SemaTemplate.cpp revision e7526419a6edc188723a33983c338790f1f2cc2b
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Parse/Template.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/ADT/StringExtras.h"
24using namespace clang;
25
26/// \brief Determine whether the declaration found is acceptable as the name
27/// of a template and, if so, return that template declaration. Otherwise,
28/// returns NULL.
29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
30  if (!D)
31    return 0;
32
33  if (isa<TemplateDecl>(D))
34    return D;
35
36  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
37    // C++ [temp.local]p1:
38    //   Like normal (non-template) classes, class templates have an
39    //   injected-class-name (Clause 9). The injected-class-name
40    //   can be used with or without a template-argument-list. When
41    //   it is used without a template-argument-list, it is
42    //   equivalent to the injected-class-name followed by the
43    //   template-parameters of the class template enclosed in
44    //   <>. When it is used with a template-argument-list, it
45    //   refers to the specified class template specialization,
46    //   which could be the current specialization or another
47    //   specialization.
48    if (Record->isInjectedClassName()) {
49      Record = cast<CXXRecordDecl>(Record->getDeclContext());
50      if (Record->getDescribedClassTemplate())
51        return Record->getDescribedClassTemplate();
52
53      if (ClassTemplateSpecializationDecl *Spec
54            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
55        return Spec->getSpecializedTemplate();
56    }
57
58    return 0;
59  }
60
61  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
62  if (!Ovl)
63    return 0;
64
65  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
66                                              FEnd = Ovl->function_end();
67       F != FEnd; ++F) {
68    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
69      // We've found a function template. Determine whether there are
70      // any other function templates we need to bundle together in an
71      // OverloadedFunctionDecl
72      for (++F; F != FEnd; ++F) {
73        if (isa<FunctionTemplateDecl>(*F))
74          break;
75      }
76
77      if (F != FEnd) {
78        // Build an overloaded function decl containing only the
79        // function templates in Ovl.
80        OverloadedFunctionDecl *OvlTemplate
81          = OverloadedFunctionDecl::Create(Context,
82                                           Ovl->getDeclContext(),
83                                           Ovl->getDeclName());
84        OvlTemplate->addOverload(FuncTmpl);
85        OvlTemplate->addOverload(*F);
86        for (++F; F != FEnd; ++F) {
87          if (isa<FunctionTemplateDecl>(*F))
88            OvlTemplate->addOverload(*F);
89        }
90
91        return OvlTemplate;
92      }
93
94      return FuncTmpl;
95    }
96  }
97
98  return 0;
99}
100
101TemplateNameKind Sema::isTemplateName(Scope *S,
102                                      const CXXScopeSpec &SS,
103                                      UnqualifiedId &Name,
104                                      TypeTy *ObjectTypePtr,
105                                      bool EnteringContext,
106                                      TemplateTy &TemplateResult) {
107  DeclarationName TName;
108
109  switch (Name.getKind()) {
110  case UnqualifiedId::IK_Identifier:
111    TName = DeclarationName(Name.Identifier);
112    break;
113
114  case UnqualifiedId::IK_OperatorFunctionId:
115    TName = Context.DeclarationNames.getCXXOperatorName(
116                                              Name.OperatorFunctionId.Operator);
117    break;
118
119  default:
120    return TNK_Non_template;
121  }
122
123  // Determine where to perform name lookup
124  DeclContext *LookupCtx = 0;
125  bool isDependent = false;
126  if (ObjectTypePtr) {
127    // This nested-name-specifier occurs in a member access expression, e.g.,
128    // x->B::f, and we are looking into the type of the object.
129    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
130    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
131    LookupCtx = computeDeclContext(ObjectType);
132    isDependent = ObjectType->isDependentType();
133  } else if (SS.isSet()) {
134    // This nested-name-specifier occurs after another nested-name-specifier,
135    // so long into the context associated with the prior nested-name-specifier.
136
137    LookupCtx = computeDeclContext(SS, EnteringContext);
138    isDependent = isDependentScopeSpecifier(SS);
139  }
140
141  LookupResult Found;
142  bool ObjectTypeSearchedInScope = false;
143  if (LookupCtx) {
144    // Perform "qualified" name lookup into the declaration context we
145    // computed, which is either the type of the base of a member access
146    // expression or the declaration context associated with a prior
147    // nested-name-specifier.
148
149    // The declaration context must be complete.
150    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
151      return TNK_Non_template;
152
153    LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName);
154
155    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
156      // C++ [basic.lookup.classref]p1:
157      //   In a class member access expression (5.2.5), if the . or -> token is
158      //   immediately followed by an identifier followed by a <, the
159      //   identifier must be looked up to determine whether the < is the
160      //   beginning of a template argument list (14.2) or a less-than operator.
161      //   The identifier is first looked up in the class of the object
162      //   expression. If the identifier is not found, it is then looked up in
163      //   the context of the entire postfix-expression and shall name a class
164      //   or function template.
165      //
166      // FIXME: When we're instantiating a template, do we actually have to
167      // look in the scope of the template? Seems fishy...
168      LookupName(Found, S, TName, LookupOrdinaryName);
169      ObjectTypeSearchedInScope = true;
170    }
171  } else if (isDependent) {
172    // We cannot look into a dependent object type or
173    return TNK_Non_template;
174  } else {
175    // Perform unqualified name lookup in the current scope.
176    LookupName(Found, S, TName, LookupOrdinaryName);
177  }
178
179  // FIXME: Cope with ambiguous name-lookup results.
180  assert(!Found.isAmbiguous() &&
181         "Cannot handle template name-lookup ambiguities");
182
183  NamedDecl *Template
184    = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context));
185  if (!Template)
186    return TNK_Non_template;
187
188  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
189    // C++ [basic.lookup.classref]p1:
190    //   [...] If the lookup in the class of the object expression finds a
191    //   template, the name is also looked up in the context of the entire
192    //   postfix-expression and [...]
193    //
194    LookupResult FoundOuter;
195    LookupName(FoundOuter, S, TName, LookupOrdinaryName);
196    // FIXME: Handle ambiguities in this lookup better
197    NamedDecl *OuterTemplate
198      = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context));
199
200    if (!OuterTemplate) {
201      //   - if the name is not found, the name found in the class of the
202      //     object expression is used, otherwise
203    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
204      //   - if the name is found in the context of the entire
205      //     postfix-expression and does not name a class template, the name
206      //     found in the class of the object expression is used, otherwise
207    } else {
208      //   - if the name found is a class template, it must refer to the same
209      //     entity as the one found in the class of the object expression,
210      //     otherwise the program is ill-formed.
211      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
212        Diag(Name.getSourceRange().getBegin(),
213             diag::err_nested_name_member_ref_lookup_ambiguous)
214          << TName
215          << Name.getSourceRange();
216        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
217          << QualType::getFromOpaquePtr(ObjectTypePtr);
218        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
219
220        // Recover by taking the template that we found in the object
221        // expression's type.
222      }
223    }
224  }
225
226  if (SS.isSet() && !SS.isInvalid()) {
227    NestedNameSpecifier *Qualifier
228      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
229    if (OverloadedFunctionDecl *Ovl
230          = dyn_cast<OverloadedFunctionDecl>(Template))
231      TemplateResult
232        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
233                                                            Ovl));
234    else
235      TemplateResult
236        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
237                                                 cast<TemplateDecl>(Template)));
238  } else if (OverloadedFunctionDecl *Ovl
239               = dyn_cast<OverloadedFunctionDecl>(Template)) {
240    TemplateResult = TemplateTy::make(TemplateName(Ovl));
241  } else {
242    TemplateResult = TemplateTy::make(
243                                  TemplateName(cast<TemplateDecl>(Template)));
244  }
245
246  if (isa<ClassTemplateDecl>(Template) ||
247      isa<TemplateTemplateParmDecl>(Template))
248    return TNK_Type_template;
249
250  assert((isa<FunctionTemplateDecl>(Template) ||
251          isa<OverloadedFunctionDecl>(Template)) &&
252         "Unhandled template kind in Sema::isTemplateName");
253  return TNK_Function_template;
254}
255
256/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
257/// that the template parameter 'PrevDecl' is being shadowed by a new
258/// declaration at location Loc. Returns true to indicate that this is
259/// an error, and false otherwise.
260bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
261  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
262
263  // Microsoft Visual C++ permits template parameters to be shadowed.
264  if (getLangOptions().Microsoft)
265    return false;
266
267  // C++ [temp.local]p4:
268  //   A template-parameter shall not be redeclared within its
269  //   scope (including nested scopes).
270  Diag(Loc, diag::err_template_param_shadow)
271    << cast<NamedDecl>(PrevDecl)->getDeclName();
272  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
273  return true;
274}
275
276/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
277/// the parameter D to reference the templated declaration and return a pointer
278/// to the template declaration. Otherwise, do nothing to D and return null.
279TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
280  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
281    D = DeclPtrTy::make(Temp->getTemplatedDecl());
282    return Temp;
283  }
284  return 0;
285}
286
287static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
288                                            const ParsedTemplateArgument &Arg) {
289
290  switch (Arg.getKind()) {
291  case ParsedTemplateArgument::Type: {
292    DeclaratorInfo *DI;
293    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
294    if (!DI)
295      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
296    return TemplateArgumentLoc(TemplateArgument(T), DI);
297  }
298
299  case ParsedTemplateArgument::NonType: {
300    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
301    return TemplateArgumentLoc(TemplateArgument(E), E);
302  }
303
304  case ParsedTemplateArgument::Template: {
305    TemplateName Template
306      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
307    return TemplateArgumentLoc(TemplateArgument(Template),
308                               Arg.getScopeSpec().getRange(),
309                               Arg.getLocation());
310  }
311  }
312
313  llvm::llvm_unreachable("Unhandled parsed template argument");
314  return TemplateArgumentLoc();
315}
316
317/// \brief Translates template arguments as provided by the parser
318/// into template arguments used by semantic analysis.
319void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
320                     llvm::SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
321 TemplateArgs.reserve(TemplateArgsIn.size());
322
323 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
324   TemplateArgs.push_back(translateTemplateArgument(*this, TemplateArgsIn[I]));
325}
326
327/// ActOnTypeParameter - Called when a C++ template type parameter
328/// (e.g., "typename T") has been parsed. Typename specifies whether
329/// the keyword "typename" was used to declare the type parameter
330/// (otherwise, "class" was used), and KeyLoc is the location of the
331/// "class" or "typename" keyword. ParamName is the name of the
332/// parameter (NULL indicates an unnamed template parameter) and
333/// ParamName is the location of the parameter name (if any).
334/// If the type parameter has a default argument, it will be added
335/// later via ActOnTypeParameterDefault.
336Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
337                                         SourceLocation EllipsisLoc,
338                                         SourceLocation KeyLoc,
339                                         IdentifierInfo *ParamName,
340                                         SourceLocation ParamNameLoc,
341                                         unsigned Depth, unsigned Position) {
342  assert(S->isTemplateParamScope() &&
343         "Template type parameter not in template parameter scope!");
344  bool Invalid = false;
345
346  if (ParamName) {
347    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
348    if (PrevDecl && PrevDecl->isTemplateParameter())
349      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
350                                                           PrevDecl);
351  }
352
353  SourceLocation Loc = ParamNameLoc;
354  if (!ParamName)
355    Loc = KeyLoc;
356
357  TemplateTypeParmDecl *Param
358    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
359                                   Depth, Position, ParamName, Typename,
360                                   Ellipsis);
361  if (Invalid)
362    Param->setInvalidDecl();
363
364  if (ParamName) {
365    // Add the template parameter into the current scope.
366    S->AddDecl(DeclPtrTy::make(Param));
367    IdResolver.AddDecl(Param);
368  }
369
370  return DeclPtrTy::make(Param);
371}
372
373/// ActOnTypeParameterDefault - Adds a default argument (the type
374/// Default) to the given template type parameter (TypeParam).
375void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
376                                     SourceLocation EqualLoc,
377                                     SourceLocation DefaultLoc,
378                                     TypeTy *DefaultT) {
379  TemplateTypeParmDecl *Parm
380    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
381
382  DeclaratorInfo *DefaultDInfo;
383  GetTypeFromParser(DefaultT, &DefaultDInfo);
384
385  assert(DefaultDInfo && "expected source information for type");
386
387  // C++0x [temp.param]p9:
388  // A default template-argument may be specified for any kind of
389  // template-parameter that is not a template parameter pack.
390  if (Parm->isParameterPack()) {
391    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
392    return;
393  }
394
395  // C++ [temp.param]p14:
396  //   A template-parameter shall not be used in its own default argument.
397  // FIXME: Implement this check! Needs a recursive walk over the types.
398
399  // Check the template argument itself.
400  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
401    Parm->setInvalidDecl();
402    return;
403  }
404
405  Parm->setDefaultArgument(DefaultDInfo, false);
406}
407
408/// \brief Check that the type of a non-type template parameter is
409/// well-formed.
410///
411/// \returns the (possibly-promoted) parameter type if valid;
412/// otherwise, produces a diagnostic and returns a NULL type.
413QualType
414Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
415  // C++ [temp.param]p4:
416  //
417  // A non-type template-parameter shall have one of the following
418  // (optionally cv-qualified) types:
419  //
420  //       -- integral or enumeration type,
421  if (T->isIntegralType() || T->isEnumeralType() ||
422      //   -- pointer to object or pointer to function,
423      (T->isPointerType() &&
424       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
425        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
426      //   -- reference to object or reference to function,
427      T->isReferenceType() ||
428      //   -- pointer to member.
429      T->isMemberPointerType() ||
430      // If T is a dependent type, we can't do the check now, so we
431      // assume that it is well-formed.
432      T->isDependentType())
433    return T;
434  // C++ [temp.param]p8:
435  //
436  //   A non-type template-parameter of type "array of T" or
437  //   "function returning T" is adjusted to be of type "pointer to
438  //   T" or "pointer to function returning T", respectively.
439  else if (T->isArrayType())
440    // FIXME: Keep the type prior to promotion?
441    return Context.getArrayDecayedType(T);
442  else if (T->isFunctionType())
443    // FIXME: Keep the type prior to promotion?
444    return Context.getPointerType(T);
445
446  Diag(Loc, diag::err_template_nontype_parm_bad_type)
447    << T;
448
449  return QualType();
450}
451
452/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
453/// template parameter (e.g., "int Size" in "template<int Size>
454/// class Array") has been parsed. S is the current scope and D is
455/// the parsed declarator.
456Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
457                                                    unsigned Depth,
458                                                    unsigned Position) {
459  DeclaratorInfo *DInfo = 0;
460  QualType T = GetTypeForDeclarator(D, S, &DInfo);
461
462  assert(S->isTemplateParamScope() &&
463         "Non-type template parameter not in template parameter scope!");
464  bool Invalid = false;
465
466  IdentifierInfo *ParamName = D.getIdentifier();
467  if (ParamName) {
468    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
469    if (PrevDecl && PrevDecl->isTemplateParameter())
470      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
471                                                           PrevDecl);
472  }
473
474  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
475  if (T.isNull()) {
476    T = Context.IntTy; // Recover with an 'int' type.
477    Invalid = true;
478  }
479
480  NonTypeTemplateParmDecl *Param
481    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
482                                      Depth, Position, ParamName, T, DInfo);
483  if (Invalid)
484    Param->setInvalidDecl();
485
486  if (D.getIdentifier()) {
487    // Add the template parameter into the current scope.
488    S->AddDecl(DeclPtrTy::make(Param));
489    IdResolver.AddDecl(Param);
490  }
491  return DeclPtrTy::make(Param);
492}
493
494/// \brief Adds a default argument to the given non-type template
495/// parameter.
496void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
497                                                SourceLocation EqualLoc,
498                                                ExprArg DefaultE) {
499  NonTypeTemplateParmDecl *TemplateParm
500    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
501  Expr *Default = static_cast<Expr *>(DefaultE.get());
502
503  // C++ [temp.param]p14:
504  //   A template-parameter shall not be used in its own default argument.
505  // FIXME: Implement this check! Needs a recursive walk over the types.
506
507  // Check the well-formedness of the default template argument.
508  TemplateArgument Converted;
509  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
510                            Converted)) {
511    TemplateParm->setInvalidDecl();
512    return;
513  }
514
515  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
516}
517
518
519/// ActOnTemplateTemplateParameter - Called when a C++ template template
520/// parameter (e.g. T in template <template <typename> class T> class array)
521/// has been parsed. S is the current scope.
522Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
523                                                     SourceLocation TmpLoc,
524                                                     TemplateParamsTy *Params,
525                                                     IdentifierInfo *Name,
526                                                     SourceLocation NameLoc,
527                                                     unsigned Depth,
528                                                     unsigned Position) {
529  assert(S->isTemplateParamScope() &&
530         "Template template parameter not in template parameter scope!");
531
532  // Construct the parameter object.
533  TemplateTemplateParmDecl *Param =
534    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
535                                     Position, Name,
536                                     (TemplateParameterList*)Params);
537
538  // Make sure the parameter is valid.
539  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
540  // do anything yet. However, if the template parameter list or (eventual)
541  // default value is ever invalidated, that will propagate here.
542  bool Invalid = false;
543  if (Invalid) {
544    Param->setInvalidDecl();
545  }
546
547  // If the tt-param has a name, then link the identifier into the scope
548  // and lookup mechanisms.
549  if (Name) {
550    S->AddDecl(DeclPtrTy::make(Param));
551    IdResolver.AddDecl(Param);
552  }
553
554  return DeclPtrTy::make(Param);
555}
556
557/// \brief Adds a default argument to the given template template
558/// parameter.
559void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
560                                                 SourceLocation EqualLoc,
561                                        const ParsedTemplateArgument &Default) {
562  TemplateTemplateParmDecl *TemplateParm
563    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
564
565  // C++ [temp.param]p14:
566  //   A template-parameter shall not be used in its own default argument.
567  // FIXME: Implement this check! Needs a recursive walk over the types.
568
569  // Check only that we have a template template argument. We don't want to
570  // try to check well-formedness now, because our template template parameter
571  // might have dependent types in its template parameters, which we wouldn't
572  // be able to match now.
573  //
574  // If none of the template template parameter's template arguments mention
575  // other template parameters, we could actually perform more checking here.
576  // However, it isn't worth doing.
577  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
578  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
579    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
580      << DefaultArg.getSourceRange();
581    return;
582  }
583
584  TemplateParm->setDefaultArgument(DefaultArg);
585}
586
587/// ActOnTemplateParameterList - Builds a TemplateParameterList that
588/// contains the template parameters in Params/NumParams.
589Sema::TemplateParamsTy *
590Sema::ActOnTemplateParameterList(unsigned Depth,
591                                 SourceLocation ExportLoc,
592                                 SourceLocation TemplateLoc,
593                                 SourceLocation LAngleLoc,
594                                 DeclPtrTy *Params, unsigned NumParams,
595                                 SourceLocation RAngleLoc) {
596  if (ExportLoc.isValid())
597    Diag(ExportLoc, diag::note_template_export_unsupported);
598
599  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
600                                       (NamedDecl**)Params, NumParams,
601                                       RAngleLoc);
602}
603
604Sema::DeclResult
605Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
606                         SourceLocation KWLoc, const CXXScopeSpec &SS,
607                         IdentifierInfo *Name, SourceLocation NameLoc,
608                         AttributeList *Attr,
609                         TemplateParameterList *TemplateParams,
610                         AccessSpecifier AS) {
611  assert(TemplateParams && TemplateParams->size() > 0 &&
612         "No template parameters");
613  assert(TUK != TUK_Reference && "Can only declare or define class templates");
614  bool Invalid = false;
615
616  // Check that we can declare a template here.
617  if (CheckTemplateDeclScope(S, TemplateParams))
618    return true;
619
620  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
621  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
622
623  // There is no such thing as an unnamed class template.
624  if (!Name) {
625    Diag(KWLoc, diag::err_template_unnamed_class);
626    return true;
627  }
628
629  // Find any previous declaration with this name.
630  DeclContext *SemanticContext;
631  LookupResult Previous;
632  if (SS.isNotEmpty() && !SS.isInvalid()) {
633    if (RequireCompleteDeclContext(SS))
634      return true;
635
636    SemanticContext = computeDeclContext(SS, true);
637    if (!SemanticContext) {
638      // FIXME: Produce a reasonable diagnostic here
639      return true;
640    }
641
642    LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName,
643                                   true);
644  } else {
645    SemanticContext = CurContext;
646    LookupName(Previous, S, Name, LookupOrdinaryName, true);
647  }
648
649  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
650  NamedDecl *PrevDecl = 0;
651  if (Previous.begin() != Previous.end())
652    PrevDecl = *Previous.begin();
653
654  if (PrevDecl && TUK == TUK_Friend) {
655    // C++ [namespace.memdef]p3:
656    //   [...] When looking for a prior declaration of a class or a function
657    //   declared as a friend, and when the name of the friend class or
658    //   function is neither a qualified name nor a template-id, scopes outside
659    //   the innermost enclosing namespace scope are not considered.
660    DeclContext *OutermostContext = CurContext;
661    while (!OutermostContext->isFileContext())
662      OutermostContext = OutermostContext->getLookupParent();
663
664    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
665        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
666      SemanticContext = PrevDecl->getDeclContext();
667    } else {
668      // Declarations in outer scopes don't matter. However, the outermost
669      // context we computed is the semantic context for our new
670      // declaration.
671      PrevDecl = 0;
672      SemanticContext = OutermostContext;
673    }
674
675    if (CurContext->isDependentContext()) {
676      // If this is a dependent context, we don't want to link the friend
677      // class template to the template in scope, because that would perform
678      // checking of the template parameter lists that can't be performed
679      // until the outer context is instantiated.
680      PrevDecl = 0;
681    }
682  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
683    PrevDecl = 0;
684
685  // If there is a previous declaration with the same name, check
686  // whether this is a valid redeclaration.
687  ClassTemplateDecl *PrevClassTemplate
688    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
689
690  // We may have found the injected-class-name of a class template,
691  // class template partial specialization, or class template specialization.
692  // In these cases, grab the template that is being defined or specialized.
693  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
694      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
695    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
696    PrevClassTemplate
697      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
698    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
699      PrevClassTemplate
700        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
701            ->getSpecializedTemplate();
702    }
703  }
704
705  if (PrevClassTemplate) {
706    // Ensure that the template parameter lists are compatible.
707    if (!TemplateParameterListsAreEqual(TemplateParams,
708                                   PrevClassTemplate->getTemplateParameters(),
709                                        /*Complain=*/true))
710      return true;
711
712    // C++ [temp.class]p4:
713    //   In a redeclaration, partial specialization, explicit
714    //   specialization or explicit instantiation of a class template,
715    //   the class-key shall agree in kind with the original class
716    //   template declaration (7.1.5.3).
717    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
718    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
719      Diag(KWLoc, diag::err_use_with_wrong_tag)
720        << Name
721        << CodeModificationHint::CreateReplacement(KWLoc,
722                            PrevRecordDecl->getKindName());
723      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
724      Kind = PrevRecordDecl->getTagKind();
725    }
726
727    // Check for redefinition of this class template.
728    if (TUK == TUK_Definition) {
729      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
730        Diag(NameLoc, diag::err_redefinition) << Name;
731        Diag(Def->getLocation(), diag::note_previous_definition);
732        // FIXME: Would it make sense to try to "forget" the previous
733        // definition, as part of error recovery?
734        return true;
735      }
736    }
737  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
738    // Maybe we will complain about the shadowed template parameter.
739    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
740    // Just pretend that we didn't see the previous declaration.
741    PrevDecl = 0;
742  } else if (PrevDecl) {
743    // C++ [temp]p5:
744    //   A class template shall not have the same name as any other
745    //   template, class, function, object, enumeration, enumerator,
746    //   namespace, or type in the same scope (3.3), except as specified
747    //   in (14.5.4).
748    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
749    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
750    return true;
751  }
752
753  // Check the template parameter list of this declaration, possibly
754  // merging in the template parameter list from the previous class
755  // template declaration.
756  if (CheckTemplateParameterList(TemplateParams,
757            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
758    Invalid = true;
759
760  // FIXME: If we had a scope specifier, we better have a previous template
761  // declaration!
762
763  CXXRecordDecl *NewClass =
764    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
765                          PrevClassTemplate?
766                            PrevClassTemplate->getTemplatedDecl() : 0,
767                          /*DelayTypeCreation=*/true);
768
769  ClassTemplateDecl *NewTemplate
770    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
771                                DeclarationName(Name), TemplateParams,
772                                NewClass, PrevClassTemplate);
773  NewClass->setDescribedClassTemplate(NewTemplate);
774
775  // Build the type for the class template declaration now.
776  QualType T =
777    Context.getTypeDeclType(NewClass,
778                            PrevClassTemplate?
779                              PrevClassTemplate->getTemplatedDecl() : 0);
780  assert(T->isDependentType() && "Class template type is not dependent?");
781  (void)T;
782
783  // If we are providing an explicit specialization of a member that is a
784  // class template, make a note of that.
785  if (PrevClassTemplate &&
786      PrevClassTemplate->getInstantiatedFromMemberTemplate())
787    PrevClassTemplate->setMemberSpecialization();
788
789  // Set the access specifier.
790  if (!Invalid && TUK != TUK_Friend)
791    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
792
793  // Set the lexical context of these templates
794  NewClass->setLexicalDeclContext(CurContext);
795  NewTemplate->setLexicalDeclContext(CurContext);
796
797  if (TUK == TUK_Definition)
798    NewClass->startDefinition();
799
800  if (Attr)
801    ProcessDeclAttributeList(S, NewClass, Attr);
802
803  if (TUK != TUK_Friend)
804    PushOnScopeChains(NewTemplate, S);
805  else {
806    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
807      NewTemplate->setAccess(PrevClassTemplate->getAccess());
808      NewClass->setAccess(PrevClassTemplate->getAccess());
809    }
810
811    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
812                                       PrevClassTemplate != NULL);
813
814    // Friend templates are visible in fairly strange ways.
815    if (!CurContext->isDependentContext()) {
816      DeclContext *DC = SemanticContext->getLookupContext();
817      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
818      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
819        PushOnScopeChains(NewTemplate, EnclosingScope,
820                          /* AddToContext = */ false);
821    }
822
823    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
824                                            NewClass->getLocation(),
825                                            NewTemplate,
826                                    /*FIXME:*/NewClass->getLocation());
827    Friend->setAccess(AS_public);
828    CurContext->addDecl(Friend);
829  }
830
831  if (Invalid) {
832    NewTemplate->setInvalidDecl();
833    NewClass->setInvalidDecl();
834  }
835  return DeclPtrTy::make(NewTemplate);
836}
837
838/// \brief Checks the validity of a template parameter list, possibly
839/// considering the template parameter list from a previous
840/// declaration.
841///
842/// If an "old" template parameter list is provided, it must be
843/// equivalent (per TemplateParameterListsAreEqual) to the "new"
844/// template parameter list.
845///
846/// \param NewParams Template parameter list for a new template
847/// declaration. This template parameter list will be updated with any
848/// default arguments that are carried through from the previous
849/// template parameter list.
850///
851/// \param OldParams If provided, template parameter list from a
852/// previous declaration of the same template. Default template
853/// arguments will be merged from the old template parameter list to
854/// the new template parameter list.
855///
856/// \returns true if an error occurred, false otherwise.
857bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
858                                      TemplateParameterList *OldParams) {
859  bool Invalid = false;
860
861  // C++ [temp.param]p10:
862  //   The set of default template-arguments available for use with a
863  //   template declaration or definition is obtained by merging the
864  //   default arguments from the definition (if in scope) and all
865  //   declarations in scope in the same way default function
866  //   arguments are (8.3.6).
867  bool SawDefaultArgument = false;
868  SourceLocation PreviousDefaultArgLoc;
869
870  bool SawParameterPack = false;
871  SourceLocation ParameterPackLoc;
872
873  // Dummy initialization to avoid warnings.
874  TemplateParameterList::iterator OldParam = NewParams->end();
875  if (OldParams)
876    OldParam = OldParams->begin();
877
878  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
879                                    NewParamEnd = NewParams->end();
880       NewParam != NewParamEnd; ++NewParam) {
881    // Variables used to diagnose redundant default arguments
882    bool RedundantDefaultArg = false;
883    SourceLocation OldDefaultLoc;
884    SourceLocation NewDefaultLoc;
885
886    // Variables used to diagnose missing default arguments
887    bool MissingDefaultArg = false;
888
889    // C++0x [temp.param]p11:
890    // If a template parameter of a class template is a template parameter pack,
891    // it must be the last template parameter.
892    if (SawParameterPack) {
893      Diag(ParameterPackLoc,
894           diag::err_template_param_pack_must_be_last_template_parameter);
895      Invalid = true;
896    }
897
898    // Merge default arguments for template type parameters.
899    if (TemplateTypeParmDecl *NewTypeParm
900          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
901      TemplateTypeParmDecl *OldTypeParm
902          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
903
904      if (NewTypeParm->isParameterPack()) {
905        assert(!NewTypeParm->hasDefaultArgument() &&
906               "Parameter packs can't have a default argument!");
907        SawParameterPack = true;
908        ParameterPackLoc = NewTypeParm->getLocation();
909      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
910                 NewTypeParm->hasDefaultArgument()) {
911        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
912        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
913        SawDefaultArgument = true;
914        RedundantDefaultArg = true;
915        PreviousDefaultArgLoc = NewDefaultLoc;
916      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
917        // Merge the default argument from the old declaration to the
918        // new declaration.
919        SawDefaultArgument = true;
920        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
921                                        true);
922        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
923      } else if (NewTypeParm->hasDefaultArgument()) {
924        SawDefaultArgument = true;
925        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
926      } else if (SawDefaultArgument)
927        MissingDefaultArg = true;
928    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
929               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
930      // Merge default arguments for non-type template parameters
931      NonTypeTemplateParmDecl *OldNonTypeParm
932        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
933      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
934          NewNonTypeParm->hasDefaultArgument()) {
935        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
936        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
937        SawDefaultArgument = true;
938        RedundantDefaultArg = true;
939        PreviousDefaultArgLoc = NewDefaultLoc;
940      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
941        // Merge the default argument from the old declaration to the
942        // new declaration.
943        SawDefaultArgument = true;
944        // FIXME: We need to create a new kind of "default argument"
945        // expression that points to a previous template template
946        // parameter.
947        NewNonTypeParm->setDefaultArgument(
948                                        OldNonTypeParm->getDefaultArgument());
949        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
950      } else if (NewNonTypeParm->hasDefaultArgument()) {
951        SawDefaultArgument = true;
952        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
953      } else if (SawDefaultArgument)
954        MissingDefaultArg = true;
955    } else {
956    // Merge default arguments for template template parameters
957      TemplateTemplateParmDecl *NewTemplateParm
958        = cast<TemplateTemplateParmDecl>(*NewParam);
959      TemplateTemplateParmDecl *OldTemplateParm
960        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
961      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
962          NewTemplateParm->hasDefaultArgument()) {
963        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
964        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
965        SawDefaultArgument = true;
966        RedundantDefaultArg = true;
967        PreviousDefaultArgLoc = NewDefaultLoc;
968      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
969        // Merge the default argument from the old declaration to the
970        // new declaration.
971        SawDefaultArgument = true;
972        // FIXME: We need to create a new kind of "default argument" expression
973        // that points to a previous template template parameter.
974        NewTemplateParm->setDefaultArgument(
975                                        OldTemplateParm->getDefaultArgument());
976        PreviousDefaultArgLoc
977          = OldTemplateParm->getDefaultArgument().getLocation();
978      } else if (NewTemplateParm->hasDefaultArgument()) {
979        SawDefaultArgument = true;
980        PreviousDefaultArgLoc
981          = NewTemplateParm->getDefaultArgument().getLocation();
982      } else if (SawDefaultArgument)
983        MissingDefaultArg = true;
984    }
985
986    if (RedundantDefaultArg) {
987      // C++ [temp.param]p12:
988      //   A template-parameter shall not be given default arguments
989      //   by two different declarations in the same scope.
990      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
991      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
992      Invalid = true;
993    } else if (MissingDefaultArg) {
994      // C++ [temp.param]p11:
995      //   If a template-parameter has a default template-argument,
996      //   all subsequent template-parameters shall have a default
997      //   template-argument supplied.
998      Diag((*NewParam)->getLocation(),
999           diag::err_template_param_default_arg_missing);
1000      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1001      Invalid = true;
1002    }
1003
1004    // If we have an old template parameter list that we're merging
1005    // in, move on to the next parameter.
1006    if (OldParams)
1007      ++OldParam;
1008  }
1009
1010  return Invalid;
1011}
1012
1013/// \brief Match the given template parameter lists to the given scope
1014/// specifier, returning the template parameter list that applies to the
1015/// name.
1016///
1017/// \param DeclStartLoc the start of the declaration that has a scope
1018/// specifier or a template parameter list.
1019///
1020/// \param SS the scope specifier that will be matched to the given template
1021/// parameter lists. This scope specifier precedes a qualified name that is
1022/// being declared.
1023///
1024/// \param ParamLists the template parameter lists, from the outermost to the
1025/// innermost template parameter lists.
1026///
1027/// \param NumParamLists the number of template parameter lists in ParamLists.
1028///
1029/// \param IsExplicitSpecialization will be set true if the entity being
1030/// declared is an explicit specialization, false otherwise.
1031///
1032/// \returns the template parameter list, if any, that corresponds to the
1033/// name that is preceded by the scope specifier @p SS. This template
1034/// parameter list may be have template parameters (if we're declaring a
1035/// template) or may have no template parameters (if we're declaring a
1036/// template specialization), or may be NULL (if we were's declaring isn't
1037/// itself a template).
1038TemplateParameterList *
1039Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1040                                              const CXXScopeSpec &SS,
1041                                          TemplateParameterList **ParamLists,
1042                                              unsigned NumParamLists,
1043                                              bool &IsExplicitSpecialization) {
1044  IsExplicitSpecialization = false;
1045
1046  // Find the template-ids that occur within the nested-name-specifier. These
1047  // template-ids will match up with the template parameter lists.
1048  llvm::SmallVector<const TemplateSpecializationType *, 4>
1049    TemplateIdsInSpecifier;
1050  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1051       NNS; NNS = NNS->getPrefix()) {
1052    if (const TemplateSpecializationType *SpecType
1053          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1054      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1055      if (!Template)
1056        continue; // FIXME: should this be an error? probably...
1057
1058      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1059        ClassTemplateSpecializationDecl *SpecDecl
1060          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1061        // If the nested name specifier refers to an explicit specialization,
1062        // we don't need a template<> header.
1063        // FIXME: revisit this approach once we cope with specializations
1064        // properly.
1065        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
1066          continue;
1067      }
1068
1069      TemplateIdsInSpecifier.push_back(SpecType);
1070    }
1071  }
1072
1073  // Reverse the list of template-ids in the scope specifier, so that we can
1074  // more easily match up the template-ids and the template parameter lists.
1075  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1076
1077  SourceLocation FirstTemplateLoc = DeclStartLoc;
1078  if (NumParamLists)
1079    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1080
1081  // Match the template-ids found in the specifier to the template parameter
1082  // lists.
1083  unsigned Idx = 0;
1084  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1085       Idx != NumTemplateIds; ++Idx) {
1086    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1087    bool DependentTemplateId = TemplateId->isDependentType();
1088    if (Idx >= NumParamLists) {
1089      // We have a template-id without a corresponding template parameter
1090      // list.
1091      if (DependentTemplateId) {
1092        // FIXME: the location information here isn't great.
1093        Diag(SS.getRange().getBegin(),
1094             diag::err_template_spec_needs_template_parameters)
1095          << TemplateId
1096          << SS.getRange();
1097      } else {
1098        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1099          << SS.getRange()
1100          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1101                                                   "template<> ");
1102        IsExplicitSpecialization = true;
1103      }
1104      return 0;
1105    }
1106
1107    // Check the template parameter list against its corresponding template-id.
1108    if (DependentTemplateId) {
1109      TemplateDecl *Template
1110        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1111
1112      if (ClassTemplateDecl *ClassTemplate
1113            = dyn_cast<ClassTemplateDecl>(Template)) {
1114        TemplateParameterList *ExpectedTemplateParams = 0;
1115        // Is this template-id naming the primary template?
1116        if (Context.hasSameType(TemplateId,
1117                             ClassTemplate->getInjectedClassNameType(Context)))
1118          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1119        // ... or a partial specialization?
1120        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1121                   = ClassTemplate->findPartialSpecialization(TemplateId))
1122          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1123
1124        if (ExpectedTemplateParams)
1125          TemplateParameterListsAreEqual(ParamLists[Idx],
1126                                         ExpectedTemplateParams,
1127                                         true);
1128      }
1129    } else if (ParamLists[Idx]->size() > 0)
1130      Diag(ParamLists[Idx]->getTemplateLoc(),
1131           diag::err_template_param_list_matches_nontemplate)
1132        << TemplateId
1133        << ParamLists[Idx]->getSourceRange();
1134    else
1135      IsExplicitSpecialization = true;
1136  }
1137
1138  // If there were at least as many template-ids as there were template
1139  // parameter lists, then there are no template parameter lists remaining for
1140  // the declaration itself.
1141  if (Idx >= NumParamLists)
1142    return 0;
1143
1144  // If there were too many template parameter lists, complain about that now.
1145  if (Idx != NumParamLists - 1) {
1146    while (Idx < NumParamLists - 1) {
1147      Diag(ParamLists[Idx]->getTemplateLoc(),
1148           diag::err_template_spec_extra_headers)
1149        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1150                       ParamLists[Idx]->getRAngleLoc());
1151      ++Idx;
1152    }
1153  }
1154
1155  // Return the last template parameter list, which corresponds to the
1156  // entity being declared.
1157  return ParamLists[NumParamLists - 1];
1158}
1159
1160QualType Sema::CheckTemplateIdType(TemplateName Name,
1161                                   SourceLocation TemplateLoc,
1162                                   SourceLocation LAngleLoc,
1163                                   const TemplateArgumentLoc *TemplateArgs,
1164                                   unsigned NumTemplateArgs,
1165                                   SourceLocation RAngleLoc) {
1166  TemplateDecl *Template = Name.getAsTemplateDecl();
1167  if (!Template) {
1168    // The template name does not resolve to a template, so we just
1169    // build a dependent template-id type.
1170    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1171                                                 NumTemplateArgs);
1172  }
1173
1174  // Check that the template argument list is well-formed for this
1175  // template.
1176  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1177                                        NumTemplateArgs);
1178  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1179                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1180                                false, Converted))
1181    return QualType();
1182
1183  assert((Converted.structuredSize() ==
1184            Template->getTemplateParameters()->size()) &&
1185         "Converted template argument list is too short!");
1186
1187  QualType CanonType;
1188
1189  if (TemplateSpecializationType::anyDependentTemplateArguments(
1190                                                      TemplateArgs,
1191                                                      NumTemplateArgs)) {
1192    // This class template specialization is a dependent
1193    // type. Therefore, its canonical type is another class template
1194    // specialization type that contains all of the converted
1195    // arguments in canonical form. This ensures that, e.g., A<T> and
1196    // A<T, T> have identical types when A is declared as:
1197    //
1198    //   template<typename T, typename U = T> struct A;
1199    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1200    CanonType = Context.getTemplateSpecializationType(CanonName,
1201                                                   Converted.getFlatArguments(),
1202                                                   Converted.flatSize());
1203
1204    // FIXME: CanonType is not actually the canonical type, and unfortunately
1205    // it is a TemplateSpecializationType that we will never use again.
1206    // In the future, we need to teach getTemplateSpecializationType to only
1207    // build the canonical type and return that to us.
1208    CanonType = Context.getCanonicalType(CanonType);
1209  } else if (ClassTemplateDecl *ClassTemplate
1210               = dyn_cast<ClassTemplateDecl>(Template)) {
1211    // Find the class template specialization declaration that
1212    // corresponds to these arguments.
1213    llvm::FoldingSetNodeID ID;
1214    ClassTemplateSpecializationDecl::Profile(ID,
1215                                             Converted.getFlatArguments(),
1216                                             Converted.flatSize(),
1217                                             Context);
1218    void *InsertPos = 0;
1219    ClassTemplateSpecializationDecl *Decl
1220      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1221    if (!Decl) {
1222      // This is the first time we have referenced this class template
1223      // specialization. Create the canonical declaration and add it to
1224      // the set of specializations.
1225      Decl = ClassTemplateSpecializationDecl::Create(Context,
1226                                    ClassTemplate->getDeclContext(),
1227                                    ClassTemplate->getLocation(),
1228                                    ClassTemplate,
1229                                    Converted, 0);
1230      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1231      Decl->setLexicalDeclContext(CurContext);
1232    }
1233
1234    CanonType = Context.getTypeDeclType(Decl);
1235  }
1236
1237  // Build the fully-sugared type for this class template
1238  // specialization, which refers back to the class template
1239  // specialization we created or found.
1240  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1241                                               NumTemplateArgs, CanonType);
1242}
1243
1244Action::TypeResult
1245Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1246                          SourceLocation LAngleLoc,
1247                          ASTTemplateArgsPtr TemplateArgsIn,
1248                          SourceLocation RAngleLoc) {
1249  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1250
1251  // Translate the parser's template argument list in our AST format.
1252  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1253  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1254
1255  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1256                                        TemplateArgs.data(),
1257                                        TemplateArgs.size(),
1258                                        RAngleLoc);
1259  TemplateArgsIn.release();
1260
1261  if (Result.isNull())
1262    return true;
1263
1264  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1265  TemplateSpecializationTypeLoc TL
1266    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1267  TL.setTemplateNameLoc(TemplateLoc);
1268  TL.setLAngleLoc(LAngleLoc);
1269  TL.setRAngleLoc(RAngleLoc);
1270  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1271    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1272
1273  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1274}
1275
1276Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1277                                              TagUseKind TUK,
1278                                              DeclSpec::TST TagSpec,
1279                                              SourceLocation TagLoc) {
1280  if (TypeResult.isInvalid())
1281    return Sema::TypeResult();
1282
1283  // FIXME: preserve source info, ideally without copying the DI.
1284  DeclaratorInfo *DI;
1285  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1286
1287  // Verify the tag specifier.
1288  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1289
1290  if (const RecordType *RT = Type->getAs<RecordType>()) {
1291    RecordDecl *D = RT->getDecl();
1292
1293    IdentifierInfo *Id = D->getIdentifier();
1294    assert(Id && "templated class must have an identifier");
1295
1296    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1297      Diag(TagLoc, diag::err_use_with_wrong_tag)
1298        << Type
1299        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1300                                                   D->getKindName());
1301      Diag(D->getLocation(), diag::note_previous_use);
1302    }
1303  }
1304
1305  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1306
1307  return ElabType.getAsOpaquePtr();
1308}
1309
1310Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier,
1311                                                 SourceRange QualifierRange,
1312                                                 TemplateName Template,
1313                                                 SourceLocation TemplateNameLoc,
1314                                                 SourceLocation LAngleLoc,
1315                                        const TemplateArgumentLoc *TemplateArgs,
1316                                                 unsigned NumTemplateArgs,
1317                                                 SourceLocation RAngleLoc) {
1318  // FIXME: Can we do any checking at this point? I guess we could check the
1319  // template arguments that we have against the template name, if the template
1320  // name refers to a single template. That's not a terribly common case,
1321  // though.
1322
1323  // Cope with an implicit member access in a C++ non-static member function.
1324  NamedDecl *D = Template.getAsTemplateDecl();
1325  if (!D)
1326    D = Template.getAsOverloadedFunctionDecl();
1327
1328  CXXScopeSpec SS;
1329  SS.setRange(QualifierRange);
1330  SS.setScopeRep(Qualifier);
1331  QualType ThisType, MemberType;
1332  if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc,
1333                                     ThisType, MemberType)) {
1334    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
1335    return Owned(MemberExpr::Create(Context, This, true,
1336                                    Qualifier, QualifierRange,
1337                                    D, TemplateNameLoc, true,
1338                                    LAngleLoc, TemplateArgs,
1339                                    NumTemplateArgs, RAngleLoc,
1340                                    Context.OverloadTy));
1341  }
1342
1343  return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy,
1344                                         Qualifier, QualifierRange,
1345                                         Template, TemplateNameLoc, LAngleLoc,
1346                                         TemplateArgs,
1347                                         NumTemplateArgs, RAngleLoc));
1348}
1349
1350Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS,
1351                                                 TemplateTy TemplateD,
1352                                                 SourceLocation TemplateNameLoc,
1353                                                 SourceLocation LAngleLoc,
1354                                              ASTTemplateArgsPtr TemplateArgsIn,
1355                                                 SourceLocation RAngleLoc) {
1356  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1357
1358  // Translate the parser's template argument list in our AST format.
1359  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1360  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1361  TemplateArgsIn.release();
1362
1363  return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(),
1364                             SS.getRange(),
1365                             Template, TemplateNameLoc, LAngleLoc,
1366                             TemplateArgs.data(), TemplateArgs.size(),
1367                             RAngleLoc);
1368}
1369
1370/// \brief Form a dependent template name.
1371///
1372/// This action forms a dependent template name given the template
1373/// name and its (presumably dependent) scope specifier. For
1374/// example, given "MetaFun::template apply", the scope specifier \p
1375/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1376/// of the "template" keyword, and "apply" is the \p Name.
1377Sema::TemplateTy
1378Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1379                                 const CXXScopeSpec &SS,
1380                                 UnqualifiedId &Name,
1381                                 TypeTy *ObjectType) {
1382  if ((ObjectType &&
1383       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1384      (SS.isSet() && computeDeclContext(SS, false))) {
1385    // C++0x [temp.names]p5:
1386    //   If a name prefixed by the keyword template is not the name of
1387    //   a template, the program is ill-formed. [Note: the keyword
1388    //   template may not be applied to non-template members of class
1389    //   templates. -end note ] [ Note: as is the case with the
1390    //   typename prefix, the template prefix is allowed in cases
1391    //   where it is not strictly necessary; i.e., when the
1392    //   nested-name-specifier or the expression on the left of the ->
1393    //   or . is not dependent on a template-parameter, or the use
1394    //   does not appear in the scope of a template. -end note]
1395    //
1396    // Note: C++03 was more strict here, because it banned the use of
1397    // the "template" keyword prior to a template-name that was not a
1398    // dependent name. C++ DR468 relaxed this requirement (the
1399    // "template" keyword is now permitted). We follow the C++0x
1400    // rules, even in C++03 mode, retroactively applying the DR.
1401    TemplateTy Template;
1402    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1403                                          false, Template);
1404    if (TNK == TNK_Non_template) {
1405      Diag(Name.getSourceRange().getBegin(),
1406           diag::err_template_kw_refers_to_non_template)
1407        << GetNameFromUnqualifiedId(Name)
1408        << Name.getSourceRange();
1409      return TemplateTy();
1410    }
1411
1412    return Template;
1413  }
1414
1415  NestedNameSpecifier *Qualifier
1416    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1417
1418  switch (Name.getKind()) {
1419  case UnqualifiedId::IK_Identifier:
1420    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1421                                                             Name.Identifier));
1422
1423  case UnqualifiedId::IK_OperatorFunctionId:
1424    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1425                                             Name.OperatorFunctionId.Operator));
1426
1427  default:
1428    break;
1429  }
1430
1431  Diag(Name.getSourceRange().getBegin(),
1432       diag::err_template_kw_refers_to_non_template)
1433    << GetNameFromUnqualifiedId(Name)
1434    << Name.getSourceRange();
1435  return TemplateTy();
1436}
1437
1438bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1439                                     const TemplateArgumentLoc &AL,
1440                                     TemplateArgumentListBuilder &Converted) {
1441  const TemplateArgument &Arg = AL.getArgument();
1442
1443  // Check template type parameter.
1444  if (Arg.getKind() != TemplateArgument::Type) {
1445    // C++ [temp.arg.type]p1:
1446    //   A template-argument for a template-parameter which is a
1447    //   type shall be a type-id.
1448
1449    // We have a template type parameter but the template argument
1450    // is not a type.
1451    SourceRange SR = AL.getSourceRange();
1452    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1453    Diag(Param->getLocation(), diag::note_template_param_here);
1454
1455    return true;
1456  }
1457
1458  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1459    return true;
1460
1461  // Add the converted template type argument.
1462  Converted.Append(
1463                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1464  return false;
1465}
1466
1467/// \brief Substitute template arguments into the default template argument for
1468/// the given template type parameter.
1469///
1470/// \param SemaRef the semantic analysis object for which we are performing
1471/// the substitution.
1472///
1473/// \param Template the template that we are synthesizing template arguments
1474/// for.
1475///
1476/// \param TemplateLoc the location of the template name that started the
1477/// template-id we are checking.
1478///
1479/// \param RAngleLoc the location of the right angle bracket ('>') that
1480/// terminates the template-id.
1481///
1482/// \param Param the template template parameter whose default we are
1483/// substituting into.
1484///
1485/// \param Converted the list of template arguments provided for template
1486/// parameters that precede \p Param in the template parameter list.
1487///
1488/// \returns the substituted template argument, or NULL if an error occurred.
1489static DeclaratorInfo *
1490SubstDefaultTemplateArgument(Sema &SemaRef,
1491                             TemplateDecl *Template,
1492                             SourceLocation TemplateLoc,
1493                             SourceLocation RAngleLoc,
1494                             TemplateTypeParmDecl *Param,
1495                             TemplateArgumentListBuilder &Converted) {
1496  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
1497
1498  // If the argument type is dependent, instantiate it now based
1499  // on the previously-computed template arguments.
1500  if (ArgType->getType()->isDependentType()) {
1501    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1502                                      /*TakeArgs=*/false);
1503
1504    MultiLevelTemplateArgumentList AllTemplateArgs
1505      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1506
1507    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1508                                     Template, Converted.getFlatArguments(),
1509                                     Converted.flatSize(),
1510                                     SourceRange(TemplateLoc, RAngleLoc));
1511
1512    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1513                                Param->getDefaultArgumentLoc(),
1514                                Param->getDeclName());
1515  }
1516
1517  return ArgType;
1518}
1519
1520/// \brief Substitute template arguments into the default template argument for
1521/// the given non-type template parameter.
1522///
1523/// \param SemaRef the semantic analysis object for which we are performing
1524/// the substitution.
1525///
1526/// \param Template the template that we are synthesizing template arguments
1527/// for.
1528///
1529/// \param TemplateLoc the location of the template name that started the
1530/// template-id we are checking.
1531///
1532/// \param RAngleLoc the location of the right angle bracket ('>') that
1533/// terminates the template-id.
1534///
1535/// \param Param the non-type template parameter whose default we are
1536/// substituting into.
1537///
1538/// \param Converted the list of template arguments provided for template
1539/// parameters that precede \p Param in the template parameter list.
1540///
1541/// \returns the substituted template argument, or NULL if an error occurred.
1542static Sema::OwningExprResult
1543SubstDefaultTemplateArgument(Sema &SemaRef,
1544                             TemplateDecl *Template,
1545                             SourceLocation TemplateLoc,
1546                             SourceLocation RAngleLoc,
1547                             NonTypeTemplateParmDecl *Param,
1548                             TemplateArgumentListBuilder &Converted) {
1549  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1550                                    /*TakeArgs=*/false);
1551
1552  MultiLevelTemplateArgumentList AllTemplateArgs
1553    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1554
1555  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1556                                   Template, Converted.getFlatArguments(),
1557                                   Converted.flatSize(),
1558                                   SourceRange(TemplateLoc, RAngleLoc));
1559
1560  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1561}
1562
1563/// \brief Substitute template arguments into the default template argument for
1564/// the given template template parameter.
1565///
1566/// \param SemaRef the semantic analysis object for which we are performing
1567/// the substitution.
1568///
1569/// \param Template the template that we are synthesizing template arguments
1570/// for.
1571///
1572/// \param TemplateLoc the location of the template name that started the
1573/// template-id we are checking.
1574///
1575/// \param RAngleLoc the location of the right angle bracket ('>') that
1576/// terminates the template-id.
1577///
1578/// \param Param the template template parameter whose default we are
1579/// substituting into.
1580///
1581/// \param Converted the list of template arguments provided for template
1582/// parameters that precede \p Param in the template parameter list.
1583///
1584/// \returns the substituted template argument, or NULL if an error occurred.
1585static TemplateName
1586SubstDefaultTemplateArgument(Sema &SemaRef,
1587                             TemplateDecl *Template,
1588                             SourceLocation TemplateLoc,
1589                             SourceLocation RAngleLoc,
1590                             TemplateTemplateParmDecl *Param,
1591                             TemplateArgumentListBuilder &Converted) {
1592  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1593                                    /*TakeArgs=*/false);
1594
1595  MultiLevelTemplateArgumentList AllTemplateArgs
1596    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1597
1598  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1599                                   Template, Converted.getFlatArguments(),
1600                                   Converted.flatSize(),
1601                                   SourceRange(TemplateLoc, RAngleLoc));
1602
1603  return SemaRef.SubstTemplateName(
1604                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1605                              Param->getDefaultArgument().getTemplateNameLoc(),
1606                                   AllTemplateArgs);
1607}
1608
1609/// \brief Check that the given template argument corresponds to the given
1610/// template parameter.
1611bool Sema::CheckTemplateArgument(NamedDecl *Param,
1612                                 const TemplateArgumentLoc &Arg,
1613                                 unsigned ArgIdx,
1614                                 TemplateDecl *Template,
1615                                 SourceLocation TemplateLoc,
1616                                 SourceLocation LAngleLoc,
1617                                 const TemplateArgumentLoc *TemplateArgs,
1618                                 unsigned NumTemplateArgs,
1619                                 SourceLocation RAngleLoc,
1620                                 TemplateArgumentListBuilder &Converted) {
1621  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
1622    // Check template type parameters.
1623    if (TTP->isParameterPack()) {
1624      // Check all the remaining arguments (if any).
1625      Converted.BeginPack();
1626      for (; ArgIdx < NumTemplateArgs; ++ArgIdx) {
1627        if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1628          return true;
1629      }
1630
1631      Converted.EndPack();
1632      return false;
1633    }
1634
1635    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1636  }
1637
1638  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1639    // Check non-type template parameters.
1640
1641    // Do substitution on the type of the non-type template parameter
1642    // with the template arguments we've seen thus far.
1643    QualType NTTPType = NTTP->getType();
1644    if (NTTPType->isDependentType()) {
1645      // Do substitution on the type of the non-type template parameter.
1646      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1647                                 NTTP, Converted.getFlatArguments(),
1648                                 Converted.flatSize(),
1649                                 SourceRange(TemplateLoc, RAngleLoc));
1650
1651      TemplateArgumentList TemplateArgs(Context, Converted,
1652                                        /*TakeArgs=*/false);
1653      NTTPType = SubstType(NTTPType,
1654                           MultiLevelTemplateArgumentList(TemplateArgs),
1655                           NTTP->getLocation(),
1656                           NTTP->getDeclName());
1657      // If that worked, check the non-type template parameter type
1658      // for validity.
1659      if (!NTTPType.isNull())
1660        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1661                                                     NTTP->getLocation());
1662      if (NTTPType.isNull())
1663        return true;
1664    }
1665
1666    switch (Arg.getArgument().getKind()) {
1667    case TemplateArgument::Null:
1668      assert(false && "Should never see a NULL template argument here");
1669      return true;
1670
1671    case TemplateArgument::Expression: {
1672      Expr *E = Arg.getArgument().getAsExpr();
1673      TemplateArgument Result;
1674      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1675        return true;
1676
1677      Converted.Append(Result);
1678      break;
1679    }
1680
1681    case TemplateArgument::Declaration:
1682    case TemplateArgument::Integral:
1683      // We've already checked this template argument, so just copy
1684      // it to the list of converted arguments.
1685      Converted.Append(Arg.getArgument());
1686      break;
1687
1688    case TemplateArgument::Template:
1689      // We were given a template template argument. It may not be ill-formed;
1690      // see below.
1691      if (DependentTemplateName *DTN
1692            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1693        // We have a template argument such as \c T::template X, which we
1694        // parsed as a template template argument. However, since we now
1695        // know that we need a non-type template argument, convert this
1696        // template name into an expression.
1697        Expr *E = new (Context) UnresolvedDeclRefExpr(DTN->getIdentifier(),
1698                                                      Context.DependentTy,
1699                                                      Arg.getTemplateNameLoc(),
1700                                               Arg.getTemplateQualifierRange(),
1701                                                      DTN->getQualifier(),
1702                                                  /*isAddressOfOperand=*/false);
1703
1704        TemplateArgument Result;
1705        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1706          return true;
1707
1708        Converted.Append(Result);
1709        break;
1710      }
1711
1712      // We have a template argument that actually does refer to a class
1713      // template, template alias, or template template parameter, and
1714      // therefore cannot be a non-type template argument.
1715      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1716        << Arg.getSourceRange();
1717
1718      Diag(Param->getLocation(), diag::note_template_param_here);
1719      return true;
1720
1721    case TemplateArgument::Type: {
1722      // We have a non-type template parameter but the template
1723      // argument is a type.
1724
1725      // C++ [temp.arg]p2:
1726      //   In a template-argument, an ambiguity between a type-id and
1727      //   an expression is resolved to a type-id, regardless of the
1728      //   form of the corresponding template-parameter.
1729      //
1730      // We warn specifically about this case, since it can be rather
1731      // confusing for users.
1732      QualType T = Arg.getArgument().getAsType();
1733      SourceRange SR = Arg.getSourceRange();
1734      if (T->isFunctionType())
1735        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1736      else
1737        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1738      Diag(Param->getLocation(), diag::note_template_param_here);
1739      return true;
1740    }
1741
1742    case TemplateArgument::Pack:
1743      assert(0 && "FIXME: Implement!");
1744      break;
1745    }
1746
1747    return false;
1748  }
1749
1750
1751  // Check template template parameters.
1752  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
1753
1754  // Substitute into the template parameter list of the template
1755  // template parameter, since previously-supplied template arguments
1756  // may appear within the template template parameter.
1757  {
1758    // Set up a template instantiation context.
1759    LocalInstantiationScope Scope(*this);
1760    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1761                               TempParm, Converted.getFlatArguments(),
1762                               Converted.flatSize(),
1763                               SourceRange(TemplateLoc, RAngleLoc));
1764
1765    TemplateArgumentList TemplateArgs(Context, Converted,
1766                                      /*TakeArgs=*/false);
1767    TempParm = cast_or_null<TemplateTemplateParmDecl>(
1768                      SubstDecl(TempParm, CurContext,
1769                                MultiLevelTemplateArgumentList(TemplateArgs)));
1770    if (!TempParm)
1771      return true;
1772
1773    // FIXME: TempParam is leaked.
1774  }
1775
1776  switch (Arg.getArgument().getKind()) {
1777  case TemplateArgument::Null:
1778    assert(false && "Should never see a NULL template argument here");
1779    return true;
1780
1781  case TemplateArgument::Template:
1782    if (CheckTemplateArgument(TempParm, Arg))
1783      return true;
1784
1785    Converted.Append(Arg.getArgument());
1786    break;
1787
1788  case TemplateArgument::Expression:
1789  case TemplateArgument::Type:
1790    // We have a template template parameter but the template
1791    // argument does not refer to a template.
1792    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1793    return true;
1794
1795  case TemplateArgument::Declaration:
1796    llvm::llvm_unreachable(
1797                       "Declaration argument with template template parameter");
1798    break;
1799  case TemplateArgument::Integral:
1800    llvm::llvm_unreachable(
1801                          "Integral argument with template template parameter");
1802    break;
1803
1804  case TemplateArgument::Pack:
1805    assert(0 && "FIXME: Implement!");
1806    break;
1807  }
1808
1809  return false;
1810}
1811
1812/// \brief Check that the given template argument list is well-formed
1813/// for specializing the given template.
1814bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1815                                     SourceLocation TemplateLoc,
1816                                     SourceLocation LAngleLoc,
1817                                     const TemplateArgumentLoc *TemplateArgs,
1818                                     unsigned NumTemplateArgs,
1819                                     SourceLocation RAngleLoc,
1820                                     bool PartialTemplateArgs,
1821                                     TemplateArgumentListBuilder &Converted) {
1822  TemplateParameterList *Params = Template->getTemplateParameters();
1823  unsigned NumParams = Params->size();
1824  unsigned NumArgs = NumTemplateArgs;
1825  bool Invalid = false;
1826
1827  bool HasParameterPack =
1828    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1829
1830  if ((NumArgs > NumParams && !HasParameterPack) ||
1831      (NumArgs < Params->getMinRequiredArguments() &&
1832       !PartialTemplateArgs)) {
1833    // FIXME: point at either the first arg beyond what we can handle,
1834    // or the '>', depending on whether we have too many or too few
1835    // arguments.
1836    SourceRange Range;
1837    if (NumArgs > NumParams)
1838      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1839    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1840      << (NumArgs > NumParams)
1841      << (isa<ClassTemplateDecl>(Template)? 0 :
1842          isa<FunctionTemplateDecl>(Template)? 1 :
1843          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1844      << Template << Range;
1845    Diag(Template->getLocation(), diag::note_template_decl_here)
1846      << Params->getSourceRange();
1847    Invalid = true;
1848  }
1849
1850  // C++ [temp.arg]p1:
1851  //   [...] The type and form of each template-argument specified in
1852  //   a template-id shall match the type and form specified for the
1853  //   corresponding parameter declared by the template in its
1854  //   template-parameter-list.
1855  unsigned ArgIdx = 0;
1856  for (TemplateParameterList::iterator Param = Params->begin(),
1857                                       ParamEnd = Params->end();
1858       Param != ParamEnd; ++Param, ++ArgIdx) {
1859    if (ArgIdx > NumArgs && PartialTemplateArgs)
1860      break;
1861
1862    // Decode the template argument
1863    TemplateArgumentLoc Arg;
1864
1865    if (ArgIdx >= NumArgs) {
1866      // Retrieve the default template argument from the template
1867      // parameter.
1868      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1869        if (TTP->isParameterPack()) {
1870          // We have an empty argument pack.
1871          Converted.BeginPack();
1872          Converted.EndPack();
1873          break;
1874        }
1875
1876        if (!TTP->hasDefaultArgument())
1877          break;
1878
1879        DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this,
1880                                                               Template,
1881                                                               TemplateLoc,
1882                                                               RAngleLoc,
1883                                                               TTP,
1884                                                               Converted);
1885        if (!ArgType)
1886          return true;
1887
1888        Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
1889                                  ArgType);
1890      } else if (NonTypeTemplateParmDecl *NTTP
1891                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1892        if (!NTTP->hasDefaultArgument())
1893          break;
1894
1895        Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
1896                                                                TemplateLoc,
1897                                                                RAngleLoc,
1898                                                                NTTP,
1899                                                                Converted);
1900        if (E.isInvalid())
1901          return true;
1902
1903        Expr *Ex = E.takeAs<Expr>();
1904        Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
1905      } else {
1906        TemplateTemplateParmDecl *TempParm
1907          = cast<TemplateTemplateParmDecl>(*Param);
1908
1909        if (!TempParm->hasDefaultArgument())
1910          break;
1911
1912        TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
1913                                                         TemplateLoc,
1914                                                         RAngleLoc,
1915                                                         TempParm,
1916                                                         Converted);
1917        if (Name.isNull())
1918          return true;
1919
1920        Arg = TemplateArgumentLoc(TemplateArgument(Name),
1921                    TempParm->getDefaultArgument().getTemplateQualifierRange(),
1922                    TempParm->getDefaultArgument().getTemplateNameLoc());
1923      }
1924    } else {
1925      // Retrieve the template argument produced by the user.
1926      Arg = TemplateArgs[ArgIdx];
1927    }
1928
1929    if (CheckTemplateArgument(*Param, Arg, ArgIdx, Template, TemplateLoc,
1930                              LAngleLoc, TemplateArgs, NumTemplateArgs,
1931                              RAngleLoc, Converted))
1932      return true;
1933  }
1934
1935  return Invalid;
1936}
1937
1938/// \brief Check a template argument against its corresponding
1939/// template type parameter.
1940///
1941/// This routine implements the semantics of C++ [temp.arg.type]. It
1942/// returns true if an error occurred, and false otherwise.
1943bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1944                                 DeclaratorInfo *ArgInfo) {
1945  assert(ArgInfo && "invalid DeclaratorInfo");
1946  QualType Arg = ArgInfo->getType();
1947
1948  // C++ [temp.arg.type]p2:
1949  //   A local type, a type with no linkage, an unnamed type or a type
1950  //   compounded from any of these types shall not be used as a
1951  //   template-argument for a template type-parameter.
1952  //
1953  // FIXME: Perform the recursive and no-linkage type checks.
1954  const TagType *Tag = 0;
1955  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1956    Tag = EnumT;
1957  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1958    Tag = RecordT;
1959  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
1960    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1961    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
1962      << QualType(Tag, 0) << SR;
1963  } else if (Tag && !Tag->getDecl()->getDeclName() &&
1964           !Tag->getDecl()->getTypedefForAnonDecl()) {
1965    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1966    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
1967    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1968    return true;
1969  }
1970
1971  return false;
1972}
1973
1974/// \brief Checks whether the given template argument is the address
1975/// of an object or function according to C++ [temp.arg.nontype]p1.
1976bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1977                                                          NamedDecl *&Entity) {
1978  bool Invalid = false;
1979
1980  // See through any implicit casts we added to fix the type.
1981  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1982    Arg = Cast->getSubExpr();
1983
1984  // C++0x allows nullptr, and there's no further checking to be done for that.
1985  if (Arg->getType()->isNullPtrType())
1986    return false;
1987
1988  // C++ [temp.arg.nontype]p1:
1989  //
1990  //   A template-argument for a non-type, non-template
1991  //   template-parameter shall be one of: [...]
1992  //
1993  //     -- the address of an object or function with external
1994  //        linkage, including function templates and function
1995  //        template-ids but excluding non-static class members,
1996  //        expressed as & id-expression where the & is optional if
1997  //        the name refers to a function or array, or if the
1998  //        corresponding template-parameter is a reference; or
1999  DeclRefExpr *DRE = 0;
2000
2001  // Ignore (and complain about) any excess parentheses.
2002  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2003    if (!Invalid) {
2004      Diag(Arg->getSourceRange().getBegin(),
2005           diag::err_template_arg_extra_parens)
2006        << Arg->getSourceRange();
2007      Invalid = true;
2008    }
2009
2010    Arg = Parens->getSubExpr();
2011  }
2012
2013  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2014    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2015      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2016  } else
2017    DRE = dyn_cast<DeclRefExpr>(Arg);
2018
2019  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2020    return Diag(Arg->getSourceRange().getBegin(),
2021                diag::err_template_arg_not_object_or_func_form)
2022      << Arg->getSourceRange();
2023
2024  // Cannot refer to non-static data members
2025  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2026    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2027      << Field << Arg->getSourceRange();
2028
2029  // Cannot refer to non-static member functions
2030  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2031    if (!Method->isStatic())
2032      return Diag(Arg->getSourceRange().getBegin(),
2033                  diag::err_template_arg_method)
2034        << Method << Arg->getSourceRange();
2035
2036  // Functions must have external linkage.
2037  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2038    if (Func->getStorageClass() == FunctionDecl::Static) {
2039      Diag(Arg->getSourceRange().getBegin(),
2040           diag::err_template_arg_function_not_extern)
2041        << Func << Arg->getSourceRange();
2042      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2043        << true;
2044      return true;
2045    }
2046
2047    // Okay: we've named a function with external linkage.
2048    Entity = Func;
2049    return Invalid;
2050  }
2051
2052  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2053    if (!Var->hasGlobalStorage()) {
2054      Diag(Arg->getSourceRange().getBegin(),
2055           diag::err_template_arg_object_not_extern)
2056        << Var << Arg->getSourceRange();
2057      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2058        << true;
2059      return true;
2060    }
2061
2062    // Okay: we've named an object with external linkage
2063    Entity = Var;
2064    return Invalid;
2065  }
2066
2067  // We found something else, but we don't know specifically what it is.
2068  Diag(Arg->getSourceRange().getBegin(),
2069       diag::err_template_arg_not_object_or_func)
2070      << Arg->getSourceRange();
2071  Diag(DRE->getDecl()->getLocation(),
2072       diag::note_template_arg_refers_here);
2073  return true;
2074}
2075
2076/// \brief Checks whether the given template argument is a pointer to
2077/// member constant according to C++ [temp.arg.nontype]p1.
2078bool
2079Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
2080  bool Invalid = false;
2081
2082  // See through any implicit casts we added to fix the type.
2083  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2084    Arg = Cast->getSubExpr();
2085
2086  // C++0x allows nullptr, and there's no further checking to be done for that.
2087  if (Arg->getType()->isNullPtrType())
2088    return false;
2089
2090  // C++ [temp.arg.nontype]p1:
2091  //
2092  //   A template-argument for a non-type, non-template
2093  //   template-parameter shall be one of: [...]
2094  //
2095  //     -- a pointer to member expressed as described in 5.3.1.
2096  DeclRefExpr *DRE = 0;
2097
2098  // Ignore (and complain about) any excess parentheses.
2099  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2100    if (!Invalid) {
2101      Diag(Arg->getSourceRange().getBegin(),
2102           diag::err_template_arg_extra_parens)
2103        << Arg->getSourceRange();
2104      Invalid = true;
2105    }
2106
2107    Arg = Parens->getSubExpr();
2108  }
2109
2110  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
2111    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2112      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2113      if (DRE && !DRE->getQualifier())
2114        DRE = 0;
2115    }
2116
2117  if (!DRE)
2118    return Diag(Arg->getSourceRange().getBegin(),
2119                diag::err_template_arg_not_pointer_to_member_form)
2120      << Arg->getSourceRange();
2121
2122  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2123    assert((isa<FieldDecl>(DRE->getDecl()) ||
2124            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2125           "Only non-static member pointers can make it here");
2126
2127    // Okay: this is the address of a non-static member, and therefore
2128    // a member pointer constant.
2129    Member = DRE->getDecl();
2130    return Invalid;
2131  }
2132
2133  // We found something else, but we don't know specifically what it is.
2134  Diag(Arg->getSourceRange().getBegin(),
2135       diag::err_template_arg_not_pointer_to_member_form)
2136      << Arg->getSourceRange();
2137  Diag(DRE->getDecl()->getLocation(),
2138       diag::note_template_arg_refers_here);
2139  return true;
2140}
2141
2142/// \brief Check a template argument against its corresponding
2143/// non-type template parameter.
2144///
2145/// This routine implements the semantics of C++ [temp.arg.nontype].
2146/// It returns true if an error occurred, and false otherwise. \p
2147/// InstantiatedParamType is the type of the non-type template
2148/// parameter after it has been instantiated.
2149///
2150/// If no error was detected, Converted receives the converted template argument.
2151bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2152                                 QualType InstantiatedParamType, Expr *&Arg,
2153                                 TemplateArgument &Converted) {
2154  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2155
2156  // If either the parameter has a dependent type or the argument is
2157  // type-dependent, there's nothing we can check now.
2158  // FIXME: Add template argument to Converted!
2159  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2160    // FIXME: Produce a cloned, canonical expression?
2161    Converted = TemplateArgument(Arg);
2162    return false;
2163  }
2164
2165  // C++ [temp.arg.nontype]p5:
2166  //   The following conversions are performed on each expression used
2167  //   as a non-type template-argument. If a non-type
2168  //   template-argument cannot be converted to the type of the
2169  //   corresponding template-parameter then the program is
2170  //   ill-formed.
2171  //
2172  //     -- for a non-type template-parameter of integral or
2173  //        enumeration type, integral promotions (4.5) and integral
2174  //        conversions (4.7) are applied.
2175  QualType ParamType = InstantiatedParamType;
2176  QualType ArgType = Arg->getType();
2177  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2178    // C++ [temp.arg.nontype]p1:
2179    //   A template-argument for a non-type, non-template
2180    //   template-parameter shall be one of:
2181    //
2182    //     -- an integral constant-expression of integral or enumeration
2183    //        type; or
2184    //     -- the name of a non-type template-parameter; or
2185    SourceLocation NonConstantLoc;
2186    llvm::APSInt Value;
2187    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2188      Diag(Arg->getSourceRange().getBegin(),
2189           diag::err_template_arg_not_integral_or_enumeral)
2190        << ArgType << Arg->getSourceRange();
2191      Diag(Param->getLocation(), diag::note_template_param_here);
2192      return true;
2193    } else if (!Arg->isValueDependent() &&
2194               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2195      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2196        << ArgType << Arg->getSourceRange();
2197      return true;
2198    }
2199
2200    // FIXME: We need some way to more easily get the unqualified form
2201    // of the types without going all the way to the
2202    // canonical type.
2203    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2204      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2205    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2206      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2207
2208    // Try to convert the argument to the parameter's type.
2209    if (Context.hasSameType(ParamType, ArgType)) {
2210      // Okay: no conversion necessary
2211    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2212               !ParamType->isEnumeralType()) {
2213      // This is an integral promotion or conversion.
2214      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2215    } else {
2216      // We can't perform this conversion.
2217      Diag(Arg->getSourceRange().getBegin(),
2218           diag::err_template_arg_not_convertible)
2219        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2220      Diag(Param->getLocation(), diag::note_template_param_here);
2221      return true;
2222    }
2223
2224    QualType IntegerType = Context.getCanonicalType(ParamType);
2225    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2226      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2227
2228    if (!Arg->isValueDependent()) {
2229      // Check that an unsigned parameter does not receive a negative
2230      // value.
2231      if (IntegerType->isUnsignedIntegerType()
2232          && (Value.isSigned() && Value.isNegative())) {
2233        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2234          << Value.toString(10) << Param->getType()
2235          << Arg->getSourceRange();
2236        Diag(Param->getLocation(), diag::note_template_param_here);
2237        return true;
2238      }
2239
2240      // Check that we don't overflow the template parameter type.
2241      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2242      if (Value.getActiveBits() > AllowedBits) {
2243        Diag(Arg->getSourceRange().getBegin(),
2244             diag::err_template_arg_too_large)
2245          << Value.toString(10) << Param->getType()
2246          << Arg->getSourceRange();
2247        Diag(Param->getLocation(), diag::note_template_param_here);
2248        return true;
2249      }
2250
2251      if (Value.getBitWidth() != AllowedBits)
2252        Value.extOrTrunc(AllowedBits);
2253      Value.setIsSigned(IntegerType->isSignedIntegerType());
2254    }
2255
2256    // Add the value of this argument to the list of converted
2257    // arguments. We use the bitwidth and signedness of the template
2258    // parameter.
2259    if (Arg->isValueDependent()) {
2260      // The argument is value-dependent. Create a new
2261      // TemplateArgument with the converted expression.
2262      Converted = TemplateArgument(Arg);
2263      return false;
2264    }
2265
2266    Converted = TemplateArgument(Value,
2267                                 ParamType->isEnumeralType() ? ParamType
2268                                                             : IntegerType);
2269    return false;
2270  }
2271
2272  // Handle pointer-to-function, reference-to-function, and
2273  // pointer-to-member-function all in (roughly) the same way.
2274  if (// -- For a non-type template-parameter of type pointer to
2275      //    function, only the function-to-pointer conversion (4.3) is
2276      //    applied. If the template-argument represents a set of
2277      //    overloaded functions (or a pointer to such), the matching
2278      //    function is selected from the set (13.4).
2279      // In C++0x, any std::nullptr_t value can be converted.
2280      (ParamType->isPointerType() &&
2281       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2282      // -- For a non-type template-parameter of type reference to
2283      //    function, no conversions apply. If the template-argument
2284      //    represents a set of overloaded functions, the matching
2285      //    function is selected from the set (13.4).
2286      (ParamType->isReferenceType() &&
2287       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2288      // -- For a non-type template-parameter of type pointer to
2289      //    member function, no conversions apply. If the
2290      //    template-argument represents a set of overloaded member
2291      //    functions, the matching member function is selected from
2292      //    the set (13.4).
2293      // Again, C++0x allows a std::nullptr_t value.
2294      (ParamType->isMemberPointerType() &&
2295       ParamType->getAs<MemberPointerType>()->getPointeeType()
2296         ->isFunctionType())) {
2297    if (Context.hasSameUnqualifiedType(ArgType,
2298                                       ParamType.getNonReferenceType())) {
2299      // We don't have to do anything: the types already match.
2300    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2301                 ParamType->isMemberPointerType())) {
2302      ArgType = ParamType;
2303      if (ParamType->isMemberPointerType())
2304        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2305      else
2306        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2307    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2308      ArgType = Context.getPointerType(ArgType);
2309      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2310    } else if (FunctionDecl *Fn
2311                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2312      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2313        return true;
2314
2315      Arg = FixOverloadedFunctionReference(Arg, Fn);
2316      ArgType = Arg->getType();
2317      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2318        ArgType = Context.getPointerType(Arg->getType());
2319        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2320      }
2321    }
2322
2323    if (!Context.hasSameUnqualifiedType(ArgType,
2324                                        ParamType.getNonReferenceType())) {
2325      // We can't perform this conversion.
2326      Diag(Arg->getSourceRange().getBegin(),
2327           diag::err_template_arg_not_convertible)
2328        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2329      Diag(Param->getLocation(), diag::note_template_param_here);
2330      return true;
2331    }
2332
2333    if (ParamType->isMemberPointerType()) {
2334      NamedDecl *Member = 0;
2335      if (CheckTemplateArgumentPointerToMember(Arg, Member))
2336        return true;
2337
2338      if (Member)
2339        Member = cast<NamedDecl>(Member->getCanonicalDecl());
2340      Converted = TemplateArgument(Member);
2341      return false;
2342    }
2343
2344    NamedDecl *Entity = 0;
2345    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2346      return true;
2347
2348    if (Entity)
2349      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2350    Converted = TemplateArgument(Entity);
2351    return false;
2352  }
2353
2354  if (ParamType->isPointerType()) {
2355    //   -- for a non-type template-parameter of type pointer to
2356    //      object, qualification conversions (4.4) and the
2357    //      array-to-pointer conversion (4.2) are applied.
2358    // C++0x also allows a value of std::nullptr_t.
2359    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2360           "Only object pointers allowed here");
2361
2362    if (ArgType->isNullPtrType()) {
2363      ArgType = ParamType;
2364      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2365    } else if (ArgType->isArrayType()) {
2366      ArgType = Context.getArrayDecayedType(ArgType);
2367      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2368    }
2369
2370    if (IsQualificationConversion(ArgType, ParamType)) {
2371      ArgType = ParamType;
2372      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2373    }
2374
2375    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2376      // We can't perform this conversion.
2377      Diag(Arg->getSourceRange().getBegin(),
2378           diag::err_template_arg_not_convertible)
2379        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2380      Diag(Param->getLocation(), diag::note_template_param_here);
2381      return true;
2382    }
2383
2384    NamedDecl *Entity = 0;
2385    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2386      return true;
2387
2388    if (Entity)
2389      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2390    Converted = TemplateArgument(Entity);
2391    return false;
2392  }
2393
2394  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2395    //   -- For a non-type template-parameter of type reference to
2396    //      object, no conversions apply. The type referred to by the
2397    //      reference may be more cv-qualified than the (otherwise
2398    //      identical) type of the template-argument. The
2399    //      template-parameter is bound directly to the
2400    //      template-argument, which must be an lvalue.
2401    assert(ParamRefType->getPointeeType()->isObjectType() &&
2402           "Only object references allowed here");
2403
2404    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2405      Diag(Arg->getSourceRange().getBegin(),
2406           diag::err_template_arg_no_ref_bind)
2407        << InstantiatedParamType << Arg->getType()
2408        << Arg->getSourceRange();
2409      Diag(Param->getLocation(), diag::note_template_param_here);
2410      return true;
2411    }
2412
2413    unsigned ParamQuals
2414      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2415    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2416
2417    if ((ParamQuals | ArgQuals) != ParamQuals) {
2418      Diag(Arg->getSourceRange().getBegin(),
2419           diag::err_template_arg_ref_bind_ignores_quals)
2420        << InstantiatedParamType << Arg->getType()
2421        << Arg->getSourceRange();
2422      Diag(Param->getLocation(), diag::note_template_param_here);
2423      return true;
2424    }
2425
2426    NamedDecl *Entity = 0;
2427    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2428      return true;
2429
2430    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2431    Converted = TemplateArgument(Entity);
2432    return false;
2433  }
2434
2435  //     -- For a non-type template-parameter of type pointer to data
2436  //        member, qualification conversions (4.4) are applied.
2437  // C++0x allows std::nullptr_t values.
2438  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2439
2440  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2441    // Types match exactly: nothing more to do here.
2442  } else if (ArgType->isNullPtrType()) {
2443    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2444  } else if (IsQualificationConversion(ArgType, ParamType)) {
2445    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2446  } else {
2447    // We can't perform this conversion.
2448    Diag(Arg->getSourceRange().getBegin(),
2449         diag::err_template_arg_not_convertible)
2450      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2451    Diag(Param->getLocation(), diag::note_template_param_here);
2452    return true;
2453  }
2454
2455  NamedDecl *Member = 0;
2456  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2457    return true;
2458
2459  if (Member)
2460    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2461  Converted = TemplateArgument(Member);
2462  return false;
2463}
2464
2465/// \brief Check a template argument against its corresponding
2466/// template template parameter.
2467///
2468/// This routine implements the semantics of C++ [temp.arg.template].
2469/// It returns true if an error occurred, and false otherwise.
2470bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2471                                 const TemplateArgumentLoc &Arg) {
2472  TemplateName Name = Arg.getArgument().getAsTemplate();
2473  TemplateDecl *Template = Name.getAsTemplateDecl();
2474  if (!Template) {
2475    // Any dependent template name is fine.
2476    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2477    return false;
2478  }
2479
2480  // C++ [temp.arg.template]p1:
2481  //   A template-argument for a template template-parameter shall be
2482  //   the name of a class template, expressed as id-expression. Only
2483  //   primary class templates are considered when matching the
2484  //   template template argument with the corresponding parameter;
2485  //   partial specializations are not considered even if their
2486  //   parameter lists match that of the template template parameter.
2487  //
2488  // Note that we also allow template template parameters here, which
2489  // will happen when we are dealing with, e.g., class template
2490  // partial specializations.
2491  if (!isa<ClassTemplateDecl>(Template) &&
2492      !isa<TemplateTemplateParmDecl>(Template)) {
2493    assert(isa<FunctionTemplateDecl>(Template) &&
2494           "Only function templates are possible here");
2495    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2496    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2497      << Template;
2498  }
2499
2500  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2501                                         Param->getTemplateParameters(),
2502                                         true, true,
2503                                         Arg.getLocation());
2504}
2505
2506/// \brief Determine whether the given template parameter lists are
2507/// equivalent.
2508///
2509/// \param New  The new template parameter list, typically written in the
2510/// source code as part of a new template declaration.
2511///
2512/// \param Old  The old template parameter list, typically found via
2513/// name lookup of the template declared with this template parameter
2514/// list.
2515///
2516/// \param Complain  If true, this routine will produce a diagnostic if
2517/// the template parameter lists are not equivalent.
2518///
2519/// \param IsTemplateTemplateParm  If true, this routine is being
2520/// called to compare the template parameter lists of a template
2521/// template parameter.
2522///
2523/// \param TemplateArgLoc If this source location is valid, then we
2524/// are actually checking the template parameter list of a template
2525/// argument (New) against the template parameter list of its
2526/// corresponding template template parameter (Old). We produce
2527/// slightly different diagnostics in this scenario.
2528///
2529/// \returns True if the template parameter lists are equal, false
2530/// otherwise.
2531bool
2532Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2533                                     TemplateParameterList *Old,
2534                                     bool Complain,
2535                                     bool IsTemplateTemplateParm,
2536                                     SourceLocation TemplateArgLoc) {
2537  if (Old->size() != New->size()) {
2538    if (Complain) {
2539      unsigned NextDiag = diag::err_template_param_list_different_arity;
2540      if (TemplateArgLoc.isValid()) {
2541        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2542        NextDiag = diag::note_template_param_list_different_arity;
2543      }
2544      Diag(New->getTemplateLoc(), NextDiag)
2545          << (New->size() > Old->size())
2546          << IsTemplateTemplateParm
2547          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2548      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2549        << IsTemplateTemplateParm
2550        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2551    }
2552
2553    return false;
2554  }
2555
2556  for (TemplateParameterList::iterator OldParm = Old->begin(),
2557         OldParmEnd = Old->end(), NewParm = New->begin();
2558       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2559    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2560      if (Complain) {
2561        unsigned NextDiag = diag::err_template_param_different_kind;
2562        if (TemplateArgLoc.isValid()) {
2563          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2564          NextDiag = diag::note_template_param_different_kind;
2565        }
2566        Diag((*NewParm)->getLocation(), NextDiag)
2567          << IsTemplateTemplateParm;
2568        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2569          << IsTemplateTemplateParm;
2570      }
2571      return false;
2572    }
2573
2574    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2575      // Okay; all template type parameters are equivalent (since we
2576      // know we're at the same index).
2577    } else if (NonTypeTemplateParmDecl *OldNTTP
2578                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2579      // The types of non-type template parameters must agree.
2580      NonTypeTemplateParmDecl *NewNTTP
2581        = cast<NonTypeTemplateParmDecl>(*NewParm);
2582      if (Context.getCanonicalType(OldNTTP->getType()) !=
2583            Context.getCanonicalType(NewNTTP->getType())) {
2584        if (Complain) {
2585          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2586          if (TemplateArgLoc.isValid()) {
2587            Diag(TemplateArgLoc,
2588                 diag::err_template_arg_template_params_mismatch);
2589            NextDiag = diag::note_template_nontype_parm_different_type;
2590          }
2591          Diag(NewNTTP->getLocation(), NextDiag)
2592            << NewNTTP->getType()
2593            << IsTemplateTemplateParm;
2594          Diag(OldNTTP->getLocation(),
2595               diag::note_template_nontype_parm_prev_declaration)
2596            << OldNTTP->getType();
2597        }
2598        return false;
2599      }
2600      assert(OldNTTP->getDepth() == NewNTTP->getDepth() &&
2601             "Non-type template parameter depth mismatch");
2602      assert(OldNTTP->getPosition() == NewNTTP->getPosition() &&
2603             "Non-type template parameter position mismatch");
2604    } else {
2605      // The template parameter lists of template template
2606      // parameters must agree.
2607      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2608             "Only template template parameters handled here");
2609      TemplateTemplateParmDecl *OldTTP
2610        = cast<TemplateTemplateParmDecl>(*OldParm);
2611      TemplateTemplateParmDecl *NewTTP
2612        = cast<TemplateTemplateParmDecl>(*NewParm);
2613      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2614                                          OldTTP->getTemplateParameters(),
2615                                          Complain,
2616                                          /*IsTemplateTemplateParm=*/true,
2617                                          TemplateArgLoc))
2618        return false;
2619
2620      assert(OldTTP->getDepth() == NewTTP->getDepth() &&
2621             "Template template parameter depth mismatch");
2622      assert(OldTTP->getPosition() == NewTTP->getPosition() &&
2623             "Template template parameter position mismatch");
2624    }
2625  }
2626
2627  return true;
2628}
2629
2630/// \brief Check whether a template can be declared within this scope.
2631///
2632/// If the template declaration is valid in this scope, returns
2633/// false. Otherwise, issues a diagnostic and returns true.
2634bool
2635Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2636  // Find the nearest enclosing declaration scope.
2637  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2638         (S->getFlags() & Scope::TemplateParamScope) != 0)
2639    S = S->getParent();
2640
2641  // C++ [temp]p2:
2642  //   A template-declaration can appear only as a namespace scope or
2643  //   class scope declaration.
2644  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2645  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2646      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2647    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2648             << TemplateParams->getSourceRange();
2649
2650  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2651    Ctx = Ctx->getParent();
2652
2653  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2654    return false;
2655
2656  return Diag(TemplateParams->getTemplateLoc(),
2657              diag::err_template_outside_namespace_or_class_scope)
2658    << TemplateParams->getSourceRange();
2659}
2660
2661/// \brief Determine what kind of template specialization the given declaration
2662/// is.
2663static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2664  if (!D)
2665    return TSK_Undeclared;
2666
2667  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2668    return Record->getTemplateSpecializationKind();
2669  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2670    return Function->getTemplateSpecializationKind();
2671  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2672    return Var->getTemplateSpecializationKind();
2673
2674  return TSK_Undeclared;
2675}
2676
2677/// \brief Check whether a specialization is well-formed in the current
2678/// context.
2679///
2680/// This routine determines whether a template specialization can be declared
2681/// in the current context (C++ [temp.expl.spec]p2).
2682///
2683/// \param S the semantic analysis object for which this check is being
2684/// performed.
2685///
2686/// \param Specialized the entity being specialized or instantiated, which
2687/// may be a kind of template (class template, function template, etc.) or
2688/// a member of a class template (member function, static data member,
2689/// member class).
2690///
2691/// \param PrevDecl the previous declaration of this entity, if any.
2692///
2693/// \param Loc the location of the explicit specialization or instantiation of
2694/// this entity.
2695///
2696/// \param IsPartialSpecialization whether this is a partial specialization of
2697/// a class template.
2698///
2699/// \returns true if there was an error that we cannot recover from, false
2700/// otherwise.
2701static bool CheckTemplateSpecializationScope(Sema &S,
2702                                             NamedDecl *Specialized,
2703                                             NamedDecl *PrevDecl,
2704                                             SourceLocation Loc,
2705                                             bool IsPartialSpecialization) {
2706  // Keep these "kind" numbers in sync with the %select statements in the
2707  // various diagnostics emitted by this routine.
2708  int EntityKind = 0;
2709  bool isTemplateSpecialization = false;
2710  if (isa<ClassTemplateDecl>(Specialized)) {
2711    EntityKind = IsPartialSpecialization? 1 : 0;
2712    isTemplateSpecialization = true;
2713  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2714    EntityKind = 2;
2715    isTemplateSpecialization = true;
2716  } else if (isa<CXXMethodDecl>(Specialized))
2717    EntityKind = 3;
2718  else if (isa<VarDecl>(Specialized))
2719    EntityKind = 4;
2720  else if (isa<RecordDecl>(Specialized))
2721    EntityKind = 5;
2722  else {
2723    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2724    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2725    return true;
2726  }
2727
2728  // C++ [temp.expl.spec]p2:
2729  //   An explicit specialization shall be declared in the namespace
2730  //   of which the template is a member, or, for member templates, in
2731  //   the namespace of which the enclosing class or enclosing class
2732  //   template is a member. An explicit specialization of a member
2733  //   function, member class or static data member of a class
2734  //   template shall be declared in the namespace of which the class
2735  //   template is a member. Such a declaration may also be a
2736  //   definition. If the declaration is not a definition, the
2737  //   specialization may be defined later in the name- space in which
2738  //   the explicit specialization was declared, or in a namespace
2739  //   that encloses the one in which the explicit specialization was
2740  //   declared.
2741  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2742    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2743      << Specialized;
2744    return true;
2745  }
2746
2747  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2748    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2749      << Specialized;
2750    return true;
2751  }
2752
2753  // C++ [temp.class.spec]p6:
2754  //   A class template partial specialization may be declared or redeclared
2755  //   in any namespace scope in which its definition may be defined (14.5.1
2756  //   and 14.5.2).
2757  bool ComplainedAboutScope = false;
2758  DeclContext *SpecializedContext
2759    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2760  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2761  if ((!PrevDecl ||
2762       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2763       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2764    // There is no prior declaration of this entity, so this
2765    // specialization must be in the same context as the template
2766    // itself.
2767    if (!DC->Equals(SpecializedContext)) {
2768      if (isa<TranslationUnitDecl>(SpecializedContext))
2769        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2770        << EntityKind << Specialized;
2771      else if (isa<NamespaceDecl>(SpecializedContext))
2772        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2773        << EntityKind << Specialized
2774        << cast<NamedDecl>(SpecializedContext);
2775
2776      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2777      ComplainedAboutScope = true;
2778    }
2779  }
2780
2781  // Make sure that this redeclaration (or definition) occurs in an enclosing
2782  // namespace.
2783  // Note that HandleDeclarator() performs this check for explicit
2784  // specializations of function templates, static data members, and member
2785  // functions, so we skip the check here for those kinds of entities.
2786  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2787  // Should we refactor that check, so that it occurs later?
2788  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2789      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2790        isa<FunctionDecl>(Specialized))) {
2791    if (isa<TranslationUnitDecl>(SpecializedContext))
2792      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2793        << EntityKind << Specialized;
2794    else if (isa<NamespaceDecl>(SpecializedContext))
2795      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2796        << EntityKind << Specialized
2797        << cast<NamedDecl>(SpecializedContext);
2798
2799    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2800  }
2801
2802  // FIXME: check for specialization-after-instantiation errors and such.
2803
2804  return false;
2805}
2806
2807/// \brief Check the non-type template arguments of a class template
2808/// partial specialization according to C++ [temp.class.spec]p9.
2809///
2810/// \param TemplateParams the template parameters of the primary class
2811/// template.
2812///
2813/// \param TemplateArg the template arguments of the class template
2814/// partial specialization.
2815///
2816/// \param MirrorsPrimaryTemplate will be set true if the class
2817/// template partial specialization arguments are identical to the
2818/// implicit template arguments of the primary template. This is not
2819/// necessarily an error (C++0x), and it is left to the caller to diagnose
2820/// this condition when it is an error.
2821///
2822/// \returns true if there was an error, false otherwise.
2823bool Sema::CheckClassTemplatePartialSpecializationArgs(
2824                                        TemplateParameterList *TemplateParams,
2825                             const TemplateArgumentListBuilder &TemplateArgs,
2826                                        bool &MirrorsPrimaryTemplate) {
2827  // FIXME: the interface to this function will have to change to
2828  // accommodate variadic templates.
2829  MirrorsPrimaryTemplate = true;
2830
2831  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2832
2833  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2834    // Determine whether the template argument list of the partial
2835    // specialization is identical to the implicit argument list of
2836    // the primary template. The caller may need to diagnostic this as
2837    // an error per C++ [temp.class.spec]p9b3.
2838    if (MirrorsPrimaryTemplate) {
2839      if (TemplateTypeParmDecl *TTP
2840            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2841        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2842              Context.getCanonicalType(ArgList[I].getAsType()))
2843          MirrorsPrimaryTemplate = false;
2844      } else if (TemplateTemplateParmDecl *TTP
2845                   = dyn_cast<TemplateTemplateParmDecl>(
2846                                                 TemplateParams->getParam(I))) {
2847        TemplateName Name = ArgList[I].getAsTemplate();
2848        TemplateTemplateParmDecl *ArgDecl
2849          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
2850        if (!ArgDecl ||
2851            ArgDecl->getIndex() != TTP->getIndex() ||
2852            ArgDecl->getDepth() != TTP->getDepth())
2853          MirrorsPrimaryTemplate = false;
2854      }
2855    }
2856
2857    NonTypeTemplateParmDecl *Param
2858      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2859    if (!Param) {
2860      continue;
2861    }
2862
2863    Expr *ArgExpr = ArgList[I].getAsExpr();
2864    if (!ArgExpr) {
2865      MirrorsPrimaryTemplate = false;
2866      continue;
2867    }
2868
2869    // C++ [temp.class.spec]p8:
2870    //   A non-type argument is non-specialized if it is the name of a
2871    //   non-type parameter. All other non-type arguments are
2872    //   specialized.
2873    //
2874    // Below, we check the two conditions that only apply to
2875    // specialized non-type arguments, so skip any non-specialized
2876    // arguments.
2877    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2878      if (NonTypeTemplateParmDecl *NTTP
2879            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2880        if (MirrorsPrimaryTemplate &&
2881            (Param->getIndex() != NTTP->getIndex() ||
2882             Param->getDepth() != NTTP->getDepth()))
2883          MirrorsPrimaryTemplate = false;
2884
2885        continue;
2886      }
2887
2888    // C++ [temp.class.spec]p9:
2889    //   Within the argument list of a class template partial
2890    //   specialization, the following restrictions apply:
2891    //     -- A partially specialized non-type argument expression
2892    //        shall not involve a template parameter of the partial
2893    //        specialization except when the argument expression is a
2894    //        simple identifier.
2895    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2896      Diag(ArgExpr->getLocStart(),
2897           diag::err_dependent_non_type_arg_in_partial_spec)
2898        << ArgExpr->getSourceRange();
2899      return true;
2900    }
2901
2902    //     -- The type of a template parameter corresponding to a
2903    //        specialized non-type argument shall not be dependent on a
2904    //        parameter of the specialization.
2905    if (Param->getType()->isDependentType()) {
2906      Diag(ArgExpr->getLocStart(),
2907           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2908        << Param->getType()
2909        << ArgExpr->getSourceRange();
2910      Diag(Param->getLocation(), diag::note_template_param_here);
2911      return true;
2912    }
2913
2914    MirrorsPrimaryTemplate = false;
2915  }
2916
2917  return false;
2918}
2919
2920Sema::DeclResult
2921Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2922                                       TagUseKind TUK,
2923                                       SourceLocation KWLoc,
2924                                       const CXXScopeSpec &SS,
2925                                       TemplateTy TemplateD,
2926                                       SourceLocation TemplateNameLoc,
2927                                       SourceLocation LAngleLoc,
2928                                       ASTTemplateArgsPtr TemplateArgsIn,
2929                                       SourceLocation RAngleLoc,
2930                                       AttributeList *Attr,
2931                               MultiTemplateParamsArg TemplateParameterLists) {
2932  assert(TUK != TUK_Reference && "References are not specializations");
2933
2934  // Find the class template we're specializing
2935  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2936  ClassTemplateDecl *ClassTemplate
2937    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2938
2939  bool isExplicitSpecialization = false;
2940  bool isPartialSpecialization = false;
2941
2942  // Check the validity of the template headers that introduce this
2943  // template.
2944  // FIXME: We probably shouldn't complain about these headers for
2945  // friend declarations.
2946  TemplateParameterList *TemplateParams
2947    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2948                        (TemplateParameterList**)TemplateParameterLists.get(),
2949                                              TemplateParameterLists.size(),
2950                                              isExplicitSpecialization);
2951  if (TemplateParams && TemplateParams->size() > 0) {
2952    isPartialSpecialization = true;
2953
2954    // C++ [temp.class.spec]p10:
2955    //   The template parameter list of a specialization shall not
2956    //   contain default template argument values.
2957    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2958      Decl *Param = TemplateParams->getParam(I);
2959      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2960        if (TTP->hasDefaultArgument()) {
2961          Diag(TTP->getDefaultArgumentLoc(),
2962               diag::err_default_arg_in_partial_spec);
2963          TTP->removeDefaultArgument();
2964        }
2965      } else if (NonTypeTemplateParmDecl *NTTP
2966                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2967        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2968          Diag(NTTP->getDefaultArgumentLoc(),
2969               diag::err_default_arg_in_partial_spec)
2970            << DefArg->getSourceRange();
2971          NTTP->setDefaultArgument(0);
2972          DefArg->Destroy(Context);
2973        }
2974      } else {
2975        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2976        if (TTP->hasDefaultArgument()) {
2977          Diag(TTP->getDefaultArgument().getLocation(),
2978               diag::err_default_arg_in_partial_spec)
2979            << TTP->getDefaultArgument().getSourceRange();
2980          TTP->setDefaultArgument(TemplateArgumentLoc());
2981        }
2982      }
2983    }
2984  } else if (TemplateParams) {
2985    if (TUK == TUK_Friend)
2986      Diag(KWLoc, diag::err_template_spec_friend)
2987        << CodeModificationHint::CreateRemoval(
2988                                SourceRange(TemplateParams->getTemplateLoc(),
2989                                            TemplateParams->getRAngleLoc()))
2990        << SourceRange(LAngleLoc, RAngleLoc);
2991    else
2992      isExplicitSpecialization = true;
2993  } else if (TUK != TUK_Friend) {
2994    Diag(KWLoc, diag::err_template_spec_needs_header)
2995      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2996    isExplicitSpecialization = true;
2997  }
2998
2999  // Check that the specialization uses the same tag kind as the
3000  // original template.
3001  TagDecl::TagKind Kind;
3002  switch (TagSpec) {
3003  default: assert(0 && "Unknown tag type!");
3004  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3005  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3006  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3007  }
3008  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3009                                    Kind, KWLoc,
3010                                    *ClassTemplate->getIdentifier())) {
3011    Diag(KWLoc, diag::err_use_with_wrong_tag)
3012      << ClassTemplate
3013      << CodeModificationHint::CreateReplacement(KWLoc,
3014                            ClassTemplate->getTemplatedDecl()->getKindName());
3015    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3016         diag::note_previous_use);
3017    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3018  }
3019
3020  // Translate the parser's template argument list in our AST format.
3021  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3022  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3023
3024  // Check that the template argument list is well-formed for this
3025  // template.
3026  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3027                                        TemplateArgs.size());
3028  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3029                                TemplateArgs.data(), TemplateArgs.size(),
3030                                RAngleLoc, false, Converted))
3031    return true;
3032
3033  assert((Converted.structuredSize() ==
3034            ClassTemplate->getTemplateParameters()->size()) &&
3035         "Converted template argument list is too short!");
3036
3037  // Find the class template (partial) specialization declaration that
3038  // corresponds to these arguments.
3039  llvm::FoldingSetNodeID ID;
3040  if (isPartialSpecialization) {
3041    bool MirrorsPrimaryTemplate;
3042    if (CheckClassTemplatePartialSpecializationArgs(
3043                                         ClassTemplate->getTemplateParameters(),
3044                                         Converted, MirrorsPrimaryTemplate))
3045      return true;
3046
3047    if (MirrorsPrimaryTemplate) {
3048      // C++ [temp.class.spec]p9b3:
3049      //
3050      //   -- The argument list of the specialization shall not be identical
3051      //      to the implicit argument list of the primary template.
3052      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3053        << (TUK == TUK_Definition)
3054        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3055                                                           RAngleLoc));
3056      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3057                                ClassTemplate->getIdentifier(),
3058                                TemplateNameLoc,
3059                                Attr,
3060                                TemplateParams,
3061                                AS_none);
3062    }
3063
3064    // FIXME: Diagnose friend partial specializations
3065
3066    // FIXME: Template parameter list matters, too
3067    ClassTemplatePartialSpecializationDecl::Profile(ID,
3068                                                   Converted.getFlatArguments(),
3069                                                   Converted.flatSize(),
3070                                                    Context);
3071  } else
3072    ClassTemplateSpecializationDecl::Profile(ID,
3073                                             Converted.getFlatArguments(),
3074                                             Converted.flatSize(),
3075                                             Context);
3076  void *InsertPos = 0;
3077  ClassTemplateSpecializationDecl *PrevDecl = 0;
3078
3079  if (isPartialSpecialization)
3080    PrevDecl
3081      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3082                                                                    InsertPos);
3083  else
3084    PrevDecl
3085      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3086
3087  ClassTemplateSpecializationDecl *Specialization = 0;
3088
3089  // Check whether we can declare a class template specialization in
3090  // the current scope.
3091  if (TUK != TUK_Friend &&
3092      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3093                                       TemplateNameLoc,
3094                                       isPartialSpecialization))
3095    return true;
3096
3097  // The canonical type
3098  QualType CanonType;
3099  if (PrevDecl &&
3100      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3101       TUK == TUK_Friend)) {
3102    // Since the only prior class template specialization with these
3103    // arguments was referenced but not declared, or we're only
3104    // referencing this specialization as a friend, reuse that
3105    // declaration node as our own, updating its source location to
3106    // reflect our new declaration.
3107    Specialization = PrevDecl;
3108    Specialization->setLocation(TemplateNameLoc);
3109    PrevDecl = 0;
3110    CanonType = Context.getTypeDeclType(Specialization);
3111  } else if (isPartialSpecialization) {
3112    // Build the canonical type that describes the converted template
3113    // arguments of the class template partial specialization.
3114    CanonType = Context.getTemplateSpecializationType(
3115                                                  TemplateName(ClassTemplate),
3116                                                  Converted.getFlatArguments(),
3117                                                  Converted.flatSize());
3118
3119    // Create a new class template partial specialization declaration node.
3120    ClassTemplatePartialSpecializationDecl *PrevPartial
3121      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3122    ClassTemplatePartialSpecializationDecl *Partial
3123      = ClassTemplatePartialSpecializationDecl::Create(Context,
3124                                             ClassTemplate->getDeclContext(),
3125                                                       TemplateNameLoc,
3126                                                       TemplateParams,
3127                                                       ClassTemplate,
3128                                                       Converted,
3129                                                       TemplateArgs.data(),
3130                                                       TemplateArgs.size(),
3131                                                       PrevPartial);
3132
3133    if (PrevPartial) {
3134      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3135      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3136    } else {
3137      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3138    }
3139    Specialization = Partial;
3140
3141    // If we are providing an explicit specialization of a member class
3142    // template specialization, make a note of that.
3143    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3144      PrevPartial->setMemberSpecialization();
3145
3146    // Check that all of the template parameters of the class template
3147    // partial specialization are deducible from the template
3148    // arguments. If not, this class template partial specialization
3149    // will never be used.
3150    llvm::SmallVector<bool, 8> DeducibleParams;
3151    DeducibleParams.resize(TemplateParams->size());
3152    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3153                               TemplateParams->getDepth(),
3154                               DeducibleParams);
3155    unsigned NumNonDeducible = 0;
3156    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3157      if (!DeducibleParams[I])
3158        ++NumNonDeducible;
3159
3160    if (NumNonDeducible) {
3161      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3162        << (NumNonDeducible > 1)
3163        << SourceRange(TemplateNameLoc, RAngleLoc);
3164      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3165        if (!DeducibleParams[I]) {
3166          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3167          if (Param->getDeclName())
3168            Diag(Param->getLocation(),
3169                 diag::note_partial_spec_unused_parameter)
3170              << Param->getDeclName();
3171          else
3172            Diag(Param->getLocation(),
3173                 diag::note_partial_spec_unused_parameter)
3174              << std::string("<anonymous>");
3175        }
3176      }
3177    }
3178  } else {
3179    // Create a new class template specialization declaration node for
3180    // this explicit specialization or friend declaration.
3181    Specialization
3182      = ClassTemplateSpecializationDecl::Create(Context,
3183                                             ClassTemplate->getDeclContext(),
3184                                                TemplateNameLoc,
3185                                                ClassTemplate,
3186                                                Converted,
3187                                                PrevDecl);
3188
3189    if (PrevDecl) {
3190      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3191      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3192    } else {
3193      ClassTemplate->getSpecializations().InsertNode(Specialization,
3194                                                     InsertPos);
3195    }
3196
3197    CanonType = Context.getTypeDeclType(Specialization);
3198  }
3199
3200  // C++ [temp.expl.spec]p6:
3201  //   If a template, a member template or the member of a class template is
3202  //   explicitly specialized then that specialization shall be declared
3203  //   before the first use of that specialization that would cause an implicit
3204  //   instantiation to take place, in every translation unit in which such a
3205  //   use occurs; no diagnostic is required.
3206  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3207    SourceRange Range(TemplateNameLoc, RAngleLoc);
3208    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3209      << Context.getTypeDeclType(Specialization) << Range;
3210
3211    Diag(PrevDecl->getPointOfInstantiation(),
3212         diag::note_instantiation_required_here)
3213      << (PrevDecl->getTemplateSpecializationKind()
3214                                                != TSK_ImplicitInstantiation);
3215    return true;
3216  }
3217
3218  // If this is not a friend, note that this is an explicit specialization.
3219  if (TUK != TUK_Friend)
3220    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3221
3222  // Check that this isn't a redefinition of this specialization.
3223  if (TUK == TUK_Definition) {
3224    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3225      SourceRange Range(TemplateNameLoc, RAngleLoc);
3226      Diag(TemplateNameLoc, diag::err_redefinition)
3227        << Context.getTypeDeclType(Specialization) << Range;
3228      Diag(Def->getLocation(), diag::note_previous_definition);
3229      Specialization->setInvalidDecl();
3230      return true;
3231    }
3232  }
3233
3234  // Build the fully-sugared type for this class template
3235  // specialization as the user wrote in the specialization
3236  // itself. This means that we'll pretty-print the type retrieved
3237  // from the specialization's declaration the way that the user
3238  // actually wrote the specialization, rather than formatting the
3239  // name based on the "canonical" representation used to store the
3240  // template arguments in the specialization.
3241  QualType WrittenTy
3242    = Context.getTemplateSpecializationType(Name,
3243                                            TemplateArgs.data(),
3244                                            TemplateArgs.size(),
3245                                            CanonType);
3246  if (TUK != TUK_Friend)
3247    Specialization->setTypeAsWritten(WrittenTy);
3248  TemplateArgsIn.release();
3249
3250  // C++ [temp.expl.spec]p9:
3251  //   A template explicit specialization is in the scope of the
3252  //   namespace in which the template was defined.
3253  //
3254  // We actually implement this paragraph where we set the semantic
3255  // context (in the creation of the ClassTemplateSpecializationDecl),
3256  // but we also maintain the lexical context where the actual
3257  // definition occurs.
3258  Specialization->setLexicalDeclContext(CurContext);
3259
3260  // We may be starting the definition of this specialization.
3261  if (TUK == TUK_Definition)
3262    Specialization->startDefinition();
3263
3264  if (TUK == TUK_Friend) {
3265    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3266                                            TemplateNameLoc,
3267                                            WrittenTy.getTypePtr(),
3268                                            /*FIXME:*/KWLoc);
3269    Friend->setAccess(AS_public);
3270    CurContext->addDecl(Friend);
3271  } else {
3272    // Add the specialization into its lexical context, so that it can
3273    // be seen when iterating through the list of declarations in that
3274    // context. However, specializations are not found by name lookup.
3275    CurContext->addDecl(Specialization);
3276  }
3277  return DeclPtrTy::make(Specialization);
3278}
3279
3280Sema::DeclPtrTy
3281Sema::ActOnTemplateDeclarator(Scope *S,
3282                              MultiTemplateParamsArg TemplateParameterLists,
3283                              Declarator &D) {
3284  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3285}
3286
3287Sema::DeclPtrTy
3288Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3289                               MultiTemplateParamsArg TemplateParameterLists,
3290                                      Declarator &D) {
3291  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3292  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3293         "Not a function declarator!");
3294  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3295
3296  if (FTI.hasPrototype) {
3297    // FIXME: Diagnose arguments without names in C.
3298  }
3299
3300  Scope *ParentScope = FnBodyScope->getParent();
3301
3302  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3303                                  move(TemplateParameterLists),
3304                                  /*IsFunctionDefinition=*/true);
3305  if (FunctionTemplateDecl *FunctionTemplate
3306        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3307    return ActOnStartOfFunctionDef(FnBodyScope,
3308                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3309  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3310    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3311  return DeclPtrTy();
3312}
3313
3314/// \brief Diagnose cases where we have an explicit template specialization
3315/// before/after an explicit template instantiation, producing diagnostics
3316/// for those cases where they are required and determining whether the
3317/// new specialization/instantiation will have any effect.
3318///
3319/// \param NewLoc the location of the new explicit specialization or
3320/// instantiation.
3321///
3322/// \param NewTSK the kind of the new explicit specialization or instantiation.
3323///
3324/// \param PrevDecl the previous declaration of the entity.
3325///
3326/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3327///
3328/// \param PrevPointOfInstantiation if valid, indicates where the previus
3329/// declaration was instantiated (either implicitly or explicitly).
3330///
3331/// \param SuppressNew will be set to true to indicate that the new
3332/// specialization or instantiation has no effect and should be ignored.
3333///
3334/// \returns true if there was an error that should prevent the introduction of
3335/// the new declaration into the AST, false otherwise.
3336bool
3337Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3338                                             TemplateSpecializationKind NewTSK,
3339                                             NamedDecl *PrevDecl,
3340                                             TemplateSpecializationKind PrevTSK,
3341                                        SourceLocation PrevPointOfInstantiation,
3342                                             bool &SuppressNew) {
3343  SuppressNew = false;
3344
3345  switch (NewTSK) {
3346  case TSK_Undeclared:
3347  case TSK_ImplicitInstantiation:
3348    assert(false && "Don't check implicit instantiations here");
3349    return false;
3350
3351  case TSK_ExplicitSpecialization:
3352    switch (PrevTSK) {
3353    case TSK_Undeclared:
3354    case TSK_ExplicitSpecialization:
3355      // Okay, we're just specializing something that is either already
3356      // explicitly specialized or has merely been mentioned without any
3357      // instantiation.
3358      return false;
3359
3360    case TSK_ImplicitInstantiation:
3361      if (PrevPointOfInstantiation.isInvalid()) {
3362        // The declaration itself has not actually been instantiated, so it is
3363        // still okay to specialize it.
3364        return false;
3365      }
3366      // Fall through
3367
3368    case TSK_ExplicitInstantiationDeclaration:
3369    case TSK_ExplicitInstantiationDefinition:
3370      assert((PrevTSK == TSK_ImplicitInstantiation ||
3371              PrevPointOfInstantiation.isValid()) &&
3372             "Explicit instantiation without point of instantiation?");
3373
3374      // C++ [temp.expl.spec]p6:
3375      //   If a template, a member template or the member of a class template
3376      //   is explicitly specialized then that specialization shall be declared
3377      //   before the first use of that specialization that would cause an
3378      //   implicit instantiation to take place, in every translation unit in
3379      //   which such a use occurs; no diagnostic is required.
3380      Diag(NewLoc, diag::err_specialization_after_instantiation)
3381        << PrevDecl;
3382      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3383        << (PrevTSK != TSK_ImplicitInstantiation);
3384
3385      return true;
3386    }
3387    break;
3388
3389  case TSK_ExplicitInstantiationDeclaration:
3390    switch (PrevTSK) {
3391    case TSK_ExplicitInstantiationDeclaration:
3392      // This explicit instantiation declaration is redundant (that's okay).
3393      SuppressNew = true;
3394      return false;
3395
3396    case TSK_Undeclared:
3397    case TSK_ImplicitInstantiation:
3398      // We're explicitly instantiating something that may have already been
3399      // implicitly instantiated; that's fine.
3400      return false;
3401
3402    case TSK_ExplicitSpecialization:
3403      // C++0x [temp.explicit]p4:
3404      //   For a given set of template parameters, if an explicit instantiation
3405      //   of a template appears after a declaration of an explicit
3406      //   specialization for that template, the explicit instantiation has no
3407      //   effect.
3408      return false;
3409
3410    case TSK_ExplicitInstantiationDefinition:
3411      // C++0x [temp.explicit]p10:
3412      //   If an entity is the subject of both an explicit instantiation
3413      //   declaration and an explicit instantiation definition in the same
3414      //   translation unit, the definition shall follow the declaration.
3415      Diag(NewLoc,
3416           diag::err_explicit_instantiation_declaration_after_definition);
3417      Diag(PrevPointOfInstantiation,
3418           diag::note_explicit_instantiation_definition_here);
3419      assert(PrevPointOfInstantiation.isValid() &&
3420             "Explicit instantiation without point of instantiation?");
3421      SuppressNew = true;
3422      return false;
3423    }
3424    break;
3425
3426  case TSK_ExplicitInstantiationDefinition:
3427    switch (PrevTSK) {
3428    case TSK_Undeclared:
3429    case TSK_ImplicitInstantiation:
3430      // We're explicitly instantiating something that may have already been
3431      // implicitly instantiated; that's fine.
3432      return false;
3433
3434    case TSK_ExplicitSpecialization:
3435      // C++ DR 259, C++0x [temp.explicit]p4:
3436      //   For a given set of template parameters, if an explicit
3437      //   instantiation of a template appears after a declaration of
3438      //   an explicit specialization for that template, the explicit
3439      //   instantiation has no effect.
3440      //
3441      // In C++98/03 mode, we only give an extension warning here, because it
3442      // is not not harmful to try to explicitly instantiate something that
3443      // has been explicitly specialized.
3444      if (!getLangOptions().CPlusPlus0x) {
3445        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3446          << PrevDecl;
3447        Diag(PrevDecl->getLocation(),
3448             diag::note_previous_template_specialization);
3449      }
3450      SuppressNew = true;
3451      return false;
3452
3453    case TSK_ExplicitInstantiationDeclaration:
3454      // We're explicity instantiating a definition for something for which we
3455      // were previously asked to suppress instantiations. That's fine.
3456      return false;
3457
3458    case TSK_ExplicitInstantiationDefinition:
3459      // C++0x [temp.spec]p5:
3460      //   For a given template and a given set of template-arguments,
3461      //     - an explicit instantiation definition shall appear at most once
3462      //       in a program,
3463      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3464        << PrevDecl;
3465      Diag(PrevPointOfInstantiation,
3466           diag::note_previous_explicit_instantiation);
3467      SuppressNew = true;
3468      return false;
3469    }
3470    break;
3471  }
3472
3473  assert(false && "Missing specialization/instantiation case?");
3474
3475  return false;
3476}
3477
3478/// \brief Perform semantic analysis for the given function template
3479/// specialization.
3480///
3481/// This routine performs all of the semantic analysis required for an
3482/// explicit function template specialization. On successful completion,
3483/// the function declaration \p FD will become a function template
3484/// specialization.
3485///
3486/// \param FD the function declaration, which will be updated to become a
3487/// function template specialization.
3488///
3489/// \param HasExplicitTemplateArgs whether any template arguments were
3490/// explicitly provided.
3491///
3492/// \param LAngleLoc the location of the left angle bracket ('<'), if
3493/// template arguments were explicitly provided.
3494///
3495/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3496/// if any.
3497///
3498/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3499/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3500/// true as in, e.g., \c void sort<>(char*, char*);
3501///
3502/// \param RAngleLoc the location of the right angle bracket ('>'), if
3503/// template arguments were explicitly provided.
3504///
3505/// \param PrevDecl the set of declarations that
3506bool
3507Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3508                                          bool HasExplicitTemplateArgs,
3509                                          SourceLocation LAngleLoc,
3510                           const TemplateArgumentLoc *ExplicitTemplateArgs,
3511                                          unsigned NumExplicitTemplateArgs,
3512                                          SourceLocation RAngleLoc,
3513                                          NamedDecl *&PrevDecl) {
3514  // The set of function template specializations that could match this
3515  // explicit function template specialization.
3516  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3517  CandidateSet Candidates;
3518
3519  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3520  for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3521    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) {
3522      // Only consider templates found within the same semantic lookup scope as
3523      // FD.
3524      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3525        continue;
3526
3527      // C++ [temp.expl.spec]p11:
3528      //   A trailing template-argument can be left unspecified in the
3529      //   template-id naming an explicit function template specialization
3530      //   provided it can be deduced from the function argument type.
3531      // Perform template argument deduction to determine whether we may be
3532      // specializing this template.
3533      // FIXME: It is somewhat wasteful to build
3534      TemplateDeductionInfo Info(Context);
3535      FunctionDecl *Specialization = 0;
3536      if (TemplateDeductionResult TDK
3537            = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3538                                      ExplicitTemplateArgs,
3539                                      NumExplicitTemplateArgs,
3540                                      FD->getType(),
3541                                      Specialization,
3542                                      Info)) {
3543        // FIXME: Template argument deduction failed; record why it failed, so
3544        // that we can provide nifty diagnostics.
3545        (void)TDK;
3546        continue;
3547      }
3548
3549      // Record this candidate.
3550      Candidates.push_back(Specialization);
3551    }
3552  }
3553
3554  // Find the most specialized function template.
3555  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3556                                                    Candidates.size(),
3557                                                    TPOC_Other,
3558                                                    FD->getLocation(),
3559                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3560                    << FD->getDeclName(),
3561                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3562                    << FD->getDeclName() << HasExplicitTemplateArgs,
3563                  PartialDiagnostic(diag::note_function_template_spec_matched));
3564  if (!Specialization)
3565    return true;
3566
3567  // FIXME: Check if the prior specialization has a point of instantiation.
3568  // If so, we have run afoul of .
3569
3570  // Check the scope of this explicit specialization.
3571  if (CheckTemplateSpecializationScope(*this,
3572                                       Specialization->getPrimaryTemplate(),
3573                                       Specialization, FD->getLocation(),
3574                                       false))
3575    return true;
3576
3577  // C++ [temp.expl.spec]p6:
3578  //   If a template, a member template or the member of a class template is
3579  //   explicitly specialized then that specialization shall be declared
3580  //   before the first use of that specialization that would cause an implicit
3581  //   instantiation to take place, in every translation unit in which such a
3582  //   use occurs; no diagnostic is required.
3583  FunctionTemplateSpecializationInfo *SpecInfo
3584    = Specialization->getTemplateSpecializationInfo();
3585  assert(SpecInfo && "Function template specialization info missing?");
3586  if (SpecInfo->getPointOfInstantiation().isValid()) {
3587    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3588      << FD;
3589    Diag(SpecInfo->getPointOfInstantiation(),
3590         diag::note_instantiation_required_here)
3591      << (Specialization->getTemplateSpecializationKind()
3592                                                != TSK_ImplicitInstantiation);
3593    return true;
3594  }
3595
3596  // Mark the prior declaration as an explicit specialization, so that later
3597  // clients know that this is an explicit specialization.
3598  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3599
3600  // Turn the given function declaration into a function template
3601  // specialization, with the template arguments from the previous
3602  // specialization.
3603  FD->setFunctionTemplateSpecialization(Context,
3604                                        Specialization->getPrimaryTemplate(),
3605                         new (Context) TemplateArgumentList(
3606                             *Specialization->getTemplateSpecializationArgs()),
3607                                        /*InsertPos=*/0,
3608                                        TSK_ExplicitSpecialization);
3609
3610  // The "previous declaration" for this function template specialization is
3611  // the prior function template specialization.
3612  PrevDecl = Specialization;
3613  return false;
3614}
3615
3616/// \brief Perform semantic analysis for the given non-template member
3617/// specialization.
3618///
3619/// This routine performs all of the semantic analysis required for an
3620/// explicit member function specialization. On successful completion,
3621/// the function declaration \p FD will become a member function
3622/// specialization.
3623///
3624/// \param Member the member declaration, which will be updated to become a
3625/// specialization.
3626///
3627/// \param PrevDecl the set of declarations, one of which may be specialized
3628/// by this function specialization.
3629bool
3630Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) {
3631  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3632
3633  // Try to find the member we are instantiating.
3634  NamedDecl *Instantiation = 0;
3635  NamedDecl *InstantiatedFrom = 0;
3636  MemberSpecializationInfo *MSInfo = 0;
3637
3638  if (!PrevDecl) {
3639    // Nowhere to look anyway.
3640  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3641    for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3642      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) {
3643        if (Context.hasSameType(Function->getType(), Method->getType())) {
3644          Instantiation = Method;
3645          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3646          MSInfo = Method->getMemberSpecializationInfo();
3647          break;
3648        }
3649      }
3650    }
3651  } else if (isa<VarDecl>(Member)) {
3652    if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl))
3653      if (PrevVar->isStaticDataMember()) {
3654        Instantiation = PrevDecl;
3655        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3656        MSInfo = PrevVar->getMemberSpecializationInfo();
3657      }
3658  } else if (isa<RecordDecl>(Member)) {
3659    if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) {
3660      Instantiation = PrevDecl;
3661      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3662      MSInfo = PrevRecord->getMemberSpecializationInfo();
3663    }
3664  }
3665
3666  if (!Instantiation) {
3667    // There is no previous declaration that matches. Since member
3668    // specializations are always out-of-line, the caller will complain about
3669    // this mismatch later.
3670    return false;
3671  }
3672
3673  // Make sure that this is a specialization of a member.
3674  if (!InstantiatedFrom) {
3675    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3676      << Member;
3677    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3678    return true;
3679  }
3680
3681  // C++ [temp.expl.spec]p6:
3682  //   If a template, a member template or the member of a class template is
3683  //   explicitly specialized then that spe- cialization shall be declared
3684  //   before the first use of that specialization that would cause an implicit
3685  //   instantiation to take place, in every translation unit in which such a
3686  //   use occurs; no diagnostic is required.
3687  assert(MSInfo && "Member specialization info missing?");
3688  if (MSInfo->getPointOfInstantiation().isValid()) {
3689    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3690      << Member;
3691    Diag(MSInfo->getPointOfInstantiation(),
3692         diag::note_instantiation_required_here)
3693      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3694    return true;
3695  }
3696
3697  // Check the scope of this explicit specialization.
3698  if (CheckTemplateSpecializationScope(*this,
3699                                       InstantiatedFrom,
3700                                       Instantiation, Member->getLocation(),
3701                                       false))
3702    return true;
3703
3704  // Note that this is an explicit instantiation of a member.
3705  // the original declaration to note that it is an explicit specialization
3706  // (if it was previously an implicit instantiation). This latter step
3707  // makes bookkeeping easier.
3708  if (isa<FunctionDecl>(Member)) {
3709    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3710    if (InstantiationFunction->getTemplateSpecializationKind() ==
3711          TSK_ImplicitInstantiation) {
3712      InstantiationFunction->setTemplateSpecializationKind(
3713                                                  TSK_ExplicitSpecialization);
3714      InstantiationFunction->setLocation(Member->getLocation());
3715    }
3716
3717    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3718                                        cast<CXXMethodDecl>(InstantiatedFrom),
3719                                                  TSK_ExplicitSpecialization);
3720  } else if (isa<VarDecl>(Member)) {
3721    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3722    if (InstantiationVar->getTemplateSpecializationKind() ==
3723          TSK_ImplicitInstantiation) {
3724      InstantiationVar->setTemplateSpecializationKind(
3725                                                  TSK_ExplicitSpecialization);
3726      InstantiationVar->setLocation(Member->getLocation());
3727    }
3728
3729    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3730                                                cast<VarDecl>(InstantiatedFrom),
3731                                                TSK_ExplicitSpecialization);
3732  } else {
3733    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3734    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3735    if (InstantiationClass->getTemplateSpecializationKind() ==
3736          TSK_ImplicitInstantiation) {
3737      InstantiationClass->setTemplateSpecializationKind(
3738                                                   TSK_ExplicitSpecialization);
3739      InstantiationClass->setLocation(Member->getLocation());
3740    }
3741
3742    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3743                                        cast<CXXRecordDecl>(InstantiatedFrom),
3744                                                   TSK_ExplicitSpecialization);
3745  }
3746
3747  // Save the caller the trouble of having to figure out which declaration
3748  // this specialization matches.
3749  PrevDecl = Instantiation;
3750  return false;
3751}
3752
3753/// \brief Check the scope of an explicit instantiation.
3754static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3755                                            SourceLocation InstLoc,
3756                                            bool WasQualifiedName) {
3757  DeclContext *ExpectedContext
3758    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3759  DeclContext *CurContext = S.CurContext->getLookupContext();
3760
3761  // C++0x [temp.explicit]p2:
3762  //   An explicit instantiation shall appear in an enclosing namespace of its
3763  //   template.
3764  //
3765  // This is DR275, which we do not retroactively apply to C++98/03.
3766  if (S.getLangOptions().CPlusPlus0x &&
3767      !CurContext->Encloses(ExpectedContext)) {
3768    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3769      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3770        << D << NS;
3771    else
3772      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3773        << D;
3774    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3775    return;
3776  }
3777
3778  // C++0x [temp.explicit]p2:
3779  //   If the name declared in the explicit instantiation is an unqualified
3780  //   name, the explicit instantiation shall appear in the namespace where
3781  //   its template is declared or, if that namespace is inline (7.3.1), any
3782  //   namespace from its enclosing namespace set.
3783  if (WasQualifiedName)
3784    return;
3785
3786  if (CurContext->Equals(ExpectedContext))
3787    return;
3788
3789  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3790    << D << ExpectedContext;
3791  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3792}
3793
3794/// \brief Determine whether the given scope specifier has a template-id in it.
3795static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
3796  if (!SS.isSet())
3797    return false;
3798
3799  // C++0x [temp.explicit]p2:
3800  //   If the explicit instantiation is for a member function, a member class
3801  //   or a static data member of a class template specialization, the name of
3802  //   the class template specialization in the qualified-id for the member
3803  //   name shall be a simple-template-id.
3804  //
3805  // C++98 has the same restriction, just worded differently.
3806  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
3807       NNS; NNS = NNS->getPrefix())
3808    if (Type *T = NNS->getAsType())
3809      if (isa<TemplateSpecializationType>(T))
3810        return true;
3811
3812  return false;
3813}
3814
3815// Explicit instantiation of a class template specialization
3816// FIXME: Implement extern template semantics
3817Sema::DeclResult
3818Sema::ActOnExplicitInstantiation(Scope *S,
3819                                 SourceLocation ExternLoc,
3820                                 SourceLocation TemplateLoc,
3821                                 unsigned TagSpec,
3822                                 SourceLocation KWLoc,
3823                                 const CXXScopeSpec &SS,
3824                                 TemplateTy TemplateD,
3825                                 SourceLocation TemplateNameLoc,
3826                                 SourceLocation LAngleLoc,
3827                                 ASTTemplateArgsPtr TemplateArgsIn,
3828                                 SourceLocation RAngleLoc,
3829                                 AttributeList *Attr) {
3830  // Find the class template we're specializing
3831  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3832  ClassTemplateDecl *ClassTemplate
3833    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3834
3835  // Check that the specialization uses the same tag kind as the
3836  // original template.
3837  TagDecl::TagKind Kind;
3838  switch (TagSpec) {
3839  default: assert(0 && "Unknown tag type!");
3840  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3841  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3842  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3843  }
3844  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3845                                    Kind, KWLoc,
3846                                    *ClassTemplate->getIdentifier())) {
3847    Diag(KWLoc, diag::err_use_with_wrong_tag)
3848      << ClassTemplate
3849      << CodeModificationHint::CreateReplacement(KWLoc,
3850                            ClassTemplate->getTemplatedDecl()->getKindName());
3851    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3852         diag::note_previous_use);
3853    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3854  }
3855
3856  // C++0x [temp.explicit]p2:
3857  //   There are two forms of explicit instantiation: an explicit instantiation
3858  //   definition and an explicit instantiation declaration. An explicit
3859  //   instantiation declaration begins with the extern keyword. [...]
3860  TemplateSpecializationKind TSK
3861    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3862                           : TSK_ExplicitInstantiationDeclaration;
3863
3864  // Translate the parser's template argument list in our AST format.
3865  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3866  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3867
3868  // Check that the template argument list is well-formed for this
3869  // template.
3870  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3871                                        TemplateArgs.size());
3872  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3873                                TemplateArgs.data(), TemplateArgs.size(),
3874                                RAngleLoc, false, Converted))
3875    return true;
3876
3877  assert((Converted.structuredSize() ==
3878            ClassTemplate->getTemplateParameters()->size()) &&
3879         "Converted template argument list is too short!");
3880
3881  // Find the class template specialization declaration that
3882  // corresponds to these arguments.
3883  llvm::FoldingSetNodeID ID;
3884  ClassTemplateSpecializationDecl::Profile(ID,
3885                                           Converted.getFlatArguments(),
3886                                           Converted.flatSize(),
3887                                           Context);
3888  void *InsertPos = 0;
3889  ClassTemplateSpecializationDecl *PrevDecl
3890    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3891
3892  // C++0x [temp.explicit]p2:
3893  //   [...] An explicit instantiation shall appear in an enclosing
3894  //   namespace of its template. [...]
3895  //
3896  // This is C++ DR 275.
3897  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
3898                                  SS.isSet());
3899
3900  ClassTemplateSpecializationDecl *Specialization = 0;
3901
3902  if (PrevDecl) {
3903    bool SuppressNew = false;
3904    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
3905                                               PrevDecl,
3906                                              PrevDecl->getSpecializationKind(),
3907                                            PrevDecl->getPointOfInstantiation(),
3908                                               SuppressNew))
3909      return DeclPtrTy::make(PrevDecl);
3910
3911    if (SuppressNew)
3912      return DeclPtrTy::make(PrevDecl);
3913
3914    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3915        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3916      // Since the only prior class template specialization with these
3917      // arguments was referenced but not declared, reuse that
3918      // declaration node as our own, updating its source location to
3919      // reflect our new declaration.
3920      Specialization = PrevDecl;
3921      Specialization->setLocation(TemplateNameLoc);
3922      PrevDecl = 0;
3923    }
3924  }
3925
3926  if (!Specialization) {
3927    // Create a new class template specialization declaration node for
3928    // this explicit specialization.
3929    Specialization
3930      = ClassTemplateSpecializationDecl::Create(Context,
3931                                             ClassTemplate->getDeclContext(),
3932                                                TemplateNameLoc,
3933                                                ClassTemplate,
3934                                                Converted, PrevDecl);
3935
3936    if (PrevDecl) {
3937      // Remove the previous declaration from the folding set, since we want
3938      // to introduce a new declaration.
3939      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3940      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3941    }
3942
3943    // Insert the new specialization.
3944    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3945  }
3946
3947  // Build the fully-sugared type for this explicit instantiation as
3948  // the user wrote in the explicit instantiation itself. This means
3949  // that we'll pretty-print the type retrieved from the
3950  // specialization's declaration the way that the user actually wrote
3951  // the explicit instantiation, rather than formatting the name based
3952  // on the "canonical" representation used to store the template
3953  // arguments in the specialization.
3954  QualType WrittenTy
3955    = Context.getTemplateSpecializationType(Name,
3956                                            TemplateArgs.data(),
3957                                            TemplateArgs.size(),
3958                                  Context.getTypeDeclType(Specialization));
3959  Specialization->setTypeAsWritten(WrittenTy);
3960  TemplateArgsIn.release();
3961
3962  // Add the explicit instantiation into its lexical context. However,
3963  // since explicit instantiations are never found by name lookup, we
3964  // just put it into the declaration context directly.
3965  Specialization->setLexicalDeclContext(CurContext);
3966  CurContext->addDecl(Specialization);
3967
3968  // C++ [temp.explicit]p3:
3969  //   A definition of a class template or class member template
3970  //   shall be in scope at the point of the explicit instantiation of
3971  //   the class template or class member template.
3972  //
3973  // This check comes when we actually try to perform the
3974  // instantiation.
3975  ClassTemplateSpecializationDecl *Def
3976    = cast_or_null<ClassTemplateSpecializationDecl>(
3977                                        Specialization->getDefinition(Context));
3978  if (!Def)
3979    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
3980
3981  // Instantiate the members of this class template specialization.
3982  Def = cast_or_null<ClassTemplateSpecializationDecl>(
3983                                       Specialization->getDefinition(Context));
3984  if (Def)
3985    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
3986
3987  return DeclPtrTy::make(Specialization);
3988}
3989
3990// Explicit instantiation of a member class of a class template.
3991Sema::DeclResult
3992Sema::ActOnExplicitInstantiation(Scope *S,
3993                                 SourceLocation ExternLoc,
3994                                 SourceLocation TemplateLoc,
3995                                 unsigned TagSpec,
3996                                 SourceLocation KWLoc,
3997                                 const CXXScopeSpec &SS,
3998                                 IdentifierInfo *Name,
3999                                 SourceLocation NameLoc,
4000                                 AttributeList *Attr) {
4001
4002  bool Owned = false;
4003  bool IsDependent = false;
4004  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4005                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4006                            MultiTemplateParamsArg(*this, 0, 0),
4007                            Owned, IsDependent);
4008  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4009
4010  if (!TagD)
4011    return true;
4012
4013  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4014  if (Tag->isEnum()) {
4015    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4016      << Context.getTypeDeclType(Tag);
4017    return true;
4018  }
4019
4020  if (Tag->isInvalidDecl())
4021    return true;
4022
4023  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4024  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4025  if (!Pattern) {
4026    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4027      << Context.getTypeDeclType(Record);
4028    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4029    return true;
4030  }
4031
4032  // C++0x [temp.explicit]p2:
4033  //   If the explicit instantiation is for a class or member class, the
4034  //   elaborated-type-specifier in the declaration shall include a
4035  //   simple-template-id.
4036  //
4037  // C++98 has the same restriction, just worded differently.
4038  if (!ScopeSpecifierHasTemplateId(SS))
4039    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4040      << Record << SS.getRange();
4041
4042  // C++0x [temp.explicit]p2:
4043  //   There are two forms of explicit instantiation: an explicit instantiation
4044  //   definition and an explicit instantiation declaration. An explicit
4045  //   instantiation declaration begins with the extern keyword. [...]
4046  TemplateSpecializationKind TSK
4047    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4048                           : TSK_ExplicitInstantiationDeclaration;
4049
4050  // C++0x [temp.explicit]p2:
4051  //   [...] An explicit instantiation shall appear in an enclosing
4052  //   namespace of its template. [...]
4053  //
4054  // This is C++ DR 275.
4055  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4056
4057  // Verify that it is okay to explicitly instantiate here.
4058  CXXRecordDecl *PrevDecl
4059    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4060  if (!PrevDecl && Record->getDefinition(Context))
4061    PrevDecl = Record;
4062  if (PrevDecl) {
4063    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4064    bool SuppressNew = false;
4065    assert(MSInfo && "No member specialization information?");
4066    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4067                                               PrevDecl,
4068                                        MSInfo->getTemplateSpecializationKind(),
4069                                             MSInfo->getPointOfInstantiation(),
4070                                               SuppressNew))
4071      return true;
4072    if (SuppressNew)
4073      return TagD;
4074  }
4075
4076  CXXRecordDecl *RecordDef
4077    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4078  if (!RecordDef) {
4079    // C++ [temp.explicit]p3:
4080    //   A definition of a member class of a class template shall be in scope
4081    //   at the point of an explicit instantiation of the member class.
4082    CXXRecordDecl *Def
4083      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4084    if (!Def) {
4085      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4086        << 0 << Record->getDeclName() << Record->getDeclContext();
4087      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4088        << Pattern;
4089      return true;
4090    } else {
4091      if (InstantiateClass(NameLoc, Record, Def,
4092                           getTemplateInstantiationArgs(Record),
4093                           TSK))
4094        return true;
4095
4096      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4097      if (!RecordDef)
4098        return true;
4099    }
4100  }
4101
4102  // Instantiate all of the members of the class.
4103  InstantiateClassMembers(NameLoc, RecordDef,
4104                          getTemplateInstantiationArgs(Record), TSK);
4105
4106  // FIXME: We don't have any representation for explicit instantiations of
4107  // member classes. Such a representation is not needed for compilation, but it
4108  // should be available for clients that want to see all of the declarations in
4109  // the source code.
4110  return TagD;
4111}
4112
4113Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4114                                                  SourceLocation ExternLoc,
4115                                                  SourceLocation TemplateLoc,
4116                                                  Declarator &D) {
4117  // Explicit instantiations always require a name.
4118  DeclarationName Name = GetNameForDeclarator(D);
4119  if (!Name) {
4120    if (!D.isInvalidType())
4121      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4122           diag::err_explicit_instantiation_requires_name)
4123        << D.getDeclSpec().getSourceRange()
4124        << D.getSourceRange();
4125
4126    return true;
4127  }
4128
4129  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4130  // we find one that is.
4131  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4132         (S->getFlags() & Scope::TemplateParamScope) != 0)
4133    S = S->getParent();
4134
4135  // Determine the type of the declaration.
4136  QualType R = GetTypeForDeclarator(D, S, 0);
4137  if (R.isNull())
4138    return true;
4139
4140  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4141    // Cannot explicitly instantiate a typedef.
4142    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4143      << Name;
4144    return true;
4145  }
4146
4147  // C++0x [temp.explicit]p1:
4148  //   [...] An explicit instantiation of a function template shall not use the
4149  //   inline or constexpr specifiers.
4150  // Presumably, this also applies to member functions of class templates as
4151  // well.
4152  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4153    Diag(D.getDeclSpec().getInlineSpecLoc(),
4154         diag::err_explicit_instantiation_inline)
4155      << CodeModificationHint::CreateRemoval(
4156                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
4157
4158  // FIXME: check for constexpr specifier.
4159
4160  // C++0x [temp.explicit]p2:
4161  //   There are two forms of explicit instantiation: an explicit instantiation
4162  //   definition and an explicit instantiation declaration. An explicit
4163  //   instantiation declaration begins with the extern keyword. [...]
4164  TemplateSpecializationKind TSK
4165    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4166                           : TSK_ExplicitInstantiationDeclaration;
4167
4168  LookupResult Previous;
4169  LookupParsedName(Previous, S, &D.getCXXScopeSpec(),
4170                   Name, LookupOrdinaryName);
4171
4172  if (!R->isFunctionType()) {
4173    // C++ [temp.explicit]p1:
4174    //   A [...] static data member of a class template can be explicitly
4175    //   instantiated from the member definition associated with its class
4176    //   template.
4177    if (Previous.isAmbiguous()) {
4178      return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(),
4179                                     D.getSourceRange());
4180    }
4181
4182    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
4183        Previous.getAsSingleDecl(Context));
4184    if (!Prev || !Prev->isStaticDataMember()) {
4185      // We expect to see a data data member here.
4186      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4187        << Name;
4188      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4189           P != PEnd; ++P)
4190        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4191      return true;
4192    }
4193
4194    if (!Prev->getInstantiatedFromStaticDataMember()) {
4195      // FIXME: Check for explicit specialization?
4196      Diag(D.getIdentifierLoc(),
4197           diag::err_explicit_instantiation_data_member_not_instantiated)
4198        << Prev;
4199      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4200      // FIXME: Can we provide a note showing where this was declared?
4201      return true;
4202    }
4203
4204    // C++0x [temp.explicit]p2:
4205    //   If the explicit instantiation is for a member function, a member class
4206    //   or a static data member of a class template specialization, the name of
4207    //   the class template specialization in the qualified-id for the member
4208    //   name shall be a simple-template-id.
4209    //
4210    // C++98 has the same restriction, just worded differently.
4211    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4212      Diag(D.getIdentifierLoc(),
4213           diag::err_explicit_instantiation_without_qualified_id)
4214        << Prev << D.getCXXScopeSpec().getRange();
4215
4216    // Check the scope of this explicit instantiation.
4217    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4218
4219    // Verify that it is okay to explicitly instantiate here.
4220    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4221    assert(MSInfo && "Missing static data member specialization info?");
4222    bool SuppressNew = false;
4223    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4224                                        MSInfo->getTemplateSpecializationKind(),
4225                                              MSInfo->getPointOfInstantiation(),
4226                                               SuppressNew))
4227      return true;
4228    if (SuppressNew)
4229      return DeclPtrTy();
4230
4231    // Instantiate static data member.
4232    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4233    if (TSK == TSK_ExplicitInstantiationDefinition)
4234      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4235                                            /*DefinitionRequired=*/true);
4236
4237    // FIXME: Create an ExplicitInstantiation node?
4238    return DeclPtrTy();
4239  }
4240
4241  // If the declarator is a template-id, translate the parser's template
4242  // argument list into our AST format.
4243  bool HasExplicitTemplateArgs = false;
4244  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
4245  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4246    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4247    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4248                                       TemplateId->getTemplateArgs(),
4249                                       TemplateId->NumArgs);
4250    translateTemplateArguments(TemplateArgsPtr,
4251                               TemplateArgs);
4252    HasExplicitTemplateArgs = true;
4253    TemplateArgsPtr.release();
4254  }
4255
4256  // C++ [temp.explicit]p1:
4257  //   A [...] function [...] can be explicitly instantiated from its template.
4258  //   A member function [...] of a class template can be explicitly
4259  //  instantiated from the member definition associated with its class
4260  //  template.
4261  llvm::SmallVector<FunctionDecl *, 8> Matches;
4262  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4263       P != PEnd; ++P) {
4264    NamedDecl *Prev = *P;
4265    if (!HasExplicitTemplateArgs) {
4266      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4267        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4268          Matches.clear();
4269          Matches.push_back(Method);
4270          break;
4271        }
4272      }
4273    }
4274
4275    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4276    if (!FunTmpl)
4277      continue;
4278
4279    TemplateDeductionInfo Info(Context);
4280    FunctionDecl *Specialization = 0;
4281    if (TemplateDeductionResult TDK
4282          = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
4283                                    TemplateArgs.data(), TemplateArgs.size(),
4284                                    R, Specialization, Info)) {
4285      // FIXME: Keep track of almost-matches?
4286      (void)TDK;
4287      continue;
4288    }
4289
4290    Matches.push_back(Specialization);
4291  }
4292
4293  // Find the most specialized function template specialization.
4294  FunctionDecl *Specialization
4295    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4296                         D.getIdentifierLoc(),
4297          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4298          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4299                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4300
4301  if (!Specialization)
4302    return true;
4303
4304  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4305    Diag(D.getIdentifierLoc(),
4306         diag::err_explicit_instantiation_member_function_not_instantiated)
4307      << Specialization
4308      << (Specialization->getTemplateSpecializationKind() ==
4309          TSK_ExplicitSpecialization);
4310    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4311    return true;
4312  }
4313
4314  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4315  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4316    PrevDecl = Specialization;
4317
4318  if (PrevDecl) {
4319    bool SuppressNew = false;
4320    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4321                                               PrevDecl,
4322                                     PrevDecl->getTemplateSpecializationKind(),
4323                                          PrevDecl->getPointOfInstantiation(),
4324                                               SuppressNew))
4325      return true;
4326
4327    // FIXME: We may still want to build some representation of this
4328    // explicit specialization.
4329    if (SuppressNew)
4330      return DeclPtrTy();
4331  }
4332
4333  if (TSK == TSK_ExplicitInstantiationDefinition)
4334    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4335                                  false, /*DefinitionRequired=*/true);
4336
4337  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4338
4339  // C++0x [temp.explicit]p2:
4340  //   If the explicit instantiation is for a member function, a member class
4341  //   or a static data member of a class template specialization, the name of
4342  //   the class template specialization in the qualified-id for the member
4343  //   name shall be a simple-template-id.
4344  //
4345  // C++98 has the same restriction, just worded differently.
4346  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4347  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4348      D.getCXXScopeSpec().isSet() &&
4349      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4350    Diag(D.getIdentifierLoc(),
4351         diag::err_explicit_instantiation_without_qualified_id)
4352    << Specialization << D.getCXXScopeSpec().getRange();
4353
4354  CheckExplicitInstantiationScope(*this,
4355                   FunTmpl? (NamedDecl *)FunTmpl
4356                          : Specialization->getInstantiatedFromMemberFunction(),
4357                                  D.getIdentifierLoc(),
4358                                  D.getCXXScopeSpec().isSet());
4359
4360  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4361  return DeclPtrTy();
4362}
4363
4364Sema::TypeResult
4365Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4366                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4367                        SourceLocation TagLoc, SourceLocation NameLoc) {
4368  // This has to hold, because SS is expected to be defined.
4369  assert(Name && "Expected a name in a dependent tag");
4370
4371  NestedNameSpecifier *NNS
4372    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4373  if (!NNS)
4374    return true;
4375
4376  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4377  if (T.isNull())
4378    return true;
4379
4380  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4381  QualType ElabType = Context.getElaboratedType(T, TagKind);
4382
4383  return ElabType.getAsOpaquePtr();
4384}
4385
4386Sema::TypeResult
4387Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4388                        const IdentifierInfo &II, SourceLocation IdLoc) {
4389  NestedNameSpecifier *NNS
4390    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4391  if (!NNS)
4392    return true;
4393
4394  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4395  if (T.isNull())
4396    return true;
4397  return T.getAsOpaquePtr();
4398}
4399
4400Sema::TypeResult
4401Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4402                        SourceLocation TemplateLoc, TypeTy *Ty) {
4403  QualType T = GetTypeFromParser(Ty);
4404  NestedNameSpecifier *NNS
4405    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4406  const TemplateSpecializationType *TemplateId
4407    = T->getAs<TemplateSpecializationType>();
4408  assert(TemplateId && "Expected a template specialization type");
4409
4410  if (computeDeclContext(SS, false)) {
4411    // If we can compute a declaration context, then the "typename"
4412    // keyword was superfluous. Just build a QualifiedNameType to keep
4413    // track of the nested-name-specifier.
4414
4415    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4416    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4417  }
4418
4419  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4420}
4421
4422/// \brief Build the type that describes a C++ typename specifier,
4423/// e.g., "typename T::type".
4424QualType
4425Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4426                        SourceRange Range) {
4427  CXXRecordDecl *CurrentInstantiation = 0;
4428  if (NNS->isDependent()) {
4429    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4430
4431    // If the nested-name-specifier does not refer to the current
4432    // instantiation, then build a typename type.
4433    if (!CurrentInstantiation)
4434      return Context.getTypenameType(NNS, &II);
4435
4436    // The nested-name-specifier refers to the current instantiation, so the
4437    // "typename" keyword itself is superfluous. In C++03, the program is
4438    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4439    // extraneous "typename" keywords, and we retroactively apply this DR to
4440    // C++03 code.
4441  }
4442
4443  DeclContext *Ctx = 0;
4444
4445  if (CurrentInstantiation)
4446    Ctx = CurrentInstantiation;
4447  else {
4448    CXXScopeSpec SS;
4449    SS.setScopeRep(NNS);
4450    SS.setRange(Range);
4451    if (RequireCompleteDeclContext(SS))
4452      return QualType();
4453
4454    Ctx = computeDeclContext(SS);
4455  }
4456  assert(Ctx && "No declaration context?");
4457
4458  DeclarationName Name(&II);
4459  LookupResult Result;
4460  LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false);
4461  unsigned DiagID = 0;
4462  Decl *Referenced = 0;
4463  switch (Result.getKind()) {
4464  case LookupResult::NotFound:
4465    DiagID = diag::err_typename_nested_not_found;
4466    break;
4467
4468  case LookupResult::Found:
4469    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4470      // We found a type. Build a QualifiedNameType, since the
4471      // typename-specifier was just sugar. FIXME: Tell
4472      // QualifiedNameType that it has a "typename" prefix.
4473      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4474    }
4475
4476    DiagID = diag::err_typename_nested_not_type;
4477    Referenced = Result.getFoundDecl();
4478    break;
4479
4480  case LookupResult::FoundOverloaded:
4481    DiagID = diag::err_typename_nested_not_type;
4482    Referenced = *Result.begin();
4483    break;
4484
4485  case LookupResult::Ambiguous:
4486    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
4487    return QualType();
4488  }
4489
4490  // If we get here, it's because name lookup did not find a
4491  // type. Emit an appropriate diagnostic and return an error.
4492  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4493  if (Referenced)
4494    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4495      << Name;
4496  return QualType();
4497}
4498
4499namespace {
4500  // See Sema::RebuildTypeInCurrentInstantiation
4501  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4502    : public TreeTransform<CurrentInstantiationRebuilder> {
4503    SourceLocation Loc;
4504    DeclarationName Entity;
4505
4506  public:
4507    CurrentInstantiationRebuilder(Sema &SemaRef,
4508                                  SourceLocation Loc,
4509                                  DeclarationName Entity)
4510    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4511      Loc(Loc), Entity(Entity) { }
4512
4513    /// \brief Determine whether the given type \p T has already been
4514    /// transformed.
4515    ///
4516    /// For the purposes of type reconstruction, a type has already been
4517    /// transformed if it is NULL or if it is not dependent.
4518    bool AlreadyTransformed(QualType T) {
4519      return T.isNull() || !T->isDependentType();
4520    }
4521
4522    /// \brief Returns the location of the entity whose type is being
4523    /// rebuilt.
4524    SourceLocation getBaseLocation() { return Loc; }
4525
4526    /// \brief Returns the name of the entity whose type is being rebuilt.
4527    DeclarationName getBaseEntity() { return Entity; }
4528
4529    /// \brief Sets the "base" location and entity when that
4530    /// information is known based on another transformation.
4531    void setBase(SourceLocation Loc, DeclarationName Entity) {
4532      this->Loc = Loc;
4533      this->Entity = Entity;
4534    }
4535
4536    /// \brief Transforms an expression by returning the expression itself
4537    /// (an identity function).
4538    ///
4539    /// FIXME: This is completely unsafe; we will need to actually clone the
4540    /// expressions.
4541    Sema::OwningExprResult TransformExpr(Expr *E) {
4542      return getSema().Owned(E);
4543    }
4544
4545    /// \brief Transforms a typename type by determining whether the type now
4546    /// refers to a member of the current instantiation, and then
4547    /// type-checking and building a QualifiedNameType (when possible).
4548    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4549  };
4550}
4551
4552QualType
4553CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4554                                                     TypenameTypeLoc TL) {
4555  TypenameType *T = TL.getTypePtr();
4556
4557  NestedNameSpecifier *NNS
4558    = TransformNestedNameSpecifier(T->getQualifier(),
4559                              /*FIXME:*/SourceRange(getBaseLocation()));
4560  if (!NNS)
4561    return QualType();
4562
4563  // If the nested-name-specifier did not change, and we cannot compute the
4564  // context corresponding to the nested-name-specifier, then this
4565  // typename type will not change; exit early.
4566  CXXScopeSpec SS;
4567  SS.setRange(SourceRange(getBaseLocation()));
4568  SS.setScopeRep(NNS);
4569
4570  QualType Result;
4571  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4572    Result = QualType(T, 0);
4573
4574  // Rebuild the typename type, which will probably turn into a
4575  // QualifiedNameType.
4576  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4577    QualType NewTemplateId
4578      = TransformType(QualType(TemplateId, 0));
4579    if (NewTemplateId.isNull())
4580      return QualType();
4581
4582    if (NNS == T->getQualifier() &&
4583        NewTemplateId == QualType(TemplateId, 0))
4584      Result = QualType(T, 0);
4585    else
4586      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4587  } else
4588    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4589                                              SourceRange(TL.getNameLoc()));
4590
4591  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4592  NewTL.setNameLoc(TL.getNameLoc());
4593  return Result;
4594}
4595
4596/// \brief Rebuilds a type within the context of the current instantiation.
4597///
4598/// The type \p T is part of the type of an out-of-line member definition of
4599/// a class template (or class template partial specialization) that was parsed
4600/// and constructed before we entered the scope of the class template (or
4601/// partial specialization thereof). This routine will rebuild that type now
4602/// that we have entered the declarator's scope, which may produce different
4603/// canonical types, e.g.,
4604///
4605/// \code
4606/// template<typename T>
4607/// struct X {
4608///   typedef T* pointer;
4609///   pointer data();
4610/// };
4611///
4612/// template<typename T>
4613/// typename X<T>::pointer X<T>::data() { ... }
4614/// \endcode
4615///
4616/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4617/// since we do not know that we can look into X<T> when we parsed the type.
4618/// This function will rebuild the type, performing the lookup of "pointer"
4619/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4620/// as the canonical type of T*, allowing the return types of the out-of-line
4621/// definition and the declaration to match.
4622QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4623                                                 DeclarationName Name) {
4624  if (T.isNull() || !T->isDependentType())
4625    return T;
4626
4627  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4628  return Rebuilder.TransformType(T);
4629}
4630
4631/// \brief Produces a formatted string that describes the binding of
4632/// template parameters to template arguments.
4633std::string
4634Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4635                                      const TemplateArgumentList &Args) {
4636  // FIXME: For variadic templates, we'll need to get the structured list.
4637  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4638                                         Args.flat_size());
4639}
4640
4641std::string
4642Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4643                                      const TemplateArgument *Args,
4644                                      unsigned NumArgs) {
4645  std::string Result;
4646
4647  if (!Params || Params->size() == 0 || NumArgs == 0)
4648    return Result;
4649
4650  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4651    if (I >= NumArgs)
4652      break;
4653
4654    if (I == 0)
4655      Result += "[with ";
4656    else
4657      Result += ", ";
4658
4659    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4660      Result += Id->getName();
4661    } else {
4662      Result += '$';
4663      Result += llvm::utostr(I);
4664    }
4665
4666    Result += " = ";
4667
4668    switch (Args[I].getKind()) {
4669      case TemplateArgument::Null:
4670        Result += "<no value>";
4671        break;
4672
4673      case TemplateArgument::Type: {
4674        std::string TypeStr;
4675        Args[I].getAsType().getAsStringInternal(TypeStr,
4676                                                Context.PrintingPolicy);
4677        Result += TypeStr;
4678        break;
4679      }
4680
4681      case TemplateArgument::Declaration: {
4682        bool Unnamed = true;
4683        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4684          if (ND->getDeclName()) {
4685            Unnamed = false;
4686            Result += ND->getNameAsString();
4687          }
4688        }
4689
4690        if (Unnamed) {
4691          Result += "<anonymous>";
4692        }
4693        break;
4694      }
4695
4696      case TemplateArgument::Template: {
4697        std::string Str;
4698        llvm::raw_string_ostream OS(Str);
4699        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
4700        Result += OS.str();
4701        break;
4702      }
4703
4704      case TemplateArgument::Integral: {
4705        Result += Args[I].getAsIntegral()->toString(10);
4706        break;
4707      }
4708
4709      case TemplateArgument::Expression: {
4710        assert(false && "No expressions in deduced template arguments!");
4711        Result += "<expression>";
4712        break;
4713      }
4714
4715      case TemplateArgument::Pack:
4716        // FIXME: Format template argument packs
4717        Result += "<template argument pack>";
4718        break;
4719    }
4720  }
4721
4722  Result += ']';
4723  return Result;
4724}
4725