKind(TSK);
5916
5917    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5918  }
5919
5920  // Set the template specialization kind.
5921  Specialization->setTemplateSpecializationKind(TSK);
5922  return Specialization;
5923}
5924
5925// Explicit instantiation of a member class of a class template.
5926DeclResult
5927Sema::ActOnExplicitInstantiation(Scope *S,
5928                                 SourceLocation ExternLoc,
5929                                 SourceLocation TemplateLoc,
5930                                 unsigned TagSpec,
5931                                 SourceLocation KWLoc,
5932                                 CXXScopeSpec &SS,
5933                                 IdentifierInfo *Name,
5934                                 SourceLocation NameLoc,
5935                                 AttributeList *Attr) {
5936
5937  bool Owned = false;
5938  bool IsDependent = false;
5939  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5940                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5941                        MultiTemplateParamsArg(*this, 0, 0),
5942                        Owned, IsDependent, false, false,
5943                        TypeResult());
5944  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5945
5946  if (!TagD)
5947    return true;
5948
5949  TagDecl *Tag = cast<TagDecl>(TagD);
5950  if (Tag->isEnum()) {
5951    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5952      << Context.getTypeDeclType(Tag);
5953    return true;
5954  }
5955
5956  if (Tag->isInvalidDecl())
5957    return true;
5958
5959  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5960  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5961  if (!Pattern) {
5962    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5963      << Context.getTypeDeclType(Record);
5964    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5965    return true;
5966  }
5967
5968  // C++0x [temp.explicit]p2:
5969  //   If the explicit instantiation is for a class or member class, the
5970  //   elaborated-type-specifier in the declaration shall include a
5971  //   simple-template-id.
5972  //
5973  // C++98 has the same restriction, just worded differently.
5974  if (!ScopeSpecifierHasTemplateId(SS))
5975    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5976      << Record << SS.getRange();
5977
5978  // C++0x [temp.explicit]p2:
5979  //   There are two forms of explicit instantiation: an explicit instantiation
5980  //   definition and an explicit instantiation declaration. An explicit
5981  //   instantiation declaration begins with the extern keyword. [...]
5982  TemplateSpecializationKind TSK
5983    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5984                           : TSK_ExplicitInstantiationDeclaration;
5985
5986  // C++0x [temp.explicit]p2:
5987  //   [...] An explicit instantiation shall appear in an enclosing
5988  //   namespace of its template. [...]
5989  //
5990  // This is C++ DR 275.
5991  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5992
5993  // Verify that it is okay to explicitly instantiate here.
5994  CXXRecordDecl *PrevDecl
5995    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5996  if (!PrevDecl && Record->getDefinition())
5997    PrevDecl = Record;
5998  if (PrevDecl) {
5999    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6000    bool HasNoEffect = false;
6001    assert(MSInfo && "No member specialization information?");
6002    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6003                                               PrevDecl,
6004                                        MSInfo->getTemplateSpecializationKind(),
6005                                             MSInfo->getPointOfInstantiation(),
6006                                               HasNoEffect))
6007      return true;
6008    if (HasNoEffect)
6009      return TagD;
6010  }
6011
6012  CXXRecordDecl *RecordDef
6013    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6014  if (!RecordDef) {
6015    // C++ [temp.explicit]p3:
6016    //   A definition of a member class of a class template shall be in scope
6017    //   at the point of an explicit instantiation of the member class.
6018    CXXRecordDecl *Def
6019      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6020    if (!Def) {
6021      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6022        << 0 << Record->getDeclName() << Record->getDeclContext();
6023      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6024        << Pattern;
6025      return true;
6026    } else {
6027      if (InstantiateClass(NameLoc, Record, Def,
6028                           getTemplateInstantiationArgs(Record),
6029                           TSK))
6030        return true;
6031
6032      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6033      if (!RecordDef)
6034        return true;
6035    }
6036  }
6037
6038  // Instantiate all of the members of the class.
6039  InstantiateClassMembers(NameLoc, RecordDef,
6040                          getTemplateInstantiationArgs(Record), TSK);
6041
6042  if (TSK == TSK_ExplicitInstantiationDefinition)
6043    MarkVTableUsed(NameLoc, RecordDef, true);
6044
6045  // FIXME: We don't have any representation for explicit instantiations of
6046  // member classes. Such a representation is not needed for compilation, but it
6047  // should be available for clients that want to see all of the declarations in
6048  // the source code.
6049  return TagD;
6050}
6051
6052DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6053                                            SourceLocation ExternLoc,
6054                                            SourceLocation TemplateLoc,
6055                                            Declarator &D) {
6056  // Explicit instantiations always require a name.
6057  // TODO: check if/when DNInfo should replace Name.
6058  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6059  DeclarationName Name = NameInfo.getName();
6060  if (!Name) {
6061    if (!D.isInvalidType())
6062      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6063           diag::err_explicit_instantiation_requires_name)
6064        << D.getDeclSpec().getSourceRange()
6065        << D.getSourceRange();
6066
6067    return true;
6068  }
6069
6070  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6071  // we find one that is.
6072  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6073         (S->getFlags() & Scope::TemplateParamScope) != 0)
6074    S = S->getParent();
6075
6076  // Determine the type of the declaration.
6077  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6078  QualType R = T->getType();
6079  if (R.isNull())
6080    return true;
6081
6082  // C++ [dcl.stc]p1:
6083  //   A storage-class-specifier shall not be specified in [...] an explicit
6084  //   instantiation (14.7.2) directive.
6085  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6086    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6087      << Name;
6088    return true;
6089  } else if (D.getDeclSpec().getStorageClassSpec()
6090                                                != DeclSpec::SCS_unspecified) {
6091    // Complain about then remove the storage class specifier.
6092    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6093      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6094
6095    D.getMutableDeclSpec().ClearStorageClassSpecs();
6096  }
6097
6098  // C++0x [temp.explicit]p1:
6099  //   [...] An explicit instantiation of a function template shall not use the
6100  //   inline or constexpr specifiers.
6101  // Presumably, this also applies to member functions of class templates as
6102  // well.
6103  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
6104    Diag(D.getDeclSpec().getInlineSpecLoc(),
6105         diag::err_explicit_instantiation_inline)
6106      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6107
6108  // FIXME: check for constexpr specifier.
6109
6110  // C++0x [temp.explicit]p2:
6111  //   There are two forms of explicit instantiation: an explicit instantiation
6112  //   definition and an explicit instantiation declaration. An explicit
6113  //   instantiation declaration begins with the extern keyword. [...]
6114  TemplateSpecializationKind TSK
6115    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6116                           : TSK_ExplicitInstantiationDeclaration;
6117
6118  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6119  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6120
6121  if (!R->isFunctionType()) {
6122    // C++ [temp.explicit]p1:
6123    //   A [...] static data member of a class template can be explicitly
6124    //   instantiated from the member definition associated with its class
6125    //   template.
6126    if (Previous.isAmbiguous())
6127      return true;
6128
6129    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6130    if (!Prev || !Prev->isStaticDataMember()) {
6131      // We expect to see a data data member here.
6132      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6133        << Name;
6134      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6135           P != PEnd; ++P)
6136        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6137      return true;
6138    }
6139
6140    if (!Prev->getInstantiatedFromStaticDataMember()) {
6141      // FIXME: Check for explicit specialization?
6142      Diag(D.getIdentifierLoc(),
6143           diag::err_explicit_instantiation_data_member_not_instantiated)
6144        << Prev;
6145      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6146      // FIXME: Can we provide a note showing where this was declared?
6147      return true;
6148    }
6149
6150    // C++0x [temp.explicit]p2:
6151    //   If the explicit instantiation is for a member function, a member class
6152    //   or a static data member of a class template specialization, the name of
6153    //   the class template specialization in the qualified-id for the member
6154    //   name shall be a simple-template-id.
6155    //
6156    // C++98 has the same restriction, just worded differently.
6157    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6158      Diag(D.getIdentifierLoc(),
6159           diag::ext_explicit_instantiation_without_qualified_id)
6160        << Prev << D.getCXXScopeSpec().getRange();
6161
6162    // Check the scope of this explicit instantiation.
6163    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6164
6165    // Verify that it is okay to explicitly instantiate here.
6166    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6167    assert(MSInfo && "Missing static data member specialization info?");
6168    bool HasNoEffect = false;
6169    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6170                                        MSInfo->getTemplateSpecializationKind(),
6171                                              MSInfo->getPointOfInstantiation(),
6172                                               HasNoEffect))
6173      return true;
6174    if (HasNoEffect)
6175      return (Decl*) 0;
6176
6177    // Instantiate static data member.
6178    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6179    if (TSK == TSK_ExplicitInstantiationDefinition)
6180      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6181
6182    // FIXME: Create an ExplicitInstantiation node?
6183    return (Decl*) 0;
6184  }
6185
6186  // If the declarator is a template-id, translate the parser's template
6187  // argument list into our AST format.
6188  bool HasExplicitTemplateArgs = false;
6189  TemplateArgumentListInfo TemplateArgs;
6190  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6191    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6192    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6193    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6194    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6195                                       TemplateId->getTemplateArgs(),
6196                                       TemplateId->NumArgs);
6197    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6198    HasExplicitTemplateArgs = true;
6199    TemplateArgsPtr.release();
6200  }
6201
6202  // C++ [temp.explicit]p1:
6203  //   A [...] function [...] can be explicitly instantiated from its template.
6204  //   A member function [...] of a class template can be explicitly
6205  //  instantiated from the member definition associated with its class
6206  //  template.
6207  UnresolvedSet<8> Matches;
6208  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6209       P != PEnd; ++P) {
6210    NamedDecl *Prev = *P;
6211    if (!HasExplicitTemplateArgs) {
6212      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6213        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6214          Matches.clear();
6215
6216          Matches.addDecl(Method, P.getAccess());
6217          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6218            break;
6219        }
6220      }
6221    }
6222
6223    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6224    if (!FunTmpl)
6225      continue;
6226
6227    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6228    FunctionDecl *Specialization = 0;
6229    if (TemplateDeductionResult TDK
6230          = DeduceTemplateArguments(FunTmpl,
6231                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6232                                    R, Specialization, Info)) {
6233      // FIXME: Keep track of almost-matches?
6234      (void)TDK;
6235      continue;
6236    }
6237
6238    Matches.addDecl(Specialization, P.getAccess());
6239  }
6240
6241  // Find the most specialized function template specialization.
6242  UnresolvedSetIterator Result
6243    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6244                         D.getIdentifierLoc(),
6245                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6246                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6247                         PDiag(diag::note_explicit_instantiation_candidate));
6248
6249  if (Result == Matches.end())
6250    return true;
6251
6252  // Ignore access control bits, we don't need them for redeclaration checking.
6253  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6254
6255  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6256    Diag(D.getIdentifierLoc(),
6257         diag::err_explicit_instantiation_member_function_not_instantiated)
6258      << Specialization
6259      << (Specialization->getTemplateSpecializationKind() ==
6260          TSK_ExplicitSpecialization);
6261    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6262    return true;
6263  }
6264
6265  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6266  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6267    PrevDecl = Specialization;
6268
6269  if (PrevDecl) {
6270    bool HasNoEffect = false;
6271    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6272                                               PrevDecl,
6273                                     PrevDecl->getTemplateSpecializationKind(),
6274                                          PrevDecl->getPointOfInstantiation(),
6275                                               HasNoEffect))
6276      return true;
6277
6278    // FIXME: We may still want to build some representation of this
6279    // explicit specialization.
6280    if (HasNoEffect)
6281      return (Decl*) 0;
6282  }
6283
6284  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6285
6286  if (TSK == TSK_ExplicitInstantiationDefinition)
6287    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6288
6289  // C++0x [temp.explicit]p2:
6290  //   If the explicit instantiation is for a member function, a member class
6291  //   or a static data member of a class template specialization, the name of
6292  //   the class template specialization in the qualified-id for the member
6293  //   name shall be a simple-template-id.
6294  //
6295  // C++98 has the same restriction, just worded differently.
6296  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6297  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6298      D.getCXXScopeSpec().isSet() &&
6299      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6300    Diag(D.getIdentifierLoc(),
6301         diag::ext_explicit_instantiation_without_qualified_id)
6302    << Specialization << D.getCXXScopeSpec().getRange();
6303
6304  CheckExplicitInstantiationScope(*this,
6305                   FunTmpl? (NamedDecl *)FunTmpl
6306                          : Specialization->getInstantiatedFromMemberFunction(),
6307                                  D.getIdentifierLoc(),
6308                                  D.getCXXScopeSpec().isSet());
6309
6310  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6311  return (Decl*) 0;
6312}
6313
6314TypeResult
6315Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6316                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6317                        SourceLocation TagLoc, SourceLocation NameLoc) {
6318  // This has to hold, because SS is expected to be defined.
6319  assert(Name && "Expected a name in a dependent tag");
6320
6321  NestedNameSpecifier *NNS
6322    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6323  if (!NNS)
6324    return true;
6325
6326  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6327
6328  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6329    Diag(NameLoc, diag::err_dependent_tag_decl)
6330      << (TUK == TUK_Definition) << Kind << SS.getRange();
6331    return true;
6332  }
6333
6334  // Create the resulting type.
6335  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6336  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6337
6338  // Create type-source location information for this type.
6339  TypeLocBuilder TLB;
6340  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6341  TL.setKeywordLoc(TagLoc);
6342  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6343  TL.setNameLoc(NameLoc);
6344  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6345}
6346
6347TypeResult
6348Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6349                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6350                        SourceLocation IdLoc) {
6351  if (SS.isInvalid())
6352    return true;
6353
6354  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6355      !getLangOptions().CPlusPlus0x)
6356    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6357      << FixItHint::CreateRemoval(TypenameLoc);
6358
6359  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6360  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6361                                 TypenameLoc, QualifierLoc, II, IdLoc);
6362  if (T.isNull())
6363    return true;
6364
6365  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6366  if (isa<DependentNameType>(T)) {
6367    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6368    TL.setKeywordLoc(TypenameLoc);
6369    TL.setQualifierLoc(QualifierLoc);
6370    TL.setNameLoc(IdLoc);
6371  } else {
6372    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6373    TL.setKeywordLoc(TypenameLoc);
6374    TL.setQualifierLoc(QualifierLoc);
6375    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6376  }
6377
6378  return CreateParsedType(T, TSI);
6379}
6380
6381TypeResult
6382Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6383                        const CXXScopeSpec &SS,
6384                        SourceLocation TemplateLoc,
6385                        TemplateTy TemplateIn,
6386                        SourceLocation TemplateNameLoc,
6387                        SourceLocation LAngleLoc,
6388                        ASTTemplateArgsPtr TemplateArgsIn,
6389                        SourceLocation RAngleLoc) {
6390  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6391      !getLangOptions().CPlusPlus0x)
6392    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6393    << FixItHint::CreateRemoval(TypenameLoc);
6394
6395  // Translate the parser's template argument list in our AST format.
6396  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6397  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6398
6399  TemplateName Template = TemplateIn.get();
6400  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6401    // Construct a dependent template specialization type.
6402    assert(DTN && "dependent template has non-dependent name?");
6403    assert(DTN->getQualifier()
6404           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6405    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6406                                                          DTN->getQualifier(),
6407                                                          DTN->getIdentifier(),
6408                                                                TemplateArgs);
6409
6410    // Create source-location information for this type.
6411    TypeLocBuilder Builder;
6412    DependentTemplateSpecializationTypeLoc SpecTL
6413    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6414    SpecTL.setLAngleLoc(LAngleLoc);
6415    SpecTL.setRAngleLoc(RAngleLoc);
6416    SpecTL.setKeywordLoc(TypenameLoc);
6417    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6418    SpecTL.setNameLoc(TemplateNameLoc);
6419    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6420      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6421    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6422  }
6423
6424  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6425  if (T.isNull())
6426    return true;
6427
6428  // Provide source-location information for the template specialization
6429  // type.
6430  TypeLocBuilder Builder;
6431  TemplateSpecializationTypeLoc SpecTL
6432    = Builder.push<TemplateSpecializationTypeLoc>(T);
6433
6434  // FIXME: No place to set the location of the 'template' keyword!
6435  SpecTL.setLAngleLoc(LAngleLoc);
6436  SpecTL.setRAngleLoc(RAngleLoc);
6437  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6438  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6439    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6440
6441  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6442  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6443  TL.setKeywordLoc(TypenameLoc);
6444  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6445
6446  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6447  return CreateParsedType(T, TSI);
6448}
6449
6450
6451/// \brief Build the type that describes a C++ typename specifier,
6452/// e.g., "typename T::type".
6453QualType
6454Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6455                        SourceLocation KeywordLoc,
6456                        NestedNameSpecifierLoc QualifierLoc,
6457                        const IdentifierInfo &II,
6458                        SourceLocation IILoc) {
6459  CXXScopeSpec SS;
6460  SS.Adopt(QualifierLoc);
6461
6462  DeclContext *Ctx = computeDeclContext(SS);
6463  if (!Ctx) {
6464    // If the nested-name-specifier is dependent and couldn't be
6465    // resolved to a type, build a typename type.
6466    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6467    return Context.getDependentNameType(Keyword,
6468                                        QualifierLoc.getNestedNameSpecifier(),
6469                                        &II);
6470  }
6471
6472  // If the nested-name-specifier refers to the current instantiation,
6473  // the "typename" keyword itself is superfluous. In C++03, the
6474  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6475  // allows such extraneous "typename" keywords, and we retroactively
6476  // apply this DR to C++03 code with only a warning. In any case we continue.
6477
6478  if (RequireCompleteDeclContext(SS, Ctx))
6479    return QualType();
6480
6481  DeclarationName Name(&II);
6482  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6483  LookupQualifiedName(Result, Ctx);
6484  unsigned DiagID = 0;
6485  Decl *Referenced = 0;
6486  switch (Result.getResultKind()) {
6487  case LookupResult::NotFound:
6488    DiagID = diag::err_typename_nested_not_found;
6489    break;
6490
6491  case LookupResult::FoundUnresolvedValue: {
6492    // We found a using declaration that is a value. Most likely, the using
6493    // declaration itself is meant to have the 'typename' keyword.
6494    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6495                          IILoc);
6496    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6497      << Name << Ctx << FullRange;
6498    if (UnresolvedUsingValueDecl *Using
6499          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6500      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6501      Diag(Loc, diag::note_using_value_decl_missing_typename)
6502        << FixItHint::CreateInsertion(Loc, "typename ");
6503    }
6504  }
6505  // Fall through to create a dependent typename type, from which we can recover
6506  // better.
6507
6508  case LookupResult::NotFoundInCurrentInstantiation:
6509    // Okay, it's a member of an unknown instantiation.
6510    return Context.getDependentNameType(Keyword,
6511                                        QualifierLoc.getNestedNameSpecifier(),
6512                                        &II);
6513
6514  case LookupResult::Found:
6515    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6516      // We found a type. Build an ElaboratedType, since the
6517      // typename-specifier was just sugar.
6518      return Context.getElaboratedType(ETK_Typename,
6519                                       QualifierLoc.getNestedNameSpecifier(),
6520                                       Context.getTypeDeclType(Type));
6521    }
6522
6523    DiagID = diag::err_typename_nested_not_type;
6524    Referenced = Result.getFoundDecl();
6525    break;
6526
6527
6528    llvm_unreachable("unresolved using decl in non-dependent context");
6529    return QualType();
6530
6531  case LookupResult::FoundOverloaded:
6532    DiagID = diag::err_typename_nested_not_type;
6533    Referenced = *Result.begin();
6534    break;
6535
6536  case LookupResult::Ambiguous:
6537    return QualType();
6538  }
6539
6540  // If we get here, it's because name lookup did not find a
6541  // type. Emit an appropriate diagnostic and return an error.
6542  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6543                        IILoc);
6544  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6545  if (Referenced)
6546    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6547      << Name;
6548  return QualType();
6549}
6550
6551namespace {
6552  // See Sema::RebuildTypeInCurrentInstantiation
6553  class CurrentInstantiationRebuilder
6554    : public TreeTransform<CurrentInstantiationRebuilder> {
6555    SourceLocation Loc;
6556    DeclarationName Entity;
6557
6558  public:
6559    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6560
6561    CurrentInstantiationRebuilder(Sema &SemaRef,
6562                                  SourceLocation Loc,
6563                                  DeclarationName Entity)
6564    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6565      Loc(Loc), Entity(Entity) { }
6566
6567    /// \brief Determine whether the given type \p T has already been
6568    /// transformed.
6569    ///
6570    /// For the purposes of type reconstruction, a type has already been
6571    /// transformed if it is NULL or if it is not dependent.
6572    bool AlreadyTransformed(QualType T) {
6573      return T.isNull() || !T->isDependentType();
6574    }
6575
6576    /// \brief Returns the location of the entity whose type is being
6577    /// rebuilt.
6578    SourceLocation getBaseLocation() { return Loc; }
6579
6580    /// \brief Returns the name of the entity whose type is being rebuilt.
6581    DeclarationName getBaseEntity() { return Entity; }
6582
6583    /// \brief Sets the "base" location and entity when that
6584    /// information is known based on another transformation.
6585    void setBase(SourceLocation Loc, DeclarationName Entity) {
6586      this->Loc = Loc;
6587      this->Entity = Entity;
6588    }
6589  };
6590}
6591
6592/// \brief Rebuilds a type within the context of the current instantiation.
6593///
6594/// The type \p T is part of the type of an out-of-line member definition of
6595/// a class template (or class template partial specialization) that was parsed
6596/// and constructed before we entered the scope of the class template (or
6597/// partial specialization thereof). This routine will rebuild that type now
6598/// that we have entered the declarator's scope, which may produce different
6599/// canonical types, e.g.,
6600///
6601/// \code
6602/// template<typename T>
6603/// struct X {
6604///   typedef T* pointer;
6605///   pointer data();
6606/// };
6607///
6608/// template<typename T>
6609/// typename X<T>::pointer X<T>::data() { ... }
6610/// \endcode
6611///
6612/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6613/// since we do not know that we can look into X<T> when we parsed the type.
6614/// This function will rebuild the type, performing the lookup of "pointer"
6615/// in X<T> and returning an ElaboratedType whose canonical type is the same
6616/// as the canonical type of T*, allowing the return types of the out-of-line
6617/// definition and the declaration to match.
6618TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6619                                                        SourceLocation Loc,
6620                                                        DeclarationName Name) {
6621  if (!T || !T->getType()->isDependentType())
6622    return T;
6623
6624  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6625  return Rebuilder.TransformType(T);
6626}
6627
6628ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6629  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6630                                          DeclarationName());
6631  return Rebuilder.TransformExpr(E);
6632}
6633
6634bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6635  if (SS.isInvalid())
6636    return true;
6637
6638  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6639  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6640                                          DeclarationName());
6641  NestedNameSpecifierLoc Rebuilt
6642    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6643  if (!Rebuilt)
6644    return true;
6645
6646  SS.Adopt(Rebuilt);
6647  return false;
6648}
6649
6650/// \brief Produces a formatted string that describes the binding of
6651/// template parameters to template arguments.
6652std::string
6653Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6654                                      const TemplateArgumentList &Args) {
6655  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6656}
6657
6658std::string
6659Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6660                                      const TemplateArgument *Args,
6661                                      unsigned NumArgs) {
6662  llvm::SmallString<128> Str;
6663  llvm::raw_svector_ostream Out(Str);
6664
6665  if (!Params || Params->size() == 0 || NumArgs == 0)
6666    return std::string();
6667
6668  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6669    if (I >= NumArgs)
6670      break;
6671
6672    if (I == 0)
6673      Out << "[with ";
6674    else
6675      Out << ", ";
6676
6677    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6678      Out << Id->getName();
6679    } else {
6680      Out << '$' << I;
6681    }
6682
6683    Out << " = ";
6684    Args[I].print(Context.PrintingPolicy, Out);
6685  }
6686
6687  Out << ']';
6688  return Out.str();
6689}
6690
6691void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6692  if (!FD)
6693    return;
6694  FD->setLateTemplateParsed(Flag);
6695}
6696
6697bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6698  DeclContext *DC = CurContext;
6699
6700  while (DC) {
6701    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6702      const FunctionDecl *FD = RD->isLocalClass();
6703      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6704    } else if (DC->isTranslationUnit() || DC->isNamespace())
6705      return false;
6706
6707    DC = DC->getParent();
6708  }
6709  return false;
6710}
6711