SemaTemplate.cpp revision e7526419a6edc188723a33983c338790f1f2cc2b
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Parse/Template.h" 20#include "clang/Basic/LangOptions.h" 21#include "clang/Basic/PartialDiagnostic.h" 22#include "llvm/Support/Compiler.h" 23#include "llvm/ADT/StringExtras.h" 24using namespace clang; 25 26/// \brief Determine whether the declaration found is acceptable as the name 27/// of a template and, if so, return that template declaration. Otherwise, 28/// returns NULL. 29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 30 if (!D) 31 return 0; 32 33 if (isa<TemplateDecl>(D)) 34 return D; 35 36 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 37 // C++ [temp.local]p1: 38 // Like normal (non-template) classes, class templates have an 39 // injected-class-name (Clause 9). The injected-class-name 40 // can be used with or without a template-argument-list. When 41 // it is used without a template-argument-list, it is 42 // equivalent to the injected-class-name followed by the 43 // template-parameters of the class template enclosed in 44 // <>. When it is used with a template-argument-list, it 45 // refers to the specified class template specialization, 46 // which could be the current specialization or another 47 // specialization. 48 if (Record->isInjectedClassName()) { 49 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 50 if (Record->getDescribedClassTemplate()) 51 return Record->getDescribedClassTemplate(); 52 53 if (ClassTemplateSpecializationDecl *Spec 54 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 55 return Spec->getSpecializedTemplate(); 56 } 57 58 return 0; 59 } 60 61 OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D); 62 if (!Ovl) 63 return 0; 64 65 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 66 FEnd = Ovl->function_end(); 67 F != FEnd; ++F) { 68 if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) { 69 // We've found a function template. Determine whether there are 70 // any other function templates we need to bundle together in an 71 // OverloadedFunctionDecl 72 for (++F; F != FEnd; ++F) { 73 if (isa<FunctionTemplateDecl>(*F)) 74 break; 75 } 76 77 if (F != FEnd) { 78 // Build an overloaded function decl containing only the 79 // function templates in Ovl. 80 OverloadedFunctionDecl *OvlTemplate 81 = OverloadedFunctionDecl::Create(Context, 82 Ovl->getDeclContext(), 83 Ovl->getDeclName()); 84 OvlTemplate->addOverload(FuncTmpl); 85 OvlTemplate->addOverload(*F); 86 for (++F; F != FEnd; ++F) { 87 if (isa<FunctionTemplateDecl>(*F)) 88 OvlTemplate->addOverload(*F); 89 } 90 91 return OvlTemplate; 92 } 93 94 return FuncTmpl; 95 } 96 } 97 98 return 0; 99} 100 101TemplateNameKind Sema::isTemplateName(Scope *S, 102 const CXXScopeSpec &SS, 103 UnqualifiedId &Name, 104 TypeTy *ObjectTypePtr, 105 bool EnteringContext, 106 TemplateTy &TemplateResult) { 107 DeclarationName TName; 108 109 switch (Name.getKind()) { 110 case UnqualifiedId::IK_Identifier: 111 TName = DeclarationName(Name.Identifier); 112 break; 113 114 case UnqualifiedId::IK_OperatorFunctionId: 115 TName = Context.DeclarationNames.getCXXOperatorName( 116 Name.OperatorFunctionId.Operator); 117 break; 118 119 default: 120 return TNK_Non_template; 121 } 122 123 // Determine where to perform name lookup 124 DeclContext *LookupCtx = 0; 125 bool isDependent = false; 126 if (ObjectTypePtr) { 127 // This nested-name-specifier occurs in a member access expression, e.g., 128 // x->B::f, and we are looking into the type of the object. 129 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 130 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 131 LookupCtx = computeDeclContext(ObjectType); 132 isDependent = ObjectType->isDependentType(); 133 } else if (SS.isSet()) { 134 // This nested-name-specifier occurs after another nested-name-specifier, 135 // so long into the context associated with the prior nested-name-specifier. 136 137 LookupCtx = computeDeclContext(SS, EnteringContext); 138 isDependent = isDependentScopeSpecifier(SS); 139 } 140 141 LookupResult Found; 142 bool ObjectTypeSearchedInScope = false; 143 if (LookupCtx) { 144 // Perform "qualified" name lookup into the declaration context we 145 // computed, which is either the type of the base of a member access 146 // expression or the declaration context associated with a prior 147 // nested-name-specifier. 148 149 // The declaration context must be complete. 150 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS)) 151 return TNK_Non_template; 152 153 LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName); 154 155 if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { 156 // C++ [basic.lookup.classref]p1: 157 // In a class member access expression (5.2.5), if the . or -> token is 158 // immediately followed by an identifier followed by a <, the 159 // identifier must be looked up to determine whether the < is the 160 // beginning of a template argument list (14.2) or a less-than operator. 161 // The identifier is first looked up in the class of the object 162 // expression. If the identifier is not found, it is then looked up in 163 // the context of the entire postfix-expression and shall name a class 164 // or function template. 165 // 166 // FIXME: When we're instantiating a template, do we actually have to 167 // look in the scope of the template? Seems fishy... 168 LookupName(Found, S, TName, LookupOrdinaryName); 169 ObjectTypeSearchedInScope = true; 170 } 171 } else if (isDependent) { 172 // We cannot look into a dependent object type or 173 return TNK_Non_template; 174 } else { 175 // Perform unqualified name lookup in the current scope. 176 LookupName(Found, S, TName, LookupOrdinaryName); 177 } 178 179 // FIXME: Cope with ambiguous name-lookup results. 180 assert(!Found.isAmbiguous() && 181 "Cannot handle template name-lookup ambiguities"); 182 183 NamedDecl *Template 184 = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context)); 185 if (!Template) 186 return TNK_Non_template; 187 188 if (ObjectTypePtr && !ObjectTypeSearchedInScope) { 189 // C++ [basic.lookup.classref]p1: 190 // [...] If the lookup in the class of the object expression finds a 191 // template, the name is also looked up in the context of the entire 192 // postfix-expression and [...] 193 // 194 LookupResult FoundOuter; 195 LookupName(FoundOuter, S, TName, LookupOrdinaryName); 196 // FIXME: Handle ambiguities in this lookup better 197 NamedDecl *OuterTemplate 198 = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context)); 199 200 if (!OuterTemplate) { 201 // - if the name is not found, the name found in the class of the 202 // object expression is used, otherwise 203 } else if (!isa<ClassTemplateDecl>(OuterTemplate)) { 204 // - if the name is found in the context of the entire 205 // postfix-expression and does not name a class template, the name 206 // found in the class of the object expression is used, otherwise 207 } else { 208 // - if the name found is a class template, it must refer to the same 209 // entity as the one found in the class of the object expression, 210 // otherwise the program is ill-formed. 211 if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { 212 Diag(Name.getSourceRange().getBegin(), 213 diag::err_nested_name_member_ref_lookup_ambiguous) 214 << TName 215 << Name.getSourceRange(); 216 Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) 217 << QualType::getFromOpaquePtr(ObjectTypePtr); 218 Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); 219 220 // Recover by taking the template that we found in the object 221 // expression's type. 222 } 223 } 224 } 225 226 if (SS.isSet() && !SS.isInvalid()) { 227 NestedNameSpecifier *Qualifier 228 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 229 if (OverloadedFunctionDecl *Ovl 230 = dyn_cast<OverloadedFunctionDecl>(Template)) 231 TemplateResult 232 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 233 Ovl)); 234 else 235 TemplateResult 236 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 237 cast<TemplateDecl>(Template))); 238 } else if (OverloadedFunctionDecl *Ovl 239 = dyn_cast<OverloadedFunctionDecl>(Template)) { 240 TemplateResult = TemplateTy::make(TemplateName(Ovl)); 241 } else { 242 TemplateResult = TemplateTy::make( 243 TemplateName(cast<TemplateDecl>(Template))); 244 } 245 246 if (isa<ClassTemplateDecl>(Template) || 247 isa<TemplateTemplateParmDecl>(Template)) 248 return TNK_Type_template; 249 250 assert((isa<FunctionTemplateDecl>(Template) || 251 isa<OverloadedFunctionDecl>(Template)) && 252 "Unhandled template kind in Sema::isTemplateName"); 253 return TNK_Function_template; 254} 255 256/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 257/// that the template parameter 'PrevDecl' is being shadowed by a new 258/// declaration at location Loc. Returns true to indicate that this is 259/// an error, and false otherwise. 260bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 261 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 262 263 // Microsoft Visual C++ permits template parameters to be shadowed. 264 if (getLangOptions().Microsoft) 265 return false; 266 267 // C++ [temp.local]p4: 268 // A template-parameter shall not be redeclared within its 269 // scope (including nested scopes). 270 Diag(Loc, diag::err_template_param_shadow) 271 << cast<NamedDecl>(PrevDecl)->getDeclName(); 272 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 273 return true; 274} 275 276/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 277/// the parameter D to reference the templated declaration and return a pointer 278/// to the template declaration. Otherwise, do nothing to D and return null. 279TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 280 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 281 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 282 return Temp; 283 } 284 return 0; 285} 286 287static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 288 const ParsedTemplateArgument &Arg) { 289 290 switch (Arg.getKind()) { 291 case ParsedTemplateArgument::Type: { 292 DeclaratorInfo *DI; 293 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 294 if (!DI) 295 DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation()); 296 return TemplateArgumentLoc(TemplateArgument(T), DI); 297 } 298 299 case ParsedTemplateArgument::NonType: { 300 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 301 return TemplateArgumentLoc(TemplateArgument(E), E); 302 } 303 304 case ParsedTemplateArgument::Template: { 305 TemplateName Template 306 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 307 return TemplateArgumentLoc(TemplateArgument(Template), 308 Arg.getScopeSpec().getRange(), 309 Arg.getLocation()); 310 } 311 } 312 313 llvm::llvm_unreachable("Unhandled parsed template argument"); 314 return TemplateArgumentLoc(); 315} 316 317/// \brief Translates template arguments as provided by the parser 318/// into template arguments used by semantic analysis. 319void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 320 llvm::SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) { 321 TemplateArgs.reserve(TemplateArgsIn.size()); 322 323 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 324 TemplateArgs.push_back(translateTemplateArgument(*this, TemplateArgsIn[I])); 325} 326 327/// ActOnTypeParameter - Called when a C++ template type parameter 328/// (e.g., "typename T") has been parsed. Typename specifies whether 329/// the keyword "typename" was used to declare the type parameter 330/// (otherwise, "class" was used), and KeyLoc is the location of the 331/// "class" or "typename" keyword. ParamName is the name of the 332/// parameter (NULL indicates an unnamed template parameter) and 333/// ParamName is the location of the parameter name (if any). 334/// If the type parameter has a default argument, it will be added 335/// later via ActOnTypeParameterDefault. 336Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 337 SourceLocation EllipsisLoc, 338 SourceLocation KeyLoc, 339 IdentifierInfo *ParamName, 340 SourceLocation ParamNameLoc, 341 unsigned Depth, unsigned Position) { 342 assert(S->isTemplateParamScope() && 343 "Template type parameter not in template parameter scope!"); 344 bool Invalid = false; 345 346 if (ParamName) { 347 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 348 if (PrevDecl && PrevDecl->isTemplateParameter()) 349 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 350 PrevDecl); 351 } 352 353 SourceLocation Loc = ParamNameLoc; 354 if (!ParamName) 355 Loc = KeyLoc; 356 357 TemplateTypeParmDecl *Param 358 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 359 Depth, Position, ParamName, Typename, 360 Ellipsis); 361 if (Invalid) 362 Param->setInvalidDecl(); 363 364 if (ParamName) { 365 // Add the template parameter into the current scope. 366 S->AddDecl(DeclPtrTy::make(Param)); 367 IdResolver.AddDecl(Param); 368 } 369 370 return DeclPtrTy::make(Param); 371} 372 373/// ActOnTypeParameterDefault - Adds a default argument (the type 374/// Default) to the given template type parameter (TypeParam). 375void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 376 SourceLocation EqualLoc, 377 SourceLocation DefaultLoc, 378 TypeTy *DefaultT) { 379 TemplateTypeParmDecl *Parm 380 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 381 382 DeclaratorInfo *DefaultDInfo; 383 GetTypeFromParser(DefaultT, &DefaultDInfo); 384 385 assert(DefaultDInfo && "expected source information for type"); 386 387 // C++0x [temp.param]p9: 388 // A default template-argument may be specified for any kind of 389 // template-parameter that is not a template parameter pack. 390 if (Parm->isParameterPack()) { 391 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 392 return; 393 } 394 395 // C++ [temp.param]p14: 396 // A template-parameter shall not be used in its own default argument. 397 // FIXME: Implement this check! Needs a recursive walk over the types. 398 399 // Check the template argument itself. 400 if (CheckTemplateArgument(Parm, DefaultDInfo)) { 401 Parm->setInvalidDecl(); 402 return; 403 } 404 405 Parm->setDefaultArgument(DefaultDInfo, false); 406} 407 408/// \brief Check that the type of a non-type template parameter is 409/// well-formed. 410/// 411/// \returns the (possibly-promoted) parameter type if valid; 412/// otherwise, produces a diagnostic and returns a NULL type. 413QualType 414Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 415 // C++ [temp.param]p4: 416 // 417 // A non-type template-parameter shall have one of the following 418 // (optionally cv-qualified) types: 419 // 420 // -- integral or enumeration type, 421 if (T->isIntegralType() || T->isEnumeralType() || 422 // -- pointer to object or pointer to function, 423 (T->isPointerType() && 424 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 425 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 426 // -- reference to object or reference to function, 427 T->isReferenceType() || 428 // -- pointer to member. 429 T->isMemberPointerType() || 430 // If T is a dependent type, we can't do the check now, so we 431 // assume that it is well-formed. 432 T->isDependentType()) 433 return T; 434 // C++ [temp.param]p8: 435 // 436 // A non-type template-parameter of type "array of T" or 437 // "function returning T" is adjusted to be of type "pointer to 438 // T" or "pointer to function returning T", respectively. 439 else if (T->isArrayType()) 440 // FIXME: Keep the type prior to promotion? 441 return Context.getArrayDecayedType(T); 442 else if (T->isFunctionType()) 443 // FIXME: Keep the type prior to promotion? 444 return Context.getPointerType(T); 445 446 Diag(Loc, diag::err_template_nontype_parm_bad_type) 447 << T; 448 449 return QualType(); 450} 451 452/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 453/// template parameter (e.g., "int Size" in "template<int Size> 454/// class Array") has been parsed. S is the current scope and D is 455/// the parsed declarator. 456Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 457 unsigned Depth, 458 unsigned Position) { 459 DeclaratorInfo *DInfo = 0; 460 QualType T = GetTypeForDeclarator(D, S, &DInfo); 461 462 assert(S->isTemplateParamScope() && 463 "Non-type template parameter not in template parameter scope!"); 464 bool Invalid = false; 465 466 IdentifierInfo *ParamName = D.getIdentifier(); 467 if (ParamName) { 468 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 469 if (PrevDecl && PrevDecl->isTemplateParameter()) 470 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 471 PrevDecl); 472 } 473 474 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 475 if (T.isNull()) { 476 T = Context.IntTy; // Recover with an 'int' type. 477 Invalid = true; 478 } 479 480 NonTypeTemplateParmDecl *Param 481 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 482 Depth, Position, ParamName, T, DInfo); 483 if (Invalid) 484 Param->setInvalidDecl(); 485 486 if (D.getIdentifier()) { 487 // Add the template parameter into the current scope. 488 S->AddDecl(DeclPtrTy::make(Param)); 489 IdResolver.AddDecl(Param); 490 } 491 return DeclPtrTy::make(Param); 492} 493 494/// \brief Adds a default argument to the given non-type template 495/// parameter. 496void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 497 SourceLocation EqualLoc, 498 ExprArg DefaultE) { 499 NonTypeTemplateParmDecl *TemplateParm 500 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 501 Expr *Default = static_cast<Expr *>(DefaultE.get()); 502 503 // C++ [temp.param]p14: 504 // A template-parameter shall not be used in its own default argument. 505 // FIXME: Implement this check! Needs a recursive walk over the types. 506 507 // Check the well-formedness of the default template argument. 508 TemplateArgument Converted; 509 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 510 Converted)) { 511 TemplateParm->setInvalidDecl(); 512 return; 513 } 514 515 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 516} 517 518 519/// ActOnTemplateTemplateParameter - Called when a C++ template template 520/// parameter (e.g. T in template <template <typename> class T> class array) 521/// has been parsed. S is the current scope. 522Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 523 SourceLocation TmpLoc, 524 TemplateParamsTy *Params, 525 IdentifierInfo *Name, 526 SourceLocation NameLoc, 527 unsigned Depth, 528 unsigned Position) { 529 assert(S->isTemplateParamScope() && 530 "Template template parameter not in template parameter scope!"); 531 532 // Construct the parameter object. 533 TemplateTemplateParmDecl *Param = 534 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 535 Position, Name, 536 (TemplateParameterList*)Params); 537 538 // Make sure the parameter is valid. 539 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 540 // do anything yet. However, if the template parameter list or (eventual) 541 // default value is ever invalidated, that will propagate here. 542 bool Invalid = false; 543 if (Invalid) { 544 Param->setInvalidDecl(); 545 } 546 547 // If the tt-param has a name, then link the identifier into the scope 548 // and lookup mechanisms. 549 if (Name) { 550 S->AddDecl(DeclPtrTy::make(Param)); 551 IdResolver.AddDecl(Param); 552 } 553 554 return DeclPtrTy::make(Param); 555} 556 557/// \brief Adds a default argument to the given template template 558/// parameter. 559void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 560 SourceLocation EqualLoc, 561 const ParsedTemplateArgument &Default) { 562 TemplateTemplateParmDecl *TemplateParm 563 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 564 565 // C++ [temp.param]p14: 566 // A template-parameter shall not be used in its own default argument. 567 // FIXME: Implement this check! Needs a recursive walk over the types. 568 569 // Check only that we have a template template argument. We don't want to 570 // try to check well-formedness now, because our template template parameter 571 // might have dependent types in its template parameters, which we wouldn't 572 // be able to match now. 573 // 574 // If none of the template template parameter's template arguments mention 575 // other template parameters, we could actually perform more checking here. 576 // However, it isn't worth doing. 577 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 578 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 579 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 580 << DefaultArg.getSourceRange(); 581 return; 582 } 583 584 TemplateParm->setDefaultArgument(DefaultArg); 585} 586 587/// ActOnTemplateParameterList - Builds a TemplateParameterList that 588/// contains the template parameters in Params/NumParams. 589Sema::TemplateParamsTy * 590Sema::ActOnTemplateParameterList(unsigned Depth, 591 SourceLocation ExportLoc, 592 SourceLocation TemplateLoc, 593 SourceLocation LAngleLoc, 594 DeclPtrTy *Params, unsigned NumParams, 595 SourceLocation RAngleLoc) { 596 if (ExportLoc.isValid()) 597 Diag(ExportLoc, diag::note_template_export_unsupported); 598 599 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 600 (NamedDecl**)Params, NumParams, 601 RAngleLoc); 602} 603 604Sema::DeclResult 605Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 606 SourceLocation KWLoc, const CXXScopeSpec &SS, 607 IdentifierInfo *Name, SourceLocation NameLoc, 608 AttributeList *Attr, 609 TemplateParameterList *TemplateParams, 610 AccessSpecifier AS) { 611 assert(TemplateParams && TemplateParams->size() > 0 && 612 "No template parameters"); 613 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 614 bool Invalid = false; 615 616 // Check that we can declare a template here. 617 if (CheckTemplateDeclScope(S, TemplateParams)) 618 return true; 619 620 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 621 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 622 623 // There is no such thing as an unnamed class template. 624 if (!Name) { 625 Diag(KWLoc, diag::err_template_unnamed_class); 626 return true; 627 } 628 629 // Find any previous declaration with this name. 630 DeclContext *SemanticContext; 631 LookupResult Previous; 632 if (SS.isNotEmpty() && !SS.isInvalid()) { 633 if (RequireCompleteDeclContext(SS)) 634 return true; 635 636 SemanticContext = computeDeclContext(SS, true); 637 if (!SemanticContext) { 638 // FIXME: Produce a reasonable diagnostic here 639 return true; 640 } 641 642 LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName, 643 true); 644 } else { 645 SemanticContext = CurContext; 646 LookupName(Previous, S, Name, LookupOrdinaryName, true); 647 } 648 649 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 650 NamedDecl *PrevDecl = 0; 651 if (Previous.begin() != Previous.end()) 652 PrevDecl = *Previous.begin(); 653 654 if (PrevDecl && TUK == TUK_Friend) { 655 // C++ [namespace.memdef]p3: 656 // [...] When looking for a prior declaration of a class or a function 657 // declared as a friend, and when the name of the friend class or 658 // function is neither a qualified name nor a template-id, scopes outside 659 // the innermost enclosing namespace scope are not considered. 660 DeclContext *OutermostContext = CurContext; 661 while (!OutermostContext->isFileContext()) 662 OutermostContext = OutermostContext->getLookupParent(); 663 664 if (OutermostContext->Equals(PrevDecl->getDeclContext()) || 665 OutermostContext->Encloses(PrevDecl->getDeclContext())) { 666 SemanticContext = PrevDecl->getDeclContext(); 667 } else { 668 // Declarations in outer scopes don't matter. However, the outermost 669 // context we computed is the semantic context for our new 670 // declaration. 671 PrevDecl = 0; 672 SemanticContext = OutermostContext; 673 } 674 675 if (CurContext->isDependentContext()) { 676 // If this is a dependent context, we don't want to link the friend 677 // class template to the template in scope, because that would perform 678 // checking of the template parameter lists that can't be performed 679 // until the outer context is instantiated. 680 PrevDecl = 0; 681 } 682 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 683 PrevDecl = 0; 684 685 // If there is a previous declaration with the same name, check 686 // whether this is a valid redeclaration. 687 ClassTemplateDecl *PrevClassTemplate 688 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 689 690 // We may have found the injected-class-name of a class template, 691 // class template partial specialization, or class template specialization. 692 // In these cases, grab the template that is being defined or specialized. 693 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 694 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 695 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 696 PrevClassTemplate 697 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 698 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 699 PrevClassTemplate 700 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 701 ->getSpecializedTemplate(); 702 } 703 } 704 705 if (PrevClassTemplate) { 706 // Ensure that the template parameter lists are compatible. 707 if (!TemplateParameterListsAreEqual(TemplateParams, 708 PrevClassTemplate->getTemplateParameters(), 709 /*Complain=*/true)) 710 return true; 711 712 // C++ [temp.class]p4: 713 // In a redeclaration, partial specialization, explicit 714 // specialization or explicit instantiation of a class template, 715 // the class-key shall agree in kind with the original class 716 // template declaration (7.1.5.3). 717 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 718 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 719 Diag(KWLoc, diag::err_use_with_wrong_tag) 720 << Name 721 << CodeModificationHint::CreateReplacement(KWLoc, 722 PrevRecordDecl->getKindName()); 723 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 724 Kind = PrevRecordDecl->getTagKind(); 725 } 726 727 // Check for redefinition of this class template. 728 if (TUK == TUK_Definition) { 729 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 730 Diag(NameLoc, diag::err_redefinition) << Name; 731 Diag(Def->getLocation(), diag::note_previous_definition); 732 // FIXME: Would it make sense to try to "forget" the previous 733 // definition, as part of error recovery? 734 return true; 735 } 736 } 737 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 738 // Maybe we will complain about the shadowed template parameter. 739 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 740 // Just pretend that we didn't see the previous declaration. 741 PrevDecl = 0; 742 } else if (PrevDecl) { 743 // C++ [temp]p5: 744 // A class template shall not have the same name as any other 745 // template, class, function, object, enumeration, enumerator, 746 // namespace, or type in the same scope (3.3), except as specified 747 // in (14.5.4). 748 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 749 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 750 return true; 751 } 752 753 // Check the template parameter list of this declaration, possibly 754 // merging in the template parameter list from the previous class 755 // template declaration. 756 if (CheckTemplateParameterList(TemplateParams, 757 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 758 Invalid = true; 759 760 // FIXME: If we had a scope specifier, we better have a previous template 761 // declaration! 762 763 CXXRecordDecl *NewClass = 764 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 765 PrevClassTemplate? 766 PrevClassTemplate->getTemplatedDecl() : 0, 767 /*DelayTypeCreation=*/true); 768 769 ClassTemplateDecl *NewTemplate 770 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 771 DeclarationName(Name), TemplateParams, 772 NewClass, PrevClassTemplate); 773 NewClass->setDescribedClassTemplate(NewTemplate); 774 775 // Build the type for the class template declaration now. 776 QualType T = 777 Context.getTypeDeclType(NewClass, 778 PrevClassTemplate? 779 PrevClassTemplate->getTemplatedDecl() : 0); 780 assert(T->isDependentType() && "Class template type is not dependent?"); 781 (void)T; 782 783 // If we are providing an explicit specialization of a member that is a 784 // class template, make a note of that. 785 if (PrevClassTemplate && 786 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 787 PrevClassTemplate->setMemberSpecialization(); 788 789 // Set the access specifier. 790 if (!Invalid && TUK != TUK_Friend) 791 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 792 793 // Set the lexical context of these templates 794 NewClass->setLexicalDeclContext(CurContext); 795 NewTemplate->setLexicalDeclContext(CurContext); 796 797 if (TUK == TUK_Definition) 798 NewClass->startDefinition(); 799 800 if (Attr) 801 ProcessDeclAttributeList(S, NewClass, Attr); 802 803 if (TUK != TUK_Friend) 804 PushOnScopeChains(NewTemplate, S); 805 else { 806 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 807 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 808 NewClass->setAccess(PrevClassTemplate->getAccess()); 809 } 810 811 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 812 PrevClassTemplate != NULL); 813 814 // Friend templates are visible in fairly strange ways. 815 if (!CurContext->isDependentContext()) { 816 DeclContext *DC = SemanticContext->getLookupContext(); 817 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 818 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 819 PushOnScopeChains(NewTemplate, EnclosingScope, 820 /* AddToContext = */ false); 821 } 822 823 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 824 NewClass->getLocation(), 825 NewTemplate, 826 /*FIXME:*/NewClass->getLocation()); 827 Friend->setAccess(AS_public); 828 CurContext->addDecl(Friend); 829 } 830 831 if (Invalid) { 832 NewTemplate->setInvalidDecl(); 833 NewClass->setInvalidDecl(); 834 } 835 return DeclPtrTy::make(NewTemplate); 836} 837 838/// \brief Checks the validity of a template parameter list, possibly 839/// considering the template parameter list from a previous 840/// declaration. 841/// 842/// If an "old" template parameter list is provided, it must be 843/// equivalent (per TemplateParameterListsAreEqual) to the "new" 844/// template parameter list. 845/// 846/// \param NewParams Template parameter list for a new template 847/// declaration. This template parameter list will be updated with any 848/// default arguments that are carried through from the previous 849/// template parameter list. 850/// 851/// \param OldParams If provided, template parameter list from a 852/// previous declaration of the same template. Default template 853/// arguments will be merged from the old template parameter list to 854/// the new template parameter list. 855/// 856/// \returns true if an error occurred, false otherwise. 857bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 858 TemplateParameterList *OldParams) { 859 bool Invalid = false; 860 861 // C++ [temp.param]p10: 862 // The set of default template-arguments available for use with a 863 // template declaration or definition is obtained by merging the 864 // default arguments from the definition (if in scope) and all 865 // declarations in scope in the same way default function 866 // arguments are (8.3.6). 867 bool SawDefaultArgument = false; 868 SourceLocation PreviousDefaultArgLoc; 869 870 bool SawParameterPack = false; 871 SourceLocation ParameterPackLoc; 872 873 // Dummy initialization to avoid warnings. 874 TemplateParameterList::iterator OldParam = NewParams->end(); 875 if (OldParams) 876 OldParam = OldParams->begin(); 877 878 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 879 NewParamEnd = NewParams->end(); 880 NewParam != NewParamEnd; ++NewParam) { 881 // Variables used to diagnose redundant default arguments 882 bool RedundantDefaultArg = false; 883 SourceLocation OldDefaultLoc; 884 SourceLocation NewDefaultLoc; 885 886 // Variables used to diagnose missing default arguments 887 bool MissingDefaultArg = false; 888 889 // C++0x [temp.param]p11: 890 // If a template parameter of a class template is a template parameter pack, 891 // it must be the last template parameter. 892 if (SawParameterPack) { 893 Diag(ParameterPackLoc, 894 diag::err_template_param_pack_must_be_last_template_parameter); 895 Invalid = true; 896 } 897 898 // Merge default arguments for template type parameters. 899 if (TemplateTypeParmDecl *NewTypeParm 900 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 901 TemplateTypeParmDecl *OldTypeParm 902 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 903 904 if (NewTypeParm->isParameterPack()) { 905 assert(!NewTypeParm->hasDefaultArgument() && 906 "Parameter packs can't have a default argument!"); 907 SawParameterPack = true; 908 ParameterPackLoc = NewTypeParm->getLocation(); 909 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 910 NewTypeParm->hasDefaultArgument()) { 911 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 912 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 913 SawDefaultArgument = true; 914 RedundantDefaultArg = true; 915 PreviousDefaultArgLoc = NewDefaultLoc; 916 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 917 // Merge the default argument from the old declaration to the 918 // new declaration. 919 SawDefaultArgument = true; 920 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 921 true); 922 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 923 } else if (NewTypeParm->hasDefaultArgument()) { 924 SawDefaultArgument = true; 925 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 926 } else if (SawDefaultArgument) 927 MissingDefaultArg = true; 928 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 929 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 930 // Merge default arguments for non-type template parameters 931 NonTypeTemplateParmDecl *OldNonTypeParm 932 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 933 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 934 NewNonTypeParm->hasDefaultArgument()) { 935 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 936 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 937 SawDefaultArgument = true; 938 RedundantDefaultArg = true; 939 PreviousDefaultArgLoc = NewDefaultLoc; 940 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 941 // Merge the default argument from the old declaration to the 942 // new declaration. 943 SawDefaultArgument = true; 944 // FIXME: We need to create a new kind of "default argument" 945 // expression that points to a previous template template 946 // parameter. 947 NewNonTypeParm->setDefaultArgument( 948 OldNonTypeParm->getDefaultArgument()); 949 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 950 } else if (NewNonTypeParm->hasDefaultArgument()) { 951 SawDefaultArgument = true; 952 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 953 } else if (SawDefaultArgument) 954 MissingDefaultArg = true; 955 } else { 956 // Merge default arguments for template template parameters 957 TemplateTemplateParmDecl *NewTemplateParm 958 = cast<TemplateTemplateParmDecl>(*NewParam); 959 TemplateTemplateParmDecl *OldTemplateParm 960 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 961 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 962 NewTemplateParm->hasDefaultArgument()) { 963 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 964 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 965 SawDefaultArgument = true; 966 RedundantDefaultArg = true; 967 PreviousDefaultArgLoc = NewDefaultLoc; 968 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 969 // Merge the default argument from the old declaration to the 970 // new declaration. 971 SawDefaultArgument = true; 972 // FIXME: We need to create a new kind of "default argument" expression 973 // that points to a previous template template parameter. 974 NewTemplateParm->setDefaultArgument( 975 OldTemplateParm->getDefaultArgument()); 976 PreviousDefaultArgLoc 977 = OldTemplateParm->getDefaultArgument().getLocation(); 978 } else if (NewTemplateParm->hasDefaultArgument()) { 979 SawDefaultArgument = true; 980 PreviousDefaultArgLoc 981 = NewTemplateParm->getDefaultArgument().getLocation(); 982 } else if (SawDefaultArgument) 983 MissingDefaultArg = true; 984 } 985 986 if (RedundantDefaultArg) { 987 // C++ [temp.param]p12: 988 // A template-parameter shall not be given default arguments 989 // by two different declarations in the same scope. 990 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 991 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 992 Invalid = true; 993 } else if (MissingDefaultArg) { 994 // C++ [temp.param]p11: 995 // If a template-parameter has a default template-argument, 996 // all subsequent template-parameters shall have a default 997 // template-argument supplied. 998 Diag((*NewParam)->getLocation(), 999 diag::err_template_param_default_arg_missing); 1000 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1001 Invalid = true; 1002 } 1003 1004 // If we have an old template parameter list that we're merging 1005 // in, move on to the next parameter. 1006 if (OldParams) 1007 ++OldParam; 1008 } 1009 1010 return Invalid; 1011} 1012 1013/// \brief Match the given template parameter lists to the given scope 1014/// specifier, returning the template parameter list that applies to the 1015/// name. 1016/// 1017/// \param DeclStartLoc the start of the declaration that has a scope 1018/// specifier or a template parameter list. 1019/// 1020/// \param SS the scope specifier that will be matched to the given template 1021/// parameter lists. This scope specifier precedes a qualified name that is 1022/// being declared. 1023/// 1024/// \param ParamLists the template parameter lists, from the outermost to the 1025/// innermost template parameter lists. 1026/// 1027/// \param NumParamLists the number of template parameter lists in ParamLists. 1028/// 1029/// \param IsExplicitSpecialization will be set true if the entity being 1030/// declared is an explicit specialization, false otherwise. 1031/// 1032/// \returns the template parameter list, if any, that corresponds to the 1033/// name that is preceded by the scope specifier @p SS. This template 1034/// parameter list may be have template parameters (if we're declaring a 1035/// template) or may have no template parameters (if we're declaring a 1036/// template specialization), or may be NULL (if we were's declaring isn't 1037/// itself a template). 1038TemplateParameterList * 1039Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1040 const CXXScopeSpec &SS, 1041 TemplateParameterList **ParamLists, 1042 unsigned NumParamLists, 1043 bool &IsExplicitSpecialization) { 1044 IsExplicitSpecialization = false; 1045 1046 // Find the template-ids that occur within the nested-name-specifier. These 1047 // template-ids will match up with the template parameter lists. 1048 llvm::SmallVector<const TemplateSpecializationType *, 4> 1049 TemplateIdsInSpecifier; 1050 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1051 NNS; NNS = NNS->getPrefix()) { 1052 if (const TemplateSpecializationType *SpecType 1053 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 1054 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1055 if (!Template) 1056 continue; // FIXME: should this be an error? probably... 1057 1058 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1059 ClassTemplateSpecializationDecl *SpecDecl 1060 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1061 // If the nested name specifier refers to an explicit specialization, 1062 // we don't need a template<> header. 1063 // FIXME: revisit this approach once we cope with specializations 1064 // properly. 1065 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 1066 continue; 1067 } 1068 1069 TemplateIdsInSpecifier.push_back(SpecType); 1070 } 1071 } 1072 1073 // Reverse the list of template-ids in the scope specifier, so that we can 1074 // more easily match up the template-ids and the template parameter lists. 1075 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1076 1077 SourceLocation FirstTemplateLoc = DeclStartLoc; 1078 if (NumParamLists) 1079 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1080 1081 // Match the template-ids found in the specifier to the template parameter 1082 // lists. 1083 unsigned Idx = 0; 1084 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1085 Idx != NumTemplateIds; ++Idx) { 1086 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1087 bool DependentTemplateId = TemplateId->isDependentType(); 1088 if (Idx >= NumParamLists) { 1089 // We have a template-id without a corresponding template parameter 1090 // list. 1091 if (DependentTemplateId) { 1092 // FIXME: the location information here isn't great. 1093 Diag(SS.getRange().getBegin(), 1094 diag::err_template_spec_needs_template_parameters) 1095 << TemplateId 1096 << SS.getRange(); 1097 } else { 1098 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1099 << SS.getRange() 1100 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1101 "template<> "); 1102 IsExplicitSpecialization = true; 1103 } 1104 return 0; 1105 } 1106 1107 // Check the template parameter list against its corresponding template-id. 1108 if (DependentTemplateId) { 1109 TemplateDecl *Template 1110 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1111 1112 if (ClassTemplateDecl *ClassTemplate 1113 = dyn_cast<ClassTemplateDecl>(Template)) { 1114 TemplateParameterList *ExpectedTemplateParams = 0; 1115 // Is this template-id naming the primary template? 1116 if (Context.hasSameType(TemplateId, 1117 ClassTemplate->getInjectedClassNameType(Context))) 1118 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1119 // ... or a partial specialization? 1120 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1121 = ClassTemplate->findPartialSpecialization(TemplateId)) 1122 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1123 1124 if (ExpectedTemplateParams) 1125 TemplateParameterListsAreEqual(ParamLists[Idx], 1126 ExpectedTemplateParams, 1127 true); 1128 } 1129 } else if (ParamLists[Idx]->size() > 0) 1130 Diag(ParamLists[Idx]->getTemplateLoc(), 1131 diag::err_template_param_list_matches_nontemplate) 1132 << TemplateId 1133 << ParamLists[Idx]->getSourceRange(); 1134 else 1135 IsExplicitSpecialization = true; 1136 } 1137 1138 // If there were at least as many template-ids as there were template 1139 // parameter lists, then there are no template parameter lists remaining for 1140 // the declaration itself. 1141 if (Idx >= NumParamLists) 1142 return 0; 1143 1144 // If there were too many template parameter lists, complain about that now. 1145 if (Idx != NumParamLists - 1) { 1146 while (Idx < NumParamLists - 1) { 1147 Diag(ParamLists[Idx]->getTemplateLoc(), 1148 diag::err_template_spec_extra_headers) 1149 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1150 ParamLists[Idx]->getRAngleLoc()); 1151 ++Idx; 1152 } 1153 } 1154 1155 // Return the last template parameter list, which corresponds to the 1156 // entity being declared. 1157 return ParamLists[NumParamLists - 1]; 1158} 1159 1160QualType Sema::CheckTemplateIdType(TemplateName Name, 1161 SourceLocation TemplateLoc, 1162 SourceLocation LAngleLoc, 1163 const TemplateArgumentLoc *TemplateArgs, 1164 unsigned NumTemplateArgs, 1165 SourceLocation RAngleLoc) { 1166 TemplateDecl *Template = Name.getAsTemplateDecl(); 1167 if (!Template) { 1168 // The template name does not resolve to a template, so we just 1169 // build a dependent template-id type. 1170 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1171 NumTemplateArgs); 1172 } 1173 1174 // Check that the template argument list is well-formed for this 1175 // template. 1176 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1177 NumTemplateArgs); 1178 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 1179 TemplateArgs, NumTemplateArgs, RAngleLoc, 1180 false, Converted)) 1181 return QualType(); 1182 1183 assert((Converted.structuredSize() == 1184 Template->getTemplateParameters()->size()) && 1185 "Converted template argument list is too short!"); 1186 1187 QualType CanonType; 1188 1189 if (TemplateSpecializationType::anyDependentTemplateArguments( 1190 TemplateArgs, 1191 NumTemplateArgs)) { 1192 // This class template specialization is a dependent 1193 // type. Therefore, its canonical type is another class template 1194 // specialization type that contains all of the converted 1195 // arguments in canonical form. This ensures that, e.g., A<T> and 1196 // A<T, T> have identical types when A is declared as: 1197 // 1198 // template<typename T, typename U = T> struct A; 1199 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1200 CanonType = Context.getTemplateSpecializationType(CanonName, 1201 Converted.getFlatArguments(), 1202 Converted.flatSize()); 1203 1204 // FIXME: CanonType is not actually the canonical type, and unfortunately 1205 // it is a TemplateSpecializationType that we will never use again. 1206 // In the future, we need to teach getTemplateSpecializationType to only 1207 // build the canonical type and return that to us. 1208 CanonType = Context.getCanonicalType(CanonType); 1209 } else if (ClassTemplateDecl *ClassTemplate 1210 = dyn_cast<ClassTemplateDecl>(Template)) { 1211 // Find the class template specialization declaration that 1212 // corresponds to these arguments. 1213 llvm::FoldingSetNodeID ID; 1214 ClassTemplateSpecializationDecl::Profile(ID, 1215 Converted.getFlatArguments(), 1216 Converted.flatSize(), 1217 Context); 1218 void *InsertPos = 0; 1219 ClassTemplateSpecializationDecl *Decl 1220 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1221 if (!Decl) { 1222 // This is the first time we have referenced this class template 1223 // specialization. Create the canonical declaration and add it to 1224 // the set of specializations. 1225 Decl = ClassTemplateSpecializationDecl::Create(Context, 1226 ClassTemplate->getDeclContext(), 1227 ClassTemplate->getLocation(), 1228 ClassTemplate, 1229 Converted, 0); 1230 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1231 Decl->setLexicalDeclContext(CurContext); 1232 } 1233 1234 CanonType = Context.getTypeDeclType(Decl); 1235 } 1236 1237 // Build the fully-sugared type for this class template 1238 // specialization, which refers back to the class template 1239 // specialization we created or found. 1240 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1241 NumTemplateArgs, CanonType); 1242} 1243 1244Action::TypeResult 1245Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1246 SourceLocation LAngleLoc, 1247 ASTTemplateArgsPtr TemplateArgsIn, 1248 SourceLocation RAngleLoc) { 1249 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1250 1251 // Translate the parser's template argument list in our AST format. 1252 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1253 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1254 1255 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1256 TemplateArgs.data(), 1257 TemplateArgs.size(), 1258 RAngleLoc); 1259 TemplateArgsIn.release(); 1260 1261 if (Result.isNull()) 1262 return true; 1263 1264 DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result); 1265 TemplateSpecializationTypeLoc TL 1266 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1267 TL.setTemplateNameLoc(TemplateLoc); 1268 TL.setLAngleLoc(LAngleLoc); 1269 TL.setRAngleLoc(RAngleLoc); 1270 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1271 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1272 1273 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1274} 1275 1276Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1277 TagUseKind TUK, 1278 DeclSpec::TST TagSpec, 1279 SourceLocation TagLoc) { 1280 if (TypeResult.isInvalid()) 1281 return Sema::TypeResult(); 1282 1283 // FIXME: preserve source info, ideally without copying the DI. 1284 DeclaratorInfo *DI; 1285 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1286 1287 // Verify the tag specifier. 1288 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1289 1290 if (const RecordType *RT = Type->getAs<RecordType>()) { 1291 RecordDecl *D = RT->getDecl(); 1292 1293 IdentifierInfo *Id = D->getIdentifier(); 1294 assert(Id && "templated class must have an identifier"); 1295 1296 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1297 Diag(TagLoc, diag::err_use_with_wrong_tag) 1298 << Type 1299 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1300 D->getKindName()); 1301 Diag(D->getLocation(), diag::note_previous_use); 1302 } 1303 } 1304 1305 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1306 1307 return ElabType.getAsOpaquePtr(); 1308} 1309 1310Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier, 1311 SourceRange QualifierRange, 1312 TemplateName Template, 1313 SourceLocation TemplateNameLoc, 1314 SourceLocation LAngleLoc, 1315 const TemplateArgumentLoc *TemplateArgs, 1316 unsigned NumTemplateArgs, 1317 SourceLocation RAngleLoc) { 1318 // FIXME: Can we do any checking at this point? I guess we could check the 1319 // template arguments that we have against the template name, if the template 1320 // name refers to a single template. That's not a terribly common case, 1321 // though. 1322 1323 // Cope with an implicit member access in a C++ non-static member function. 1324 NamedDecl *D = Template.getAsTemplateDecl(); 1325 if (!D) 1326 D = Template.getAsOverloadedFunctionDecl(); 1327 1328 CXXScopeSpec SS; 1329 SS.setRange(QualifierRange); 1330 SS.setScopeRep(Qualifier); 1331 QualType ThisType, MemberType; 1332 if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc, 1333 ThisType, MemberType)) { 1334 Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType); 1335 return Owned(MemberExpr::Create(Context, This, true, 1336 Qualifier, QualifierRange, 1337 D, TemplateNameLoc, true, 1338 LAngleLoc, TemplateArgs, 1339 NumTemplateArgs, RAngleLoc, 1340 Context.OverloadTy)); 1341 } 1342 1343 return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy, 1344 Qualifier, QualifierRange, 1345 Template, TemplateNameLoc, LAngleLoc, 1346 TemplateArgs, 1347 NumTemplateArgs, RAngleLoc)); 1348} 1349 1350Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS, 1351 TemplateTy TemplateD, 1352 SourceLocation TemplateNameLoc, 1353 SourceLocation LAngleLoc, 1354 ASTTemplateArgsPtr TemplateArgsIn, 1355 SourceLocation RAngleLoc) { 1356 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1357 1358 // Translate the parser's template argument list in our AST format. 1359 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1360 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1361 TemplateArgsIn.release(); 1362 1363 return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(), 1364 SS.getRange(), 1365 Template, TemplateNameLoc, LAngleLoc, 1366 TemplateArgs.data(), TemplateArgs.size(), 1367 RAngleLoc); 1368} 1369 1370/// \brief Form a dependent template name. 1371/// 1372/// This action forms a dependent template name given the template 1373/// name and its (presumably dependent) scope specifier. For 1374/// example, given "MetaFun::template apply", the scope specifier \p 1375/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1376/// of the "template" keyword, and "apply" is the \p Name. 1377Sema::TemplateTy 1378Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1379 const CXXScopeSpec &SS, 1380 UnqualifiedId &Name, 1381 TypeTy *ObjectType) { 1382 if ((ObjectType && 1383 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1384 (SS.isSet() && computeDeclContext(SS, false))) { 1385 // C++0x [temp.names]p5: 1386 // If a name prefixed by the keyword template is not the name of 1387 // a template, the program is ill-formed. [Note: the keyword 1388 // template may not be applied to non-template members of class 1389 // templates. -end note ] [ Note: as is the case with the 1390 // typename prefix, the template prefix is allowed in cases 1391 // where it is not strictly necessary; i.e., when the 1392 // nested-name-specifier or the expression on the left of the -> 1393 // or . is not dependent on a template-parameter, or the use 1394 // does not appear in the scope of a template. -end note] 1395 // 1396 // Note: C++03 was more strict here, because it banned the use of 1397 // the "template" keyword prior to a template-name that was not a 1398 // dependent name. C++ DR468 relaxed this requirement (the 1399 // "template" keyword is now permitted). We follow the C++0x 1400 // rules, even in C++03 mode, retroactively applying the DR. 1401 TemplateTy Template; 1402 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1403 false, Template); 1404 if (TNK == TNK_Non_template) { 1405 Diag(Name.getSourceRange().getBegin(), 1406 diag::err_template_kw_refers_to_non_template) 1407 << GetNameFromUnqualifiedId(Name) 1408 << Name.getSourceRange(); 1409 return TemplateTy(); 1410 } 1411 1412 return Template; 1413 } 1414 1415 NestedNameSpecifier *Qualifier 1416 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1417 1418 switch (Name.getKind()) { 1419 case UnqualifiedId::IK_Identifier: 1420 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1421 Name.Identifier)); 1422 1423 case UnqualifiedId::IK_OperatorFunctionId: 1424 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1425 Name.OperatorFunctionId.Operator)); 1426 1427 default: 1428 break; 1429 } 1430 1431 Diag(Name.getSourceRange().getBegin(), 1432 diag::err_template_kw_refers_to_non_template) 1433 << GetNameFromUnqualifiedId(Name) 1434 << Name.getSourceRange(); 1435 return TemplateTy(); 1436} 1437 1438bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1439 const TemplateArgumentLoc &AL, 1440 TemplateArgumentListBuilder &Converted) { 1441 const TemplateArgument &Arg = AL.getArgument(); 1442 1443 // Check template type parameter. 1444 if (Arg.getKind() != TemplateArgument::Type) { 1445 // C++ [temp.arg.type]p1: 1446 // A template-argument for a template-parameter which is a 1447 // type shall be a type-id. 1448 1449 // We have a template type parameter but the template argument 1450 // is not a type. 1451 SourceRange SR = AL.getSourceRange(); 1452 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1453 Diag(Param->getLocation(), diag::note_template_param_here); 1454 1455 return true; 1456 } 1457 1458 if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo())) 1459 return true; 1460 1461 // Add the converted template type argument. 1462 Converted.Append( 1463 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1464 return false; 1465} 1466 1467/// \brief Substitute template arguments into the default template argument for 1468/// the given template type parameter. 1469/// 1470/// \param SemaRef the semantic analysis object for which we are performing 1471/// the substitution. 1472/// 1473/// \param Template the template that we are synthesizing template arguments 1474/// for. 1475/// 1476/// \param TemplateLoc the location of the template name that started the 1477/// template-id we are checking. 1478/// 1479/// \param RAngleLoc the location of the right angle bracket ('>') that 1480/// terminates the template-id. 1481/// 1482/// \param Param the template template parameter whose default we are 1483/// substituting into. 1484/// 1485/// \param Converted the list of template arguments provided for template 1486/// parameters that precede \p Param in the template parameter list. 1487/// 1488/// \returns the substituted template argument, or NULL if an error occurred. 1489static DeclaratorInfo * 1490SubstDefaultTemplateArgument(Sema &SemaRef, 1491 TemplateDecl *Template, 1492 SourceLocation TemplateLoc, 1493 SourceLocation RAngleLoc, 1494 TemplateTypeParmDecl *Param, 1495 TemplateArgumentListBuilder &Converted) { 1496 DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo(); 1497 1498 // If the argument type is dependent, instantiate it now based 1499 // on the previously-computed template arguments. 1500 if (ArgType->getType()->isDependentType()) { 1501 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1502 /*TakeArgs=*/false); 1503 1504 MultiLevelTemplateArgumentList AllTemplateArgs 1505 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1506 1507 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1508 Template, Converted.getFlatArguments(), 1509 Converted.flatSize(), 1510 SourceRange(TemplateLoc, RAngleLoc)); 1511 1512 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1513 Param->getDefaultArgumentLoc(), 1514 Param->getDeclName()); 1515 } 1516 1517 return ArgType; 1518} 1519 1520/// \brief Substitute template arguments into the default template argument for 1521/// the given non-type template parameter. 1522/// 1523/// \param SemaRef the semantic analysis object for which we are performing 1524/// the substitution. 1525/// 1526/// \param Template the template that we are synthesizing template arguments 1527/// for. 1528/// 1529/// \param TemplateLoc the location of the template name that started the 1530/// template-id we are checking. 1531/// 1532/// \param RAngleLoc the location of the right angle bracket ('>') that 1533/// terminates the template-id. 1534/// 1535/// \param Param the non-type template parameter whose default we are 1536/// substituting into. 1537/// 1538/// \param Converted the list of template arguments provided for template 1539/// parameters that precede \p Param in the template parameter list. 1540/// 1541/// \returns the substituted template argument, or NULL if an error occurred. 1542static Sema::OwningExprResult 1543SubstDefaultTemplateArgument(Sema &SemaRef, 1544 TemplateDecl *Template, 1545 SourceLocation TemplateLoc, 1546 SourceLocation RAngleLoc, 1547 NonTypeTemplateParmDecl *Param, 1548 TemplateArgumentListBuilder &Converted) { 1549 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1550 /*TakeArgs=*/false); 1551 1552 MultiLevelTemplateArgumentList AllTemplateArgs 1553 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1554 1555 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1556 Template, Converted.getFlatArguments(), 1557 Converted.flatSize(), 1558 SourceRange(TemplateLoc, RAngleLoc)); 1559 1560 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1561} 1562 1563/// \brief Substitute template arguments into the default template argument for 1564/// the given template template parameter. 1565/// 1566/// \param SemaRef the semantic analysis object for which we are performing 1567/// the substitution. 1568/// 1569/// \param Template the template that we are synthesizing template arguments 1570/// for. 1571/// 1572/// \param TemplateLoc the location of the template name that started the 1573/// template-id we are checking. 1574/// 1575/// \param RAngleLoc the location of the right angle bracket ('>') that 1576/// terminates the template-id. 1577/// 1578/// \param Param the template template parameter whose default we are 1579/// substituting into. 1580/// 1581/// \param Converted the list of template arguments provided for template 1582/// parameters that precede \p Param in the template parameter list. 1583/// 1584/// \returns the substituted template argument, or NULL if an error occurred. 1585static TemplateName 1586SubstDefaultTemplateArgument(Sema &SemaRef, 1587 TemplateDecl *Template, 1588 SourceLocation TemplateLoc, 1589 SourceLocation RAngleLoc, 1590 TemplateTemplateParmDecl *Param, 1591 TemplateArgumentListBuilder &Converted) { 1592 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1593 /*TakeArgs=*/false); 1594 1595 MultiLevelTemplateArgumentList AllTemplateArgs 1596 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1597 1598 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1599 Template, Converted.getFlatArguments(), 1600 Converted.flatSize(), 1601 SourceRange(TemplateLoc, RAngleLoc)); 1602 1603 return SemaRef.SubstTemplateName( 1604 Param->getDefaultArgument().getArgument().getAsTemplate(), 1605 Param->getDefaultArgument().getTemplateNameLoc(), 1606 AllTemplateArgs); 1607} 1608 1609/// \brief Check that the given template argument corresponds to the given 1610/// template parameter. 1611bool Sema::CheckTemplateArgument(NamedDecl *Param, 1612 const TemplateArgumentLoc &Arg, 1613 unsigned ArgIdx, 1614 TemplateDecl *Template, 1615 SourceLocation TemplateLoc, 1616 SourceLocation LAngleLoc, 1617 const TemplateArgumentLoc *TemplateArgs, 1618 unsigned NumTemplateArgs, 1619 SourceLocation RAngleLoc, 1620 TemplateArgumentListBuilder &Converted) { 1621 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 1622 // Check template type parameters. 1623 if (TTP->isParameterPack()) { 1624 // Check all the remaining arguments (if any). 1625 Converted.BeginPack(); 1626 for (; ArgIdx < NumTemplateArgs; ++ArgIdx) { 1627 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1628 return true; 1629 } 1630 1631 Converted.EndPack(); 1632 return false; 1633 } 1634 1635 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1636 } 1637 1638 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1639 // Check non-type template parameters. 1640 1641 // Do substitution on the type of the non-type template parameter 1642 // with the template arguments we've seen thus far. 1643 QualType NTTPType = NTTP->getType(); 1644 if (NTTPType->isDependentType()) { 1645 // Do substitution on the type of the non-type template parameter. 1646 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1647 NTTP, Converted.getFlatArguments(), 1648 Converted.flatSize(), 1649 SourceRange(TemplateLoc, RAngleLoc)); 1650 1651 TemplateArgumentList TemplateArgs(Context, Converted, 1652 /*TakeArgs=*/false); 1653 NTTPType = SubstType(NTTPType, 1654 MultiLevelTemplateArgumentList(TemplateArgs), 1655 NTTP->getLocation(), 1656 NTTP->getDeclName()); 1657 // If that worked, check the non-type template parameter type 1658 // for validity. 1659 if (!NTTPType.isNull()) 1660 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1661 NTTP->getLocation()); 1662 if (NTTPType.isNull()) 1663 return true; 1664 } 1665 1666 switch (Arg.getArgument().getKind()) { 1667 case TemplateArgument::Null: 1668 assert(false && "Should never see a NULL template argument here"); 1669 return true; 1670 1671 case TemplateArgument::Expression: { 1672 Expr *E = Arg.getArgument().getAsExpr(); 1673 TemplateArgument Result; 1674 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1675 return true; 1676 1677 Converted.Append(Result); 1678 break; 1679 } 1680 1681 case TemplateArgument::Declaration: 1682 case TemplateArgument::Integral: 1683 // We've already checked this template argument, so just copy 1684 // it to the list of converted arguments. 1685 Converted.Append(Arg.getArgument()); 1686 break; 1687 1688 case TemplateArgument::Template: 1689 // We were given a template template argument. It may not be ill-formed; 1690 // see below. 1691 if (DependentTemplateName *DTN 1692 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1693 // We have a template argument such as \c T::template X, which we 1694 // parsed as a template template argument. However, since we now 1695 // know that we need a non-type template argument, convert this 1696 // template name into an expression. 1697 Expr *E = new (Context) UnresolvedDeclRefExpr(DTN->getIdentifier(), 1698 Context.DependentTy, 1699 Arg.getTemplateNameLoc(), 1700 Arg.getTemplateQualifierRange(), 1701 DTN->getQualifier(), 1702 /*isAddressOfOperand=*/false); 1703 1704 TemplateArgument Result; 1705 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1706 return true; 1707 1708 Converted.Append(Result); 1709 break; 1710 } 1711 1712 // We have a template argument that actually does refer to a class 1713 // template, template alias, or template template parameter, and 1714 // therefore cannot be a non-type template argument. 1715 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1716 << Arg.getSourceRange(); 1717 1718 Diag(Param->getLocation(), diag::note_template_param_here); 1719 return true; 1720 1721 case TemplateArgument::Type: { 1722 // We have a non-type template parameter but the template 1723 // argument is a type. 1724 1725 // C++ [temp.arg]p2: 1726 // In a template-argument, an ambiguity between a type-id and 1727 // an expression is resolved to a type-id, regardless of the 1728 // form of the corresponding template-parameter. 1729 // 1730 // We warn specifically about this case, since it can be rather 1731 // confusing for users. 1732 QualType T = Arg.getArgument().getAsType(); 1733 SourceRange SR = Arg.getSourceRange(); 1734 if (T->isFunctionType()) 1735 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 1736 else 1737 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1738 Diag(Param->getLocation(), diag::note_template_param_here); 1739 return true; 1740 } 1741 1742 case TemplateArgument::Pack: 1743 assert(0 && "FIXME: Implement!"); 1744 break; 1745 } 1746 1747 return false; 1748 } 1749 1750 1751 // Check template template parameters. 1752 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 1753 1754 // Substitute into the template parameter list of the template 1755 // template parameter, since previously-supplied template arguments 1756 // may appear within the template template parameter. 1757 { 1758 // Set up a template instantiation context. 1759 LocalInstantiationScope Scope(*this); 1760 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1761 TempParm, Converted.getFlatArguments(), 1762 Converted.flatSize(), 1763 SourceRange(TemplateLoc, RAngleLoc)); 1764 1765 TemplateArgumentList TemplateArgs(Context, Converted, 1766 /*TakeArgs=*/false); 1767 TempParm = cast_or_null<TemplateTemplateParmDecl>( 1768 SubstDecl(TempParm, CurContext, 1769 MultiLevelTemplateArgumentList(TemplateArgs))); 1770 if (!TempParm) 1771 return true; 1772 1773 // FIXME: TempParam is leaked. 1774 } 1775 1776 switch (Arg.getArgument().getKind()) { 1777 case TemplateArgument::Null: 1778 assert(false && "Should never see a NULL template argument here"); 1779 return true; 1780 1781 case TemplateArgument::Template: 1782 if (CheckTemplateArgument(TempParm, Arg)) 1783 return true; 1784 1785 Converted.Append(Arg.getArgument()); 1786 break; 1787 1788 case TemplateArgument::Expression: 1789 case TemplateArgument::Type: 1790 // We have a template template parameter but the template 1791 // argument does not refer to a template. 1792 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1793 return true; 1794 1795 case TemplateArgument::Declaration: 1796 llvm::llvm_unreachable( 1797 "Declaration argument with template template parameter"); 1798 break; 1799 case TemplateArgument::Integral: 1800 llvm::llvm_unreachable( 1801 "Integral argument with template template parameter"); 1802 break; 1803 1804 case TemplateArgument::Pack: 1805 assert(0 && "FIXME: Implement!"); 1806 break; 1807 } 1808 1809 return false; 1810} 1811 1812/// \brief Check that the given template argument list is well-formed 1813/// for specializing the given template. 1814bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1815 SourceLocation TemplateLoc, 1816 SourceLocation LAngleLoc, 1817 const TemplateArgumentLoc *TemplateArgs, 1818 unsigned NumTemplateArgs, 1819 SourceLocation RAngleLoc, 1820 bool PartialTemplateArgs, 1821 TemplateArgumentListBuilder &Converted) { 1822 TemplateParameterList *Params = Template->getTemplateParameters(); 1823 unsigned NumParams = Params->size(); 1824 unsigned NumArgs = NumTemplateArgs; 1825 bool Invalid = false; 1826 1827 bool HasParameterPack = 1828 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1829 1830 if ((NumArgs > NumParams && !HasParameterPack) || 1831 (NumArgs < Params->getMinRequiredArguments() && 1832 !PartialTemplateArgs)) { 1833 // FIXME: point at either the first arg beyond what we can handle, 1834 // or the '>', depending on whether we have too many or too few 1835 // arguments. 1836 SourceRange Range; 1837 if (NumArgs > NumParams) 1838 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1839 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1840 << (NumArgs > NumParams) 1841 << (isa<ClassTemplateDecl>(Template)? 0 : 1842 isa<FunctionTemplateDecl>(Template)? 1 : 1843 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1844 << Template << Range; 1845 Diag(Template->getLocation(), diag::note_template_decl_here) 1846 << Params->getSourceRange(); 1847 Invalid = true; 1848 } 1849 1850 // C++ [temp.arg]p1: 1851 // [...] The type and form of each template-argument specified in 1852 // a template-id shall match the type and form specified for the 1853 // corresponding parameter declared by the template in its 1854 // template-parameter-list. 1855 unsigned ArgIdx = 0; 1856 for (TemplateParameterList::iterator Param = Params->begin(), 1857 ParamEnd = Params->end(); 1858 Param != ParamEnd; ++Param, ++ArgIdx) { 1859 if (ArgIdx > NumArgs && PartialTemplateArgs) 1860 break; 1861 1862 // Decode the template argument 1863 TemplateArgumentLoc Arg; 1864 1865 if (ArgIdx >= NumArgs) { 1866 // Retrieve the default template argument from the template 1867 // parameter. 1868 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1869 if (TTP->isParameterPack()) { 1870 // We have an empty argument pack. 1871 Converted.BeginPack(); 1872 Converted.EndPack(); 1873 break; 1874 } 1875 1876 if (!TTP->hasDefaultArgument()) 1877 break; 1878 1879 DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this, 1880 Template, 1881 TemplateLoc, 1882 RAngleLoc, 1883 TTP, 1884 Converted); 1885 if (!ArgType) 1886 return true; 1887 1888 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 1889 ArgType); 1890 } else if (NonTypeTemplateParmDecl *NTTP 1891 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1892 if (!NTTP->hasDefaultArgument()) 1893 break; 1894 1895 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 1896 TemplateLoc, 1897 RAngleLoc, 1898 NTTP, 1899 Converted); 1900 if (E.isInvalid()) 1901 return true; 1902 1903 Expr *Ex = E.takeAs<Expr>(); 1904 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 1905 } else { 1906 TemplateTemplateParmDecl *TempParm 1907 = cast<TemplateTemplateParmDecl>(*Param); 1908 1909 if (!TempParm->hasDefaultArgument()) 1910 break; 1911 1912 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 1913 TemplateLoc, 1914 RAngleLoc, 1915 TempParm, 1916 Converted); 1917 if (Name.isNull()) 1918 return true; 1919 1920 Arg = TemplateArgumentLoc(TemplateArgument(Name), 1921 TempParm->getDefaultArgument().getTemplateQualifierRange(), 1922 TempParm->getDefaultArgument().getTemplateNameLoc()); 1923 } 1924 } else { 1925 // Retrieve the template argument produced by the user. 1926 Arg = TemplateArgs[ArgIdx]; 1927 } 1928 1929 if (CheckTemplateArgument(*Param, Arg, ArgIdx, Template, TemplateLoc, 1930 LAngleLoc, TemplateArgs, NumTemplateArgs, 1931 RAngleLoc, Converted)) 1932 return true; 1933 } 1934 1935 return Invalid; 1936} 1937 1938/// \brief Check a template argument against its corresponding 1939/// template type parameter. 1940/// 1941/// This routine implements the semantics of C++ [temp.arg.type]. It 1942/// returns true if an error occurred, and false otherwise. 1943bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1944 DeclaratorInfo *ArgInfo) { 1945 assert(ArgInfo && "invalid DeclaratorInfo"); 1946 QualType Arg = ArgInfo->getType(); 1947 1948 // C++ [temp.arg.type]p2: 1949 // A local type, a type with no linkage, an unnamed type or a type 1950 // compounded from any of these types shall not be used as a 1951 // template-argument for a template type-parameter. 1952 // 1953 // FIXME: Perform the recursive and no-linkage type checks. 1954 const TagType *Tag = 0; 1955 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 1956 Tag = EnumT; 1957 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1958 Tag = RecordT; 1959 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 1960 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 1961 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 1962 << QualType(Tag, 0) << SR; 1963 } else if (Tag && !Tag->getDecl()->getDeclName() && 1964 !Tag->getDecl()->getTypedefForAnonDecl()) { 1965 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 1966 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 1967 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1968 return true; 1969 } 1970 1971 return false; 1972} 1973 1974/// \brief Checks whether the given template argument is the address 1975/// of an object or function according to C++ [temp.arg.nontype]p1. 1976bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1977 NamedDecl *&Entity) { 1978 bool Invalid = false; 1979 1980 // See through any implicit casts we added to fix the type. 1981 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1982 Arg = Cast->getSubExpr(); 1983 1984 // C++0x allows nullptr, and there's no further checking to be done for that. 1985 if (Arg->getType()->isNullPtrType()) 1986 return false; 1987 1988 // C++ [temp.arg.nontype]p1: 1989 // 1990 // A template-argument for a non-type, non-template 1991 // template-parameter shall be one of: [...] 1992 // 1993 // -- the address of an object or function with external 1994 // linkage, including function templates and function 1995 // template-ids but excluding non-static class members, 1996 // expressed as & id-expression where the & is optional if 1997 // the name refers to a function or array, or if the 1998 // corresponding template-parameter is a reference; or 1999 DeclRefExpr *DRE = 0; 2000 2001 // Ignore (and complain about) any excess parentheses. 2002 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2003 if (!Invalid) { 2004 Diag(Arg->getSourceRange().getBegin(), 2005 diag::err_template_arg_extra_parens) 2006 << Arg->getSourceRange(); 2007 Invalid = true; 2008 } 2009 2010 Arg = Parens->getSubExpr(); 2011 } 2012 2013 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2014 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 2015 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2016 } else 2017 DRE = dyn_cast<DeclRefExpr>(Arg); 2018 2019 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 2020 return Diag(Arg->getSourceRange().getBegin(), 2021 diag::err_template_arg_not_object_or_func_form) 2022 << Arg->getSourceRange(); 2023 2024 // Cannot refer to non-static data members 2025 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 2026 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2027 << Field << Arg->getSourceRange(); 2028 2029 // Cannot refer to non-static member functions 2030 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2031 if (!Method->isStatic()) 2032 return Diag(Arg->getSourceRange().getBegin(), 2033 diag::err_template_arg_method) 2034 << Method << Arg->getSourceRange(); 2035 2036 // Functions must have external linkage. 2037 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2038 if (Func->getStorageClass() == FunctionDecl::Static) { 2039 Diag(Arg->getSourceRange().getBegin(), 2040 diag::err_template_arg_function_not_extern) 2041 << Func << Arg->getSourceRange(); 2042 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2043 << true; 2044 return true; 2045 } 2046 2047 // Okay: we've named a function with external linkage. 2048 Entity = Func; 2049 return Invalid; 2050 } 2051 2052 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2053 if (!Var->hasGlobalStorage()) { 2054 Diag(Arg->getSourceRange().getBegin(), 2055 diag::err_template_arg_object_not_extern) 2056 << Var << Arg->getSourceRange(); 2057 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2058 << true; 2059 return true; 2060 } 2061 2062 // Okay: we've named an object with external linkage 2063 Entity = Var; 2064 return Invalid; 2065 } 2066 2067 // We found something else, but we don't know specifically what it is. 2068 Diag(Arg->getSourceRange().getBegin(), 2069 diag::err_template_arg_not_object_or_func) 2070 << Arg->getSourceRange(); 2071 Diag(DRE->getDecl()->getLocation(), 2072 diag::note_template_arg_refers_here); 2073 return true; 2074} 2075 2076/// \brief Checks whether the given template argument is a pointer to 2077/// member constant according to C++ [temp.arg.nontype]p1. 2078bool 2079Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 2080 bool Invalid = false; 2081 2082 // See through any implicit casts we added to fix the type. 2083 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2084 Arg = Cast->getSubExpr(); 2085 2086 // C++0x allows nullptr, and there's no further checking to be done for that. 2087 if (Arg->getType()->isNullPtrType()) 2088 return false; 2089 2090 // C++ [temp.arg.nontype]p1: 2091 // 2092 // A template-argument for a non-type, non-template 2093 // template-parameter shall be one of: [...] 2094 // 2095 // -- a pointer to member expressed as described in 5.3.1. 2096 DeclRefExpr *DRE = 0; 2097 2098 // Ignore (and complain about) any excess parentheses. 2099 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2100 if (!Invalid) { 2101 Diag(Arg->getSourceRange().getBegin(), 2102 diag::err_template_arg_extra_parens) 2103 << Arg->getSourceRange(); 2104 Invalid = true; 2105 } 2106 2107 Arg = Parens->getSubExpr(); 2108 } 2109 2110 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 2111 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2112 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2113 if (DRE && !DRE->getQualifier()) 2114 DRE = 0; 2115 } 2116 2117 if (!DRE) 2118 return Diag(Arg->getSourceRange().getBegin(), 2119 diag::err_template_arg_not_pointer_to_member_form) 2120 << Arg->getSourceRange(); 2121 2122 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2123 assert((isa<FieldDecl>(DRE->getDecl()) || 2124 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2125 "Only non-static member pointers can make it here"); 2126 2127 // Okay: this is the address of a non-static member, and therefore 2128 // a member pointer constant. 2129 Member = DRE->getDecl(); 2130 return Invalid; 2131 } 2132 2133 // We found something else, but we don't know specifically what it is. 2134 Diag(Arg->getSourceRange().getBegin(), 2135 diag::err_template_arg_not_pointer_to_member_form) 2136 << Arg->getSourceRange(); 2137 Diag(DRE->getDecl()->getLocation(), 2138 diag::note_template_arg_refers_here); 2139 return true; 2140} 2141 2142/// \brief Check a template argument against its corresponding 2143/// non-type template parameter. 2144/// 2145/// This routine implements the semantics of C++ [temp.arg.nontype]. 2146/// It returns true if an error occurred, and false otherwise. \p 2147/// InstantiatedParamType is the type of the non-type template 2148/// parameter after it has been instantiated. 2149/// 2150/// If no error was detected, Converted receives the converted template argument. 2151bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2152 QualType InstantiatedParamType, Expr *&Arg, 2153 TemplateArgument &Converted) { 2154 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2155 2156 // If either the parameter has a dependent type or the argument is 2157 // type-dependent, there's nothing we can check now. 2158 // FIXME: Add template argument to Converted! 2159 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2160 // FIXME: Produce a cloned, canonical expression? 2161 Converted = TemplateArgument(Arg); 2162 return false; 2163 } 2164 2165 // C++ [temp.arg.nontype]p5: 2166 // The following conversions are performed on each expression used 2167 // as a non-type template-argument. If a non-type 2168 // template-argument cannot be converted to the type of the 2169 // corresponding template-parameter then the program is 2170 // ill-formed. 2171 // 2172 // -- for a non-type template-parameter of integral or 2173 // enumeration type, integral promotions (4.5) and integral 2174 // conversions (4.7) are applied. 2175 QualType ParamType = InstantiatedParamType; 2176 QualType ArgType = Arg->getType(); 2177 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2178 // C++ [temp.arg.nontype]p1: 2179 // A template-argument for a non-type, non-template 2180 // template-parameter shall be one of: 2181 // 2182 // -- an integral constant-expression of integral or enumeration 2183 // type; or 2184 // -- the name of a non-type template-parameter; or 2185 SourceLocation NonConstantLoc; 2186 llvm::APSInt Value; 2187 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2188 Diag(Arg->getSourceRange().getBegin(), 2189 diag::err_template_arg_not_integral_or_enumeral) 2190 << ArgType << Arg->getSourceRange(); 2191 Diag(Param->getLocation(), diag::note_template_param_here); 2192 return true; 2193 } else if (!Arg->isValueDependent() && 2194 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2195 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2196 << ArgType << Arg->getSourceRange(); 2197 return true; 2198 } 2199 2200 // FIXME: We need some way to more easily get the unqualified form 2201 // of the types without going all the way to the 2202 // canonical type. 2203 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 2204 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 2205 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 2206 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 2207 2208 // Try to convert the argument to the parameter's type. 2209 if (Context.hasSameType(ParamType, ArgType)) { 2210 // Okay: no conversion necessary 2211 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2212 !ParamType->isEnumeralType()) { 2213 // This is an integral promotion or conversion. 2214 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2215 } else { 2216 // We can't perform this conversion. 2217 Diag(Arg->getSourceRange().getBegin(), 2218 diag::err_template_arg_not_convertible) 2219 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2220 Diag(Param->getLocation(), diag::note_template_param_here); 2221 return true; 2222 } 2223 2224 QualType IntegerType = Context.getCanonicalType(ParamType); 2225 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2226 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2227 2228 if (!Arg->isValueDependent()) { 2229 // Check that an unsigned parameter does not receive a negative 2230 // value. 2231 if (IntegerType->isUnsignedIntegerType() 2232 && (Value.isSigned() && Value.isNegative())) { 2233 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2234 << Value.toString(10) << Param->getType() 2235 << Arg->getSourceRange(); 2236 Diag(Param->getLocation(), diag::note_template_param_here); 2237 return true; 2238 } 2239 2240 // Check that we don't overflow the template parameter type. 2241 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2242 if (Value.getActiveBits() > AllowedBits) { 2243 Diag(Arg->getSourceRange().getBegin(), 2244 diag::err_template_arg_too_large) 2245 << Value.toString(10) << Param->getType() 2246 << Arg->getSourceRange(); 2247 Diag(Param->getLocation(), diag::note_template_param_here); 2248 return true; 2249 } 2250 2251 if (Value.getBitWidth() != AllowedBits) 2252 Value.extOrTrunc(AllowedBits); 2253 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2254 } 2255 2256 // Add the value of this argument to the list of converted 2257 // arguments. We use the bitwidth and signedness of the template 2258 // parameter. 2259 if (Arg->isValueDependent()) { 2260 // The argument is value-dependent. Create a new 2261 // TemplateArgument with the converted expression. 2262 Converted = TemplateArgument(Arg); 2263 return false; 2264 } 2265 2266 Converted = TemplateArgument(Value, 2267 ParamType->isEnumeralType() ? ParamType 2268 : IntegerType); 2269 return false; 2270 } 2271 2272 // Handle pointer-to-function, reference-to-function, and 2273 // pointer-to-member-function all in (roughly) the same way. 2274 if (// -- For a non-type template-parameter of type pointer to 2275 // function, only the function-to-pointer conversion (4.3) is 2276 // applied. If the template-argument represents a set of 2277 // overloaded functions (or a pointer to such), the matching 2278 // function is selected from the set (13.4). 2279 // In C++0x, any std::nullptr_t value can be converted. 2280 (ParamType->isPointerType() && 2281 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2282 // -- For a non-type template-parameter of type reference to 2283 // function, no conversions apply. If the template-argument 2284 // represents a set of overloaded functions, the matching 2285 // function is selected from the set (13.4). 2286 (ParamType->isReferenceType() && 2287 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2288 // -- For a non-type template-parameter of type pointer to 2289 // member function, no conversions apply. If the 2290 // template-argument represents a set of overloaded member 2291 // functions, the matching member function is selected from 2292 // the set (13.4). 2293 // Again, C++0x allows a std::nullptr_t value. 2294 (ParamType->isMemberPointerType() && 2295 ParamType->getAs<MemberPointerType>()->getPointeeType() 2296 ->isFunctionType())) { 2297 if (Context.hasSameUnqualifiedType(ArgType, 2298 ParamType.getNonReferenceType())) { 2299 // We don't have to do anything: the types already match. 2300 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2301 ParamType->isMemberPointerType())) { 2302 ArgType = ParamType; 2303 if (ParamType->isMemberPointerType()) 2304 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2305 else 2306 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2307 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2308 ArgType = Context.getPointerType(ArgType); 2309 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2310 } else if (FunctionDecl *Fn 2311 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2312 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2313 return true; 2314 2315 Arg = FixOverloadedFunctionReference(Arg, Fn); 2316 ArgType = Arg->getType(); 2317 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2318 ArgType = Context.getPointerType(Arg->getType()); 2319 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2320 } 2321 } 2322 2323 if (!Context.hasSameUnqualifiedType(ArgType, 2324 ParamType.getNonReferenceType())) { 2325 // We can't perform this conversion. 2326 Diag(Arg->getSourceRange().getBegin(), 2327 diag::err_template_arg_not_convertible) 2328 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2329 Diag(Param->getLocation(), diag::note_template_param_here); 2330 return true; 2331 } 2332 2333 if (ParamType->isMemberPointerType()) { 2334 NamedDecl *Member = 0; 2335 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2336 return true; 2337 2338 if (Member) 2339 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2340 Converted = TemplateArgument(Member); 2341 return false; 2342 } 2343 2344 NamedDecl *Entity = 0; 2345 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2346 return true; 2347 2348 if (Entity) 2349 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2350 Converted = TemplateArgument(Entity); 2351 return false; 2352 } 2353 2354 if (ParamType->isPointerType()) { 2355 // -- for a non-type template-parameter of type pointer to 2356 // object, qualification conversions (4.4) and the 2357 // array-to-pointer conversion (4.2) are applied. 2358 // C++0x also allows a value of std::nullptr_t. 2359 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2360 "Only object pointers allowed here"); 2361 2362 if (ArgType->isNullPtrType()) { 2363 ArgType = ParamType; 2364 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2365 } else if (ArgType->isArrayType()) { 2366 ArgType = Context.getArrayDecayedType(ArgType); 2367 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2368 } 2369 2370 if (IsQualificationConversion(ArgType, ParamType)) { 2371 ArgType = ParamType; 2372 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2373 } 2374 2375 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2376 // We can't perform this conversion. 2377 Diag(Arg->getSourceRange().getBegin(), 2378 diag::err_template_arg_not_convertible) 2379 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2380 Diag(Param->getLocation(), diag::note_template_param_here); 2381 return true; 2382 } 2383 2384 NamedDecl *Entity = 0; 2385 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2386 return true; 2387 2388 if (Entity) 2389 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2390 Converted = TemplateArgument(Entity); 2391 return false; 2392 } 2393 2394 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2395 // -- For a non-type template-parameter of type reference to 2396 // object, no conversions apply. The type referred to by the 2397 // reference may be more cv-qualified than the (otherwise 2398 // identical) type of the template-argument. The 2399 // template-parameter is bound directly to the 2400 // template-argument, which must be an lvalue. 2401 assert(ParamRefType->getPointeeType()->isObjectType() && 2402 "Only object references allowed here"); 2403 2404 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2405 Diag(Arg->getSourceRange().getBegin(), 2406 diag::err_template_arg_no_ref_bind) 2407 << InstantiatedParamType << Arg->getType() 2408 << Arg->getSourceRange(); 2409 Diag(Param->getLocation(), diag::note_template_param_here); 2410 return true; 2411 } 2412 2413 unsigned ParamQuals 2414 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2415 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2416 2417 if ((ParamQuals | ArgQuals) != ParamQuals) { 2418 Diag(Arg->getSourceRange().getBegin(), 2419 diag::err_template_arg_ref_bind_ignores_quals) 2420 << InstantiatedParamType << Arg->getType() 2421 << Arg->getSourceRange(); 2422 Diag(Param->getLocation(), diag::note_template_param_here); 2423 return true; 2424 } 2425 2426 NamedDecl *Entity = 0; 2427 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2428 return true; 2429 2430 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2431 Converted = TemplateArgument(Entity); 2432 return false; 2433 } 2434 2435 // -- For a non-type template-parameter of type pointer to data 2436 // member, qualification conversions (4.4) are applied. 2437 // C++0x allows std::nullptr_t values. 2438 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2439 2440 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2441 // Types match exactly: nothing more to do here. 2442 } else if (ArgType->isNullPtrType()) { 2443 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2444 } else if (IsQualificationConversion(ArgType, ParamType)) { 2445 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2446 } else { 2447 // We can't perform this conversion. 2448 Diag(Arg->getSourceRange().getBegin(), 2449 diag::err_template_arg_not_convertible) 2450 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2451 Diag(Param->getLocation(), diag::note_template_param_here); 2452 return true; 2453 } 2454 2455 NamedDecl *Member = 0; 2456 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2457 return true; 2458 2459 if (Member) 2460 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2461 Converted = TemplateArgument(Member); 2462 return false; 2463} 2464 2465/// \brief Check a template argument against its corresponding 2466/// template template parameter. 2467/// 2468/// This routine implements the semantics of C++ [temp.arg.template]. 2469/// It returns true if an error occurred, and false otherwise. 2470bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2471 const TemplateArgumentLoc &Arg) { 2472 TemplateName Name = Arg.getArgument().getAsTemplate(); 2473 TemplateDecl *Template = Name.getAsTemplateDecl(); 2474 if (!Template) { 2475 // Any dependent template name is fine. 2476 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2477 return false; 2478 } 2479 2480 // C++ [temp.arg.template]p1: 2481 // A template-argument for a template template-parameter shall be 2482 // the name of a class template, expressed as id-expression. Only 2483 // primary class templates are considered when matching the 2484 // template template argument with the corresponding parameter; 2485 // partial specializations are not considered even if their 2486 // parameter lists match that of the template template parameter. 2487 // 2488 // Note that we also allow template template parameters here, which 2489 // will happen when we are dealing with, e.g., class template 2490 // partial specializations. 2491 if (!isa<ClassTemplateDecl>(Template) && 2492 !isa<TemplateTemplateParmDecl>(Template)) { 2493 assert(isa<FunctionTemplateDecl>(Template) && 2494 "Only function templates are possible here"); 2495 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2496 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2497 << Template; 2498 } 2499 2500 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2501 Param->getTemplateParameters(), 2502 true, true, 2503 Arg.getLocation()); 2504} 2505 2506/// \brief Determine whether the given template parameter lists are 2507/// equivalent. 2508/// 2509/// \param New The new template parameter list, typically written in the 2510/// source code as part of a new template declaration. 2511/// 2512/// \param Old The old template parameter list, typically found via 2513/// name lookup of the template declared with this template parameter 2514/// list. 2515/// 2516/// \param Complain If true, this routine will produce a diagnostic if 2517/// the template parameter lists are not equivalent. 2518/// 2519/// \param IsTemplateTemplateParm If true, this routine is being 2520/// called to compare the template parameter lists of a template 2521/// template parameter. 2522/// 2523/// \param TemplateArgLoc If this source location is valid, then we 2524/// are actually checking the template parameter list of a template 2525/// argument (New) against the template parameter list of its 2526/// corresponding template template parameter (Old). We produce 2527/// slightly different diagnostics in this scenario. 2528/// 2529/// \returns True if the template parameter lists are equal, false 2530/// otherwise. 2531bool 2532Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2533 TemplateParameterList *Old, 2534 bool Complain, 2535 bool IsTemplateTemplateParm, 2536 SourceLocation TemplateArgLoc) { 2537 if (Old->size() != New->size()) { 2538 if (Complain) { 2539 unsigned NextDiag = diag::err_template_param_list_different_arity; 2540 if (TemplateArgLoc.isValid()) { 2541 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2542 NextDiag = diag::note_template_param_list_different_arity; 2543 } 2544 Diag(New->getTemplateLoc(), NextDiag) 2545 << (New->size() > Old->size()) 2546 << IsTemplateTemplateParm 2547 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2548 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2549 << IsTemplateTemplateParm 2550 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2551 } 2552 2553 return false; 2554 } 2555 2556 for (TemplateParameterList::iterator OldParm = Old->begin(), 2557 OldParmEnd = Old->end(), NewParm = New->begin(); 2558 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2559 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2560 if (Complain) { 2561 unsigned NextDiag = diag::err_template_param_different_kind; 2562 if (TemplateArgLoc.isValid()) { 2563 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2564 NextDiag = diag::note_template_param_different_kind; 2565 } 2566 Diag((*NewParm)->getLocation(), NextDiag) 2567 << IsTemplateTemplateParm; 2568 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2569 << IsTemplateTemplateParm; 2570 } 2571 return false; 2572 } 2573 2574 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2575 // Okay; all template type parameters are equivalent (since we 2576 // know we're at the same index). 2577 } else if (NonTypeTemplateParmDecl *OldNTTP 2578 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2579 // The types of non-type template parameters must agree. 2580 NonTypeTemplateParmDecl *NewNTTP 2581 = cast<NonTypeTemplateParmDecl>(*NewParm); 2582 if (Context.getCanonicalType(OldNTTP->getType()) != 2583 Context.getCanonicalType(NewNTTP->getType())) { 2584 if (Complain) { 2585 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2586 if (TemplateArgLoc.isValid()) { 2587 Diag(TemplateArgLoc, 2588 diag::err_template_arg_template_params_mismatch); 2589 NextDiag = diag::note_template_nontype_parm_different_type; 2590 } 2591 Diag(NewNTTP->getLocation(), NextDiag) 2592 << NewNTTP->getType() 2593 << IsTemplateTemplateParm; 2594 Diag(OldNTTP->getLocation(), 2595 diag::note_template_nontype_parm_prev_declaration) 2596 << OldNTTP->getType(); 2597 } 2598 return false; 2599 } 2600 assert(OldNTTP->getDepth() == NewNTTP->getDepth() && 2601 "Non-type template parameter depth mismatch"); 2602 assert(OldNTTP->getPosition() == NewNTTP->getPosition() && 2603 "Non-type template parameter position mismatch"); 2604 } else { 2605 // The template parameter lists of template template 2606 // parameters must agree. 2607 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2608 "Only template template parameters handled here"); 2609 TemplateTemplateParmDecl *OldTTP 2610 = cast<TemplateTemplateParmDecl>(*OldParm); 2611 TemplateTemplateParmDecl *NewTTP 2612 = cast<TemplateTemplateParmDecl>(*NewParm); 2613 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2614 OldTTP->getTemplateParameters(), 2615 Complain, 2616 /*IsTemplateTemplateParm=*/true, 2617 TemplateArgLoc)) 2618 return false; 2619 2620 assert(OldTTP->getDepth() == NewTTP->getDepth() && 2621 "Template template parameter depth mismatch"); 2622 assert(OldTTP->getPosition() == NewTTP->getPosition() && 2623 "Template template parameter position mismatch"); 2624 } 2625 } 2626 2627 return true; 2628} 2629 2630/// \brief Check whether a template can be declared within this scope. 2631/// 2632/// If the template declaration is valid in this scope, returns 2633/// false. Otherwise, issues a diagnostic and returns true. 2634bool 2635Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2636 // Find the nearest enclosing declaration scope. 2637 while ((S->getFlags() & Scope::DeclScope) == 0 || 2638 (S->getFlags() & Scope::TemplateParamScope) != 0) 2639 S = S->getParent(); 2640 2641 // C++ [temp]p2: 2642 // A template-declaration can appear only as a namespace scope or 2643 // class scope declaration. 2644 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2645 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2646 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2647 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2648 << TemplateParams->getSourceRange(); 2649 2650 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2651 Ctx = Ctx->getParent(); 2652 2653 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2654 return false; 2655 2656 return Diag(TemplateParams->getTemplateLoc(), 2657 diag::err_template_outside_namespace_or_class_scope) 2658 << TemplateParams->getSourceRange(); 2659} 2660 2661/// \brief Determine what kind of template specialization the given declaration 2662/// is. 2663static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2664 if (!D) 2665 return TSK_Undeclared; 2666 2667 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2668 return Record->getTemplateSpecializationKind(); 2669 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2670 return Function->getTemplateSpecializationKind(); 2671 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2672 return Var->getTemplateSpecializationKind(); 2673 2674 return TSK_Undeclared; 2675} 2676 2677/// \brief Check whether a specialization is well-formed in the current 2678/// context. 2679/// 2680/// This routine determines whether a template specialization can be declared 2681/// in the current context (C++ [temp.expl.spec]p2). 2682/// 2683/// \param S the semantic analysis object for which this check is being 2684/// performed. 2685/// 2686/// \param Specialized the entity being specialized or instantiated, which 2687/// may be a kind of template (class template, function template, etc.) or 2688/// a member of a class template (member function, static data member, 2689/// member class). 2690/// 2691/// \param PrevDecl the previous declaration of this entity, if any. 2692/// 2693/// \param Loc the location of the explicit specialization or instantiation of 2694/// this entity. 2695/// 2696/// \param IsPartialSpecialization whether this is a partial specialization of 2697/// a class template. 2698/// 2699/// \returns true if there was an error that we cannot recover from, false 2700/// otherwise. 2701static bool CheckTemplateSpecializationScope(Sema &S, 2702 NamedDecl *Specialized, 2703 NamedDecl *PrevDecl, 2704 SourceLocation Loc, 2705 bool IsPartialSpecialization) { 2706 // Keep these "kind" numbers in sync with the %select statements in the 2707 // various diagnostics emitted by this routine. 2708 int EntityKind = 0; 2709 bool isTemplateSpecialization = false; 2710 if (isa<ClassTemplateDecl>(Specialized)) { 2711 EntityKind = IsPartialSpecialization? 1 : 0; 2712 isTemplateSpecialization = true; 2713 } else if (isa<FunctionTemplateDecl>(Specialized)) { 2714 EntityKind = 2; 2715 isTemplateSpecialization = true; 2716 } else if (isa<CXXMethodDecl>(Specialized)) 2717 EntityKind = 3; 2718 else if (isa<VarDecl>(Specialized)) 2719 EntityKind = 4; 2720 else if (isa<RecordDecl>(Specialized)) 2721 EntityKind = 5; 2722 else { 2723 S.Diag(Loc, diag::err_template_spec_unknown_kind); 2724 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2725 return true; 2726 } 2727 2728 // C++ [temp.expl.spec]p2: 2729 // An explicit specialization shall be declared in the namespace 2730 // of which the template is a member, or, for member templates, in 2731 // the namespace of which the enclosing class or enclosing class 2732 // template is a member. An explicit specialization of a member 2733 // function, member class or static data member of a class 2734 // template shall be declared in the namespace of which the class 2735 // template is a member. Such a declaration may also be a 2736 // definition. If the declaration is not a definition, the 2737 // specialization may be defined later in the name- space in which 2738 // the explicit specialization was declared, or in a namespace 2739 // that encloses the one in which the explicit specialization was 2740 // declared. 2741 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 2742 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 2743 << Specialized; 2744 return true; 2745 } 2746 2747 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 2748 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 2749 << Specialized; 2750 return true; 2751 } 2752 2753 // C++ [temp.class.spec]p6: 2754 // A class template partial specialization may be declared or redeclared 2755 // in any namespace scope in which its definition may be defined (14.5.1 2756 // and 14.5.2). 2757 bool ComplainedAboutScope = false; 2758 DeclContext *SpecializedContext 2759 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 2760 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 2761 if ((!PrevDecl || 2762 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 2763 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 2764 // There is no prior declaration of this entity, so this 2765 // specialization must be in the same context as the template 2766 // itself. 2767 if (!DC->Equals(SpecializedContext)) { 2768 if (isa<TranslationUnitDecl>(SpecializedContext)) 2769 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 2770 << EntityKind << Specialized; 2771 else if (isa<NamespaceDecl>(SpecializedContext)) 2772 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 2773 << EntityKind << Specialized 2774 << cast<NamedDecl>(SpecializedContext); 2775 2776 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2777 ComplainedAboutScope = true; 2778 } 2779 } 2780 2781 // Make sure that this redeclaration (or definition) occurs in an enclosing 2782 // namespace. 2783 // Note that HandleDeclarator() performs this check for explicit 2784 // specializations of function templates, static data members, and member 2785 // functions, so we skip the check here for those kinds of entities. 2786 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 2787 // Should we refactor that check, so that it occurs later? 2788 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 2789 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 2790 isa<FunctionDecl>(Specialized))) { 2791 if (isa<TranslationUnitDecl>(SpecializedContext)) 2792 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 2793 << EntityKind << Specialized; 2794 else if (isa<NamespaceDecl>(SpecializedContext)) 2795 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 2796 << EntityKind << Specialized 2797 << cast<NamedDecl>(SpecializedContext); 2798 2799 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2800 } 2801 2802 // FIXME: check for specialization-after-instantiation errors and such. 2803 2804 return false; 2805} 2806 2807/// \brief Check the non-type template arguments of a class template 2808/// partial specialization according to C++ [temp.class.spec]p9. 2809/// 2810/// \param TemplateParams the template parameters of the primary class 2811/// template. 2812/// 2813/// \param TemplateArg the template arguments of the class template 2814/// partial specialization. 2815/// 2816/// \param MirrorsPrimaryTemplate will be set true if the class 2817/// template partial specialization arguments are identical to the 2818/// implicit template arguments of the primary template. This is not 2819/// necessarily an error (C++0x), and it is left to the caller to diagnose 2820/// this condition when it is an error. 2821/// 2822/// \returns true if there was an error, false otherwise. 2823bool Sema::CheckClassTemplatePartialSpecializationArgs( 2824 TemplateParameterList *TemplateParams, 2825 const TemplateArgumentListBuilder &TemplateArgs, 2826 bool &MirrorsPrimaryTemplate) { 2827 // FIXME: the interface to this function will have to change to 2828 // accommodate variadic templates. 2829 MirrorsPrimaryTemplate = true; 2830 2831 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2832 2833 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2834 // Determine whether the template argument list of the partial 2835 // specialization is identical to the implicit argument list of 2836 // the primary template. The caller may need to diagnostic this as 2837 // an error per C++ [temp.class.spec]p9b3. 2838 if (MirrorsPrimaryTemplate) { 2839 if (TemplateTypeParmDecl *TTP 2840 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2841 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2842 Context.getCanonicalType(ArgList[I].getAsType())) 2843 MirrorsPrimaryTemplate = false; 2844 } else if (TemplateTemplateParmDecl *TTP 2845 = dyn_cast<TemplateTemplateParmDecl>( 2846 TemplateParams->getParam(I))) { 2847 TemplateName Name = ArgList[I].getAsTemplate(); 2848 TemplateTemplateParmDecl *ArgDecl 2849 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 2850 if (!ArgDecl || 2851 ArgDecl->getIndex() != TTP->getIndex() || 2852 ArgDecl->getDepth() != TTP->getDepth()) 2853 MirrorsPrimaryTemplate = false; 2854 } 2855 } 2856 2857 NonTypeTemplateParmDecl *Param 2858 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2859 if (!Param) { 2860 continue; 2861 } 2862 2863 Expr *ArgExpr = ArgList[I].getAsExpr(); 2864 if (!ArgExpr) { 2865 MirrorsPrimaryTemplate = false; 2866 continue; 2867 } 2868 2869 // C++ [temp.class.spec]p8: 2870 // A non-type argument is non-specialized if it is the name of a 2871 // non-type parameter. All other non-type arguments are 2872 // specialized. 2873 // 2874 // Below, we check the two conditions that only apply to 2875 // specialized non-type arguments, so skip any non-specialized 2876 // arguments. 2877 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2878 if (NonTypeTemplateParmDecl *NTTP 2879 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2880 if (MirrorsPrimaryTemplate && 2881 (Param->getIndex() != NTTP->getIndex() || 2882 Param->getDepth() != NTTP->getDepth())) 2883 MirrorsPrimaryTemplate = false; 2884 2885 continue; 2886 } 2887 2888 // C++ [temp.class.spec]p9: 2889 // Within the argument list of a class template partial 2890 // specialization, the following restrictions apply: 2891 // -- A partially specialized non-type argument expression 2892 // shall not involve a template parameter of the partial 2893 // specialization except when the argument expression is a 2894 // simple identifier. 2895 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2896 Diag(ArgExpr->getLocStart(), 2897 diag::err_dependent_non_type_arg_in_partial_spec) 2898 << ArgExpr->getSourceRange(); 2899 return true; 2900 } 2901 2902 // -- The type of a template parameter corresponding to a 2903 // specialized non-type argument shall not be dependent on a 2904 // parameter of the specialization. 2905 if (Param->getType()->isDependentType()) { 2906 Diag(ArgExpr->getLocStart(), 2907 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2908 << Param->getType() 2909 << ArgExpr->getSourceRange(); 2910 Diag(Param->getLocation(), diag::note_template_param_here); 2911 return true; 2912 } 2913 2914 MirrorsPrimaryTemplate = false; 2915 } 2916 2917 return false; 2918} 2919 2920Sema::DeclResult 2921Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2922 TagUseKind TUK, 2923 SourceLocation KWLoc, 2924 const CXXScopeSpec &SS, 2925 TemplateTy TemplateD, 2926 SourceLocation TemplateNameLoc, 2927 SourceLocation LAngleLoc, 2928 ASTTemplateArgsPtr TemplateArgsIn, 2929 SourceLocation RAngleLoc, 2930 AttributeList *Attr, 2931 MultiTemplateParamsArg TemplateParameterLists) { 2932 assert(TUK != TUK_Reference && "References are not specializations"); 2933 2934 // Find the class template we're specializing 2935 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2936 ClassTemplateDecl *ClassTemplate 2937 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2938 2939 bool isExplicitSpecialization = false; 2940 bool isPartialSpecialization = false; 2941 2942 // Check the validity of the template headers that introduce this 2943 // template. 2944 // FIXME: We probably shouldn't complain about these headers for 2945 // friend declarations. 2946 TemplateParameterList *TemplateParams 2947 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2948 (TemplateParameterList**)TemplateParameterLists.get(), 2949 TemplateParameterLists.size(), 2950 isExplicitSpecialization); 2951 if (TemplateParams && TemplateParams->size() > 0) { 2952 isPartialSpecialization = true; 2953 2954 // C++ [temp.class.spec]p10: 2955 // The template parameter list of a specialization shall not 2956 // contain default template argument values. 2957 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2958 Decl *Param = TemplateParams->getParam(I); 2959 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2960 if (TTP->hasDefaultArgument()) { 2961 Diag(TTP->getDefaultArgumentLoc(), 2962 diag::err_default_arg_in_partial_spec); 2963 TTP->removeDefaultArgument(); 2964 } 2965 } else if (NonTypeTemplateParmDecl *NTTP 2966 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2967 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2968 Diag(NTTP->getDefaultArgumentLoc(), 2969 diag::err_default_arg_in_partial_spec) 2970 << DefArg->getSourceRange(); 2971 NTTP->setDefaultArgument(0); 2972 DefArg->Destroy(Context); 2973 } 2974 } else { 2975 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2976 if (TTP->hasDefaultArgument()) { 2977 Diag(TTP->getDefaultArgument().getLocation(), 2978 diag::err_default_arg_in_partial_spec) 2979 << TTP->getDefaultArgument().getSourceRange(); 2980 TTP->setDefaultArgument(TemplateArgumentLoc()); 2981 } 2982 } 2983 } 2984 } else if (TemplateParams) { 2985 if (TUK == TUK_Friend) 2986 Diag(KWLoc, diag::err_template_spec_friend) 2987 << CodeModificationHint::CreateRemoval( 2988 SourceRange(TemplateParams->getTemplateLoc(), 2989 TemplateParams->getRAngleLoc())) 2990 << SourceRange(LAngleLoc, RAngleLoc); 2991 else 2992 isExplicitSpecialization = true; 2993 } else if (TUK != TUK_Friend) { 2994 Diag(KWLoc, diag::err_template_spec_needs_header) 2995 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2996 isExplicitSpecialization = true; 2997 } 2998 2999 // Check that the specialization uses the same tag kind as the 3000 // original template. 3001 TagDecl::TagKind Kind; 3002 switch (TagSpec) { 3003 default: assert(0 && "Unknown tag type!"); 3004 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3005 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3006 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3007 } 3008 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3009 Kind, KWLoc, 3010 *ClassTemplate->getIdentifier())) { 3011 Diag(KWLoc, diag::err_use_with_wrong_tag) 3012 << ClassTemplate 3013 << CodeModificationHint::CreateReplacement(KWLoc, 3014 ClassTemplate->getTemplatedDecl()->getKindName()); 3015 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3016 diag::note_previous_use); 3017 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3018 } 3019 3020 // Translate the parser's template argument list in our AST format. 3021 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 3022 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3023 3024 // Check that the template argument list is well-formed for this 3025 // template. 3026 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3027 TemplateArgs.size()); 3028 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 3029 TemplateArgs.data(), TemplateArgs.size(), 3030 RAngleLoc, false, Converted)) 3031 return true; 3032 3033 assert((Converted.structuredSize() == 3034 ClassTemplate->getTemplateParameters()->size()) && 3035 "Converted template argument list is too short!"); 3036 3037 // Find the class template (partial) specialization declaration that 3038 // corresponds to these arguments. 3039 llvm::FoldingSetNodeID ID; 3040 if (isPartialSpecialization) { 3041 bool MirrorsPrimaryTemplate; 3042 if (CheckClassTemplatePartialSpecializationArgs( 3043 ClassTemplate->getTemplateParameters(), 3044 Converted, MirrorsPrimaryTemplate)) 3045 return true; 3046 3047 if (MirrorsPrimaryTemplate) { 3048 // C++ [temp.class.spec]p9b3: 3049 // 3050 // -- The argument list of the specialization shall not be identical 3051 // to the implicit argument list of the primary template. 3052 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3053 << (TUK == TUK_Definition) 3054 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 3055 RAngleLoc)); 3056 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3057 ClassTemplate->getIdentifier(), 3058 TemplateNameLoc, 3059 Attr, 3060 TemplateParams, 3061 AS_none); 3062 } 3063 3064 // FIXME: Diagnose friend partial specializations 3065 3066 // FIXME: Template parameter list matters, too 3067 ClassTemplatePartialSpecializationDecl::Profile(ID, 3068 Converted.getFlatArguments(), 3069 Converted.flatSize(), 3070 Context); 3071 } else 3072 ClassTemplateSpecializationDecl::Profile(ID, 3073 Converted.getFlatArguments(), 3074 Converted.flatSize(), 3075 Context); 3076 void *InsertPos = 0; 3077 ClassTemplateSpecializationDecl *PrevDecl = 0; 3078 3079 if (isPartialSpecialization) 3080 PrevDecl 3081 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3082 InsertPos); 3083 else 3084 PrevDecl 3085 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3086 3087 ClassTemplateSpecializationDecl *Specialization = 0; 3088 3089 // Check whether we can declare a class template specialization in 3090 // the current scope. 3091 if (TUK != TUK_Friend && 3092 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3093 TemplateNameLoc, 3094 isPartialSpecialization)) 3095 return true; 3096 3097 // The canonical type 3098 QualType CanonType; 3099 if (PrevDecl && 3100 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3101 TUK == TUK_Friend)) { 3102 // Since the only prior class template specialization with these 3103 // arguments was referenced but not declared, or we're only 3104 // referencing this specialization as a friend, reuse that 3105 // declaration node as our own, updating its source location to 3106 // reflect our new declaration. 3107 Specialization = PrevDecl; 3108 Specialization->setLocation(TemplateNameLoc); 3109 PrevDecl = 0; 3110 CanonType = Context.getTypeDeclType(Specialization); 3111 } else if (isPartialSpecialization) { 3112 // Build the canonical type that describes the converted template 3113 // arguments of the class template partial specialization. 3114 CanonType = Context.getTemplateSpecializationType( 3115 TemplateName(ClassTemplate), 3116 Converted.getFlatArguments(), 3117 Converted.flatSize()); 3118 3119 // Create a new class template partial specialization declaration node. 3120 ClassTemplatePartialSpecializationDecl *PrevPartial 3121 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3122 ClassTemplatePartialSpecializationDecl *Partial 3123 = ClassTemplatePartialSpecializationDecl::Create(Context, 3124 ClassTemplate->getDeclContext(), 3125 TemplateNameLoc, 3126 TemplateParams, 3127 ClassTemplate, 3128 Converted, 3129 TemplateArgs.data(), 3130 TemplateArgs.size(), 3131 PrevPartial); 3132 3133 if (PrevPartial) { 3134 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3135 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3136 } else { 3137 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3138 } 3139 Specialization = Partial; 3140 3141 // If we are providing an explicit specialization of a member class 3142 // template specialization, make a note of that. 3143 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3144 PrevPartial->setMemberSpecialization(); 3145 3146 // Check that all of the template parameters of the class template 3147 // partial specialization are deducible from the template 3148 // arguments. If not, this class template partial specialization 3149 // will never be used. 3150 llvm::SmallVector<bool, 8> DeducibleParams; 3151 DeducibleParams.resize(TemplateParams->size()); 3152 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3153 TemplateParams->getDepth(), 3154 DeducibleParams); 3155 unsigned NumNonDeducible = 0; 3156 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3157 if (!DeducibleParams[I]) 3158 ++NumNonDeducible; 3159 3160 if (NumNonDeducible) { 3161 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3162 << (NumNonDeducible > 1) 3163 << SourceRange(TemplateNameLoc, RAngleLoc); 3164 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3165 if (!DeducibleParams[I]) { 3166 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3167 if (Param->getDeclName()) 3168 Diag(Param->getLocation(), 3169 diag::note_partial_spec_unused_parameter) 3170 << Param->getDeclName(); 3171 else 3172 Diag(Param->getLocation(), 3173 diag::note_partial_spec_unused_parameter) 3174 << std::string("<anonymous>"); 3175 } 3176 } 3177 } 3178 } else { 3179 // Create a new class template specialization declaration node for 3180 // this explicit specialization or friend declaration. 3181 Specialization 3182 = ClassTemplateSpecializationDecl::Create(Context, 3183 ClassTemplate->getDeclContext(), 3184 TemplateNameLoc, 3185 ClassTemplate, 3186 Converted, 3187 PrevDecl); 3188 3189 if (PrevDecl) { 3190 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3191 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3192 } else { 3193 ClassTemplate->getSpecializations().InsertNode(Specialization, 3194 InsertPos); 3195 } 3196 3197 CanonType = Context.getTypeDeclType(Specialization); 3198 } 3199 3200 // C++ [temp.expl.spec]p6: 3201 // If a template, a member template or the member of a class template is 3202 // explicitly specialized then that specialization shall be declared 3203 // before the first use of that specialization that would cause an implicit 3204 // instantiation to take place, in every translation unit in which such a 3205 // use occurs; no diagnostic is required. 3206 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3207 SourceRange Range(TemplateNameLoc, RAngleLoc); 3208 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3209 << Context.getTypeDeclType(Specialization) << Range; 3210 3211 Diag(PrevDecl->getPointOfInstantiation(), 3212 diag::note_instantiation_required_here) 3213 << (PrevDecl->getTemplateSpecializationKind() 3214 != TSK_ImplicitInstantiation); 3215 return true; 3216 } 3217 3218 // If this is not a friend, note that this is an explicit specialization. 3219 if (TUK != TUK_Friend) 3220 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3221 3222 // Check that this isn't a redefinition of this specialization. 3223 if (TUK == TUK_Definition) { 3224 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 3225 SourceRange Range(TemplateNameLoc, RAngleLoc); 3226 Diag(TemplateNameLoc, diag::err_redefinition) 3227 << Context.getTypeDeclType(Specialization) << Range; 3228 Diag(Def->getLocation(), diag::note_previous_definition); 3229 Specialization->setInvalidDecl(); 3230 return true; 3231 } 3232 } 3233 3234 // Build the fully-sugared type for this class template 3235 // specialization as the user wrote in the specialization 3236 // itself. This means that we'll pretty-print the type retrieved 3237 // from the specialization's declaration the way that the user 3238 // actually wrote the specialization, rather than formatting the 3239 // name based on the "canonical" representation used to store the 3240 // template arguments in the specialization. 3241 QualType WrittenTy 3242 = Context.getTemplateSpecializationType(Name, 3243 TemplateArgs.data(), 3244 TemplateArgs.size(), 3245 CanonType); 3246 if (TUK != TUK_Friend) 3247 Specialization->setTypeAsWritten(WrittenTy); 3248 TemplateArgsIn.release(); 3249 3250 // C++ [temp.expl.spec]p9: 3251 // A template explicit specialization is in the scope of the 3252 // namespace in which the template was defined. 3253 // 3254 // We actually implement this paragraph where we set the semantic 3255 // context (in the creation of the ClassTemplateSpecializationDecl), 3256 // but we also maintain the lexical context where the actual 3257 // definition occurs. 3258 Specialization->setLexicalDeclContext(CurContext); 3259 3260 // We may be starting the definition of this specialization. 3261 if (TUK == TUK_Definition) 3262 Specialization->startDefinition(); 3263 3264 if (TUK == TUK_Friend) { 3265 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3266 TemplateNameLoc, 3267 WrittenTy.getTypePtr(), 3268 /*FIXME:*/KWLoc); 3269 Friend->setAccess(AS_public); 3270 CurContext->addDecl(Friend); 3271 } else { 3272 // Add the specialization into its lexical context, so that it can 3273 // be seen when iterating through the list of declarations in that 3274 // context. However, specializations are not found by name lookup. 3275 CurContext->addDecl(Specialization); 3276 } 3277 return DeclPtrTy::make(Specialization); 3278} 3279 3280Sema::DeclPtrTy 3281Sema::ActOnTemplateDeclarator(Scope *S, 3282 MultiTemplateParamsArg TemplateParameterLists, 3283 Declarator &D) { 3284 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3285} 3286 3287Sema::DeclPtrTy 3288Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3289 MultiTemplateParamsArg TemplateParameterLists, 3290 Declarator &D) { 3291 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3292 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3293 "Not a function declarator!"); 3294 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3295 3296 if (FTI.hasPrototype) { 3297 // FIXME: Diagnose arguments without names in C. 3298 } 3299 3300 Scope *ParentScope = FnBodyScope->getParent(); 3301 3302 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3303 move(TemplateParameterLists), 3304 /*IsFunctionDefinition=*/true); 3305 if (FunctionTemplateDecl *FunctionTemplate 3306 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3307 return ActOnStartOfFunctionDef(FnBodyScope, 3308 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3309 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3310 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3311 return DeclPtrTy(); 3312} 3313 3314/// \brief Diagnose cases where we have an explicit template specialization 3315/// before/after an explicit template instantiation, producing diagnostics 3316/// for those cases where they are required and determining whether the 3317/// new specialization/instantiation will have any effect. 3318/// 3319/// \param NewLoc the location of the new explicit specialization or 3320/// instantiation. 3321/// 3322/// \param NewTSK the kind of the new explicit specialization or instantiation. 3323/// 3324/// \param PrevDecl the previous declaration of the entity. 3325/// 3326/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3327/// 3328/// \param PrevPointOfInstantiation if valid, indicates where the previus 3329/// declaration was instantiated (either implicitly or explicitly). 3330/// 3331/// \param SuppressNew will be set to true to indicate that the new 3332/// specialization or instantiation has no effect and should be ignored. 3333/// 3334/// \returns true if there was an error that should prevent the introduction of 3335/// the new declaration into the AST, false otherwise. 3336bool 3337Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3338 TemplateSpecializationKind NewTSK, 3339 NamedDecl *PrevDecl, 3340 TemplateSpecializationKind PrevTSK, 3341 SourceLocation PrevPointOfInstantiation, 3342 bool &SuppressNew) { 3343 SuppressNew = false; 3344 3345 switch (NewTSK) { 3346 case TSK_Undeclared: 3347 case TSK_ImplicitInstantiation: 3348 assert(false && "Don't check implicit instantiations here"); 3349 return false; 3350 3351 case TSK_ExplicitSpecialization: 3352 switch (PrevTSK) { 3353 case TSK_Undeclared: 3354 case TSK_ExplicitSpecialization: 3355 // Okay, we're just specializing something that is either already 3356 // explicitly specialized or has merely been mentioned without any 3357 // instantiation. 3358 return false; 3359 3360 case TSK_ImplicitInstantiation: 3361 if (PrevPointOfInstantiation.isInvalid()) { 3362 // The declaration itself has not actually been instantiated, so it is 3363 // still okay to specialize it. 3364 return false; 3365 } 3366 // Fall through 3367 3368 case TSK_ExplicitInstantiationDeclaration: 3369 case TSK_ExplicitInstantiationDefinition: 3370 assert((PrevTSK == TSK_ImplicitInstantiation || 3371 PrevPointOfInstantiation.isValid()) && 3372 "Explicit instantiation without point of instantiation?"); 3373 3374 // C++ [temp.expl.spec]p6: 3375 // If a template, a member template or the member of a class template 3376 // is explicitly specialized then that specialization shall be declared 3377 // before the first use of that specialization that would cause an 3378 // implicit instantiation to take place, in every translation unit in 3379 // which such a use occurs; no diagnostic is required. 3380 Diag(NewLoc, diag::err_specialization_after_instantiation) 3381 << PrevDecl; 3382 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3383 << (PrevTSK != TSK_ImplicitInstantiation); 3384 3385 return true; 3386 } 3387 break; 3388 3389 case TSK_ExplicitInstantiationDeclaration: 3390 switch (PrevTSK) { 3391 case TSK_ExplicitInstantiationDeclaration: 3392 // This explicit instantiation declaration is redundant (that's okay). 3393 SuppressNew = true; 3394 return false; 3395 3396 case TSK_Undeclared: 3397 case TSK_ImplicitInstantiation: 3398 // We're explicitly instantiating something that may have already been 3399 // implicitly instantiated; that's fine. 3400 return false; 3401 3402 case TSK_ExplicitSpecialization: 3403 // C++0x [temp.explicit]p4: 3404 // For a given set of template parameters, if an explicit instantiation 3405 // of a template appears after a declaration of an explicit 3406 // specialization for that template, the explicit instantiation has no 3407 // effect. 3408 return false; 3409 3410 case TSK_ExplicitInstantiationDefinition: 3411 // C++0x [temp.explicit]p10: 3412 // If an entity is the subject of both an explicit instantiation 3413 // declaration and an explicit instantiation definition in the same 3414 // translation unit, the definition shall follow the declaration. 3415 Diag(NewLoc, 3416 diag::err_explicit_instantiation_declaration_after_definition); 3417 Diag(PrevPointOfInstantiation, 3418 diag::note_explicit_instantiation_definition_here); 3419 assert(PrevPointOfInstantiation.isValid() && 3420 "Explicit instantiation without point of instantiation?"); 3421 SuppressNew = true; 3422 return false; 3423 } 3424 break; 3425 3426 case TSK_ExplicitInstantiationDefinition: 3427 switch (PrevTSK) { 3428 case TSK_Undeclared: 3429 case TSK_ImplicitInstantiation: 3430 // We're explicitly instantiating something that may have already been 3431 // implicitly instantiated; that's fine. 3432 return false; 3433 3434 case TSK_ExplicitSpecialization: 3435 // C++ DR 259, C++0x [temp.explicit]p4: 3436 // For a given set of template parameters, if an explicit 3437 // instantiation of a template appears after a declaration of 3438 // an explicit specialization for that template, the explicit 3439 // instantiation has no effect. 3440 // 3441 // In C++98/03 mode, we only give an extension warning here, because it 3442 // is not not harmful to try to explicitly instantiate something that 3443 // has been explicitly specialized. 3444 if (!getLangOptions().CPlusPlus0x) { 3445 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3446 << PrevDecl; 3447 Diag(PrevDecl->getLocation(), 3448 diag::note_previous_template_specialization); 3449 } 3450 SuppressNew = true; 3451 return false; 3452 3453 case TSK_ExplicitInstantiationDeclaration: 3454 // We're explicity instantiating a definition for something for which we 3455 // were previously asked to suppress instantiations. That's fine. 3456 return false; 3457 3458 case TSK_ExplicitInstantiationDefinition: 3459 // C++0x [temp.spec]p5: 3460 // For a given template and a given set of template-arguments, 3461 // - an explicit instantiation definition shall appear at most once 3462 // in a program, 3463 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3464 << PrevDecl; 3465 Diag(PrevPointOfInstantiation, 3466 diag::note_previous_explicit_instantiation); 3467 SuppressNew = true; 3468 return false; 3469 } 3470 break; 3471 } 3472 3473 assert(false && "Missing specialization/instantiation case?"); 3474 3475 return false; 3476} 3477 3478/// \brief Perform semantic analysis for the given function template 3479/// specialization. 3480/// 3481/// This routine performs all of the semantic analysis required for an 3482/// explicit function template specialization. On successful completion, 3483/// the function declaration \p FD will become a function template 3484/// specialization. 3485/// 3486/// \param FD the function declaration, which will be updated to become a 3487/// function template specialization. 3488/// 3489/// \param HasExplicitTemplateArgs whether any template arguments were 3490/// explicitly provided. 3491/// 3492/// \param LAngleLoc the location of the left angle bracket ('<'), if 3493/// template arguments were explicitly provided. 3494/// 3495/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3496/// if any. 3497/// 3498/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3499/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3500/// true as in, e.g., \c void sort<>(char*, char*); 3501/// 3502/// \param RAngleLoc the location of the right angle bracket ('>'), if 3503/// template arguments were explicitly provided. 3504/// 3505/// \param PrevDecl the set of declarations that 3506bool 3507Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3508 bool HasExplicitTemplateArgs, 3509 SourceLocation LAngleLoc, 3510 const TemplateArgumentLoc *ExplicitTemplateArgs, 3511 unsigned NumExplicitTemplateArgs, 3512 SourceLocation RAngleLoc, 3513 NamedDecl *&PrevDecl) { 3514 // The set of function template specializations that could match this 3515 // explicit function template specialization. 3516 typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet; 3517 CandidateSet Candidates; 3518 3519 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3520 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3521 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) { 3522 // Only consider templates found within the same semantic lookup scope as 3523 // FD. 3524 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3525 continue; 3526 3527 // C++ [temp.expl.spec]p11: 3528 // A trailing template-argument can be left unspecified in the 3529 // template-id naming an explicit function template specialization 3530 // provided it can be deduced from the function argument type. 3531 // Perform template argument deduction to determine whether we may be 3532 // specializing this template. 3533 // FIXME: It is somewhat wasteful to build 3534 TemplateDeductionInfo Info(Context); 3535 FunctionDecl *Specialization = 0; 3536 if (TemplateDeductionResult TDK 3537 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 3538 ExplicitTemplateArgs, 3539 NumExplicitTemplateArgs, 3540 FD->getType(), 3541 Specialization, 3542 Info)) { 3543 // FIXME: Template argument deduction failed; record why it failed, so 3544 // that we can provide nifty diagnostics. 3545 (void)TDK; 3546 continue; 3547 } 3548 3549 // Record this candidate. 3550 Candidates.push_back(Specialization); 3551 } 3552 } 3553 3554 // Find the most specialized function template. 3555 FunctionDecl *Specialization = getMostSpecialized(Candidates.data(), 3556 Candidates.size(), 3557 TPOC_Other, 3558 FD->getLocation(), 3559 PartialDiagnostic(diag::err_function_template_spec_no_match) 3560 << FD->getDeclName(), 3561 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3562 << FD->getDeclName() << HasExplicitTemplateArgs, 3563 PartialDiagnostic(diag::note_function_template_spec_matched)); 3564 if (!Specialization) 3565 return true; 3566 3567 // FIXME: Check if the prior specialization has a point of instantiation. 3568 // If so, we have run afoul of . 3569 3570 // Check the scope of this explicit specialization. 3571 if (CheckTemplateSpecializationScope(*this, 3572 Specialization->getPrimaryTemplate(), 3573 Specialization, FD->getLocation(), 3574 false)) 3575 return true; 3576 3577 // C++ [temp.expl.spec]p6: 3578 // If a template, a member template or the member of a class template is 3579 // explicitly specialized then that specialization shall be declared 3580 // before the first use of that specialization that would cause an implicit 3581 // instantiation to take place, in every translation unit in which such a 3582 // use occurs; no diagnostic is required. 3583 FunctionTemplateSpecializationInfo *SpecInfo 3584 = Specialization->getTemplateSpecializationInfo(); 3585 assert(SpecInfo && "Function template specialization info missing?"); 3586 if (SpecInfo->getPointOfInstantiation().isValid()) { 3587 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3588 << FD; 3589 Diag(SpecInfo->getPointOfInstantiation(), 3590 diag::note_instantiation_required_here) 3591 << (Specialization->getTemplateSpecializationKind() 3592 != TSK_ImplicitInstantiation); 3593 return true; 3594 } 3595 3596 // Mark the prior declaration as an explicit specialization, so that later 3597 // clients know that this is an explicit specialization. 3598 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3599 3600 // Turn the given function declaration into a function template 3601 // specialization, with the template arguments from the previous 3602 // specialization. 3603 FD->setFunctionTemplateSpecialization(Context, 3604 Specialization->getPrimaryTemplate(), 3605 new (Context) TemplateArgumentList( 3606 *Specialization->getTemplateSpecializationArgs()), 3607 /*InsertPos=*/0, 3608 TSK_ExplicitSpecialization); 3609 3610 // The "previous declaration" for this function template specialization is 3611 // the prior function template specialization. 3612 PrevDecl = Specialization; 3613 return false; 3614} 3615 3616/// \brief Perform semantic analysis for the given non-template member 3617/// specialization. 3618/// 3619/// This routine performs all of the semantic analysis required for an 3620/// explicit member function specialization. On successful completion, 3621/// the function declaration \p FD will become a member function 3622/// specialization. 3623/// 3624/// \param Member the member declaration, which will be updated to become a 3625/// specialization. 3626/// 3627/// \param PrevDecl the set of declarations, one of which may be specialized 3628/// by this function specialization. 3629bool 3630Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) { 3631 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3632 3633 // Try to find the member we are instantiating. 3634 NamedDecl *Instantiation = 0; 3635 NamedDecl *InstantiatedFrom = 0; 3636 MemberSpecializationInfo *MSInfo = 0; 3637 3638 if (!PrevDecl) { 3639 // Nowhere to look anyway. 3640 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3641 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3642 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) { 3643 if (Context.hasSameType(Function->getType(), Method->getType())) { 3644 Instantiation = Method; 3645 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3646 MSInfo = Method->getMemberSpecializationInfo(); 3647 break; 3648 } 3649 } 3650 } 3651 } else if (isa<VarDecl>(Member)) { 3652 if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl)) 3653 if (PrevVar->isStaticDataMember()) { 3654 Instantiation = PrevDecl; 3655 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3656 MSInfo = PrevVar->getMemberSpecializationInfo(); 3657 } 3658 } else if (isa<RecordDecl>(Member)) { 3659 if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) { 3660 Instantiation = PrevDecl; 3661 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 3662 MSInfo = PrevRecord->getMemberSpecializationInfo(); 3663 } 3664 } 3665 3666 if (!Instantiation) { 3667 // There is no previous declaration that matches. Since member 3668 // specializations are always out-of-line, the caller will complain about 3669 // this mismatch later. 3670 return false; 3671 } 3672 3673 // Make sure that this is a specialization of a member. 3674 if (!InstantiatedFrom) { 3675 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 3676 << Member; 3677 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 3678 return true; 3679 } 3680 3681 // C++ [temp.expl.spec]p6: 3682 // If a template, a member template or the member of a class template is 3683 // explicitly specialized then that spe- cialization shall be declared 3684 // before the first use of that specialization that would cause an implicit 3685 // instantiation to take place, in every translation unit in which such a 3686 // use occurs; no diagnostic is required. 3687 assert(MSInfo && "Member specialization info missing?"); 3688 if (MSInfo->getPointOfInstantiation().isValid()) { 3689 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 3690 << Member; 3691 Diag(MSInfo->getPointOfInstantiation(), 3692 diag::note_instantiation_required_here) 3693 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 3694 return true; 3695 } 3696 3697 // Check the scope of this explicit specialization. 3698 if (CheckTemplateSpecializationScope(*this, 3699 InstantiatedFrom, 3700 Instantiation, Member->getLocation(), 3701 false)) 3702 return true; 3703 3704 // Note that this is an explicit instantiation of a member. 3705 // the original declaration to note that it is an explicit specialization 3706 // (if it was previously an implicit instantiation). This latter step 3707 // makes bookkeeping easier. 3708 if (isa<FunctionDecl>(Member)) { 3709 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 3710 if (InstantiationFunction->getTemplateSpecializationKind() == 3711 TSK_ImplicitInstantiation) { 3712 InstantiationFunction->setTemplateSpecializationKind( 3713 TSK_ExplicitSpecialization); 3714 InstantiationFunction->setLocation(Member->getLocation()); 3715 } 3716 3717 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 3718 cast<CXXMethodDecl>(InstantiatedFrom), 3719 TSK_ExplicitSpecialization); 3720 } else if (isa<VarDecl>(Member)) { 3721 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 3722 if (InstantiationVar->getTemplateSpecializationKind() == 3723 TSK_ImplicitInstantiation) { 3724 InstantiationVar->setTemplateSpecializationKind( 3725 TSK_ExplicitSpecialization); 3726 InstantiationVar->setLocation(Member->getLocation()); 3727 } 3728 3729 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 3730 cast<VarDecl>(InstantiatedFrom), 3731 TSK_ExplicitSpecialization); 3732 } else { 3733 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 3734 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 3735 if (InstantiationClass->getTemplateSpecializationKind() == 3736 TSK_ImplicitInstantiation) { 3737 InstantiationClass->setTemplateSpecializationKind( 3738 TSK_ExplicitSpecialization); 3739 InstantiationClass->setLocation(Member->getLocation()); 3740 } 3741 3742 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 3743 cast<CXXRecordDecl>(InstantiatedFrom), 3744 TSK_ExplicitSpecialization); 3745 } 3746 3747 // Save the caller the trouble of having to figure out which declaration 3748 // this specialization matches. 3749 PrevDecl = Instantiation; 3750 return false; 3751} 3752 3753/// \brief Check the scope of an explicit instantiation. 3754static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 3755 SourceLocation InstLoc, 3756 bool WasQualifiedName) { 3757 DeclContext *ExpectedContext 3758 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 3759 DeclContext *CurContext = S.CurContext->getLookupContext(); 3760 3761 // C++0x [temp.explicit]p2: 3762 // An explicit instantiation shall appear in an enclosing namespace of its 3763 // template. 3764 // 3765 // This is DR275, which we do not retroactively apply to C++98/03. 3766 if (S.getLangOptions().CPlusPlus0x && 3767 !CurContext->Encloses(ExpectedContext)) { 3768 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 3769 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 3770 << D << NS; 3771 else 3772 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 3773 << D; 3774 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3775 return; 3776 } 3777 3778 // C++0x [temp.explicit]p2: 3779 // If the name declared in the explicit instantiation is an unqualified 3780 // name, the explicit instantiation shall appear in the namespace where 3781 // its template is declared or, if that namespace is inline (7.3.1), any 3782 // namespace from its enclosing namespace set. 3783 if (WasQualifiedName) 3784 return; 3785 3786 if (CurContext->Equals(ExpectedContext)) 3787 return; 3788 3789 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 3790 << D << ExpectedContext; 3791 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3792} 3793 3794/// \brief Determine whether the given scope specifier has a template-id in it. 3795static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 3796 if (!SS.isSet()) 3797 return false; 3798 3799 // C++0x [temp.explicit]p2: 3800 // If the explicit instantiation is for a member function, a member class 3801 // or a static data member of a class template specialization, the name of 3802 // the class template specialization in the qualified-id for the member 3803 // name shall be a simple-template-id. 3804 // 3805 // C++98 has the same restriction, just worded differently. 3806 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 3807 NNS; NNS = NNS->getPrefix()) 3808 if (Type *T = NNS->getAsType()) 3809 if (isa<TemplateSpecializationType>(T)) 3810 return true; 3811 3812 return false; 3813} 3814 3815// Explicit instantiation of a class template specialization 3816// FIXME: Implement extern template semantics 3817Sema::DeclResult 3818Sema::ActOnExplicitInstantiation(Scope *S, 3819 SourceLocation ExternLoc, 3820 SourceLocation TemplateLoc, 3821 unsigned TagSpec, 3822 SourceLocation KWLoc, 3823 const CXXScopeSpec &SS, 3824 TemplateTy TemplateD, 3825 SourceLocation TemplateNameLoc, 3826 SourceLocation LAngleLoc, 3827 ASTTemplateArgsPtr TemplateArgsIn, 3828 SourceLocation RAngleLoc, 3829 AttributeList *Attr) { 3830 // Find the class template we're specializing 3831 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3832 ClassTemplateDecl *ClassTemplate 3833 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3834 3835 // Check that the specialization uses the same tag kind as the 3836 // original template. 3837 TagDecl::TagKind Kind; 3838 switch (TagSpec) { 3839 default: assert(0 && "Unknown tag type!"); 3840 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3841 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3842 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3843 } 3844 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3845 Kind, KWLoc, 3846 *ClassTemplate->getIdentifier())) { 3847 Diag(KWLoc, diag::err_use_with_wrong_tag) 3848 << ClassTemplate 3849 << CodeModificationHint::CreateReplacement(KWLoc, 3850 ClassTemplate->getTemplatedDecl()->getKindName()); 3851 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3852 diag::note_previous_use); 3853 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3854 } 3855 3856 // C++0x [temp.explicit]p2: 3857 // There are two forms of explicit instantiation: an explicit instantiation 3858 // definition and an explicit instantiation declaration. An explicit 3859 // instantiation declaration begins with the extern keyword. [...] 3860 TemplateSpecializationKind TSK 3861 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3862 : TSK_ExplicitInstantiationDeclaration; 3863 3864 // Translate the parser's template argument list in our AST format. 3865 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 3866 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3867 3868 // Check that the template argument list is well-formed for this 3869 // template. 3870 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3871 TemplateArgs.size()); 3872 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 3873 TemplateArgs.data(), TemplateArgs.size(), 3874 RAngleLoc, false, Converted)) 3875 return true; 3876 3877 assert((Converted.structuredSize() == 3878 ClassTemplate->getTemplateParameters()->size()) && 3879 "Converted template argument list is too short!"); 3880 3881 // Find the class template specialization declaration that 3882 // corresponds to these arguments. 3883 llvm::FoldingSetNodeID ID; 3884 ClassTemplateSpecializationDecl::Profile(ID, 3885 Converted.getFlatArguments(), 3886 Converted.flatSize(), 3887 Context); 3888 void *InsertPos = 0; 3889 ClassTemplateSpecializationDecl *PrevDecl 3890 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3891 3892 // C++0x [temp.explicit]p2: 3893 // [...] An explicit instantiation shall appear in an enclosing 3894 // namespace of its template. [...] 3895 // 3896 // This is C++ DR 275. 3897 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 3898 SS.isSet()); 3899 3900 ClassTemplateSpecializationDecl *Specialization = 0; 3901 3902 if (PrevDecl) { 3903 bool SuppressNew = false; 3904 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 3905 PrevDecl, 3906 PrevDecl->getSpecializationKind(), 3907 PrevDecl->getPointOfInstantiation(), 3908 SuppressNew)) 3909 return DeclPtrTy::make(PrevDecl); 3910 3911 if (SuppressNew) 3912 return DeclPtrTy::make(PrevDecl); 3913 3914 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 3915 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 3916 // Since the only prior class template specialization with these 3917 // arguments was referenced but not declared, reuse that 3918 // declaration node as our own, updating its source location to 3919 // reflect our new declaration. 3920 Specialization = PrevDecl; 3921 Specialization->setLocation(TemplateNameLoc); 3922 PrevDecl = 0; 3923 } 3924 } 3925 3926 if (!Specialization) { 3927 // Create a new class template specialization declaration node for 3928 // this explicit specialization. 3929 Specialization 3930 = ClassTemplateSpecializationDecl::Create(Context, 3931 ClassTemplate->getDeclContext(), 3932 TemplateNameLoc, 3933 ClassTemplate, 3934 Converted, PrevDecl); 3935 3936 if (PrevDecl) { 3937 // Remove the previous declaration from the folding set, since we want 3938 // to introduce a new declaration. 3939 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3940 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3941 } 3942 3943 // Insert the new specialization. 3944 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 3945 } 3946 3947 // Build the fully-sugared type for this explicit instantiation as 3948 // the user wrote in the explicit instantiation itself. This means 3949 // that we'll pretty-print the type retrieved from the 3950 // specialization's declaration the way that the user actually wrote 3951 // the explicit instantiation, rather than formatting the name based 3952 // on the "canonical" representation used to store the template 3953 // arguments in the specialization. 3954 QualType WrittenTy 3955 = Context.getTemplateSpecializationType(Name, 3956 TemplateArgs.data(), 3957 TemplateArgs.size(), 3958 Context.getTypeDeclType(Specialization)); 3959 Specialization->setTypeAsWritten(WrittenTy); 3960 TemplateArgsIn.release(); 3961 3962 // Add the explicit instantiation into its lexical context. However, 3963 // since explicit instantiations are never found by name lookup, we 3964 // just put it into the declaration context directly. 3965 Specialization->setLexicalDeclContext(CurContext); 3966 CurContext->addDecl(Specialization); 3967 3968 // C++ [temp.explicit]p3: 3969 // A definition of a class template or class member template 3970 // shall be in scope at the point of the explicit instantiation of 3971 // the class template or class member template. 3972 // 3973 // This check comes when we actually try to perform the 3974 // instantiation. 3975 ClassTemplateSpecializationDecl *Def 3976 = cast_or_null<ClassTemplateSpecializationDecl>( 3977 Specialization->getDefinition(Context)); 3978 if (!Def) 3979 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 3980 3981 // Instantiate the members of this class template specialization. 3982 Def = cast_or_null<ClassTemplateSpecializationDecl>( 3983 Specialization->getDefinition(Context)); 3984 if (Def) 3985 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 3986 3987 return DeclPtrTy::make(Specialization); 3988} 3989 3990// Explicit instantiation of a member class of a class template. 3991Sema::DeclResult 3992Sema::ActOnExplicitInstantiation(Scope *S, 3993 SourceLocation ExternLoc, 3994 SourceLocation TemplateLoc, 3995 unsigned TagSpec, 3996 SourceLocation KWLoc, 3997 const CXXScopeSpec &SS, 3998 IdentifierInfo *Name, 3999 SourceLocation NameLoc, 4000 AttributeList *Attr) { 4001 4002 bool Owned = false; 4003 bool IsDependent = false; 4004 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4005 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4006 MultiTemplateParamsArg(*this, 0, 0), 4007 Owned, IsDependent); 4008 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4009 4010 if (!TagD) 4011 return true; 4012 4013 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4014 if (Tag->isEnum()) { 4015 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4016 << Context.getTypeDeclType(Tag); 4017 return true; 4018 } 4019 4020 if (Tag->isInvalidDecl()) 4021 return true; 4022 4023 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4024 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4025 if (!Pattern) { 4026 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4027 << Context.getTypeDeclType(Record); 4028 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4029 return true; 4030 } 4031 4032 // C++0x [temp.explicit]p2: 4033 // If the explicit instantiation is for a class or member class, the 4034 // elaborated-type-specifier in the declaration shall include a 4035 // simple-template-id. 4036 // 4037 // C++98 has the same restriction, just worded differently. 4038 if (!ScopeSpecifierHasTemplateId(SS)) 4039 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4040 << Record << SS.getRange(); 4041 4042 // C++0x [temp.explicit]p2: 4043 // There are two forms of explicit instantiation: an explicit instantiation 4044 // definition and an explicit instantiation declaration. An explicit 4045 // instantiation declaration begins with the extern keyword. [...] 4046 TemplateSpecializationKind TSK 4047 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4048 : TSK_ExplicitInstantiationDeclaration; 4049 4050 // C++0x [temp.explicit]p2: 4051 // [...] An explicit instantiation shall appear in an enclosing 4052 // namespace of its template. [...] 4053 // 4054 // This is C++ DR 275. 4055 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4056 4057 // Verify that it is okay to explicitly instantiate here. 4058 CXXRecordDecl *PrevDecl 4059 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4060 if (!PrevDecl && Record->getDefinition(Context)) 4061 PrevDecl = Record; 4062 if (PrevDecl) { 4063 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4064 bool SuppressNew = false; 4065 assert(MSInfo && "No member specialization information?"); 4066 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4067 PrevDecl, 4068 MSInfo->getTemplateSpecializationKind(), 4069 MSInfo->getPointOfInstantiation(), 4070 SuppressNew)) 4071 return true; 4072 if (SuppressNew) 4073 return TagD; 4074 } 4075 4076 CXXRecordDecl *RecordDef 4077 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4078 if (!RecordDef) { 4079 // C++ [temp.explicit]p3: 4080 // A definition of a member class of a class template shall be in scope 4081 // at the point of an explicit instantiation of the member class. 4082 CXXRecordDecl *Def 4083 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 4084 if (!Def) { 4085 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4086 << 0 << Record->getDeclName() << Record->getDeclContext(); 4087 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4088 << Pattern; 4089 return true; 4090 } else { 4091 if (InstantiateClass(NameLoc, Record, Def, 4092 getTemplateInstantiationArgs(Record), 4093 TSK)) 4094 return true; 4095 4096 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4097 if (!RecordDef) 4098 return true; 4099 } 4100 } 4101 4102 // Instantiate all of the members of the class. 4103 InstantiateClassMembers(NameLoc, RecordDef, 4104 getTemplateInstantiationArgs(Record), TSK); 4105 4106 // FIXME: We don't have any representation for explicit instantiations of 4107 // member classes. Such a representation is not needed for compilation, but it 4108 // should be available for clients that want to see all of the declarations in 4109 // the source code. 4110 return TagD; 4111} 4112 4113Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4114 SourceLocation ExternLoc, 4115 SourceLocation TemplateLoc, 4116 Declarator &D) { 4117 // Explicit instantiations always require a name. 4118 DeclarationName Name = GetNameForDeclarator(D); 4119 if (!Name) { 4120 if (!D.isInvalidType()) 4121 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4122 diag::err_explicit_instantiation_requires_name) 4123 << D.getDeclSpec().getSourceRange() 4124 << D.getSourceRange(); 4125 4126 return true; 4127 } 4128 4129 // The scope passed in may not be a decl scope. Zip up the scope tree until 4130 // we find one that is. 4131 while ((S->getFlags() & Scope::DeclScope) == 0 || 4132 (S->getFlags() & Scope::TemplateParamScope) != 0) 4133 S = S->getParent(); 4134 4135 // Determine the type of the declaration. 4136 QualType R = GetTypeForDeclarator(D, S, 0); 4137 if (R.isNull()) 4138 return true; 4139 4140 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4141 // Cannot explicitly instantiate a typedef. 4142 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4143 << Name; 4144 return true; 4145 } 4146 4147 // C++0x [temp.explicit]p1: 4148 // [...] An explicit instantiation of a function template shall not use the 4149 // inline or constexpr specifiers. 4150 // Presumably, this also applies to member functions of class templates as 4151 // well. 4152 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4153 Diag(D.getDeclSpec().getInlineSpecLoc(), 4154 diag::err_explicit_instantiation_inline) 4155 << CodeModificationHint::CreateRemoval( 4156 SourceRange(D.getDeclSpec().getInlineSpecLoc())); 4157 4158 // FIXME: check for constexpr specifier. 4159 4160 // C++0x [temp.explicit]p2: 4161 // There are two forms of explicit instantiation: an explicit instantiation 4162 // definition and an explicit instantiation declaration. An explicit 4163 // instantiation declaration begins with the extern keyword. [...] 4164 TemplateSpecializationKind TSK 4165 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4166 : TSK_ExplicitInstantiationDeclaration; 4167 4168 LookupResult Previous; 4169 LookupParsedName(Previous, S, &D.getCXXScopeSpec(), 4170 Name, LookupOrdinaryName); 4171 4172 if (!R->isFunctionType()) { 4173 // C++ [temp.explicit]p1: 4174 // A [...] static data member of a class template can be explicitly 4175 // instantiated from the member definition associated with its class 4176 // template. 4177 if (Previous.isAmbiguous()) { 4178 return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(), 4179 D.getSourceRange()); 4180 } 4181 4182 VarDecl *Prev = dyn_cast_or_null<VarDecl>( 4183 Previous.getAsSingleDecl(Context)); 4184 if (!Prev || !Prev->isStaticDataMember()) { 4185 // We expect to see a data data member here. 4186 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4187 << Name; 4188 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4189 P != PEnd; ++P) 4190 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4191 return true; 4192 } 4193 4194 if (!Prev->getInstantiatedFromStaticDataMember()) { 4195 // FIXME: Check for explicit specialization? 4196 Diag(D.getIdentifierLoc(), 4197 diag::err_explicit_instantiation_data_member_not_instantiated) 4198 << Prev; 4199 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4200 // FIXME: Can we provide a note showing where this was declared? 4201 return true; 4202 } 4203 4204 // C++0x [temp.explicit]p2: 4205 // If the explicit instantiation is for a member function, a member class 4206 // or a static data member of a class template specialization, the name of 4207 // the class template specialization in the qualified-id for the member 4208 // name shall be a simple-template-id. 4209 // 4210 // C++98 has the same restriction, just worded differently. 4211 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4212 Diag(D.getIdentifierLoc(), 4213 diag::err_explicit_instantiation_without_qualified_id) 4214 << Prev << D.getCXXScopeSpec().getRange(); 4215 4216 // Check the scope of this explicit instantiation. 4217 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4218 4219 // Verify that it is okay to explicitly instantiate here. 4220 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4221 assert(MSInfo && "Missing static data member specialization info?"); 4222 bool SuppressNew = false; 4223 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4224 MSInfo->getTemplateSpecializationKind(), 4225 MSInfo->getPointOfInstantiation(), 4226 SuppressNew)) 4227 return true; 4228 if (SuppressNew) 4229 return DeclPtrTy(); 4230 4231 // Instantiate static data member. 4232 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4233 if (TSK == TSK_ExplicitInstantiationDefinition) 4234 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4235 /*DefinitionRequired=*/true); 4236 4237 // FIXME: Create an ExplicitInstantiation node? 4238 return DeclPtrTy(); 4239 } 4240 4241 // If the declarator is a template-id, translate the parser's template 4242 // argument list into our AST format. 4243 bool HasExplicitTemplateArgs = false; 4244 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 4245 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4246 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4247 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4248 TemplateId->getTemplateArgs(), 4249 TemplateId->NumArgs); 4250 translateTemplateArguments(TemplateArgsPtr, 4251 TemplateArgs); 4252 HasExplicitTemplateArgs = true; 4253 TemplateArgsPtr.release(); 4254 } 4255 4256 // C++ [temp.explicit]p1: 4257 // A [...] function [...] can be explicitly instantiated from its template. 4258 // A member function [...] of a class template can be explicitly 4259 // instantiated from the member definition associated with its class 4260 // template. 4261 llvm::SmallVector<FunctionDecl *, 8> Matches; 4262 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4263 P != PEnd; ++P) { 4264 NamedDecl *Prev = *P; 4265 if (!HasExplicitTemplateArgs) { 4266 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4267 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4268 Matches.clear(); 4269 Matches.push_back(Method); 4270 break; 4271 } 4272 } 4273 } 4274 4275 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4276 if (!FunTmpl) 4277 continue; 4278 4279 TemplateDeductionInfo Info(Context); 4280 FunctionDecl *Specialization = 0; 4281 if (TemplateDeductionResult TDK 4282 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 4283 TemplateArgs.data(), TemplateArgs.size(), 4284 R, Specialization, Info)) { 4285 // FIXME: Keep track of almost-matches? 4286 (void)TDK; 4287 continue; 4288 } 4289 4290 Matches.push_back(Specialization); 4291 } 4292 4293 // Find the most specialized function template specialization. 4294 FunctionDecl *Specialization 4295 = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 4296 D.getIdentifierLoc(), 4297 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4298 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4299 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4300 4301 if (!Specialization) 4302 return true; 4303 4304 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4305 Diag(D.getIdentifierLoc(), 4306 diag::err_explicit_instantiation_member_function_not_instantiated) 4307 << Specialization 4308 << (Specialization->getTemplateSpecializationKind() == 4309 TSK_ExplicitSpecialization); 4310 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4311 return true; 4312 } 4313 4314 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4315 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4316 PrevDecl = Specialization; 4317 4318 if (PrevDecl) { 4319 bool SuppressNew = false; 4320 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4321 PrevDecl, 4322 PrevDecl->getTemplateSpecializationKind(), 4323 PrevDecl->getPointOfInstantiation(), 4324 SuppressNew)) 4325 return true; 4326 4327 // FIXME: We may still want to build some representation of this 4328 // explicit specialization. 4329 if (SuppressNew) 4330 return DeclPtrTy(); 4331 } 4332 4333 if (TSK == TSK_ExplicitInstantiationDefinition) 4334 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4335 false, /*DefinitionRequired=*/true); 4336 4337 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4338 4339 // C++0x [temp.explicit]p2: 4340 // If the explicit instantiation is for a member function, a member class 4341 // or a static data member of a class template specialization, the name of 4342 // the class template specialization in the qualified-id for the member 4343 // name shall be a simple-template-id. 4344 // 4345 // C++98 has the same restriction, just worded differently. 4346 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4347 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4348 D.getCXXScopeSpec().isSet() && 4349 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4350 Diag(D.getIdentifierLoc(), 4351 diag::err_explicit_instantiation_without_qualified_id) 4352 << Specialization << D.getCXXScopeSpec().getRange(); 4353 4354 CheckExplicitInstantiationScope(*this, 4355 FunTmpl? (NamedDecl *)FunTmpl 4356 : Specialization->getInstantiatedFromMemberFunction(), 4357 D.getIdentifierLoc(), 4358 D.getCXXScopeSpec().isSet()); 4359 4360 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4361 return DeclPtrTy(); 4362} 4363 4364Sema::TypeResult 4365Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4366 const CXXScopeSpec &SS, IdentifierInfo *Name, 4367 SourceLocation TagLoc, SourceLocation NameLoc) { 4368 // This has to hold, because SS is expected to be defined. 4369 assert(Name && "Expected a name in a dependent tag"); 4370 4371 NestedNameSpecifier *NNS 4372 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4373 if (!NNS) 4374 return true; 4375 4376 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4377 if (T.isNull()) 4378 return true; 4379 4380 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4381 QualType ElabType = Context.getElaboratedType(T, TagKind); 4382 4383 return ElabType.getAsOpaquePtr(); 4384} 4385 4386Sema::TypeResult 4387Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4388 const IdentifierInfo &II, SourceLocation IdLoc) { 4389 NestedNameSpecifier *NNS 4390 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4391 if (!NNS) 4392 return true; 4393 4394 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4395 if (T.isNull()) 4396 return true; 4397 return T.getAsOpaquePtr(); 4398} 4399 4400Sema::TypeResult 4401Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4402 SourceLocation TemplateLoc, TypeTy *Ty) { 4403 QualType T = GetTypeFromParser(Ty); 4404 NestedNameSpecifier *NNS 4405 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4406 const TemplateSpecializationType *TemplateId 4407 = T->getAs<TemplateSpecializationType>(); 4408 assert(TemplateId && "Expected a template specialization type"); 4409 4410 if (computeDeclContext(SS, false)) { 4411 // If we can compute a declaration context, then the "typename" 4412 // keyword was superfluous. Just build a QualifiedNameType to keep 4413 // track of the nested-name-specifier. 4414 4415 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4416 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4417 } 4418 4419 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4420} 4421 4422/// \brief Build the type that describes a C++ typename specifier, 4423/// e.g., "typename T::type". 4424QualType 4425Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4426 SourceRange Range) { 4427 CXXRecordDecl *CurrentInstantiation = 0; 4428 if (NNS->isDependent()) { 4429 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4430 4431 // If the nested-name-specifier does not refer to the current 4432 // instantiation, then build a typename type. 4433 if (!CurrentInstantiation) 4434 return Context.getTypenameType(NNS, &II); 4435 4436 // The nested-name-specifier refers to the current instantiation, so the 4437 // "typename" keyword itself is superfluous. In C++03, the program is 4438 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4439 // extraneous "typename" keywords, and we retroactively apply this DR to 4440 // C++03 code. 4441 } 4442 4443 DeclContext *Ctx = 0; 4444 4445 if (CurrentInstantiation) 4446 Ctx = CurrentInstantiation; 4447 else { 4448 CXXScopeSpec SS; 4449 SS.setScopeRep(NNS); 4450 SS.setRange(Range); 4451 if (RequireCompleteDeclContext(SS)) 4452 return QualType(); 4453 4454 Ctx = computeDeclContext(SS); 4455 } 4456 assert(Ctx && "No declaration context?"); 4457 4458 DeclarationName Name(&II); 4459 LookupResult Result; 4460 LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false); 4461 unsigned DiagID = 0; 4462 Decl *Referenced = 0; 4463 switch (Result.getKind()) { 4464 case LookupResult::NotFound: 4465 DiagID = diag::err_typename_nested_not_found; 4466 break; 4467 4468 case LookupResult::Found: 4469 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4470 // We found a type. Build a QualifiedNameType, since the 4471 // typename-specifier was just sugar. FIXME: Tell 4472 // QualifiedNameType that it has a "typename" prefix. 4473 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4474 } 4475 4476 DiagID = diag::err_typename_nested_not_type; 4477 Referenced = Result.getFoundDecl(); 4478 break; 4479 4480 case LookupResult::FoundOverloaded: 4481 DiagID = diag::err_typename_nested_not_type; 4482 Referenced = *Result.begin(); 4483 break; 4484 4485 case LookupResult::Ambiguous: 4486 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 4487 return QualType(); 4488 } 4489 4490 // If we get here, it's because name lookup did not find a 4491 // type. Emit an appropriate diagnostic and return an error. 4492 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4493 if (Referenced) 4494 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4495 << Name; 4496 return QualType(); 4497} 4498 4499namespace { 4500 // See Sema::RebuildTypeInCurrentInstantiation 4501 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 4502 : public TreeTransform<CurrentInstantiationRebuilder> { 4503 SourceLocation Loc; 4504 DeclarationName Entity; 4505 4506 public: 4507 CurrentInstantiationRebuilder(Sema &SemaRef, 4508 SourceLocation Loc, 4509 DeclarationName Entity) 4510 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4511 Loc(Loc), Entity(Entity) { } 4512 4513 /// \brief Determine whether the given type \p T has already been 4514 /// transformed. 4515 /// 4516 /// For the purposes of type reconstruction, a type has already been 4517 /// transformed if it is NULL or if it is not dependent. 4518 bool AlreadyTransformed(QualType T) { 4519 return T.isNull() || !T->isDependentType(); 4520 } 4521 4522 /// \brief Returns the location of the entity whose type is being 4523 /// rebuilt. 4524 SourceLocation getBaseLocation() { return Loc; } 4525 4526 /// \brief Returns the name of the entity whose type is being rebuilt. 4527 DeclarationName getBaseEntity() { return Entity; } 4528 4529 /// \brief Sets the "base" location and entity when that 4530 /// information is known based on another transformation. 4531 void setBase(SourceLocation Loc, DeclarationName Entity) { 4532 this->Loc = Loc; 4533 this->Entity = Entity; 4534 } 4535 4536 /// \brief Transforms an expression by returning the expression itself 4537 /// (an identity function). 4538 /// 4539 /// FIXME: This is completely unsafe; we will need to actually clone the 4540 /// expressions. 4541 Sema::OwningExprResult TransformExpr(Expr *E) { 4542 return getSema().Owned(E); 4543 } 4544 4545 /// \brief Transforms a typename type by determining whether the type now 4546 /// refers to a member of the current instantiation, and then 4547 /// type-checking and building a QualifiedNameType (when possible). 4548 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4549 }; 4550} 4551 4552QualType 4553CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4554 TypenameTypeLoc TL) { 4555 TypenameType *T = TL.getTypePtr(); 4556 4557 NestedNameSpecifier *NNS 4558 = TransformNestedNameSpecifier(T->getQualifier(), 4559 /*FIXME:*/SourceRange(getBaseLocation())); 4560 if (!NNS) 4561 return QualType(); 4562 4563 // If the nested-name-specifier did not change, and we cannot compute the 4564 // context corresponding to the nested-name-specifier, then this 4565 // typename type will not change; exit early. 4566 CXXScopeSpec SS; 4567 SS.setRange(SourceRange(getBaseLocation())); 4568 SS.setScopeRep(NNS); 4569 4570 QualType Result; 4571 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4572 Result = QualType(T, 0); 4573 4574 // Rebuild the typename type, which will probably turn into a 4575 // QualifiedNameType. 4576 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4577 QualType NewTemplateId 4578 = TransformType(QualType(TemplateId, 0)); 4579 if (NewTemplateId.isNull()) 4580 return QualType(); 4581 4582 if (NNS == T->getQualifier() && 4583 NewTemplateId == QualType(TemplateId, 0)) 4584 Result = QualType(T, 0); 4585 else 4586 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4587 } else 4588 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4589 SourceRange(TL.getNameLoc())); 4590 4591 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4592 NewTL.setNameLoc(TL.getNameLoc()); 4593 return Result; 4594} 4595 4596/// \brief Rebuilds a type within the context of the current instantiation. 4597/// 4598/// The type \p T is part of the type of an out-of-line member definition of 4599/// a class template (or class template partial specialization) that was parsed 4600/// and constructed before we entered the scope of the class template (or 4601/// partial specialization thereof). This routine will rebuild that type now 4602/// that we have entered the declarator's scope, which may produce different 4603/// canonical types, e.g., 4604/// 4605/// \code 4606/// template<typename T> 4607/// struct X { 4608/// typedef T* pointer; 4609/// pointer data(); 4610/// }; 4611/// 4612/// template<typename T> 4613/// typename X<T>::pointer X<T>::data() { ... } 4614/// \endcode 4615/// 4616/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4617/// since we do not know that we can look into X<T> when we parsed the type. 4618/// This function will rebuild the type, performing the lookup of "pointer" 4619/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4620/// as the canonical type of T*, allowing the return types of the out-of-line 4621/// definition and the declaration to match. 4622QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4623 DeclarationName Name) { 4624 if (T.isNull() || !T->isDependentType()) 4625 return T; 4626 4627 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4628 return Rebuilder.TransformType(T); 4629} 4630 4631/// \brief Produces a formatted string that describes the binding of 4632/// template parameters to template arguments. 4633std::string 4634Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4635 const TemplateArgumentList &Args) { 4636 // FIXME: For variadic templates, we'll need to get the structured list. 4637 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 4638 Args.flat_size()); 4639} 4640 4641std::string 4642Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4643 const TemplateArgument *Args, 4644 unsigned NumArgs) { 4645 std::string Result; 4646 4647 if (!Params || Params->size() == 0 || NumArgs == 0) 4648 return Result; 4649 4650 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4651 if (I >= NumArgs) 4652 break; 4653 4654 if (I == 0) 4655 Result += "[with "; 4656 else 4657 Result += ", "; 4658 4659 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 4660 Result += Id->getName(); 4661 } else { 4662 Result += '$'; 4663 Result += llvm::utostr(I); 4664 } 4665 4666 Result += " = "; 4667 4668 switch (Args[I].getKind()) { 4669 case TemplateArgument::Null: 4670 Result += "<no value>"; 4671 break; 4672 4673 case TemplateArgument::Type: { 4674 std::string TypeStr; 4675 Args[I].getAsType().getAsStringInternal(TypeStr, 4676 Context.PrintingPolicy); 4677 Result += TypeStr; 4678 break; 4679 } 4680 4681 case TemplateArgument::Declaration: { 4682 bool Unnamed = true; 4683 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 4684 if (ND->getDeclName()) { 4685 Unnamed = false; 4686 Result += ND->getNameAsString(); 4687 } 4688 } 4689 4690 if (Unnamed) { 4691 Result += "<anonymous>"; 4692 } 4693 break; 4694 } 4695 4696 case TemplateArgument::Template: { 4697 std::string Str; 4698 llvm::raw_string_ostream OS(Str); 4699 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 4700 Result += OS.str(); 4701 break; 4702 } 4703 4704 case TemplateArgument::Integral: { 4705 Result += Args[I].getAsIntegral()->toString(10); 4706 break; 4707 } 4708 4709 case TemplateArgument::Expression: { 4710 assert(false && "No expressions in deduced template arguments!"); 4711 Result += "<expression>"; 4712 break; 4713 } 4714 4715 case TemplateArgument::Pack: 4716 // FIXME: Format template argument packs 4717 Result += "<template argument pack>"; 4718 break; 4719 } 4720 } 4721 4722 Result += ']'; 4723 return Result; 4724} 4725