SemaTemplate.cpp revision e885e188b25dc218132402d1f48fb35e175bfb2e
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 298 false, CTC_CXXCasts)) { 299 FilterAcceptableTemplateNames(Found); 300 if (!Found.empty()) { 301 if (LookupCtx) 302 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 303 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 304 << FixItHint::CreateReplacement(Found.getNameLoc(), 305 Found.getLookupName().getAsString()); 306 else 307 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 308 << Name << Found.getLookupName() 309 << FixItHint::CreateReplacement(Found.getNameLoc(), 310 Found.getLookupName().getAsString()); 311 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 312 Diag(Template->getLocation(), diag::note_previous_decl) 313 << Template->getDeclName(); 314 } 315 } else { 316 Found.clear(); 317 Found.setLookupName(Name); 318 } 319 } 320 321 FilterAcceptableTemplateNames(Found); 322 if (Found.empty()) { 323 if (isDependent) 324 MemberOfUnknownSpecialization = true; 325 return; 326 } 327 328 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 329 // C++ [basic.lookup.classref]p1: 330 // [...] If the lookup in the class of the object expression finds a 331 // template, the name is also looked up in the context of the entire 332 // postfix-expression and [...] 333 // 334 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 335 LookupOrdinaryName); 336 LookupName(FoundOuter, S); 337 FilterAcceptableTemplateNames(FoundOuter); 338 339 if (FoundOuter.empty()) { 340 // - if the name is not found, the name found in the class of the 341 // object expression is used, otherwise 342 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 343 // - if the name is found in the context of the entire 344 // postfix-expression and does not name a class template, the name 345 // found in the class of the object expression is used, otherwise 346 } else if (!Found.isSuppressingDiagnostics()) { 347 // - if the name found is a class template, it must refer to the same 348 // entity as the one found in the class of the object expression, 349 // otherwise the program is ill-formed. 350 if (!Found.isSingleResult() || 351 Found.getFoundDecl()->getCanonicalDecl() 352 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 353 Diag(Found.getNameLoc(), 354 diag::ext_nested_name_member_ref_lookup_ambiguous) 355 << Found.getLookupName() 356 << ObjectType; 357 Diag(Found.getRepresentativeDecl()->getLocation(), 358 diag::note_ambig_member_ref_object_type) 359 << ObjectType; 360 Diag(FoundOuter.getFoundDecl()->getLocation(), 361 diag::note_ambig_member_ref_scope); 362 363 // Recover by taking the template that we found in the object 364 // expression's type. 365 } 366 } 367 } 368} 369 370/// ActOnDependentIdExpression - Handle a dependent id-expression that 371/// was just parsed. This is only possible with an explicit scope 372/// specifier naming a dependent type. 373ExprResult 374Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 375 const DeclarationNameInfo &NameInfo, 376 bool isAddressOfOperand, 377 const TemplateArgumentListInfo *TemplateArgs) { 378 DeclContext *DC = getFunctionLevelDeclContext(); 379 380 if (!isAddressOfOperand && 381 isa<CXXMethodDecl>(DC) && 382 cast<CXXMethodDecl>(DC)->isInstance()) { 383 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 384 385 // Since the 'this' expression is synthesized, we don't need to 386 // perform the double-lookup check. 387 NamedDecl *FirstQualifierInScope = 0; 388 389 return Owned(CXXDependentScopeMemberExpr::Create(Context, 390 /*This*/ 0, ThisType, 391 /*IsArrow*/ true, 392 /*Op*/ SourceLocation(), 393 SS.getWithLocInContext(Context), 394 FirstQualifierInScope, 395 NameInfo, 396 TemplateArgs)); 397 } 398 399 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 400} 401 402ExprResult 403Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 404 const DeclarationNameInfo &NameInfo, 405 const TemplateArgumentListInfo *TemplateArgs) { 406 return Owned(DependentScopeDeclRefExpr::Create(Context, 407 SS.getWithLocInContext(Context), 408 NameInfo, 409 TemplateArgs)); 410} 411 412/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 413/// that the template parameter 'PrevDecl' is being shadowed by a new 414/// declaration at location Loc. Returns true to indicate that this is 415/// an error, and false otherwise. 416bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 417 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 418 419 // Microsoft Visual C++ permits template parameters to be shadowed. 420 if (getLangOptions().Microsoft) 421 return false; 422 423 // C++ [temp.local]p4: 424 // A template-parameter shall not be redeclared within its 425 // scope (including nested scopes). 426 Diag(Loc, diag::err_template_param_shadow) 427 << cast<NamedDecl>(PrevDecl)->getDeclName(); 428 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 429 return true; 430} 431 432/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 433/// the parameter D to reference the templated declaration and return a pointer 434/// to the template declaration. Otherwise, do nothing to D and return null. 435TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 436 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 437 D = Temp->getTemplatedDecl(); 438 return Temp; 439 } 440 return 0; 441} 442 443ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 444 SourceLocation EllipsisLoc) const { 445 assert(Kind == Template && 446 "Only template template arguments can be pack expansions here"); 447 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 448 "Template template argument pack expansion without packs"); 449 ParsedTemplateArgument Result(*this); 450 Result.EllipsisLoc = EllipsisLoc; 451 return Result; 452} 453 454static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 455 const ParsedTemplateArgument &Arg) { 456 457 switch (Arg.getKind()) { 458 case ParsedTemplateArgument::Type: { 459 TypeSourceInfo *DI; 460 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 461 if (!DI) 462 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 463 return TemplateArgumentLoc(TemplateArgument(T), DI); 464 } 465 466 case ParsedTemplateArgument::NonType: { 467 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 468 return TemplateArgumentLoc(TemplateArgument(E), E); 469 } 470 471 case ParsedTemplateArgument::Template: { 472 TemplateName Template = Arg.getAsTemplate().get(); 473 TemplateArgument TArg; 474 if (Arg.getEllipsisLoc().isValid()) 475 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 476 else 477 TArg = Template; 478 return TemplateArgumentLoc(TArg, 479 Arg.getScopeSpec().getWithLocInContext( 480 SemaRef.Context), 481 Arg.getLocation(), 482 Arg.getEllipsisLoc()); 483 } 484 } 485 486 llvm_unreachable("Unhandled parsed template argument"); 487 return TemplateArgumentLoc(); 488} 489 490/// \brief Translates template arguments as provided by the parser 491/// into template arguments used by semantic analysis. 492void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 493 TemplateArgumentListInfo &TemplateArgs) { 494 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 495 TemplateArgs.addArgument(translateTemplateArgument(*this, 496 TemplateArgsIn[I])); 497} 498 499/// ActOnTypeParameter - Called when a C++ template type parameter 500/// (e.g., "typename T") has been parsed. Typename specifies whether 501/// the keyword "typename" was used to declare the type parameter 502/// (otherwise, "class" was used), and KeyLoc is the location of the 503/// "class" or "typename" keyword. ParamName is the name of the 504/// parameter (NULL indicates an unnamed template parameter) and 505/// ParamNameLoc is the location of the parameter name (if any). 506/// If the type parameter has a default argument, it will be added 507/// later via ActOnTypeParameterDefault. 508Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 509 SourceLocation EllipsisLoc, 510 SourceLocation KeyLoc, 511 IdentifierInfo *ParamName, 512 SourceLocation ParamNameLoc, 513 unsigned Depth, unsigned Position, 514 SourceLocation EqualLoc, 515 ParsedType DefaultArg) { 516 assert(S->isTemplateParamScope() && 517 "Template type parameter not in template parameter scope!"); 518 bool Invalid = false; 519 520 if (ParamName) { 521 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 522 LookupOrdinaryName, 523 ForRedeclaration); 524 if (PrevDecl && PrevDecl->isTemplateParameter()) 525 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 526 PrevDecl); 527 } 528 529 SourceLocation Loc = ParamNameLoc; 530 if (!ParamName) 531 Loc = KeyLoc; 532 533 TemplateTypeParmDecl *Param 534 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 535 KeyLoc, Loc, Depth, Position, ParamName, 536 Typename, Ellipsis); 537 Param->setAccess(AS_public); 538 if (Invalid) 539 Param->setInvalidDecl(); 540 541 if (ParamName) { 542 // Add the template parameter into the current scope. 543 S->AddDecl(Param); 544 IdResolver.AddDecl(Param); 545 } 546 547 // C++0x [temp.param]p9: 548 // A default template-argument may be specified for any kind of 549 // template-parameter that is not a template parameter pack. 550 if (DefaultArg && Ellipsis) { 551 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 552 DefaultArg = ParsedType(); 553 } 554 555 // Handle the default argument, if provided. 556 if (DefaultArg) { 557 TypeSourceInfo *DefaultTInfo; 558 GetTypeFromParser(DefaultArg, &DefaultTInfo); 559 560 assert(DefaultTInfo && "expected source information for type"); 561 562 // Check for unexpanded parameter packs. 563 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 564 UPPC_DefaultArgument)) 565 return Param; 566 567 // Check the template argument itself. 568 if (CheckTemplateArgument(Param, DefaultTInfo)) { 569 Param->setInvalidDecl(); 570 return Param; 571 } 572 573 Param->setDefaultArgument(DefaultTInfo, false); 574 } 575 576 return Param; 577} 578 579/// \brief Check that the type of a non-type template parameter is 580/// well-formed. 581/// 582/// \returns the (possibly-promoted) parameter type if valid; 583/// otherwise, produces a diagnostic and returns a NULL type. 584QualType 585Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 586 // We don't allow variably-modified types as the type of non-type template 587 // parameters. 588 if (T->isVariablyModifiedType()) { 589 Diag(Loc, diag::err_variably_modified_nontype_template_param) 590 << T; 591 return QualType(); 592 } 593 594 // C++ [temp.param]p4: 595 // 596 // A non-type template-parameter shall have one of the following 597 // (optionally cv-qualified) types: 598 // 599 // -- integral or enumeration type, 600 if (T->isIntegralOrEnumerationType() || 601 // -- pointer to object or pointer to function, 602 T->isPointerType() || 603 // -- reference to object or reference to function, 604 T->isReferenceType() || 605 // -- pointer to member. 606 T->isMemberPointerType() || 607 // If T is a dependent type, we can't do the check now, so we 608 // assume that it is well-formed. 609 T->isDependentType()) 610 return T; 611 // C++ [temp.param]p8: 612 // 613 // A non-type template-parameter of type "array of T" or 614 // "function returning T" is adjusted to be of type "pointer to 615 // T" or "pointer to function returning T", respectively. 616 else if (T->isArrayType()) 617 // FIXME: Keep the type prior to promotion? 618 return Context.getArrayDecayedType(T); 619 else if (T->isFunctionType()) 620 // FIXME: Keep the type prior to promotion? 621 return Context.getPointerType(T); 622 623 Diag(Loc, diag::err_template_nontype_parm_bad_type) 624 << T; 625 626 return QualType(); 627} 628 629Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 630 unsigned Depth, 631 unsigned Position, 632 SourceLocation EqualLoc, 633 Expr *Default) { 634 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 635 QualType T = TInfo->getType(); 636 637 assert(S->isTemplateParamScope() && 638 "Non-type template parameter not in template parameter scope!"); 639 bool Invalid = false; 640 641 IdentifierInfo *ParamName = D.getIdentifier(); 642 if (ParamName) { 643 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 644 LookupOrdinaryName, 645 ForRedeclaration); 646 if (PrevDecl && PrevDecl->isTemplateParameter()) 647 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 648 PrevDecl); 649 } 650 651 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 652 if (T.isNull()) { 653 T = Context.IntTy; // Recover with an 'int' type. 654 Invalid = true; 655 } 656 657 bool IsParameterPack = D.hasEllipsis(); 658 NonTypeTemplateParmDecl *Param 659 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 660 D.getSourceRange().getBegin(), 661 D.getIdentifierLoc(), 662 Depth, Position, ParamName, T, 663 IsParameterPack, TInfo); 664 Param->setAccess(AS_public); 665 666 if (Invalid) 667 Param->setInvalidDecl(); 668 669 if (D.getIdentifier()) { 670 // Add the template parameter into the current scope. 671 S->AddDecl(Param); 672 IdResolver.AddDecl(Param); 673 } 674 675 // C++0x [temp.param]p9: 676 // A default template-argument may be specified for any kind of 677 // template-parameter that is not a template parameter pack. 678 if (Default && IsParameterPack) { 679 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 680 Default = 0; 681 } 682 683 // Check the well-formedness of the default template argument, if provided. 684 if (Default) { 685 // Check for unexpanded parameter packs. 686 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 687 return Param; 688 689 TemplateArgument Converted; 690 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 691 if (DefaultRes.isInvalid()) { 692 Param->setInvalidDecl(); 693 return Param; 694 } 695 Default = DefaultRes.take(); 696 697 Param->setDefaultArgument(Default, false); 698 } 699 700 return Param; 701} 702 703/// ActOnTemplateTemplateParameter - Called when a C++ template template 704/// parameter (e.g. T in template <template <typename> class T> class array) 705/// has been parsed. S is the current scope. 706Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 707 SourceLocation TmpLoc, 708 TemplateParamsTy *Params, 709 SourceLocation EllipsisLoc, 710 IdentifierInfo *Name, 711 SourceLocation NameLoc, 712 unsigned Depth, 713 unsigned Position, 714 SourceLocation EqualLoc, 715 ParsedTemplateArgument Default) { 716 assert(S->isTemplateParamScope() && 717 "Template template parameter not in template parameter scope!"); 718 719 // Construct the parameter object. 720 bool IsParameterPack = EllipsisLoc.isValid(); 721 TemplateTemplateParmDecl *Param = 722 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 723 NameLoc.isInvalid()? TmpLoc : NameLoc, 724 Depth, Position, IsParameterPack, 725 Name, Params); 726 Param->setAccess(AS_public); 727 728 // If the template template parameter has a name, then link the identifier 729 // into the scope and lookup mechanisms. 730 if (Name) { 731 S->AddDecl(Param); 732 IdResolver.AddDecl(Param); 733 } 734 735 if (Params->size() == 0) { 736 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 737 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 738 Param->setInvalidDecl(); 739 } 740 741 // C++0x [temp.param]p9: 742 // A default template-argument may be specified for any kind of 743 // template-parameter that is not a template parameter pack. 744 if (IsParameterPack && !Default.isInvalid()) { 745 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 746 Default = ParsedTemplateArgument(); 747 } 748 749 if (!Default.isInvalid()) { 750 // Check only that we have a template template argument. We don't want to 751 // try to check well-formedness now, because our template template parameter 752 // might have dependent types in its template parameters, which we wouldn't 753 // be able to match now. 754 // 755 // If none of the template template parameter's template arguments mention 756 // other template parameters, we could actually perform more checking here. 757 // However, it isn't worth doing. 758 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 759 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 760 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 761 << DefaultArg.getSourceRange(); 762 return Param; 763 } 764 765 // Check for unexpanded parameter packs. 766 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 767 DefaultArg.getArgument().getAsTemplate(), 768 UPPC_DefaultArgument)) 769 return Param; 770 771 Param->setDefaultArgument(DefaultArg, false); 772 } 773 774 return Param; 775} 776 777/// ActOnTemplateParameterList - Builds a TemplateParameterList that 778/// contains the template parameters in Params/NumParams. 779Sema::TemplateParamsTy * 780Sema::ActOnTemplateParameterList(unsigned Depth, 781 SourceLocation ExportLoc, 782 SourceLocation TemplateLoc, 783 SourceLocation LAngleLoc, 784 Decl **Params, unsigned NumParams, 785 SourceLocation RAngleLoc) { 786 if (ExportLoc.isValid()) 787 Diag(ExportLoc, diag::warn_template_export_unsupported); 788 789 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 790 (NamedDecl**)Params, NumParams, 791 RAngleLoc); 792} 793 794static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 795 if (SS.isSet()) 796 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 797} 798 799DeclResult 800Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 801 SourceLocation KWLoc, CXXScopeSpec &SS, 802 IdentifierInfo *Name, SourceLocation NameLoc, 803 AttributeList *Attr, 804 TemplateParameterList *TemplateParams, 805 AccessSpecifier AS, 806 unsigned NumOuterTemplateParamLists, 807 TemplateParameterList** OuterTemplateParamLists) { 808 assert(TemplateParams && TemplateParams->size() > 0 && 809 "No template parameters"); 810 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 811 bool Invalid = false; 812 813 // Check that we can declare a template here. 814 if (CheckTemplateDeclScope(S, TemplateParams)) 815 return true; 816 817 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 818 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 819 820 // There is no such thing as an unnamed class template. 821 if (!Name) { 822 Diag(KWLoc, diag::err_template_unnamed_class); 823 return true; 824 } 825 826 // Find any previous declaration with this name. 827 DeclContext *SemanticContext; 828 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 829 ForRedeclaration); 830 if (SS.isNotEmpty() && !SS.isInvalid()) { 831 SemanticContext = computeDeclContext(SS, true); 832 if (!SemanticContext) { 833 // FIXME: Produce a reasonable diagnostic here 834 return true; 835 } 836 837 if (RequireCompleteDeclContext(SS, SemanticContext)) 838 return true; 839 840 LookupQualifiedName(Previous, SemanticContext); 841 } else { 842 SemanticContext = CurContext; 843 LookupName(Previous, S); 844 } 845 846 if (Previous.isAmbiguous()) 847 return true; 848 849 NamedDecl *PrevDecl = 0; 850 if (Previous.begin() != Previous.end()) 851 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 852 853 // If there is a previous declaration with the same name, check 854 // whether this is a valid redeclaration. 855 ClassTemplateDecl *PrevClassTemplate 856 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 857 858 // We may have found the injected-class-name of a class template, 859 // class template partial specialization, or class template specialization. 860 // In these cases, grab the template that is being defined or specialized. 861 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 862 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 863 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 864 PrevClassTemplate 865 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 866 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 867 PrevClassTemplate 868 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 869 ->getSpecializedTemplate(); 870 } 871 } 872 873 if (TUK == TUK_Friend) { 874 // C++ [namespace.memdef]p3: 875 // [...] When looking for a prior declaration of a class or a function 876 // declared as a friend, and when the name of the friend class or 877 // function is neither a qualified name nor a template-id, scopes outside 878 // the innermost enclosing namespace scope are not considered. 879 if (!SS.isSet()) { 880 DeclContext *OutermostContext = CurContext; 881 while (!OutermostContext->isFileContext()) 882 OutermostContext = OutermostContext->getLookupParent(); 883 884 if (PrevDecl && 885 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 886 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 887 SemanticContext = PrevDecl->getDeclContext(); 888 } else { 889 // Declarations in outer scopes don't matter. However, the outermost 890 // context we computed is the semantic context for our new 891 // declaration. 892 PrevDecl = PrevClassTemplate = 0; 893 SemanticContext = OutermostContext; 894 } 895 } 896 897 if (CurContext->isDependentContext()) { 898 // If this is a dependent context, we don't want to link the friend 899 // class template to the template in scope, because that would perform 900 // checking of the template parameter lists that can't be performed 901 // until the outer context is instantiated. 902 PrevDecl = PrevClassTemplate = 0; 903 } 904 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 905 PrevDecl = PrevClassTemplate = 0; 906 907 if (PrevClassTemplate) { 908 // Ensure that the template parameter lists are compatible. 909 if (!TemplateParameterListsAreEqual(TemplateParams, 910 PrevClassTemplate->getTemplateParameters(), 911 /*Complain=*/true, 912 TPL_TemplateMatch)) 913 return true; 914 915 // C++ [temp.class]p4: 916 // In a redeclaration, partial specialization, explicit 917 // specialization or explicit instantiation of a class template, 918 // the class-key shall agree in kind with the original class 919 // template declaration (7.1.5.3). 920 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 921 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 922 Diag(KWLoc, diag::err_use_with_wrong_tag) 923 << Name 924 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 925 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 926 Kind = PrevRecordDecl->getTagKind(); 927 } 928 929 // Check for redefinition of this class template. 930 if (TUK == TUK_Definition) { 931 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 932 Diag(NameLoc, diag::err_redefinition) << Name; 933 Diag(Def->getLocation(), diag::note_previous_definition); 934 // FIXME: Would it make sense to try to "forget" the previous 935 // definition, as part of error recovery? 936 return true; 937 } 938 } 939 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 940 // Maybe we will complain about the shadowed template parameter. 941 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 942 // Just pretend that we didn't see the previous declaration. 943 PrevDecl = 0; 944 } else if (PrevDecl) { 945 // C++ [temp]p5: 946 // A class template shall not have the same name as any other 947 // template, class, function, object, enumeration, enumerator, 948 // namespace, or type in the same scope (3.3), except as specified 949 // in (14.5.4). 950 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 951 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 952 return true; 953 } 954 955 // Check the template parameter list of this declaration, possibly 956 // merging in the template parameter list from the previous class 957 // template declaration. 958 if (CheckTemplateParameterList(TemplateParams, 959 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 960 (SS.isSet() && SemanticContext && 961 SemanticContext->isRecord() && 962 SemanticContext->isDependentContext()) 963 ? TPC_ClassTemplateMember 964 : TPC_ClassTemplate)) 965 Invalid = true; 966 967 if (SS.isSet()) { 968 // If the name of the template was qualified, we must be defining the 969 // template out-of-line. 970 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 971 !(TUK == TUK_Friend && CurContext->isDependentContext())) 972 Diag(NameLoc, diag::err_member_def_does_not_match) 973 << Name << SemanticContext << SS.getRange(); 974 } 975 976 CXXRecordDecl *NewClass = 977 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 978 PrevClassTemplate? 979 PrevClassTemplate->getTemplatedDecl() : 0, 980 /*DelayTypeCreation=*/true); 981 SetNestedNameSpecifier(NewClass, SS); 982 if (NumOuterTemplateParamLists > 0) 983 NewClass->setTemplateParameterListsInfo(Context, 984 NumOuterTemplateParamLists, 985 OuterTemplateParamLists); 986 987 ClassTemplateDecl *NewTemplate 988 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 989 DeclarationName(Name), TemplateParams, 990 NewClass, PrevClassTemplate); 991 NewClass->setDescribedClassTemplate(NewTemplate); 992 993 // Build the type for the class template declaration now. 994 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 995 T = Context.getInjectedClassNameType(NewClass, T); 996 assert(T->isDependentType() && "Class template type is not dependent?"); 997 (void)T; 998 999 // If we are providing an explicit specialization of a member that is a 1000 // class template, make a note of that. 1001 if (PrevClassTemplate && 1002 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1003 PrevClassTemplate->setMemberSpecialization(); 1004 1005 // Set the access specifier. 1006 if (!Invalid && TUK != TUK_Friend) 1007 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1008 1009 // Set the lexical context of these templates 1010 NewClass->setLexicalDeclContext(CurContext); 1011 NewTemplate->setLexicalDeclContext(CurContext); 1012 1013 if (TUK == TUK_Definition) 1014 NewClass->startDefinition(); 1015 1016 if (Attr) 1017 ProcessDeclAttributeList(S, NewClass, Attr); 1018 1019 if (TUK != TUK_Friend) 1020 PushOnScopeChains(NewTemplate, S); 1021 else { 1022 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1023 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1024 NewClass->setAccess(PrevClassTemplate->getAccess()); 1025 } 1026 1027 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1028 PrevClassTemplate != NULL); 1029 1030 // Friend templates are visible in fairly strange ways. 1031 if (!CurContext->isDependentContext()) { 1032 DeclContext *DC = SemanticContext->getRedeclContext(); 1033 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1034 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1035 PushOnScopeChains(NewTemplate, EnclosingScope, 1036 /* AddToContext = */ false); 1037 } 1038 1039 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1040 NewClass->getLocation(), 1041 NewTemplate, 1042 /*FIXME:*/NewClass->getLocation()); 1043 Friend->setAccess(AS_public); 1044 CurContext->addDecl(Friend); 1045 } 1046 1047 if (Invalid) { 1048 NewTemplate->setInvalidDecl(); 1049 NewClass->setInvalidDecl(); 1050 } 1051 return NewTemplate; 1052} 1053 1054/// \brief Diagnose the presence of a default template argument on a 1055/// template parameter, which is ill-formed in certain contexts. 1056/// 1057/// \returns true if the default template argument should be dropped. 1058static bool DiagnoseDefaultTemplateArgument(Sema &S, 1059 Sema::TemplateParamListContext TPC, 1060 SourceLocation ParamLoc, 1061 SourceRange DefArgRange) { 1062 switch (TPC) { 1063 case Sema::TPC_ClassTemplate: 1064 case Sema::TPC_TypeAliasTemplate: 1065 return false; 1066 1067 case Sema::TPC_FunctionTemplate: 1068 case Sema::TPC_FriendFunctionTemplateDefinition: 1069 // C++ [temp.param]p9: 1070 // A default template-argument shall not be specified in a 1071 // function template declaration or a function template 1072 // definition [...] 1073 // If a friend function template declaration specifies a default 1074 // template-argument, that declaration shall be a definition and shall be 1075 // the only declaration of the function template in the translation unit. 1076 // (C++98/03 doesn't have this wording; see DR226). 1077 if (!S.getLangOptions().CPlusPlus0x) 1078 S.Diag(ParamLoc, 1079 diag::ext_template_parameter_default_in_function_template) 1080 << DefArgRange; 1081 return false; 1082 1083 case Sema::TPC_ClassTemplateMember: 1084 // C++0x [temp.param]p9: 1085 // A default template-argument shall not be specified in the 1086 // template-parameter-lists of the definition of a member of a 1087 // class template that appears outside of the member's class. 1088 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1089 << DefArgRange; 1090 return true; 1091 1092 case Sema::TPC_FriendFunctionTemplate: 1093 // C++ [temp.param]p9: 1094 // A default template-argument shall not be specified in a 1095 // friend template declaration. 1096 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1097 << DefArgRange; 1098 return true; 1099 1100 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1101 // for friend function templates if there is only a single 1102 // declaration (and it is a definition). Strange! 1103 } 1104 1105 return false; 1106} 1107 1108/// \brief Check for unexpanded parameter packs within the template parameters 1109/// of a template template parameter, recursively. 1110static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1111 TemplateTemplateParmDecl *TTP) { 1112 TemplateParameterList *Params = TTP->getTemplateParameters(); 1113 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1114 NamedDecl *P = Params->getParam(I); 1115 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1116 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1117 NTTP->getTypeSourceInfo(), 1118 Sema::UPPC_NonTypeTemplateParameterType)) 1119 return true; 1120 1121 continue; 1122 } 1123 1124 if (TemplateTemplateParmDecl *InnerTTP 1125 = dyn_cast<TemplateTemplateParmDecl>(P)) 1126 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1127 return true; 1128 } 1129 1130 return false; 1131} 1132 1133/// \brief Checks the validity of a template parameter list, possibly 1134/// considering the template parameter list from a previous 1135/// declaration. 1136/// 1137/// If an "old" template parameter list is provided, it must be 1138/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1139/// template parameter list. 1140/// 1141/// \param NewParams Template parameter list for a new template 1142/// declaration. This template parameter list will be updated with any 1143/// default arguments that are carried through from the previous 1144/// template parameter list. 1145/// 1146/// \param OldParams If provided, template parameter list from a 1147/// previous declaration of the same template. Default template 1148/// arguments will be merged from the old template parameter list to 1149/// the new template parameter list. 1150/// 1151/// \param TPC Describes the context in which we are checking the given 1152/// template parameter list. 1153/// 1154/// \returns true if an error occurred, false otherwise. 1155bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1156 TemplateParameterList *OldParams, 1157 TemplateParamListContext TPC) { 1158 bool Invalid = false; 1159 1160 // C++ [temp.param]p10: 1161 // The set of default template-arguments available for use with a 1162 // template declaration or definition is obtained by merging the 1163 // default arguments from the definition (if in scope) and all 1164 // declarations in scope in the same way default function 1165 // arguments are (8.3.6). 1166 bool SawDefaultArgument = false; 1167 SourceLocation PreviousDefaultArgLoc; 1168 1169 bool SawParameterPack = false; 1170 SourceLocation ParameterPackLoc; 1171 1172 // Dummy initialization to avoid warnings. 1173 TemplateParameterList::iterator OldParam = NewParams->end(); 1174 if (OldParams) 1175 OldParam = OldParams->begin(); 1176 1177 bool RemoveDefaultArguments = false; 1178 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1179 NewParamEnd = NewParams->end(); 1180 NewParam != NewParamEnd; ++NewParam) { 1181 // Variables used to diagnose redundant default arguments 1182 bool RedundantDefaultArg = false; 1183 SourceLocation OldDefaultLoc; 1184 SourceLocation NewDefaultLoc; 1185 1186 // Variables used to diagnose missing default arguments 1187 bool MissingDefaultArg = false; 1188 1189 // C++0x [temp.param]p11: 1190 // If a template parameter of a primary class template or alias template 1191 // is a template parameter pack, it shall be the last template parameter. 1192 if (SawParameterPack && 1193 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1194 Diag(ParameterPackLoc, 1195 diag::err_template_param_pack_must_be_last_template_parameter); 1196 Invalid = true; 1197 } 1198 1199 if (TemplateTypeParmDecl *NewTypeParm 1200 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1201 // Check the presence of a default argument here. 1202 if (NewTypeParm->hasDefaultArgument() && 1203 DiagnoseDefaultTemplateArgument(*this, TPC, 1204 NewTypeParm->getLocation(), 1205 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1206 .getSourceRange())) 1207 NewTypeParm->removeDefaultArgument(); 1208 1209 // Merge default arguments for template type parameters. 1210 TemplateTypeParmDecl *OldTypeParm 1211 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1212 1213 if (NewTypeParm->isParameterPack()) { 1214 assert(!NewTypeParm->hasDefaultArgument() && 1215 "Parameter packs can't have a default argument!"); 1216 SawParameterPack = true; 1217 ParameterPackLoc = NewTypeParm->getLocation(); 1218 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1219 NewTypeParm->hasDefaultArgument()) { 1220 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1221 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1222 SawDefaultArgument = true; 1223 RedundantDefaultArg = true; 1224 PreviousDefaultArgLoc = NewDefaultLoc; 1225 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1226 // Merge the default argument from the old declaration to the 1227 // new declaration. 1228 SawDefaultArgument = true; 1229 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1230 true); 1231 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1232 } else if (NewTypeParm->hasDefaultArgument()) { 1233 SawDefaultArgument = true; 1234 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1235 } else if (SawDefaultArgument) 1236 MissingDefaultArg = true; 1237 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1238 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1239 // Check for unexpanded parameter packs. 1240 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1241 NewNonTypeParm->getTypeSourceInfo(), 1242 UPPC_NonTypeTemplateParameterType)) { 1243 Invalid = true; 1244 continue; 1245 } 1246 1247 // Check the presence of a default argument here. 1248 if (NewNonTypeParm->hasDefaultArgument() && 1249 DiagnoseDefaultTemplateArgument(*this, TPC, 1250 NewNonTypeParm->getLocation(), 1251 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1252 NewNonTypeParm->removeDefaultArgument(); 1253 } 1254 1255 // Merge default arguments for non-type template parameters 1256 NonTypeTemplateParmDecl *OldNonTypeParm 1257 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1258 if (NewNonTypeParm->isParameterPack()) { 1259 assert(!NewNonTypeParm->hasDefaultArgument() && 1260 "Parameter packs can't have a default argument!"); 1261 SawParameterPack = true; 1262 ParameterPackLoc = NewNonTypeParm->getLocation(); 1263 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1264 NewNonTypeParm->hasDefaultArgument()) { 1265 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1266 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1267 SawDefaultArgument = true; 1268 RedundantDefaultArg = true; 1269 PreviousDefaultArgLoc = NewDefaultLoc; 1270 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1271 // Merge the default argument from the old declaration to the 1272 // new declaration. 1273 SawDefaultArgument = true; 1274 // FIXME: We need to create a new kind of "default argument" 1275 // expression that points to a previous non-type template 1276 // parameter. 1277 NewNonTypeParm->setDefaultArgument( 1278 OldNonTypeParm->getDefaultArgument(), 1279 /*Inherited=*/ true); 1280 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1281 } else if (NewNonTypeParm->hasDefaultArgument()) { 1282 SawDefaultArgument = true; 1283 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1284 } else if (SawDefaultArgument) 1285 MissingDefaultArg = true; 1286 } else { 1287 // Check the presence of a default argument here. 1288 TemplateTemplateParmDecl *NewTemplateParm 1289 = cast<TemplateTemplateParmDecl>(*NewParam); 1290 1291 // Check for unexpanded parameter packs, recursively. 1292 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1293 Invalid = true; 1294 continue; 1295 } 1296 1297 if (NewTemplateParm->hasDefaultArgument() && 1298 DiagnoseDefaultTemplateArgument(*this, TPC, 1299 NewTemplateParm->getLocation(), 1300 NewTemplateParm->getDefaultArgument().getSourceRange())) 1301 NewTemplateParm->removeDefaultArgument(); 1302 1303 // Merge default arguments for template template parameters 1304 TemplateTemplateParmDecl *OldTemplateParm 1305 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1306 if (NewTemplateParm->isParameterPack()) { 1307 assert(!NewTemplateParm->hasDefaultArgument() && 1308 "Parameter packs can't have a default argument!"); 1309 SawParameterPack = true; 1310 ParameterPackLoc = NewTemplateParm->getLocation(); 1311 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1312 NewTemplateParm->hasDefaultArgument()) { 1313 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1314 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1315 SawDefaultArgument = true; 1316 RedundantDefaultArg = true; 1317 PreviousDefaultArgLoc = NewDefaultLoc; 1318 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1319 // Merge the default argument from the old declaration to the 1320 // new declaration. 1321 SawDefaultArgument = true; 1322 // FIXME: We need to create a new kind of "default argument" expression 1323 // that points to a previous template template parameter. 1324 NewTemplateParm->setDefaultArgument( 1325 OldTemplateParm->getDefaultArgument(), 1326 /*Inherited=*/ true); 1327 PreviousDefaultArgLoc 1328 = OldTemplateParm->getDefaultArgument().getLocation(); 1329 } else if (NewTemplateParm->hasDefaultArgument()) { 1330 SawDefaultArgument = true; 1331 PreviousDefaultArgLoc 1332 = NewTemplateParm->getDefaultArgument().getLocation(); 1333 } else if (SawDefaultArgument) 1334 MissingDefaultArg = true; 1335 } 1336 1337 if (RedundantDefaultArg) { 1338 // C++ [temp.param]p12: 1339 // A template-parameter shall not be given default arguments 1340 // by two different declarations in the same scope. 1341 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1342 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1343 Invalid = true; 1344 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1345 // C++ [temp.param]p11: 1346 // If a template-parameter of a class template has a default 1347 // template-argument, each subsequent template-parameter shall either 1348 // have a default template-argument supplied or be a template parameter 1349 // pack. 1350 Diag((*NewParam)->getLocation(), 1351 diag::err_template_param_default_arg_missing); 1352 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1353 Invalid = true; 1354 RemoveDefaultArguments = true; 1355 } 1356 1357 // If we have an old template parameter list that we're merging 1358 // in, move on to the next parameter. 1359 if (OldParams) 1360 ++OldParam; 1361 } 1362 1363 // We were missing some default arguments at the end of the list, so remove 1364 // all of the default arguments. 1365 if (RemoveDefaultArguments) { 1366 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1367 NewParamEnd = NewParams->end(); 1368 NewParam != NewParamEnd; ++NewParam) { 1369 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1370 TTP->removeDefaultArgument(); 1371 else if (NonTypeTemplateParmDecl *NTTP 1372 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1373 NTTP->removeDefaultArgument(); 1374 else 1375 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1376 } 1377 } 1378 1379 return Invalid; 1380} 1381 1382namespace { 1383 1384/// A class which looks for a use of a certain level of template 1385/// parameter. 1386struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1387 typedef RecursiveASTVisitor<DependencyChecker> super; 1388 1389 unsigned Depth; 1390 bool Match; 1391 1392 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1393 NamedDecl *ND = Params->getParam(0); 1394 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1395 Depth = PD->getDepth(); 1396 } else if (NonTypeTemplateParmDecl *PD = 1397 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1398 Depth = PD->getDepth(); 1399 } else { 1400 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1401 } 1402 } 1403 1404 bool Matches(unsigned ParmDepth) { 1405 if (ParmDepth >= Depth) { 1406 Match = true; 1407 return true; 1408 } 1409 return false; 1410 } 1411 1412 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1413 return !Matches(T->getDepth()); 1414 } 1415 1416 bool TraverseTemplateName(TemplateName N) { 1417 if (TemplateTemplateParmDecl *PD = 1418 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1419 if (Matches(PD->getDepth())) return false; 1420 return super::TraverseTemplateName(N); 1421 } 1422 1423 bool VisitDeclRefExpr(DeclRefExpr *E) { 1424 if (NonTypeTemplateParmDecl *PD = 1425 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1426 if (PD->getDepth() == Depth) { 1427 Match = true; 1428 return false; 1429 } 1430 } 1431 return super::VisitDeclRefExpr(E); 1432 } 1433 1434 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1435 return TraverseType(T->getInjectedSpecializationType()); 1436 } 1437}; 1438} 1439 1440/// Determines whether a given type depends on the given parameter 1441/// list. 1442static bool 1443DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1444 DependencyChecker Checker(Params); 1445 Checker.TraverseType(T); 1446 return Checker.Match; 1447} 1448 1449// Find the source range corresponding to the named type in the given 1450// nested-name-specifier, if any. 1451static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1452 QualType T, 1453 const CXXScopeSpec &SS) { 1454 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1455 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1456 if (const Type *CurType = NNS->getAsType()) { 1457 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1458 return NNSLoc.getTypeLoc().getSourceRange(); 1459 } else 1460 break; 1461 1462 NNSLoc = NNSLoc.getPrefix(); 1463 } 1464 1465 return SourceRange(); 1466} 1467 1468/// \brief Match the given template parameter lists to the given scope 1469/// specifier, returning the template parameter list that applies to the 1470/// name. 1471/// 1472/// \param DeclStartLoc the start of the declaration that has a scope 1473/// specifier or a template parameter list. 1474/// 1475/// \param DeclLoc The location of the declaration itself. 1476/// 1477/// \param SS the scope specifier that will be matched to the given template 1478/// parameter lists. This scope specifier precedes a qualified name that is 1479/// being declared. 1480/// 1481/// \param ParamLists the template parameter lists, from the outermost to the 1482/// innermost template parameter lists. 1483/// 1484/// \param NumParamLists the number of template parameter lists in ParamLists. 1485/// 1486/// \param IsFriend Whether to apply the slightly different rules for 1487/// matching template parameters to scope specifiers in friend 1488/// declarations. 1489/// 1490/// \param IsExplicitSpecialization will be set true if the entity being 1491/// declared is an explicit specialization, false otherwise. 1492/// 1493/// \returns the template parameter list, if any, that corresponds to the 1494/// name that is preceded by the scope specifier @p SS. This template 1495/// parameter list may have template parameters (if we're declaring a 1496/// template) or may have no template parameters (if we're declaring a 1497/// template specialization), or may be NULL (if what we're declaring isn't 1498/// itself a template). 1499TemplateParameterList * 1500Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1501 SourceLocation DeclLoc, 1502 const CXXScopeSpec &SS, 1503 TemplateParameterList **ParamLists, 1504 unsigned NumParamLists, 1505 bool IsFriend, 1506 bool &IsExplicitSpecialization, 1507 bool &Invalid) { 1508 IsExplicitSpecialization = false; 1509 Invalid = false; 1510 1511 // The sequence of nested types to which we will match up the template 1512 // parameter lists. We first build this list by starting with the type named 1513 // by the nested-name-specifier and walking out until we run out of types. 1514 llvm::SmallVector<QualType, 4> NestedTypes; 1515 QualType T; 1516 if (SS.getScopeRep()) { 1517 if (CXXRecordDecl *Record 1518 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1519 T = Context.getTypeDeclType(Record); 1520 else 1521 T = QualType(SS.getScopeRep()->getAsType(), 0); 1522 } 1523 1524 // If we found an explicit specialization that prevents us from needing 1525 // 'template<>' headers, this will be set to the location of that 1526 // explicit specialization. 1527 SourceLocation ExplicitSpecLoc; 1528 1529 while (!T.isNull()) { 1530 NestedTypes.push_back(T); 1531 1532 // Retrieve the parent of a record type. 1533 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1534 // If this type is an explicit specialization, we're done. 1535 if (ClassTemplateSpecializationDecl *Spec 1536 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1537 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1538 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1539 ExplicitSpecLoc = Spec->getLocation(); 1540 break; 1541 } 1542 } else if (Record->getTemplateSpecializationKind() 1543 == TSK_ExplicitSpecialization) { 1544 ExplicitSpecLoc = Record->getLocation(); 1545 break; 1546 } 1547 1548 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1549 T = Context.getTypeDeclType(Parent); 1550 else 1551 T = QualType(); 1552 continue; 1553 } 1554 1555 if (const TemplateSpecializationType *TST 1556 = T->getAs<TemplateSpecializationType>()) { 1557 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1558 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1559 T = Context.getTypeDeclType(Parent); 1560 else 1561 T = QualType(); 1562 continue; 1563 } 1564 } 1565 1566 // Look one step prior in a dependent template specialization type. 1567 if (const DependentTemplateSpecializationType *DependentTST 1568 = T->getAs<DependentTemplateSpecializationType>()) { 1569 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1570 T = QualType(NNS->getAsType(), 0); 1571 else 1572 T = QualType(); 1573 continue; 1574 } 1575 1576 // Look one step prior in a dependent name type. 1577 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1578 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1579 T = QualType(NNS->getAsType(), 0); 1580 else 1581 T = QualType(); 1582 continue; 1583 } 1584 1585 // Retrieve the parent of an enumeration type. 1586 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1587 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1588 // check here. 1589 EnumDecl *Enum = EnumT->getDecl(); 1590 1591 // Get to the parent type. 1592 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1593 T = Context.getTypeDeclType(Parent); 1594 else 1595 T = QualType(); 1596 continue; 1597 } 1598 1599 T = QualType(); 1600 } 1601 // Reverse the nested types list, since we want to traverse from the outermost 1602 // to the innermost while checking template-parameter-lists. 1603 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1604 1605 // C++0x [temp.expl.spec]p17: 1606 // A member or a member template may be nested within many 1607 // enclosing class templates. In an explicit specialization for 1608 // such a member, the member declaration shall be preceded by a 1609 // template<> for each enclosing class template that is 1610 // explicitly specialized. 1611 unsigned ParamIdx = 0; 1612 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1613 ++TypeIdx) { 1614 T = NestedTypes[TypeIdx]; 1615 1616 // Whether we expect a 'template<>' header. 1617 bool NeedEmptyTemplateHeader = false; 1618 1619 // Whether we expect a template header with parameters. 1620 bool NeedNonemptyTemplateHeader = false; 1621 1622 // For a dependent type, the set of template parameters that we 1623 // expect to see. 1624 TemplateParameterList *ExpectedTemplateParams = 0; 1625 1626 // C++0x [temp.expl.spec]p15: 1627 // A member or a member template may be nested within many enclosing 1628 // class templates. In an explicit specialization for such a member, the 1629 // member declaration shall be preceded by a template<> for each 1630 // enclosing class template that is explicitly specialized. 1631 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1632 if (ClassTemplatePartialSpecializationDecl *Partial 1633 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1634 ExpectedTemplateParams = Partial->getTemplateParameters(); 1635 NeedNonemptyTemplateHeader = true; 1636 } else if (Record->isDependentType()) { 1637 if (Record->getDescribedClassTemplate()) { 1638 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1639 ->getTemplateParameters(); 1640 NeedNonemptyTemplateHeader = true; 1641 } 1642 } else if (ClassTemplateSpecializationDecl *Spec 1643 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1644 // C++0x [temp.expl.spec]p4: 1645 // Members of an explicitly specialized class template are defined 1646 // in the same manner as members of normal classes, and not using 1647 // the template<> syntax. 1648 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1649 NeedEmptyTemplateHeader = true; 1650 else 1651 break; 1652 } else if (Record->getTemplateSpecializationKind()) { 1653 if (Record->getTemplateSpecializationKind() 1654 != TSK_ExplicitSpecialization && 1655 TypeIdx == NumTypes - 1) 1656 IsExplicitSpecialization = true; 1657 1658 continue; 1659 } 1660 } else if (const TemplateSpecializationType *TST 1661 = T->getAs<TemplateSpecializationType>()) { 1662 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1663 ExpectedTemplateParams = Template->getTemplateParameters(); 1664 NeedNonemptyTemplateHeader = true; 1665 } 1666 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1667 // FIXME: We actually could/should check the template arguments here 1668 // against the corresponding template parameter list. 1669 NeedNonemptyTemplateHeader = false; 1670 } 1671 1672 if (NeedEmptyTemplateHeader) { 1673 // If we're on the last of the types, and we need a 'template<>' header 1674 // here, then it's an explicit specialization. 1675 if (TypeIdx == NumTypes - 1) 1676 IsExplicitSpecialization = true; 1677 1678 if (ParamIdx < NumParamLists) { 1679 if (ParamLists[ParamIdx]->size() > 0) { 1680 // The header has template parameters when it shouldn't. Complain. 1681 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1682 diag::err_template_param_list_matches_nontemplate) 1683 << T 1684 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1685 ParamLists[ParamIdx]->getRAngleLoc()) 1686 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1687 Invalid = true; 1688 return 0; 1689 } 1690 1691 // Consume this template header. 1692 ++ParamIdx; 1693 continue; 1694 } 1695 1696 if (!IsFriend) { 1697 // We don't have a template header, but we should. 1698 SourceLocation ExpectedTemplateLoc; 1699 if (NumParamLists > 0) 1700 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1701 else 1702 ExpectedTemplateLoc = DeclStartLoc; 1703 1704 Diag(DeclLoc, diag::err_template_spec_needs_header) 1705 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1706 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1707 } 1708 1709 continue; 1710 } 1711 1712 if (NeedNonemptyTemplateHeader) { 1713 // In friend declarations we can have template-ids which don't 1714 // depend on the corresponding template parameter lists. But 1715 // assume that empty parameter lists are supposed to match this 1716 // template-id. 1717 if (IsFriend && T->isDependentType()) { 1718 if (ParamIdx < NumParamLists && 1719 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1720 ExpectedTemplateParams = 0; 1721 else 1722 continue; 1723 } 1724 1725 if (ParamIdx < NumParamLists) { 1726 // Check the template parameter list, if we can. 1727 if (ExpectedTemplateParams && 1728 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1729 ExpectedTemplateParams, 1730 true, TPL_TemplateMatch)) 1731 Invalid = true; 1732 1733 if (!Invalid && 1734 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1735 TPC_ClassTemplateMember)) 1736 Invalid = true; 1737 1738 ++ParamIdx; 1739 continue; 1740 } 1741 1742 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1743 << T 1744 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1745 Invalid = true; 1746 continue; 1747 } 1748 } 1749 1750 // If there were at least as many template-ids as there were template 1751 // parameter lists, then there are no template parameter lists remaining for 1752 // the declaration itself. 1753 if (ParamIdx >= NumParamLists) 1754 return 0; 1755 1756 // If there were too many template parameter lists, complain about that now. 1757 if (ParamIdx < NumParamLists - 1) { 1758 bool HasAnyExplicitSpecHeader = false; 1759 bool AllExplicitSpecHeaders = true; 1760 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1761 if (ParamLists[I]->size() == 0) 1762 HasAnyExplicitSpecHeader = true; 1763 else 1764 AllExplicitSpecHeaders = false; 1765 } 1766 1767 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1768 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1769 : diag::err_template_spec_extra_headers) 1770 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1771 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1772 1773 // If there was a specialization somewhere, such that 'template<>' is 1774 // not required, and there were any 'template<>' headers, note where the 1775 // specialization occurred. 1776 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1777 Diag(ExplicitSpecLoc, 1778 diag::note_explicit_template_spec_does_not_need_header) 1779 << NestedTypes.back(); 1780 1781 // We have a template parameter list with no corresponding scope, which 1782 // means that the resulting template declaration can't be instantiated 1783 // properly (we'll end up with dependent nodes when we shouldn't). 1784 if (!AllExplicitSpecHeaders) 1785 Invalid = true; 1786 } 1787 1788 // Return the last template parameter list, which corresponds to the 1789 // entity being declared. 1790 return ParamLists[NumParamLists - 1]; 1791} 1792 1793void Sema::NoteAllFoundTemplates(TemplateName Name) { 1794 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1795 Diag(Template->getLocation(), diag::note_template_declared_here) 1796 << (isa<FunctionTemplateDecl>(Template)? 0 1797 : isa<ClassTemplateDecl>(Template)? 1 1798 : isa<TypeAliasTemplateDecl>(Template)? 2 1799 : 3) 1800 << Template->getDeclName(); 1801 return; 1802 } 1803 1804 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1805 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1806 IEnd = OST->end(); 1807 I != IEnd; ++I) 1808 Diag((*I)->getLocation(), diag::note_template_declared_here) 1809 << 0 << (*I)->getDeclName(); 1810 1811 return; 1812 } 1813} 1814 1815 1816QualType Sema::CheckTemplateIdType(TemplateName Name, 1817 SourceLocation TemplateLoc, 1818 TemplateArgumentListInfo &TemplateArgs) { 1819 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 1820 if (DTN && DTN->isIdentifier()) 1821 // When building a template-id where the template-name is dependent, 1822 // assume the template is a type template. Either our assumption is 1823 // correct, or the code is ill-formed and will be diagnosed when the 1824 // dependent name is substituted. 1825 return Context.getDependentTemplateSpecializationType(ETK_None, 1826 DTN->getQualifier(), 1827 DTN->getIdentifier(), 1828 TemplateArgs); 1829 1830 TemplateDecl *Template = Name.getAsTemplateDecl(); 1831 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1832 // We might have a substituted template template parameter pack. If so, 1833 // build a template specialization type for it. 1834 if (Name.getAsSubstTemplateTemplateParmPack()) 1835 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1836 1837 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1838 << Name; 1839 NoteAllFoundTemplates(Name); 1840 return QualType(); 1841 } 1842 1843 // Check that the template argument list is well-formed for this 1844 // template. 1845 llvm::SmallVector<TemplateArgument, 4> Converted; 1846 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1847 false, Converted)) 1848 return QualType(); 1849 1850 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1851 "Converted template argument list is too short!"); 1852 1853 QualType CanonType; 1854 1855 if (TypeAliasTemplateDecl *AliasTemplate 1856 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1857 // Find the canonical type for this type alias template specialization. 1858 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1859 if (Pattern->isInvalidDecl()) 1860 return QualType(); 1861 1862 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1863 Converted.data(), Converted.size()); 1864 1865 // Only substitute for the innermost template argument list. 1866 MultiLevelTemplateArgumentList TemplateArgLists; 1867 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1868 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1869 for (unsigned I = 0; I < Depth; ++I) 1870 TemplateArgLists.addOuterTemplateArguments(0, 0); 1871 1872 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1873 CanonType = SubstType(Pattern->getUnderlyingType(), 1874 TemplateArgLists, AliasTemplate->getLocation(), 1875 AliasTemplate->getDeclName()); 1876 if (CanonType.isNull()) 1877 return QualType(); 1878 } else if (Name.isDependent() || 1879 TemplateSpecializationType::anyDependentTemplateArguments( 1880 TemplateArgs)) { 1881 // This class template specialization is a dependent 1882 // type. Therefore, its canonical type is another class template 1883 // specialization type that contains all of the converted 1884 // arguments in canonical form. This ensures that, e.g., A<T> and 1885 // A<T, T> have identical types when A is declared as: 1886 // 1887 // template<typename T, typename U = T> struct A; 1888 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1889 CanonType = Context.getTemplateSpecializationType(CanonName, 1890 Converted.data(), 1891 Converted.size()); 1892 1893 // FIXME: CanonType is not actually the canonical type, and unfortunately 1894 // it is a TemplateSpecializationType that we will never use again. 1895 // In the future, we need to teach getTemplateSpecializationType to only 1896 // build the canonical type and return that to us. 1897 CanonType = Context.getCanonicalType(CanonType); 1898 1899 // This might work out to be a current instantiation, in which 1900 // case the canonical type needs to be the InjectedClassNameType. 1901 // 1902 // TODO: in theory this could be a simple hashtable lookup; most 1903 // changes to CurContext don't change the set of current 1904 // instantiations. 1905 if (isa<ClassTemplateDecl>(Template)) { 1906 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1907 // If we get out to a namespace, we're done. 1908 if (Ctx->isFileContext()) break; 1909 1910 // If this isn't a record, keep looking. 1911 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1912 if (!Record) continue; 1913 1914 // Look for one of the two cases with InjectedClassNameTypes 1915 // and check whether it's the same template. 1916 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1917 !Record->getDescribedClassTemplate()) 1918 continue; 1919 1920 // Fetch the injected class name type and check whether its 1921 // injected type is equal to the type we just built. 1922 QualType ICNT = Context.getTypeDeclType(Record); 1923 QualType Injected = cast<InjectedClassNameType>(ICNT) 1924 ->getInjectedSpecializationType(); 1925 1926 if (CanonType != Injected->getCanonicalTypeInternal()) 1927 continue; 1928 1929 // If so, the canonical type of this TST is the injected 1930 // class name type of the record we just found. 1931 assert(ICNT.isCanonical()); 1932 CanonType = ICNT; 1933 break; 1934 } 1935 } 1936 } else if (ClassTemplateDecl *ClassTemplate 1937 = dyn_cast<ClassTemplateDecl>(Template)) { 1938 // Find the class template specialization declaration that 1939 // corresponds to these arguments. 1940 void *InsertPos = 0; 1941 ClassTemplateSpecializationDecl *Decl 1942 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1943 InsertPos); 1944 if (!Decl) { 1945 // This is the first time we have referenced this class template 1946 // specialization. Create the canonical declaration and add it to 1947 // the set of specializations. 1948 Decl = ClassTemplateSpecializationDecl::Create(Context, 1949 ClassTemplate->getTemplatedDecl()->getTagKind(), 1950 ClassTemplate->getDeclContext(), 1951 ClassTemplate->getLocation(), 1952 ClassTemplate->getLocation(), 1953 ClassTemplate, 1954 Converted.data(), 1955 Converted.size(), 0); 1956 ClassTemplate->AddSpecialization(Decl, InsertPos); 1957 Decl->setLexicalDeclContext(CurContext); 1958 } 1959 1960 CanonType = Context.getTypeDeclType(Decl); 1961 assert(isa<RecordType>(CanonType) && 1962 "type of non-dependent specialization is not a RecordType"); 1963 } 1964 1965 // Build the fully-sugared type for this class template 1966 // specialization, which refers back to the class template 1967 // specialization we created or found. 1968 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1969} 1970 1971TypeResult 1972Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 1973 TemplateTy TemplateD, SourceLocation TemplateLoc, 1974 SourceLocation LAngleLoc, 1975 ASTTemplateArgsPtr TemplateArgsIn, 1976 SourceLocation RAngleLoc) { 1977 if (SS.isInvalid()) 1978 return true; 1979 1980 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1981 1982 // Translate the parser's template argument list in our AST format. 1983 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1984 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1985 1986 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 1987 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 1988 DTN->getQualifier(), 1989 DTN->getIdentifier(), 1990 TemplateArgs); 1991 1992 // Build type-source information. 1993 TypeLocBuilder TLB; 1994 DependentTemplateSpecializationTypeLoc SpecTL 1995 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 1996 SpecTL.setKeywordLoc(SourceLocation()); 1997 SpecTL.setNameLoc(TemplateLoc); 1998 SpecTL.setLAngleLoc(LAngleLoc); 1999 SpecTL.setRAngleLoc(RAngleLoc); 2000 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2001 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2002 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2003 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2004 } 2005 2006 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2007 TemplateArgsIn.release(); 2008 2009 if (Result.isNull()) 2010 return true; 2011 2012 // Build type-source information. 2013 TypeLocBuilder TLB; 2014 TemplateSpecializationTypeLoc SpecTL 2015 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2016 SpecTL.setTemplateNameLoc(TemplateLoc); 2017 SpecTL.setLAngleLoc(LAngleLoc); 2018 SpecTL.setRAngleLoc(RAngleLoc); 2019 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2020 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2021 2022 if (SS.isNotEmpty()) { 2023 // Create an elaborated-type-specifier containing the nested-name-specifier. 2024 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2025 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2026 ElabTL.setKeywordLoc(SourceLocation()); 2027 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2028 } 2029 2030 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2031} 2032 2033TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2034 TypeSpecifierType TagSpec, 2035 SourceLocation TagLoc, 2036 CXXScopeSpec &SS, 2037 TemplateTy TemplateD, 2038 SourceLocation TemplateLoc, 2039 SourceLocation LAngleLoc, 2040 ASTTemplateArgsPtr TemplateArgsIn, 2041 SourceLocation RAngleLoc) { 2042 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2043 2044 // Translate the parser's template argument list in our AST format. 2045 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2046 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2047 2048 // Determine the tag kind 2049 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2050 ElaboratedTypeKeyword Keyword 2051 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2052 2053 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2054 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2055 DTN->getQualifier(), 2056 DTN->getIdentifier(), 2057 TemplateArgs); 2058 2059 // Build type-source information. 2060 TypeLocBuilder TLB; 2061 DependentTemplateSpecializationTypeLoc SpecTL 2062 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2063 SpecTL.setKeywordLoc(TagLoc); 2064 SpecTL.setNameLoc(TemplateLoc); 2065 SpecTL.setLAngleLoc(LAngleLoc); 2066 SpecTL.setRAngleLoc(RAngleLoc); 2067 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2068 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2069 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2070 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2071 } 2072 2073 if (TypeAliasTemplateDecl *TAT = 2074 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2075 // C++0x [dcl.type.elab]p2: 2076 // If the identifier resolves to a typedef-name or the simple-template-id 2077 // resolves to an alias template specialization, the 2078 // elaborated-type-specifier is ill-formed. 2079 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2080 Diag(TAT->getLocation(), diag::note_declared_at); 2081 } 2082 2083 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2084 if (Result.isNull()) 2085 return TypeResult(); 2086 2087 // Check the tag kind 2088 if (const RecordType *RT = Result->getAs<RecordType>()) { 2089 RecordDecl *D = RT->getDecl(); 2090 2091 IdentifierInfo *Id = D->getIdentifier(); 2092 assert(Id && "templated class must have an identifier"); 2093 2094 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 2095 Diag(TagLoc, diag::err_use_with_wrong_tag) 2096 << Result 2097 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2098 Diag(D->getLocation(), diag::note_previous_use); 2099 } 2100 } 2101 2102 // Provide source-location information for the template specialization. 2103 TypeLocBuilder TLB; 2104 TemplateSpecializationTypeLoc SpecTL 2105 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2106 SpecTL.setTemplateNameLoc(TemplateLoc); 2107 SpecTL.setLAngleLoc(LAngleLoc); 2108 SpecTL.setRAngleLoc(RAngleLoc); 2109 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2110 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2111 2112 // Construct an elaborated type containing the nested-name-specifier (if any) 2113 // and keyword. 2114 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2115 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2116 ElabTL.setKeywordLoc(TagLoc); 2117 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2118 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2119} 2120 2121ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2122 LookupResult &R, 2123 bool RequiresADL, 2124 const TemplateArgumentListInfo &TemplateArgs) { 2125 // FIXME: Can we do any checking at this point? I guess we could check the 2126 // template arguments that we have against the template name, if the template 2127 // name refers to a single template. That's not a terribly common case, 2128 // though. 2129 // foo<int> could identify a single function unambiguously 2130 // This approach does NOT work, since f<int>(1); 2131 // gets resolved prior to resorting to overload resolution 2132 // i.e., template<class T> void f(double); 2133 // vs template<class T, class U> void f(U); 2134 2135 // These should be filtered out by our callers. 2136 assert(!R.empty() && "empty lookup results when building templateid"); 2137 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2138 2139 // We don't want lookup warnings at this point. 2140 R.suppressDiagnostics(); 2141 2142 UnresolvedLookupExpr *ULE 2143 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2144 SS.getWithLocInContext(Context), 2145 R.getLookupNameInfo(), 2146 RequiresADL, TemplateArgs, 2147 R.begin(), R.end()); 2148 2149 return Owned(ULE); 2150} 2151 2152// We actually only call this from template instantiation. 2153ExprResult 2154Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2155 const DeclarationNameInfo &NameInfo, 2156 const TemplateArgumentListInfo &TemplateArgs) { 2157 DeclContext *DC; 2158 if (!(DC = computeDeclContext(SS, false)) || 2159 DC->isDependentContext() || 2160 RequireCompleteDeclContext(SS, DC)) 2161 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2162 2163 bool MemberOfUnknownSpecialization; 2164 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2165 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2166 MemberOfUnknownSpecialization); 2167 2168 if (R.isAmbiguous()) 2169 return ExprError(); 2170 2171 if (R.empty()) { 2172 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2173 << NameInfo.getName() << SS.getRange(); 2174 return ExprError(); 2175 } 2176 2177 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2178 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2179 << (NestedNameSpecifier*) SS.getScopeRep() 2180 << NameInfo.getName() << SS.getRange(); 2181 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2182 return ExprError(); 2183 } 2184 2185 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2186} 2187 2188/// \brief Form a dependent template name. 2189/// 2190/// This action forms a dependent template name given the template 2191/// name and its (presumably dependent) scope specifier. For 2192/// example, given "MetaFun::template apply", the scope specifier \p 2193/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2194/// of the "template" keyword, and "apply" is the \p Name. 2195TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2196 SourceLocation TemplateKWLoc, 2197 CXXScopeSpec &SS, 2198 UnqualifiedId &Name, 2199 ParsedType ObjectType, 2200 bool EnteringContext, 2201 TemplateTy &Result) { 2202 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2203 !getLangOptions().CPlusPlus0x) 2204 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2205 << FixItHint::CreateRemoval(TemplateKWLoc); 2206 2207 DeclContext *LookupCtx = 0; 2208 if (SS.isSet()) 2209 LookupCtx = computeDeclContext(SS, EnteringContext); 2210 if (!LookupCtx && ObjectType) 2211 LookupCtx = computeDeclContext(ObjectType.get()); 2212 if (LookupCtx) { 2213 // C++0x [temp.names]p5: 2214 // If a name prefixed by the keyword template is not the name of 2215 // a template, the program is ill-formed. [Note: the keyword 2216 // template may not be applied to non-template members of class 2217 // templates. -end note ] [ Note: as is the case with the 2218 // typename prefix, the template prefix is allowed in cases 2219 // where it is not strictly necessary; i.e., when the 2220 // nested-name-specifier or the expression on the left of the -> 2221 // or . is not dependent on a template-parameter, or the use 2222 // does not appear in the scope of a template. -end note] 2223 // 2224 // Note: C++03 was more strict here, because it banned the use of 2225 // the "template" keyword prior to a template-name that was not a 2226 // dependent name. C++ DR468 relaxed this requirement (the 2227 // "template" keyword is now permitted). We follow the C++0x 2228 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2229 bool MemberOfUnknownSpecialization; 2230 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2231 ObjectType, EnteringContext, Result, 2232 MemberOfUnknownSpecialization); 2233 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2234 isa<CXXRecordDecl>(LookupCtx) && 2235 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2236 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2237 // This is a dependent template. Handle it below. 2238 } else if (TNK == TNK_Non_template) { 2239 Diag(Name.getSourceRange().getBegin(), 2240 diag::err_template_kw_refers_to_non_template) 2241 << GetNameFromUnqualifiedId(Name).getName() 2242 << Name.getSourceRange() 2243 << TemplateKWLoc; 2244 return TNK_Non_template; 2245 } else { 2246 // We found something; return it. 2247 return TNK; 2248 } 2249 } 2250 2251 NestedNameSpecifier *Qualifier 2252 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2253 2254 switch (Name.getKind()) { 2255 case UnqualifiedId::IK_Identifier: 2256 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2257 Name.Identifier)); 2258 return TNK_Dependent_template_name; 2259 2260 case UnqualifiedId::IK_OperatorFunctionId: 2261 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2262 Name.OperatorFunctionId.Operator)); 2263 return TNK_Dependent_template_name; 2264 2265 case UnqualifiedId::IK_LiteralOperatorId: 2266 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2267 2268 default: 2269 break; 2270 } 2271 2272 Diag(Name.getSourceRange().getBegin(), 2273 diag::err_template_kw_refers_to_non_template) 2274 << GetNameFromUnqualifiedId(Name).getName() 2275 << Name.getSourceRange() 2276 << TemplateKWLoc; 2277 return TNK_Non_template; 2278} 2279 2280bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2281 const TemplateArgumentLoc &AL, 2282 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2283 const TemplateArgument &Arg = AL.getArgument(); 2284 2285 // Check template type parameter. 2286 switch(Arg.getKind()) { 2287 case TemplateArgument::Type: 2288 // C++ [temp.arg.type]p1: 2289 // A template-argument for a template-parameter which is a 2290 // type shall be a type-id. 2291 break; 2292 case TemplateArgument::Template: { 2293 // We have a template type parameter but the template argument 2294 // is a template without any arguments. 2295 SourceRange SR = AL.getSourceRange(); 2296 TemplateName Name = Arg.getAsTemplate(); 2297 Diag(SR.getBegin(), diag::err_template_missing_args) 2298 << Name << SR; 2299 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2300 Diag(Decl->getLocation(), diag::note_template_decl_here); 2301 2302 return true; 2303 } 2304 default: { 2305 // We have a template type parameter but the template argument 2306 // is not a type. 2307 SourceRange SR = AL.getSourceRange(); 2308 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2309 Diag(Param->getLocation(), diag::note_template_param_here); 2310 2311 return true; 2312 } 2313 } 2314 2315 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2316 return true; 2317 2318 // Add the converted template type argument. 2319 Converted.push_back( 2320 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 2321 return false; 2322} 2323 2324/// \brief Substitute template arguments into the default template argument for 2325/// the given template type parameter. 2326/// 2327/// \param SemaRef the semantic analysis object for which we are performing 2328/// the substitution. 2329/// 2330/// \param Template the template that we are synthesizing template arguments 2331/// for. 2332/// 2333/// \param TemplateLoc the location of the template name that started the 2334/// template-id we are checking. 2335/// 2336/// \param RAngleLoc the location of the right angle bracket ('>') that 2337/// terminates the template-id. 2338/// 2339/// \param Param the template template parameter whose default we are 2340/// substituting into. 2341/// 2342/// \param Converted the list of template arguments provided for template 2343/// parameters that precede \p Param in the template parameter list. 2344/// \returns the substituted template argument, or NULL if an error occurred. 2345static TypeSourceInfo * 2346SubstDefaultTemplateArgument(Sema &SemaRef, 2347 TemplateDecl *Template, 2348 SourceLocation TemplateLoc, 2349 SourceLocation RAngleLoc, 2350 TemplateTypeParmDecl *Param, 2351 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2352 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2353 2354 // If the argument type is dependent, instantiate it now based 2355 // on the previously-computed template arguments. 2356 if (ArgType->getType()->isDependentType()) { 2357 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2358 Converted.data(), Converted.size()); 2359 2360 MultiLevelTemplateArgumentList AllTemplateArgs 2361 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2362 2363 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2364 Template, Converted.data(), 2365 Converted.size(), 2366 SourceRange(TemplateLoc, RAngleLoc)); 2367 2368 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2369 Param->getDefaultArgumentLoc(), 2370 Param->getDeclName()); 2371 } 2372 2373 return ArgType; 2374} 2375 2376/// \brief Substitute template arguments into the default template argument for 2377/// the given non-type template parameter. 2378/// 2379/// \param SemaRef the semantic analysis object for which we are performing 2380/// the substitution. 2381/// 2382/// \param Template the template that we are synthesizing template arguments 2383/// for. 2384/// 2385/// \param TemplateLoc the location of the template name that started the 2386/// template-id we are checking. 2387/// 2388/// \param RAngleLoc the location of the right angle bracket ('>') that 2389/// terminates the template-id. 2390/// 2391/// \param Param the non-type template parameter whose default we are 2392/// substituting into. 2393/// 2394/// \param Converted the list of template arguments provided for template 2395/// parameters that precede \p Param in the template parameter list. 2396/// 2397/// \returns the substituted template argument, or NULL if an error occurred. 2398static ExprResult 2399SubstDefaultTemplateArgument(Sema &SemaRef, 2400 TemplateDecl *Template, 2401 SourceLocation TemplateLoc, 2402 SourceLocation RAngleLoc, 2403 NonTypeTemplateParmDecl *Param, 2404 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2405 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2406 Converted.data(), Converted.size()); 2407 2408 MultiLevelTemplateArgumentList AllTemplateArgs 2409 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2410 2411 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2412 Template, Converted.data(), 2413 Converted.size(), 2414 SourceRange(TemplateLoc, RAngleLoc)); 2415 2416 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2417} 2418 2419/// \brief Substitute template arguments into the default template argument for 2420/// the given template template parameter. 2421/// 2422/// \param SemaRef the semantic analysis object for which we are performing 2423/// the substitution. 2424/// 2425/// \param Template the template that we are synthesizing template arguments 2426/// for. 2427/// 2428/// \param TemplateLoc the location of the template name that started the 2429/// template-id we are checking. 2430/// 2431/// \param RAngleLoc the location of the right angle bracket ('>') that 2432/// terminates the template-id. 2433/// 2434/// \param Param the template template parameter whose default we are 2435/// substituting into. 2436/// 2437/// \param Converted the list of template arguments provided for template 2438/// parameters that precede \p Param in the template parameter list. 2439/// 2440/// \param QualifierLoc Will be set to the nested-name-specifier (with 2441/// source-location information) that precedes the template name. 2442/// 2443/// \returns the substituted template argument, or NULL if an error occurred. 2444static TemplateName 2445SubstDefaultTemplateArgument(Sema &SemaRef, 2446 TemplateDecl *Template, 2447 SourceLocation TemplateLoc, 2448 SourceLocation RAngleLoc, 2449 TemplateTemplateParmDecl *Param, 2450 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2451 NestedNameSpecifierLoc &QualifierLoc) { 2452 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2453 Converted.data(), Converted.size()); 2454 2455 MultiLevelTemplateArgumentList AllTemplateArgs 2456 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2457 2458 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2459 Template, Converted.data(), 2460 Converted.size(), 2461 SourceRange(TemplateLoc, RAngleLoc)); 2462 2463 // Substitute into the nested-name-specifier first, 2464 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2465 if (QualifierLoc) { 2466 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2467 AllTemplateArgs); 2468 if (!QualifierLoc) 2469 return TemplateName(); 2470 } 2471 2472 return SemaRef.SubstTemplateName(QualifierLoc, 2473 Param->getDefaultArgument().getArgument().getAsTemplate(), 2474 Param->getDefaultArgument().getTemplateNameLoc(), 2475 AllTemplateArgs); 2476} 2477 2478/// \brief If the given template parameter has a default template 2479/// argument, substitute into that default template argument and 2480/// return the corresponding template argument. 2481TemplateArgumentLoc 2482Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2483 SourceLocation TemplateLoc, 2484 SourceLocation RAngleLoc, 2485 Decl *Param, 2486 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2487 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2488 if (!TypeParm->hasDefaultArgument()) 2489 return TemplateArgumentLoc(); 2490 2491 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2492 TemplateLoc, 2493 RAngleLoc, 2494 TypeParm, 2495 Converted); 2496 if (DI) 2497 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2498 2499 return TemplateArgumentLoc(); 2500 } 2501 2502 if (NonTypeTemplateParmDecl *NonTypeParm 2503 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2504 if (!NonTypeParm->hasDefaultArgument()) 2505 return TemplateArgumentLoc(); 2506 2507 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2508 TemplateLoc, 2509 RAngleLoc, 2510 NonTypeParm, 2511 Converted); 2512 if (Arg.isInvalid()) 2513 return TemplateArgumentLoc(); 2514 2515 Expr *ArgE = Arg.takeAs<Expr>(); 2516 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2517 } 2518 2519 TemplateTemplateParmDecl *TempTempParm 2520 = cast<TemplateTemplateParmDecl>(Param); 2521 if (!TempTempParm->hasDefaultArgument()) 2522 return TemplateArgumentLoc(); 2523 2524 2525 NestedNameSpecifierLoc QualifierLoc; 2526 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2527 TemplateLoc, 2528 RAngleLoc, 2529 TempTempParm, 2530 Converted, 2531 QualifierLoc); 2532 if (TName.isNull()) 2533 return TemplateArgumentLoc(); 2534 2535 return TemplateArgumentLoc(TemplateArgument(TName), 2536 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2537 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2538} 2539 2540/// \brief Check that the given template argument corresponds to the given 2541/// template parameter. 2542/// 2543/// \param Param The template parameter against which the argument will be 2544/// checked. 2545/// 2546/// \param Arg The template argument. 2547/// 2548/// \param Template The template in which the template argument resides. 2549/// 2550/// \param TemplateLoc The location of the template name for the template 2551/// whose argument list we're matching. 2552/// 2553/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2554/// the template argument list. 2555/// 2556/// \param ArgumentPackIndex The index into the argument pack where this 2557/// argument will be placed. Only valid if the parameter is a parameter pack. 2558/// 2559/// \param Converted The checked, converted argument will be added to the 2560/// end of this small vector. 2561/// 2562/// \param CTAK Describes how we arrived at this particular template argument: 2563/// explicitly written, deduced, etc. 2564/// 2565/// \returns true on error, false otherwise. 2566bool Sema::CheckTemplateArgument(NamedDecl *Param, 2567 const TemplateArgumentLoc &Arg, 2568 NamedDecl *Template, 2569 SourceLocation TemplateLoc, 2570 SourceLocation RAngleLoc, 2571 unsigned ArgumentPackIndex, 2572 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2573 CheckTemplateArgumentKind CTAK) { 2574 // Check template type parameters. 2575 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2576 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2577 2578 // Check non-type template parameters. 2579 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2580 // Do substitution on the type of the non-type template parameter 2581 // with the template arguments we've seen thus far. But if the 2582 // template has a dependent context then we cannot substitute yet. 2583 QualType NTTPType = NTTP->getType(); 2584 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2585 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2586 2587 if (NTTPType->isDependentType() && 2588 !isa<TemplateTemplateParmDecl>(Template) && 2589 !Template->getDeclContext()->isDependentContext()) { 2590 // Do substitution on the type of the non-type template parameter. 2591 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2592 NTTP, Converted.data(), Converted.size(), 2593 SourceRange(TemplateLoc, RAngleLoc)); 2594 2595 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2596 Converted.data(), Converted.size()); 2597 NTTPType = SubstType(NTTPType, 2598 MultiLevelTemplateArgumentList(TemplateArgs), 2599 NTTP->getLocation(), 2600 NTTP->getDeclName()); 2601 // If that worked, check the non-type template parameter type 2602 // for validity. 2603 if (!NTTPType.isNull()) 2604 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2605 NTTP->getLocation()); 2606 if (NTTPType.isNull()) 2607 return true; 2608 } 2609 2610 switch (Arg.getArgument().getKind()) { 2611 case TemplateArgument::Null: 2612 assert(false && "Should never see a NULL template argument here"); 2613 return true; 2614 2615 case TemplateArgument::Expression: { 2616 TemplateArgument Result; 2617 ExprResult Res = 2618 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2619 Result, CTAK); 2620 if (Res.isInvalid()) 2621 return true; 2622 2623 Converted.push_back(Result); 2624 break; 2625 } 2626 2627 case TemplateArgument::Declaration: 2628 case TemplateArgument::Integral: 2629 // We've already checked this template argument, so just copy 2630 // it to the list of converted arguments. 2631 Converted.push_back(Arg.getArgument()); 2632 break; 2633 2634 case TemplateArgument::Template: 2635 case TemplateArgument::TemplateExpansion: 2636 // We were given a template template argument. It may not be ill-formed; 2637 // see below. 2638 if (DependentTemplateName *DTN 2639 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2640 .getAsDependentTemplateName()) { 2641 // We have a template argument such as \c T::template X, which we 2642 // parsed as a template template argument. However, since we now 2643 // know that we need a non-type template argument, convert this 2644 // template name into an expression. 2645 2646 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2647 Arg.getTemplateNameLoc()); 2648 2649 CXXScopeSpec SS; 2650 SS.Adopt(Arg.getTemplateQualifierLoc()); 2651 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2652 SS.getWithLocInContext(Context), 2653 NameInfo)); 2654 2655 // If we parsed the template argument as a pack expansion, create a 2656 // pack expansion expression. 2657 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2658 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2659 if (E.isInvalid()) 2660 return true; 2661 } 2662 2663 TemplateArgument Result; 2664 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2665 if (E.isInvalid()) 2666 return true; 2667 2668 Converted.push_back(Result); 2669 break; 2670 } 2671 2672 // We have a template argument that actually does refer to a class 2673 // template, alias template, or template template parameter, and 2674 // therefore cannot be a non-type template argument. 2675 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2676 << Arg.getSourceRange(); 2677 2678 Diag(Param->getLocation(), diag::note_template_param_here); 2679 return true; 2680 2681 case TemplateArgument::Type: { 2682 // We have a non-type template parameter but the template 2683 // argument is a type. 2684 2685 // C++ [temp.arg]p2: 2686 // In a template-argument, an ambiguity between a type-id and 2687 // an expression is resolved to a type-id, regardless of the 2688 // form of the corresponding template-parameter. 2689 // 2690 // We warn specifically about this case, since it can be rather 2691 // confusing for users. 2692 QualType T = Arg.getArgument().getAsType(); 2693 SourceRange SR = Arg.getSourceRange(); 2694 if (T->isFunctionType()) 2695 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2696 else 2697 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2698 Diag(Param->getLocation(), diag::note_template_param_here); 2699 return true; 2700 } 2701 2702 case TemplateArgument::Pack: 2703 llvm_unreachable("Caller must expand template argument packs"); 2704 break; 2705 } 2706 2707 return false; 2708 } 2709 2710 2711 // Check template template parameters. 2712 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2713 2714 // Substitute into the template parameter list of the template 2715 // template parameter, since previously-supplied template arguments 2716 // may appear within the template template parameter. 2717 { 2718 // Set up a template instantiation context. 2719 LocalInstantiationScope Scope(*this); 2720 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2721 TempParm, Converted.data(), Converted.size(), 2722 SourceRange(TemplateLoc, RAngleLoc)); 2723 2724 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2725 Converted.data(), Converted.size()); 2726 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2727 SubstDecl(TempParm, CurContext, 2728 MultiLevelTemplateArgumentList(TemplateArgs))); 2729 if (!TempParm) 2730 return true; 2731 } 2732 2733 switch (Arg.getArgument().getKind()) { 2734 case TemplateArgument::Null: 2735 assert(false && "Should never see a NULL template argument here"); 2736 return true; 2737 2738 case TemplateArgument::Template: 2739 case TemplateArgument::TemplateExpansion: 2740 if (CheckTemplateArgument(TempParm, Arg)) 2741 return true; 2742 2743 Converted.push_back(Arg.getArgument()); 2744 break; 2745 2746 case TemplateArgument::Expression: 2747 case TemplateArgument::Type: 2748 // We have a template template parameter but the template 2749 // argument does not refer to a template. 2750 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2751 << getLangOptions().CPlusPlus0x; 2752 return true; 2753 2754 case TemplateArgument::Declaration: 2755 llvm_unreachable( 2756 "Declaration argument with template template parameter"); 2757 break; 2758 case TemplateArgument::Integral: 2759 llvm_unreachable( 2760 "Integral argument with template template parameter"); 2761 break; 2762 2763 case TemplateArgument::Pack: 2764 llvm_unreachable("Caller must expand template argument packs"); 2765 break; 2766 } 2767 2768 return false; 2769} 2770 2771/// \brief Check that the given template argument list is well-formed 2772/// for specializing the given template. 2773bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2774 SourceLocation TemplateLoc, 2775 TemplateArgumentListInfo &TemplateArgs, 2776 bool PartialTemplateArgs, 2777 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2778 TemplateParameterList *Params = Template->getTemplateParameters(); 2779 unsigned NumParams = Params->size(); 2780 unsigned NumArgs = TemplateArgs.size(); 2781 bool Invalid = false; 2782 2783 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2784 2785 bool HasParameterPack = 2786 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2787 2788 if ((NumArgs > NumParams && !HasParameterPack) || 2789 (NumArgs < Params->getMinRequiredArguments() && 2790 !PartialTemplateArgs)) { 2791 // FIXME: point at either the first arg beyond what we can handle, 2792 // or the '>', depending on whether we have too many or too few 2793 // arguments. 2794 SourceRange Range; 2795 if (NumArgs > NumParams) 2796 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2797 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2798 << (NumArgs > NumParams) 2799 << (isa<ClassTemplateDecl>(Template)? 0 : 2800 isa<FunctionTemplateDecl>(Template)? 1 : 2801 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2802 << Template << Range; 2803 Diag(Template->getLocation(), diag::note_template_decl_here) 2804 << Params->getSourceRange(); 2805 Invalid = true; 2806 } 2807 2808 // C++ [temp.arg]p1: 2809 // [...] The type and form of each template-argument specified in 2810 // a template-id shall match the type and form specified for the 2811 // corresponding parameter declared by the template in its 2812 // template-parameter-list. 2813 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2814 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2815 TemplateParameterList::iterator Param = Params->begin(), 2816 ParamEnd = Params->end(); 2817 unsigned ArgIdx = 0; 2818 LocalInstantiationScope InstScope(*this, true); 2819 while (Param != ParamEnd) { 2820 if (ArgIdx > NumArgs && PartialTemplateArgs) 2821 break; 2822 2823 if (ArgIdx < NumArgs) { 2824 // If we have an expanded parameter pack, make sure we don't have too 2825 // many arguments. 2826 if (NonTypeTemplateParmDecl *NTTP 2827 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2828 if (NTTP->isExpandedParameterPack() && 2829 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2830 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2831 << true 2832 << (isa<ClassTemplateDecl>(Template)? 0 : 2833 isa<FunctionTemplateDecl>(Template)? 1 : 2834 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2835 << Template; 2836 Diag(Template->getLocation(), diag::note_template_decl_here) 2837 << Params->getSourceRange(); 2838 return true; 2839 } 2840 } 2841 2842 // Check the template argument we were given. 2843 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2844 TemplateLoc, RAngleLoc, 2845 ArgumentPack.size(), Converted)) 2846 return true; 2847 2848 if ((*Param)->isTemplateParameterPack()) { 2849 // The template parameter was a template parameter pack, so take the 2850 // deduced argument and place it on the argument pack. Note that we 2851 // stay on the same template parameter so that we can deduce more 2852 // arguments. 2853 ArgumentPack.push_back(Converted.back()); 2854 Converted.pop_back(); 2855 } else { 2856 // Move to the next template parameter. 2857 ++Param; 2858 } 2859 ++ArgIdx; 2860 continue; 2861 } 2862 2863 // If we have a template parameter pack with no more corresponding 2864 // arguments, just break out now and we'll fill in the argument pack below. 2865 if ((*Param)->isTemplateParameterPack()) 2866 break; 2867 2868 // We have a default template argument that we will use. 2869 TemplateArgumentLoc Arg; 2870 2871 // Retrieve the default template argument from the template 2872 // parameter. For each kind of template parameter, we substitute the 2873 // template arguments provided thus far and any "outer" template arguments 2874 // (when the template parameter was part of a nested template) into 2875 // the default argument. 2876 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2877 if (!TTP->hasDefaultArgument()) { 2878 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2879 break; 2880 } 2881 2882 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2883 Template, 2884 TemplateLoc, 2885 RAngleLoc, 2886 TTP, 2887 Converted); 2888 if (!ArgType) 2889 return true; 2890 2891 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2892 ArgType); 2893 } else if (NonTypeTemplateParmDecl *NTTP 2894 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2895 if (!NTTP->hasDefaultArgument()) { 2896 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2897 break; 2898 } 2899 2900 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2901 TemplateLoc, 2902 RAngleLoc, 2903 NTTP, 2904 Converted); 2905 if (E.isInvalid()) 2906 return true; 2907 2908 Expr *Ex = E.takeAs<Expr>(); 2909 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2910 } else { 2911 TemplateTemplateParmDecl *TempParm 2912 = cast<TemplateTemplateParmDecl>(*Param); 2913 2914 if (!TempParm->hasDefaultArgument()) { 2915 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2916 break; 2917 } 2918 2919 NestedNameSpecifierLoc QualifierLoc; 2920 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2921 TemplateLoc, 2922 RAngleLoc, 2923 TempParm, 2924 Converted, 2925 QualifierLoc); 2926 if (Name.isNull()) 2927 return true; 2928 2929 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2930 TempParm->getDefaultArgument().getTemplateNameLoc()); 2931 } 2932 2933 // Introduce an instantiation record that describes where we are using 2934 // the default template argument. 2935 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2936 Converted.data(), Converted.size(), 2937 SourceRange(TemplateLoc, RAngleLoc)); 2938 2939 // Check the default template argument. 2940 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2941 RAngleLoc, 0, Converted)) 2942 return true; 2943 2944 // Core issue 150 (assumed resolution): if this is a template template 2945 // parameter, keep track of the default template arguments from the 2946 // template definition. 2947 if (isTemplateTemplateParameter) 2948 TemplateArgs.addArgument(Arg); 2949 2950 // Move to the next template parameter and argument. 2951 ++Param; 2952 ++ArgIdx; 2953 } 2954 2955 // Form argument packs for each of the parameter packs remaining. 2956 while (Param != ParamEnd) { 2957 // If we're checking a partial list of template arguments, don't fill 2958 // in arguments for non-template parameter packs. 2959 2960 if ((*Param)->isTemplateParameterPack()) { 2961 if (PartialTemplateArgs && ArgumentPack.empty()) { 2962 Converted.push_back(TemplateArgument()); 2963 } else if (ArgumentPack.empty()) 2964 Converted.push_back(TemplateArgument(0, 0)); 2965 else { 2966 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2967 ArgumentPack.data(), 2968 ArgumentPack.size())); 2969 ArgumentPack.clear(); 2970 } 2971 } 2972 2973 ++Param; 2974 } 2975 2976 return Invalid; 2977} 2978 2979namespace { 2980 class UnnamedLocalNoLinkageFinder 2981 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2982 { 2983 Sema &S; 2984 SourceRange SR; 2985 2986 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2987 2988 public: 2989 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2990 2991 bool Visit(QualType T) { 2992 return inherited::Visit(T.getTypePtr()); 2993 } 2994 2995#define TYPE(Class, Parent) \ 2996 bool Visit##Class##Type(const Class##Type *); 2997#define ABSTRACT_TYPE(Class, Parent) \ 2998 bool Visit##Class##Type(const Class##Type *) { return false; } 2999#define NON_CANONICAL_TYPE(Class, Parent) \ 3000 bool Visit##Class##Type(const Class##Type *) { return false; } 3001#include "clang/AST/TypeNodes.def" 3002 3003 bool VisitTagDecl(const TagDecl *Tag); 3004 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3005 }; 3006} 3007 3008bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3009 return false; 3010} 3011 3012bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3013 return Visit(T->getElementType()); 3014} 3015 3016bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3017 return Visit(T->getPointeeType()); 3018} 3019 3020bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3021 const BlockPointerType* T) { 3022 return Visit(T->getPointeeType()); 3023} 3024 3025bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3026 const LValueReferenceType* T) { 3027 return Visit(T->getPointeeType()); 3028} 3029 3030bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3031 const RValueReferenceType* T) { 3032 return Visit(T->getPointeeType()); 3033} 3034 3035bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3036 const MemberPointerType* T) { 3037 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3038} 3039 3040bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3041 const ConstantArrayType* T) { 3042 return Visit(T->getElementType()); 3043} 3044 3045bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3046 const IncompleteArrayType* T) { 3047 return Visit(T->getElementType()); 3048} 3049 3050bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3051 const VariableArrayType* T) { 3052 return Visit(T->getElementType()); 3053} 3054 3055bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3056 const DependentSizedArrayType* T) { 3057 return Visit(T->getElementType()); 3058} 3059 3060bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3061 const DependentSizedExtVectorType* T) { 3062 return Visit(T->getElementType()); 3063} 3064 3065bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3066 return Visit(T->getElementType()); 3067} 3068 3069bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3070 return Visit(T->getElementType()); 3071} 3072 3073bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3074 const FunctionProtoType* T) { 3075 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3076 AEnd = T->arg_type_end(); 3077 A != AEnd; ++A) { 3078 if (Visit(*A)) 3079 return true; 3080 } 3081 3082 return Visit(T->getResultType()); 3083} 3084 3085bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3086 const FunctionNoProtoType* T) { 3087 return Visit(T->getResultType()); 3088} 3089 3090bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3091 const UnresolvedUsingType*) { 3092 return false; 3093} 3094 3095bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3096 return false; 3097} 3098 3099bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3100 return Visit(T->getUnderlyingType()); 3101} 3102 3103bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3104 return false; 3105} 3106 3107bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3108 return Visit(T->getDeducedType()); 3109} 3110 3111bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3112 return VisitTagDecl(T->getDecl()); 3113} 3114 3115bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3116 return VisitTagDecl(T->getDecl()); 3117} 3118 3119bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3120 const TemplateTypeParmType*) { 3121 return false; 3122} 3123 3124bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3125 const SubstTemplateTypeParmPackType *) { 3126 return false; 3127} 3128 3129bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3130 const TemplateSpecializationType*) { 3131 return false; 3132} 3133 3134bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3135 const InjectedClassNameType* T) { 3136 return VisitTagDecl(T->getDecl()); 3137} 3138 3139bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3140 const DependentNameType* T) { 3141 return VisitNestedNameSpecifier(T->getQualifier()); 3142} 3143 3144bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3145 const DependentTemplateSpecializationType* T) { 3146 return VisitNestedNameSpecifier(T->getQualifier()); 3147} 3148 3149bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3150 const PackExpansionType* T) { 3151 return Visit(T->getPattern()); 3152} 3153 3154bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3155 return false; 3156} 3157 3158bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3159 const ObjCInterfaceType *) { 3160 return false; 3161} 3162 3163bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3164 const ObjCObjectPointerType *) { 3165 return false; 3166} 3167 3168bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3169 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3170 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3171 << S.Context.getTypeDeclType(Tag) << SR; 3172 return true; 3173 } 3174 3175 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3176 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3177 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3178 return true; 3179 } 3180 3181 return false; 3182} 3183 3184bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3185 NestedNameSpecifier *NNS) { 3186 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3187 return true; 3188 3189 switch (NNS->getKind()) { 3190 case NestedNameSpecifier::Identifier: 3191 case NestedNameSpecifier::Namespace: 3192 case NestedNameSpecifier::NamespaceAlias: 3193 case NestedNameSpecifier::Global: 3194 return false; 3195 3196 case NestedNameSpecifier::TypeSpec: 3197 case NestedNameSpecifier::TypeSpecWithTemplate: 3198 return Visit(QualType(NNS->getAsType(), 0)); 3199 } 3200 return false; 3201} 3202 3203 3204/// \brief Check a template argument against its corresponding 3205/// template type parameter. 3206/// 3207/// This routine implements the semantics of C++ [temp.arg.type]. It 3208/// returns true if an error occurred, and false otherwise. 3209bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3210 TypeSourceInfo *ArgInfo) { 3211 assert(ArgInfo && "invalid TypeSourceInfo"); 3212 QualType Arg = ArgInfo->getType(); 3213 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3214 3215 if (Arg->isVariablyModifiedType()) { 3216 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3217 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3218 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3219 } 3220 3221 // C++03 [temp.arg.type]p2: 3222 // A local type, a type with no linkage, an unnamed type or a type 3223 // compounded from any of these types shall not be used as a 3224 // template-argument for a template type-parameter. 3225 // 3226 // C++0x allows these, and even in C++03 we allow them as an extension with 3227 // a warning. 3228 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3229 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3230 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3231 } 3232 3233 return false; 3234} 3235 3236/// \brief Checks whether the given template argument is the address 3237/// of an object or function according to C++ [temp.arg.nontype]p1. 3238static bool 3239CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3240 NonTypeTemplateParmDecl *Param, 3241 QualType ParamType, 3242 Expr *ArgIn, 3243 TemplateArgument &Converted) { 3244 bool Invalid = false; 3245 Expr *Arg = ArgIn; 3246 QualType ArgType = Arg->getType(); 3247 3248 // See through any implicit casts we added to fix the type. 3249 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3250 Arg = Cast->getSubExpr(); 3251 3252 // C++ [temp.arg.nontype]p1: 3253 // 3254 // A template-argument for a non-type, non-template 3255 // template-parameter shall be one of: [...] 3256 // 3257 // -- the address of an object or function with external 3258 // linkage, including function templates and function 3259 // template-ids but excluding non-static class members, 3260 // expressed as & id-expression where the & is optional if 3261 // the name refers to a function or array, or if the 3262 // corresponding template-parameter is a reference; or 3263 DeclRefExpr *DRE = 0; 3264 3265 // In C++98/03 mode, give an extension warning on any extra parentheses. 3266 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3267 bool ExtraParens = false; 3268 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3269 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3270 S.Diag(Arg->getSourceRange().getBegin(), 3271 diag::ext_template_arg_extra_parens) 3272 << Arg->getSourceRange(); 3273 ExtraParens = true; 3274 } 3275 3276 Arg = Parens->getSubExpr(); 3277 } 3278 3279 bool AddressTaken = false; 3280 SourceLocation AddrOpLoc; 3281 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3282 if (UnOp->getOpcode() == UO_AddrOf) { 3283 // Support &__uuidof(class_with_uuid) as a non-type template argument. 3284 // Very common in Microsoft COM headers. 3285 if (S.getLangOptions().Microsoft && 3286 isa<CXXUuidofExpr>(UnOp->getSubExpr())) { 3287 Converted = TemplateArgument(ArgIn); 3288 return false; 3289 } 3290 3291 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3292 AddressTaken = true; 3293 AddrOpLoc = UnOp->getOperatorLoc(); 3294 } 3295 } else { 3296 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3297 Converted = TemplateArgument(ArgIn); 3298 return false; 3299 } 3300 DRE = dyn_cast<DeclRefExpr>(Arg); 3301 } 3302 if (!DRE) { 3303 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3304 << Arg->getSourceRange(); 3305 S.Diag(Param->getLocation(), diag::note_template_param_here); 3306 return true; 3307 } 3308 3309 // Stop checking the precise nature of the argument if it is value dependent, 3310 // it should be checked when instantiated. 3311 if (Arg->isValueDependent()) { 3312 Converted = TemplateArgument(ArgIn); 3313 return false; 3314 } 3315 3316 if (!isa<ValueDecl>(DRE->getDecl())) { 3317 S.Diag(Arg->getSourceRange().getBegin(), 3318 diag::err_template_arg_not_object_or_func_form) 3319 << Arg->getSourceRange(); 3320 S.Diag(Param->getLocation(), diag::note_template_param_here); 3321 return true; 3322 } 3323 3324 NamedDecl *Entity = 0; 3325 3326 // Cannot refer to non-static data members 3327 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3328 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3329 << Field << Arg->getSourceRange(); 3330 S.Diag(Param->getLocation(), diag::note_template_param_here); 3331 return true; 3332 } 3333 3334 // Cannot refer to non-static member functions 3335 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3336 if (!Method->isStatic()) { 3337 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3338 << Method << Arg->getSourceRange(); 3339 S.Diag(Param->getLocation(), diag::note_template_param_here); 3340 return true; 3341 } 3342 3343 // Functions must have external linkage. 3344 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3345 if (!isExternalLinkage(Func->getLinkage())) { 3346 S.Diag(Arg->getSourceRange().getBegin(), 3347 diag::err_template_arg_function_not_extern) 3348 << Func << Arg->getSourceRange(); 3349 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3350 << true; 3351 return true; 3352 } 3353 3354 // Okay: we've named a function with external linkage. 3355 Entity = Func; 3356 3357 // If the template parameter has pointer type, the function decays. 3358 if (ParamType->isPointerType() && !AddressTaken) 3359 ArgType = S.Context.getPointerType(Func->getType()); 3360 else if (AddressTaken && ParamType->isReferenceType()) { 3361 // If we originally had an address-of operator, but the 3362 // parameter has reference type, complain and (if things look 3363 // like they will work) drop the address-of operator. 3364 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3365 ParamType.getNonReferenceType())) { 3366 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3367 << ParamType; 3368 S.Diag(Param->getLocation(), diag::note_template_param_here); 3369 return true; 3370 } 3371 3372 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3373 << ParamType 3374 << FixItHint::CreateRemoval(AddrOpLoc); 3375 S.Diag(Param->getLocation(), diag::note_template_param_here); 3376 3377 ArgType = Func->getType(); 3378 } 3379 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3380 if (!isExternalLinkage(Var->getLinkage())) { 3381 S.Diag(Arg->getSourceRange().getBegin(), 3382 diag::err_template_arg_object_not_extern) 3383 << Var << Arg->getSourceRange(); 3384 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3385 << true; 3386 return true; 3387 } 3388 3389 // A value of reference type is not an object. 3390 if (Var->getType()->isReferenceType()) { 3391 S.Diag(Arg->getSourceRange().getBegin(), 3392 diag::err_template_arg_reference_var) 3393 << Var->getType() << Arg->getSourceRange(); 3394 S.Diag(Param->getLocation(), diag::note_template_param_here); 3395 return true; 3396 } 3397 3398 // Okay: we've named an object with external linkage 3399 Entity = Var; 3400 3401 // If the template parameter has pointer type, we must have taken 3402 // the address of this object. 3403 if (ParamType->isReferenceType()) { 3404 if (AddressTaken) { 3405 // If we originally had an address-of operator, but the 3406 // parameter has reference type, complain and (if things look 3407 // like they will work) drop the address-of operator. 3408 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3409 ParamType.getNonReferenceType())) { 3410 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3411 << ParamType; 3412 S.Diag(Param->getLocation(), diag::note_template_param_here); 3413 return true; 3414 } 3415 3416 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3417 << ParamType 3418 << FixItHint::CreateRemoval(AddrOpLoc); 3419 S.Diag(Param->getLocation(), diag::note_template_param_here); 3420 3421 ArgType = Var->getType(); 3422 } 3423 } else if (!AddressTaken && ParamType->isPointerType()) { 3424 if (Var->getType()->isArrayType()) { 3425 // Array-to-pointer decay. 3426 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3427 } else { 3428 // If the template parameter has pointer type but the address of 3429 // this object was not taken, complain and (possibly) recover by 3430 // taking the address of the entity. 3431 ArgType = S.Context.getPointerType(Var->getType()); 3432 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3433 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3434 << ParamType; 3435 S.Diag(Param->getLocation(), diag::note_template_param_here); 3436 return true; 3437 } 3438 3439 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3440 << ParamType 3441 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3442 3443 S.Diag(Param->getLocation(), diag::note_template_param_here); 3444 } 3445 } 3446 } else { 3447 // We found something else, but we don't know specifically what it is. 3448 S.Diag(Arg->getSourceRange().getBegin(), 3449 diag::err_template_arg_not_object_or_func) 3450 << Arg->getSourceRange(); 3451 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3452 return true; 3453 } 3454 3455 if (ParamType->isPointerType() && 3456 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3457 S.IsQualificationConversion(ArgType, ParamType, false)) { 3458 // For pointer-to-object types, qualification conversions are 3459 // permitted. 3460 } else { 3461 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3462 if (!ParamRef->getPointeeType()->isFunctionType()) { 3463 // C++ [temp.arg.nontype]p5b3: 3464 // For a non-type template-parameter of type reference to 3465 // object, no conversions apply. The type referred to by the 3466 // reference may be more cv-qualified than the (otherwise 3467 // identical) type of the template- argument. The 3468 // template-parameter is bound directly to the 3469 // template-argument, which shall be an lvalue. 3470 3471 // FIXME: Other qualifiers? 3472 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3473 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3474 3475 if ((ParamQuals | ArgQuals) != ParamQuals) { 3476 S.Diag(Arg->getSourceRange().getBegin(), 3477 diag::err_template_arg_ref_bind_ignores_quals) 3478 << ParamType << Arg->getType() 3479 << Arg->getSourceRange(); 3480 S.Diag(Param->getLocation(), diag::note_template_param_here); 3481 return true; 3482 } 3483 } 3484 } 3485 3486 // At this point, the template argument refers to an object or 3487 // function with external linkage. We now need to check whether the 3488 // argument and parameter types are compatible. 3489 if (!S.Context.hasSameUnqualifiedType(ArgType, 3490 ParamType.getNonReferenceType())) { 3491 // We can't perform this conversion or binding. 3492 if (ParamType->isReferenceType()) 3493 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3494 << ParamType << Arg->getType() << Arg->getSourceRange(); 3495 else 3496 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3497 << Arg->getType() << ParamType << Arg->getSourceRange(); 3498 S.Diag(Param->getLocation(), diag::note_template_param_here); 3499 return true; 3500 } 3501 } 3502 3503 // Create the template argument. 3504 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3505 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3506 return false; 3507} 3508 3509/// \brief Checks whether the given template argument is a pointer to 3510/// member constant according to C++ [temp.arg.nontype]p1. 3511bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3512 TemplateArgument &Converted) { 3513 bool Invalid = false; 3514 3515 // See through any implicit casts we added to fix the type. 3516 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3517 Arg = Cast->getSubExpr(); 3518 3519 // C++ [temp.arg.nontype]p1: 3520 // 3521 // A template-argument for a non-type, non-template 3522 // template-parameter shall be one of: [...] 3523 // 3524 // -- a pointer to member expressed as described in 5.3.1. 3525 DeclRefExpr *DRE = 0; 3526 3527 // In C++98/03 mode, give an extension warning on any extra parentheses. 3528 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3529 bool ExtraParens = false; 3530 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3531 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3532 Diag(Arg->getSourceRange().getBegin(), 3533 diag::ext_template_arg_extra_parens) 3534 << Arg->getSourceRange(); 3535 ExtraParens = true; 3536 } 3537 3538 Arg = Parens->getSubExpr(); 3539 } 3540 3541 // A pointer-to-member constant written &Class::member. 3542 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3543 if (UnOp->getOpcode() == UO_AddrOf) { 3544 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3545 if (DRE && !DRE->getQualifier()) 3546 DRE = 0; 3547 } 3548 } 3549 // A constant of pointer-to-member type. 3550 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3551 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3552 if (VD->getType()->isMemberPointerType()) { 3553 if (isa<NonTypeTemplateParmDecl>(VD) || 3554 (isa<VarDecl>(VD) && 3555 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3556 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3557 Converted = TemplateArgument(Arg); 3558 else 3559 Converted = TemplateArgument(VD->getCanonicalDecl()); 3560 return Invalid; 3561 } 3562 } 3563 } 3564 3565 DRE = 0; 3566 } 3567 3568 if (!DRE) 3569 return Diag(Arg->getSourceRange().getBegin(), 3570 diag::err_template_arg_not_pointer_to_member_form) 3571 << Arg->getSourceRange(); 3572 3573 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3574 assert((isa<FieldDecl>(DRE->getDecl()) || 3575 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3576 "Only non-static member pointers can make it here"); 3577 3578 // Okay: this is the address of a non-static member, and therefore 3579 // a member pointer constant. 3580 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3581 Converted = TemplateArgument(Arg); 3582 else 3583 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3584 return Invalid; 3585 } 3586 3587 // We found something else, but we don't know specifically what it is. 3588 Diag(Arg->getSourceRange().getBegin(), 3589 diag::err_template_arg_not_pointer_to_member_form) 3590 << Arg->getSourceRange(); 3591 Diag(DRE->getDecl()->getLocation(), 3592 diag::note_template_arg_refers_here); 3593 return true; 3594} 3595 3596/// \brief Check a template argument against its corresponding 3597/// non-type template parameter. 3598/// 3599/// This routine implements the semantics of C++ [temp.arg.nontype]. 3600/// If an error occurred, it returns ExprError(); otherwise, it 3601/// returns the converted template argument. \p 3602/// InstantiatedParamType is the type of the non-type template 3603/// parameter after it has been instantiated. 3604ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3605 QualType InstantiatedParamType, Expr *Arg, 3606 TemplateArgument &Converted, 3607 CheckTemplateArgumentKind CTAK) { 3608 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3609 3610 // If either the parameter has a dependent type or the argument is 3611 // type-dependent, there's nothing we can check now. 3612 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3613 // FIXME: Produce a cloned, canonical expression? 3614 Converted = TemplateArgument(Arg); 3615 return Owned(Arg); 3616 } 3617 3618 // C++ [temp.arg.nontype]p5: 3619 // The following conversions are performed on each expression used 3620 // as a non-type template-argument. If a non-type 3621 // template-argument cannot be converted to the type of the 3622 // corresponding template-parameter then the program is 3623 // ill-formed. 3624 // 3625 // -- for a non-type template-parameter of integral or 3626 // enumeration type, integral promotions (4.5) and integral 3627 // conversions (4.7) are applied. 3628 QualType ParamType = InstantiatedParamType; 3629 QualType ArgType = Arg->getType(); 3630 if (ParamType->isIntegralOrEnumerationType()) { 3631 // C++ [temp.arg.nontype]p1: 3632 // A template-argument for a non-type, non-template 3633 // template-parameter shall be one of: 3634 // 3635 // -- an integral constant-expression of integral or enumeration 3636 // type; or 3637 // -- the name of a non-type template-parameter; or 3638 SourceLocation NonConstantLoc; 3639 llvm::APSInt Value; 3640 if (!ArgType->isIntegralOrEnumerationType()) { 3641 Diag(Arg->getSourceRange().getBegin(), 3642 diag::err_template_arg_not_integral_or_enumeral) 3643 << ArgType << Arg->getSourceRange(); 3644 Diag(Param->getLocation(), diag::note_template_param_here); 3645 return ExprError(); 3646 } else if (!Arg->isValueDependent() && 3647 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3648 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3649 << ArgType << Arg->getSourceRange(); 3650 return ExprError(); 3651 } 3652 3653 // From here on out, all we care about are the unqualified forms 3654 // of the parameter and argument types. 3655 ParamType = ParamType.getUnqualifiedType(); 3656 ArgType = ArgType.getUnqualifiedType(); 3657 3658 // Try to convert the argument to the parameter's type. 3659 if (Context.hasSameType(ParamType, ArgType)) { 3660 // Okay: no conversion necessary 3661 } else if (CTAK == CTAK_Deduced) { 3662 // C++ [temp.deduct.type]p17: 3663 // If, in the declaration of a function template with a non-type 3664 // template-parameter, the non-type template- parameter is used 3665 // in an expression in the function parameter-list and, if the 3666 // corresponding template-argument is deduced, the 3667 // template-argument type shall match the type of the 3668 // template-parameter exactly, except that a template-argument 3669 // deduced from an array bound may be of any integral type. 3670 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3671 << ArgType << ParamType; 3672 Diag(Param->getLocation(), diag::note_template_param_here); 3673 return ExprError(); 3674 } else if (ParamType->isBooleanType()) { 3675 // This is an integral-to-boolean conversion. 3676 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3677 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3678 !ParamType->isEnumeralType()) { 3679 // This is an integral promotion or conversion. 3680 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3681 } else { 3682 // We can't perform this conversion. 3683 Diag(Arg->getSourceRange().getBegin(), 3684 diag::err_template_arg_not_convertible) 3685 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3686 Diag(Param->getLocation(), diag::note_template_param_here); 3687 return ExprError(); 3688 } 3689 3690 // Add the value of this argument to the list of converted 3691 // arguments. We use the bitwidth and signedness of the template 3692 // parameter. 3693 if (Arg->isValueDependent()) { 3694 // The argument is value-dependent. Create a new 3695 // TemplateArgument with the converted expression. 3696 Converted = TemplateArgument(Arg); 3697 return Owned(Arg); 3698 } 3699 3700 QualType IntegerType = Context.getCanonicalType(ParamType); 3701 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3702 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3703 3704 if (ParamType->isBooleanType()) { 3705 // Value must be zero or one. 3706 Value = Value != 0; 3707 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3708 if (Value.getBitWidth() != AllowedBits) 3709 Value = Value.extOrTrunc(AllowedBits); 3710 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3711 } else { 3712 llvm::APSInt OldValue = Value; 3713 3714 // Coerce the template argument's value to the value it will have 3715 // based on the template parameter's type. 3716 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3717 if (Value.getBitWidth() != AllowedBits) 3718 Value = Value.extOrTrunc(AllowedBits); 3719 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3720 3721 // Complain if an unsigned parameter received a negative value. 3722 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3723 && (OldValue.isSigned() && OldValue.isNegative())) { 3724 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3725 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3726 << Arg->getSourceRange(); 3727 Diag(Param->getLocation(), diag::note_template_param_here); 3728 } 3729 3730 // Complain if we overflowed the template parameter's type. 3731 unsigned RequiredBits; 3732 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3733 RequiredBits = OldValue.getActiveBits(); 3734 else if (OldValue.isUnsigned()) 3735 RequiredBits = OldValue.getActiveBits() + 1; 3736 else 3737 RequiredBits = OldValue.getMinSignedBits(); 3738 if (RequiredBits > AllowedBits) { 3739 Diag(Arg->getSourceRange().getBegin(), 3740 diag::warn_template_arg_too_large) 3741 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3742 << Arg->getSourceRange(); 3743 Diag(Param->getLocation(), diag::note_template_param_here); 3744 } 3745 } 3746 3747 Converted = TemplateArgument(Value, 3748 ParamType->isEnumeralType() ? ParamType 3749 : IntegerType); 3750 return Owned(Arg); 3751 } 3752 3753 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3754 3755 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3756 // from a template argument of type std::nullptr_t to a non-type 3757 // template parameter of type pointer to object, pointer to 3758 // function, or pointer-to-member, respectively. 3759 if (ArgType->isNullPtrType() && 3760 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3761 Converted = TemplateArgument((NamedDecl *)0); 3762 return Owned(Arg); 3763 } 3764 3765 // Handle pointer-to-function, reference-to-function, and 3766 // pointer-to-member-function all in (roughly) the same way. 3767 if (// -- For a non-type template-parameter of type pointer to 3768 // function, only the function-to-pointer conversion (4.3) is 3769 // applied. If the template-argument represents a set of 3770 // overloaded functions (or a pointer to such), the matching 3771 // function is selected from the set (13.4). 3772 (ParamType->isPointerType() && 3773 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3774 // -- For a non-type template-parameter of type reference to 3775 // function, no conversions apply. If the template-argument 3776 // represents a set of overloaded functions, the matching 3777 // function is selected from the set (13.4). 3778 (ParamType->isReferenceType() && 3779 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3780 // -- For a non-type template-parameter of type pointer to 3781 // member function, no conversions apply. If the 3782 // template-argument represents a set of overloaded member 3783 // functions, the matching member function is selected from 3784 // the set (13.4). 3785 (ParamType->isMemberPointerType() && 3786 ParamType->getAs<MemberPointerType>()->getPointeeType() 3787 ->isFunctionType())) { 3788 3789 if (Arg->getType() == Context.OverloadTy) { 3790 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3791 true, 3792 FoundResult)) { 3793 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3794 return ExprError(); 3795 3796 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3797 ArgType = Arg->getType(); 3798 } else 3799 return ExprError(); 3800 } 3801 3802 if (!ParamType->isMemberPointerType()) { 3803 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3804 ParamType, 3805 Arg, Converted)) 3806 return ExprError(); 3807 return Owned(Arg); 3808 } 3809 3810 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3811 false)) { 3812 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3813 } else if (!Context.hasSameUnqualifiedType(ArgType, 3814 ParamType.getNonReferenceType())) { 3815 // We can't perform this conversion. 3816 Diag(Arg->getSourceRange().getBegin(), 3817 diag::err_template_arg_not_convertible) 3818 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3819 Diag(Param->getLocation(), diag::note_template_param_here); 3820 return ExprError(); 3821 } 3822 3823 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3824 return ExprError(); 3825 return Owned(Arg); 3826 } 3827 3828 if (ParamType->isPointerType()) { 3829 // -- for a non-type template-parameter of type pointer to 3830 // object, qualification conversions (4.4) and the 3831 // array-to-pointer conversion (4.2) are applied. 3832 // C++0x also allows a value of std::nullptr_t. 3833 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3834 "Only object pointers allowed here"); 3835 3836 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3837 ParamType, 3838 Arg, Converted)) 3839 return ExprError(); 3840 return Owned(Arg); 3841 } 3842 3843 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3844 // -- For a non-type template-parameter of type reference to 3845 // object, no conversions apply. The type referred to by the 3846 // reference may be more cv-qualified than the (otherwise 3847 // identical) type of the template-argument. The 3848 // template-parameter is bound directly to the 3849 // template-argument, which must be an lvalue. 3850 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3851 "Only object references allowed here"); 3852 3853 if (Arg->getType() == Context.OverloadTy) { 3854 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3855 ParamRefType->getPointeeType(), 3856 true, 3857 FoundResult)) { 3858 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3859 return ExprError(); 3860 3861 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3862 ArgType = Arg->getType(); 3863 } else 3864 return ExprError(); 3865 } 3866 3867 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3868 ParamType, 3869 Arg, Converted)) 3870 return ExprError(); 3871 return Owned(Arg); 3872 } 3873 3874 // -- For a non-type template-parameter of type pointer to data 3875 // member, qualification conversions (4.4) are applied. 3876 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3877 3878 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3879 // Types match exactly: nothing more to do here. 3880 } else if (IsQualificationConversion(ArgType, ParamType, false)) { 3881 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3882 } else { 3883 // We can't perform this conversion. 3884 Diag(Arg->getSourceRange().getBegin(), 3885 diag::err_template_arg_not_convertible) 3886 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3887 Diag(Param->getLocation(), diag::note_template_param_here); 3888 return ExprError(); 3889 } 3890 3891 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3892 return ExprError(); 3893 return Owned(Arg); 3894} 3895 3896/// \brief Check a template argument against its corresponding 3897/// template template parameter. 3898/// 3899/// This routine implements the semantics of C++ [temp.arg.template]. 3900/// It returns true if an error occurred, and false otherwise. 3901bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3902 const TemplateArgumentLoc &Arg) { 3903 TemplateName Name = Arg.getArgument().getAsTemplate(); 3904 TemplateDecl *Template = Name.getAsTemplateDecl(); 3905 if (!Template) { 3906 // Any dependent template name is fine. 3907 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3908 return false; 3909 } 3910 3911 // C++0x [temp.arg.template]p1: 3912 // A template-argument for a template template-parameter shall be 3913 // the name of a class template or an alias template, expressed as an 3914 // id-expression. When the template-argument names a class template, only 3915 // primary class templates are considered when matching the 3916 // template template argument with the corresponding parameter; 3917 // partial specializations are not considered even if their 3918 // parameter lists match that of the template template parameter. 3919 // 3920 // Note that we also allow template template parameters here, which 3921 // will happen when we are dealing with, e.g., class template 3922 // partial specializations. 3923 if (!isa<ClassTemplateDecl>(Template) && 3924 !isa<TemplateTemplateParmDecl>(Template) && 3925 !isa<TypeAliasTemplateDecl>(Template)) { 3926 assert(isa<FunctionTemplateDecl>(Template) && 3927 "Only function templates are possible here"); 3928 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3929 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3930 << Template; 3931 } 3932 3933 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3934 Param->getTemplateParameters(), 3935 true, 3936 TPL_TemplateTemplateArgumentMatch, 3937 Arg.getLocation()); 3938} 3939 3940/// \brief Given a non-type template argument that refers to a 3941/// declaration and the type of its corresponding non-type template 3942/// parameter, produce an expression that properly refers to that 3943/// declaration. 3944ExprResult 3945Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3946 QualType ParamType, 3947 SourceLocation Loc) { 3948 assert(Arg.getKind() == TemplateArgument::Declaration && 3949 "Only declaration template arguments permitted here"); 3950 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3951 3952 if (VD->getDeclContext()->isRecord() && 3953 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3954 // If the value is a class member, we might have a pointer-to-member. 3955 // Determine whether the non-type template template parameter is of 3956 // pointer-to-member type. If so, we need to build an appropriate 3957 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3958 // would refer to the member itself. 3959 if (ParamType->isMemberPointerType()) { 3960 QualType ClassType 3961 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3962 NestedNameSpecifier *Qualifier 3963 = NestedNameSpecifier::Create(Context, 0, false, 3964 ClassType.getTypePtr()); 3965 CXXScopeSpec SS; 3966 SS.MakeTrivial(Context, Qualifier, Loc); 3967 3968 // The actual value-ness of this is unimportant, but for 3969 // internal consistency's sake, references to instance methods 3970 // are r-values. 3971 ExprValueKind VK = VK_LValue; 3972 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3973 VK = VK_RValue; 3974 3975 ExprResult RefExpr = BuildDeclRefExpr(VD, 3976 VD->getType().getNonReferenceType(), 3977 VK, 3978 Loc, 3979 &SS); 3980 if (RefExpr.isInvalid()) 3981 return ExprError(); 3982 3983 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3984 3985 // We might need to perform a trailing qualification conversion, since 3986 // the element type on the parameter could be more qualified than the 3987 // element type in the expression we constructed. 3988 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3989 ParamType.getUnqualifiedType(), false)) 3990 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 3991 3992 assert(!RefExpr.isInvalid() && 3993 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3994 ParamType.getUnqualifiedType())); 3995 return move(RefExpr); 3996 } 3997 } 3998 3999 QualType T = VD->getType().getNonReferenceType(); 4000 if (ParamType->isPointerType()) { 4001 // When the non-type template parameter is a pointer, take the 4002 // address of the declaration. 4003 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4004 if (RefExpr.isInvalid()) 4005 return ExprError(); 4006 4007 if (T->isFunctionType() || T->isArrayType()) { 4008 // Decay functions and arrays. 4009 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4010 if (RefExpr.isInvalid()) 4011 return ExprError(); 4012 4013 return move(RefExpr); 4014 } 4015 4016 // Take the address of everything else 4017 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4018 } 4019 4020 ExprValueKind VK = VK_RValue; 4021 4022 // If the non-type template parameter has reference type, qualify the 4023 // resulting declaration reference with the extra qualifiers on the 4024 // type that the reference refers to. 4025 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4026 VK = VK_LValue; 4027 T = Context.getQualifiedType(T, 4028 TargetRef->getPointeeType().getQualifiers()); 4029 } 4030 4031 return BuildDeclRefExpr(VD, T, VK, Loc); 4032} 4033 4034/// \brief Construct a new expression that refers to the given 4035/// integral template argument with the given source-location 4036/// information. 4037/// 4038/// This routine takes care of the mapping from an integral template 4039/// argument (which may have any integral type) to the appropriate 4040/// literal value. 4041ExprResult 4042Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4043 SourceLocation Loc) { 4044 assert(Arg.getKind() == TemplateArgument::Integral && 4045 "Operation is only valid for integral template arguments"); 4046 QualType T = Arg.getIntegralType(); 4047 if (T->isCharType() || T->isWideCharType()) 4048 return Owned(new (Context) CharacterLiteral( 4049 Arg.getAsIntegral()->getZExtValue(), 4050 T->isWideCharType(), T, Loc)); 4051 if (T->isBooleanType()) 4052 return Owned(new (Context) CXXBoolLiteralExpr( 4053 Arg.getAsIntegral()->getBoolValue(), 4054 T, Loc)); 4055 4056 // If this is an enum type that we're instantiating, we need to use an integer 4057 // type the same size as the enumerator. We don't want to build an 4058 // IntegerLiteral with enum type. 4059 QualType BT; 4060 if (const EnumType *ET = T->getAs<EnumType>()) 4061 BT = ET->getDecl()->getIntegerType(); 4062 else 4063 BT = T; 4064 4065 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4066 if (T->isEnumeralType()) { 4067 // FIXME: This is a hack. We need a better way to handle substituted 4068 // non-type template parameters. 4069 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4070 Context.getTrivialTypeSourceInfo(T, Loc), 4071 Loc, Loc); 4072 } 4073 4074 return Owned(E); 4075} 4076 4077/// \brief Match two template parameters within template parameter lists. 4078static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4079 bool Complain, 4080 Sema::TemplateParameterListEqualKind Kind, 4081 SourceLocation TemplateArgLoc) { 4082 // Check the actual kind (type, non-type, template). 4083 if (Old->getKind() != New->getKind()) { 4084 if (Complain) { 4085 unsigned NextDiag = diag::err_template_param_different_kind; 4086 if (TemplateArgLoc.isValid()) { 4087 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4088 NextDiag = diag::note_template_param_different_kind; 4089 } 4090 S.Diag(New->getLocation(), NextDiag) 4091 << (Kind != Sema::TPL_TemplateMatch); 4092 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4093 << (Kind != Sema::TPL_TemplateMatch); 4094 } 4095 4096 return false; 4097 } 4098 4099 // Check that both are parameter packs are neither are parameter packs. 4100 // However, if we are matching a template template argument to a 4101 // template template parameter, the template template parameter can have 4102 // a parameter pack where the template template argument does not. 4103 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4104 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4105 Old->isTemplateParameterPack())) { 4106 if (Complain) { 4107 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4108 if (TemplateArgLoc.isValid()) { 4109 S.Diag(TemplateArgLoc, 4110 diag::err_template_arg_template_params_mismatch); 4111 NextDiag = diag::note_template_parameter_pack_non_pack; 4112 } 4113 4114 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4115 : isa<NonTypeTemplateParmDecl>(New)? 1 4116 : 2; 4117 S.Diag(New->getLocation(), NextDiag) 4118 << ParamKind << New->isParameterPack(); 4119 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4120 << ParamKind << Old->isParameterPack(); 4121 } 4122 4123 return false; 4124 } 4125 4126 // For non-type template parameters, check the type of the parameter. 4127 if (NonTypeTemplateParmDecl *OldNTTP 4128 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4129 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4130 4131 // If we are matching a template template argument to a template 4132 // template parameter and one of the non-type template parameter types 4133 // is dependent, then we must wait until template instantiation time 4134 // to actually compare the arguments. 4135 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4136 (OldNTTP->getType()->isDependentType() || 4137 NewNTTP->getType()->isDependentType())) 4138 return true; 4139 4140 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4141 if (Complain) { 4142 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4143 if (TemplateArgLoc.isValid()) { 4144 S.Diag(TemplateArgLoc, 4145 diag::err_template_arg_template_params_mismatch); 4146 NextDiag = diag::note_template_nontype_parm_different_type; 4147 } 4148 S.Diag(NewNTTP->getLocation(), NextDiag) 4149 << NewNTTP->getType() 4150 << (Kind != Sema::TPL_TemplateMatch); 4151 S.Diag(OldNTTP->getLocation(), 4152 diag::note_template_nontype_parm_prev_declaration) 4153 << OldNTTP->getType(); 4154 } 4155 4156 return false; 4157 } 4158 4159 return true; 4160 } 4161 4162 // For template template parameters, check the template parameter types. 4163 // The template parameter lists of template template 4164 // parameters must agree. 4165 if (TemplateTemplateParmDecl *OldTTP 4166 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4167 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4168 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4169 OldTTP->getTemplateParameters(), 4170 Complain, 4171 (Kind == Sema::TPL_TemplateMatch 4172 ? Sema::TPL_TemplateTemplateParmMatch 4173 : Kind), 4174 TemplateArgLoc); 4175 } 4176 4177 return true; 4178} 4179 4180/// \brief Diagnose a known arity mismatch when comparing template argument 4181/// lists. 4182static 4183void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4184 TemplateParameterList *New, 4185 TemplateParameterList *Old, 4186 Sema::TemplateParameterListEqualKind Kind, 4187 SourceLocation TemplateArgLoc) { 4188 unsigned NextDiag = diag::err_template_param_list_different_arity; 4189 if (TemplateArgLoc.isValid()) { 4190 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4191 NextDiag = diag::note_template_param_list_different_arity; 4192 } 4193 S.Diag(New->getTemplateLoc(), NextDiag) 4194 << (New->size() > Old->size()) 4195 << (Kind != Sema::TPL_TemplateMatch) 4196 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4197 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4198 << (Kind != Sema::TPL_TemplateMatch) 4199 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4200} 4201 4202/// \brief Determine whether the given template parameter lists are 4203/// equivalent. 4204/// 4205/// \param New The new template parameter list, typically written in the 4206/// source code as part of a new template declaration. 4207/// 4208/// \param Old The old template parameter list, typically found via 4209/// name lookup of the template declared with this template parameter 4210/// list. 4211/// 4212/// \param Complain If true, this routine will produce a diagnostic if 4213/// the template parameter lists are not equivalent. 4214/// 4215/// \param Kind describes how we are to match the template parameter lists. 4216/// 4217/// \param TemplateArgLoc If this source location is valid, then we 4218/// are actually checking the template parameter list of a template 4219/// argument (New) against the template parameter list of its 4220/// corresponding template template parameter (Old). We produce 4221/// slightly different diagnostics in this scenario. 4222/// 4223/// \returns True if the template parameter lists are equal, false 4224/// otherwise. 4225bool 4226Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4227 TemplateParameterList *Old, 4228 bool Complain, 4229 TemplateParameterListEqualKind Kind, 4230 SourceLocation TemplateArgLoc) { 4231 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4232 if (Complain) 4233 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4234 TemplateArgLoc); 4235 4236 return false; 4237 } 4238 4239 // C++0x [temp.arg.template]p3: 4240 // A template-argument matches a template template-parameter (call it P) 4241 // when each of the template parameters in the template-parameter-list of 4242 // the template-argument's corresponding class template or alias template 4243 // (call it A) matches the corresponding template parameter in the 4244 // template-parameter-list of P. [...] 4245 TemplateParameterList::iterator NewParm = New->begin(); 4246 TemplateParameterList::iterator NewParmEnd = New->end(); 4247 for (TemplateParameterList::iterator OldParm = Old->begin(), 4248 OldParmEnd = Old->end(); 4249 OldParm != OldParmEnd; ++OldParm) { 4250 if (Kind != TPL_TemplateTemplateArgumentMatch || 4251 !(*OldParm)->isTemplateParameterPack()) { 4252 if (NewParm == NewParmEnd) { 4253 if (Complain) 4254 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4255 TemplateArgLoc); 4256 4257 return false; 4258 } 4259 4260 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4261 Kind, TemplateArgLoc)) 4262 return false; 4263 4264 ++NewParm; 4265 continue; 4266 } 4267 4268 // C++0x [temp.arg.template]p3: 4269 // [...] When P's template- parameter-list contains a template parameter 4270 // pack (14.5.3), the template parameter pack will match zero or more 4271 // template parameters or template parameter packs in the 4272 // template-parameter-list of A with the same type and form as the 4273 // template parameter pack in P (ignoring whether those template 4274 // parameters are template parameter packs). 4275 for (; NewParm != NewParmEnd; ++NewParm) { 4276 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4277 Kind, TemplateArgLoc)) 4278 return false; 4279 } 4280 } 4281 4282 // Make sure we exhausted all of the arguments. 4283 if (NewParm != NewParmEnd) { 4284 if (Complain) 4285 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4286 TemplateArgLoc); 4287 4288 return false; 4289 } 4290 4291 return true; 4292} 4293 4294/// \brief Check whether a template can be declared within this scope. 4295/// 4296/// If the template declaration is valid in this scope, returns 4297/// false. Otherwise, issues a diagnostic and returns true. 4298bool 4299Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4300 // Find the nearest enclosing declaration scope. 4301 while ((S->getFlags() & Scope::DeclScope) == 0 || 4302 (S->getFlags() & Scope::TemplateParamScope) != 0) 4303 S = S->getParent(); 4304 4305 // C++ [temp]p2: 4306 // A template-declaration can appear only as a namespace scope or 4307 // class scope declaration. 4308 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4309 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4310 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4311 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4312 << TemplateParams->getSourceRange(); 4313 4314 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4315 Ctx = Ctx->getParent(); 4316 4317 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4318 return false; 4319 4320 return Diag(TemplateParams->getTemplateLoc(), 4321 diag::err_template_outside_namespace_or_class_scope) 4322 << TemplateParams->getSourceRange(); 4323} 4324 4325/// \brief Determine what kind of template specialization the given declaration 4326/// is. 4327static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4328 if (!D) 4329 return TSK_Undeclared; 4330 4331 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4332 return Record->getTemplateSpecializationKind(); 4333 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4334 return Function->getTemplateSpecializationKind(); 4335 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4336 return Var->getTemplateSpecializationKind(); 4337 4338 return TSK_Undeclared; 4339} 4340 4341/// \brief Check whether a specialization is well-formed in the current 4342/// context. 4343/// 4344/// This routine determines whether a template specialization can be declared 4345/// in the current context (C++ [temp.expl.spec]p2). 4346/// 4347/// \param S the semantic analysis object for which this check is being 4348/// performed. 4349/// 4350/// \param Specialized the entity being specialized or instantiated, which 4351/// may be a kind of template (class template, function template, etc.) or 4352/// a member of a class template (member function, static data member, 4353/// member class). 4354/// 4355/// \param PrevDecl the previous declaration of this entity, if any. 4356/// 4357/// \param Loc the location of the explicit specialization or instantiation of 4358/// this entity. 4359/// 4360/// \param IsPartialSpecialization whether this is a partial specialization of 4361/// a class template. 4362/// 4363/// \returns true if there was an error that we cannot recover from, false 4364/// otherwise. 4365static bool CheckTemplateSpecializationScope(Sema &S, 4366 NamedDecl *Specialized, 4367 NamedDecl *PrevDecl, 4368 SourceLocation Loc, 4369 bool IsPartialSpecialization) { 4370 // Keep these "kind" numbers in sync with the %select statements in the 4371 // various diagnostics emitted by this routine. 4372 int EntityKind = 0; 4373 if (isa<ClassTemplateDecl>(Specialized)) 4374 EntityKind = IsPartialSpecialization? 1 : 0; 4375 else if (isa<FunctionTemplateDecl>(Specialized)) 4376 EntityKind = 2; 4377 else if (isa<CXXMethodDecl>(Specialized)) 4378 EntityKind = 3; 4379 else if (isa<VarDecl>(Specialized)) 4380 EntityKind = 4; 4381 else if (isa<RecordDecl>(Specialized)) 4382 EntityKind = 5; 4383 else { 4384 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4385 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4386 return true; 4387 } 4388 4389 // C++ [temp.expl.spec]p2: 4390 // An explicit specialization shall be declared in the namespace 4391 // of which the template is a member, or, for member templates, in 4392 // the namespace of which the enclosing class or enclosing class 4393 // template is a member. An explicit specialization of a member 4394 // function, member class or static data member of a class 4395 // template shall be declared in the namespace of which the class 4396 // template is a member. Such a declaration may also be a 4397 // definition. If the declaration is not a definition, the 4398 // specialization may be defined later in the name- space in which 4399 // the explicit specialization was declared, or in a namespace 4400 // that encloses the one in which the explicit specialization was 4401 // declared. 4402 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4403 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4404 << Specialized; 4405 return true; 4406 } 4407 4408 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4409 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4410 << Specialized; 4411 return true; 4412 } 4413 4414 // C++ [temp.class.spec]p6: 4415 // A class template partial specialization may be declared or redeclared 4416 // in any namespace scope in which its definition may be defined (14.5.1 4417 // and 14.5.2). 4418 bool ComplainedAboutScope = false; 4419 DeclContext *SpecializedContext 4420 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4421 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4422 if ((!PrevDecl || 4423 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4424 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4425 // C++ [temp.exp.spec]p2: 4426 // An explicit specialization shall be declared in the namespace of which 4427 // the template is a member, or, for member templates, in the namespace 4428 // of which the enclosing class or enclosing class template is a member. 4429 // An explicit specialization of a member function, member class or 4430 // static data member of a class template shall be declared in the 4431 // namespace of which the class template is a member. 4432 // 4433 // C++0x [temp.expl.spec]p2: 4434 // An explicit specialization shall be declared in a namespace enclosing 4435 // the specialized template. 4436 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4437 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4438 bool IsCPlusPlus0xExtension 4439 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4440 if (isa<TranslationUnitDecl>(SpecializedContext)) 4441 S.Diag(Loc, IsCPlusPlus0xExtension 4442 ? diag::ext_template_spec_decl_out_of_scope_global 4443 : diag::err_template_spec_decl_out_of_scope_global) 4444 << EntityKind << Specialized; 4445 else if (isa<NamespaceDecl>(SpecializedContext)) 4446 S.Diag(Loc, IsCPlusPlus0xExtension 4447 ? diag::ext_template_spec_decl_out_of_scope 4448 : diag::err_template_spec_decl_out_of_scope) 4449 << EntityKind << Specialized 4450 << cast<NamedDecl>(SpecializedContext); 4451 4452 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4453 ComplainedAboutScope = true; 4454 } 4455 } 4456 4457 // Make sure that this redeclaration (or definition) occurs in an enclosing 4458 // namespace. 4459 // Note that HandleDeclarator() performs this check for explicit 4460 // specializations of function templates, static data members, and member 4461 // functions, so we skip the check here for those kinds of entities. 4462 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4463 // Should we refactor that check, so that it occurs later? 4464 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4465 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4466 isa<FunctionDecl>(Specialized))) { 4467 if (isa<TranslationUnitDecl>(SpecializedContext)) 4468 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4469 << EntityKind << Specialized; 4470 else if (isa<NamespaceDecl>(SpecializedContext)) 4471 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4472 << EntityKind << Specialized 4473 << cast<NamedDecl>(SpecializedContext); 4474 4475 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4476 } 4477 4478 // FIXME: check for specialization-after-instantiation errors and such. 4479 4480 return false; 4481} 4482 4483/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4484/// that checks non-type template partial specialization arguments. 4485static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4486 NonTypeTemplateParmDecl *Param, 4487 const TemplateArgument *Args, 4488 unsigned NumArgs) { 4489 for (unsigned I = 0; I != NumArgs; ++I) { 4490 if (Args[I].getKind() == TemplateArgument::Pack) { 4491 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4492 Args[I].pack_begin(), 4493 Args[I].pack_size())) 4494 return true; 4495 4496 continue; 4497 } 4498 4499 Expr *ArgExpr = Args[I].getAsExpr(); 4500 if (!ArgExpr) { 4501 continue; 4502 } 4503 4504 // We can have a pack expansion of any of the bullets below. 4505 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4506 ArgExpr = Expansion->getPattern(); 4507 4508 // Strip off any implicit casts we added as part of type checking. 4509 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4510 ArgExpr = ICE->getSubExpr(); 4511 4512 // C++ [temp.class.spec]p8: 4513 // A non-type argument is non-specialized if it is the name of a 4514 // non-type parameter. All other non-type arguments are 4515 // specialized. 4516 // 4517 // Below, we check the two conditions that only apply to 4518 // specialized non-type arguments, so skip any non-specialized 4519 // arguments. 4520 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4521 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4522 continue; 4523 4524 // C++ [temp.class.spec]p9: 4525 // Within the argument list of a class template partial 4526 // specialization, the following restrictions apply: 4527 // -- A partially specialized non-type argument expression 4528 // shall not involve a template parameter of the partial 4529 // specialization except when the argument expression is a 4530 // simple identifier. 4531 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4532 S.Diag(ArgExpr->getLocStart(), 4533 diag::err_dependent_non_type_arg_in_partial_spec) 4534 << ArgExpr->getSourceRange(); 4535 return true; 4536 } 4537 4538 // -- The type of a template parameter corresponding to a 4539 // specialized non-type argument shall not be dependent on a 4540 // parameter of the specialization. 4541 if (Param->getType()->isDependentType()) { 4542 S.Diag(ArgExpr->getLocStart(), 4543 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4544 << Param->getType() 4545 << ArgExpr->getSourceRange(); 4546 S.Diag(Param->getLocation(), diag::note_template_param_here); 4547 return true; 4548 } 4549 } 4550 4551 return false; 4552} 4553 4554/// \brief Check the non-type template arguments of a class template 4555/// partial specialization according to C++ [temp.class.spec]p9. 4556/// 4557/// \param TemplateParams the template parameters of the primary class 4558/// template. 4559/// 4560/// \param TemplateArg the template arguments of the class template 4561/// partial specialization. 4562/// 4563/// \returns true if there was an error, false otherwise. 4564static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4565 TemplateParameterList *TemplateParams, 4566 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4567 const TemplateArgument *ArgList = TemplateArgs.data(); 4568 4569 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4570 NonTypeTemplateParmDecl *Param 4571 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4572 if (!Param) 4573 continue; 4574 4575 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4576 &ArgList[I], 1)) 4577 return true; 4578 } 4579 4580 return false; 4581} 4582 4583/// \brief Retrieve the previous declaration of the given declaration. 4584static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4585 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4586 return VD->getPreviousDeclaration(); 4587 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4588 return FD->getPreviousDeclaration(); 4589 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4590 return TD->getPreviousDeclaration(); 4591 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4592 return TD->getPreviousDeclaration(); 4593 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4594 return FTD->getPreviousDeclaration(); 4595 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4596 return CTD->getPreviousDeclaration(); 4597 return 0; 4598} 4599 4600DeclResult 4601Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4602 TagUseKind TUK, 4603 SourceLocation KWLoc, 4604 CXXScopeSpec &SS, 4605 TemplateTy TemplateD, 4606 SourceLocation TemplateNameLoc, 4607 SourceLocation LAngleLoc, 4608 ASTTemplateArgsPtr TemplateArgsIn, 4609 SourceLocation RAngleLoc, 4610 AttributeList *Attr, 4611 MultiTemplateParamsArg TemplateParameterLists) { 4612 assert(TUK != TUK_Reference && "References are not specializations"); 4613 4614 // NOTE: KWLoc is the location of the tag keyword. This will instead 4615 // store the location of the outermost template keyword in the declaration. 4616 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4617 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4618 4619 // Find the class template we're specializing 4620 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4621 ClassTemplateDecl *ClassTemplate 4622 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4623 4624 if (!ClassTemplate) { 4625 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4626 << (Name.getAsTemplateDecl() && 4627 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4628 return true; 4629 } 4630 4631 bool isExplicitSpecialization = false; 4632 bool isPartialSpecialization = false; 4633 4634 // Check the validity of the template headers that introduce this 4635 // template. 4636 // FIXME: We probably shouldn't complain about these headers for 4637 // friend declarations. 4638 bool Invalid = false; 4639 TemplateParameterList *TemplateParams 4640 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4641 TemplateNameLoc, 4642 SS, 4643 (TemplateParameterList**)TemplateParameterLists.get(), 4644 TemplateParameterLists.size(), 4645 TUK == TUK_Friend, 4646 isExplicitSpecialization, 4647 Invalid); 4648 if (Invalid) 4649 return true; 4650 4651 if (TemplateParams && TemplateParams->size() > 0) { 4652 isPartialSpecialization = true; 4653 4654 if (TUK == TUK_Friend) { 4655 Diag(KWLoc, diag::err_partial_specialization_friend) 4656 << SourceRange(LAngleLoc, RAngleLoc); 4657 return true; 4658 } 4659 4660 // C++ [temp.class.spec]p10: 4661 // The template parameter list of a specialization shall not 4662 // contain default template argument values. 4663 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4664 Decl *Param = TemplateParams->getParam(I); 4665 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4666 if (TTP->hasDefaultArgument()) { 4667 Diag(TTP->getDefaultArgumentLoc(), 4668 diag::err_default_arg_in_partial_spec); 4669 TTP->removeDefaultArgument(); 4670 } 4671 } else if (NonTypeTemplateParmDecl *NTTP 4672 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4673 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4674 Diag(NTTP->getDefaultArgumentLoc(), 4675 diag::err_default_arg_in_partial_spec) 4676 << DefArg->getSourceRange(); 4677 NTTP->removeDefaultArgument(); 4678 } 4679 } else { 4680 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4681 if (TTP->hasDefaultArgument()) { 4682 Diag(TTP->getDefaultArgument().getLocation(), 4683 diag::err_default_arg_in_partial_spec) 4684 << TTP->getDefaultArgument().getSourceRange(); 4685 TTP->removeDefaultArgument(); 4686 } 4687 } 4688 } 4689 } else if (TemplateParams) { 4690 if (TUK == TUK_Friend) 4691 Diag(KWLoc, diag::err_template_spec_friend) 4692 << FixItHint::CreateRemoval( 4693 SourceRange(TemplateParams->getTemplateLoc(), 4694 TemplateParams->getRAngleLoc())) 4695 << SourceRange(LAngleLoc, RAngleLoc); 4696 else 4697 isExplicitSpecialization = true; 4698 } else if (TUK != TUK_Friend) { 4699 Diag(KWLoc, diag::err_template_spec_needs_header) 4700 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4701 isExplicitSpecialization = true; 4702 } 4703 4704 // Check that the specialization uses the same tag kind as the 4705 // original template. 4706 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4707 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4708 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4709 Kind, KWLoc, 4710 *ClassTemplate->getIdentifier())) { 4711 Diag(KWLoc, diag::err_use_with_wrong_tag) 4712 << ClassTemplate 4713 << FixItHint::CreateReplacement(KWLoc, 4714 ClassTemplate->getTemplatedDecl()->getKindName()); 4715 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4716 diag::note_previous_use); 4717 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4718 } 4719 4720 // Translate the parser's template argument list in our AST format. 4721 TemplateArgumentListInfo TemplateArgs; 4722 TemplateArgs.setLAngleLoc(LAngleLoc); 4723 TemplateArgs.setRAngleLoc(RAngleLoc); 4724 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4725 4726 // Check for unexpanded parameter packs in any of the template arguments. 4727 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4728 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4729 UPPC_PartialSpecialization)) 4730 return true; 4731 4732 // Check that the template argument list is well-formed for this 4733 // template. 4734 llvm::SmallVector<TemplateArgument, 4> Converted; 4735 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4736 TemplateArgs, false, Converted)) 4737 return true; 4738 4739 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4740 "Converted template argument list is too short!"); 4741 4742 // Find the class template (partial) specialization declaration that 4743 // corresponds to these arguments. 4744 if (isPartialSpecialization) { 4745 if (CheckClassTemplatePartialSpecializationArgs(*this, 4746 ClassTemplate->getTemplateParameters(), 4747 Converted)) 4748 return true; 4749 4750 if (!Name.isDependent() && 4751 !TemplateSpecializationType::anyDependentTemplateArguments( 4752 TemplateArgs.getArgumentArray(), 4753 TemplateArgs.size())) { 4754 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4755 << ClassTemplate->getDeclName(); 4756 isPartialSpecialization = false; 4757 } 4758 } 4759 4760 void *InsertPos = 0; 4761 ClassTemplateSpecializationDecl *PrevDecl = 0; 4762 4763 if (isPartialSpecialization) 4764 // FIXME: Template parameter list matters, too 4765 PrevDecl 4766 = ClassTemplate->findPartialSpecialization(Converted.data(), 4767 Converted.size(), 4768 InsertPos); 4769 else 4770 PrevDecl 4771 = ClassTemplate->findSpecialization(Converted.data(), 4772 Converted.size(), InsertPos); 4773 4774 ClassTemplateSpecializationDecl *Specialization = 0; 4775 4776 // Check whether we can declare a class template specialization in 4777 // the current scope. 4778 if (TUK != TUK_Friend && 4779 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4780 TemplateNameLoc, 4781 isPartialSpecialization)) 4782 return true; 4783 4784 // The canonical type 4785 QualType CanonType; 4786 if (PrevDecl && 4787 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4788 TUK == TUK_Friend)) { 4789 // Since the only prior class template specialization with these 4790 // arguments was referenced but not declared, or we're only 4791 // referencing this specialization as a friend, reuse that 4792 // declaration node as our own, updating its source location and 4793 // the list of outer template parameters to reflect our new declaration. 4794 Specialization = PrevDecl; 4795 Specialization->setLocation(TemplateNameLoc); 4796 if (TemplateParameterLists.size() > 0) { 4797 Specialization->setTemplateParameterListsInfo(Context, 4798 TemplateParameterLists.size(), 4799 (TemplateParameterList**) TemplateParameterLists.release()); 4800 } 4801 PrevDecl = 0; 4802 CanonType = Context.getTypeDeclType(Specialization); 4803 } else if (isPartialSpecialization) { 4804 // Build the canonical type that describes the converted template 4805 // arguments of the class template partial specialization. 4806 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4807 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4808 Converted.data(), 4809 Converted.size()); 4810 4811 if (Context.hasSameType(CanonType, 4812 ClassTemplate->getInjectedClassNameSpecialization())) { 4813 // C++ [temp.class.spec]p9b3: 4814 // 4815 // -- The argument list of the specialization shall not be identical 4816 // to the implicit argument list of the primary template. 4817 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4818 << (TUK == TUK_Definition) 4819 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4820 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4821 ClassTemplate->getIdentifier(), 4822 TemplateNameLoc, 4823 Attr, 4824 TemplateParams, 4825 AS_none, 4826 TemplateParameterLists.size() - 1, 4827 (TemplateParameterList**) TemplateParameterLists.release()); 4828 } 4829 4830 // Create a new class template partial specialization declaration node. 4831 ClassTemplatePartialSpecializationDecl *PrevPartial 4832 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4833 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4834 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4835 ClassTemplatePartialSpecializationDecl *Partial 4836 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4837 ClassTemplate->getDeclContext(), 4838 KWLoc, TemplateNameLoc, 4839 TemplateParams, 4840 ClassTemplate, 4841 Converted.data(), 4842 Converted.size(), 4843 TemplateArgs, 4844 CanonType, 4845 PrevPartial, 4846 SequenceNumber); 4847 SetNestedNameSpecifier(Partial, SS); 4848 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4849 Partial->setTemplateParameterListsInfo(Context, 4850 TemplateParameterLists.size() - 1, 4851 (TemplateParameterList**) TemplateParameterLists.release()); 4852 } 4853 4854 if (!PrevPartial) 4855 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4856 Specialization = Partial; 4857 4858 // If we are providing an explicit specialization of a member class 4859 // template specialization, make a note of that. 4860 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4861 PrevPartial->setMemberSpecialization(); 4862 4863 // Check that all of the template parameters of the class template 4864 // partial specialization are deducible from the template 4865 // arguments. If not, this class template partial specialization 4866 // will never be used. 4867 llvm::SmallVector<bool, 8> DeducibleParams; 4868 DeducibleParams.resize(TemplateParams->size()); 4869 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4870 TemplateParams->getDepth(), 4871 DeducibleParams); 4872 unsigned NumNonDeducible = 0; 4873 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4874 if (!DeducibleParams[I]) 4875 ++NumNonDeducible; 4876 4877 if (NumNonDeducible) { 4878 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4879 << (NumNonDeducible > 1) 4880 << SourceRange(TemplateNameLoc, RAngleLoc); 4881 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4882 if (!DeducibleParams[I]) { 4883 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4884 if (Param->getDeclName()) 4885 Diag(Param->getLocation(), 4886 diag::note_partial_spec_unused_parameter) 4887 << Param->getDeclName(); 4888 else 4889 Diag(Param->getLocation(), 4890 diag::note_partial_spec_unused_parameter) 4891 << "<anonymous>"; 4892 } 4893 } 4894 } 4895 } else { 4896 // Create a new class template specialization declaration node for 4897 // this explicit specialization or friend declaration. 4898 Specialization 4899 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4900 ClassTemplate->getDeclContext(), 4901 KWLoc, TemplateNameLoc, 4902 ClassTemplate, 4903 Converted.data(), 4904 Converted.size(), 4905 PrevDecl); 4906 SetNestedNameSpecifier(Specialization, SS); 4907 if (TemplateParameterLists.size() > 0) { 4908 Specialization->setTemplateParameterListsInfo(Context, 4909 TemplateParameterLists.size(), 4910 (TemplateParameterList**) TemplateParameterLists.release()); 4911 } 4912 4913 if (!PrevDecl) 4914 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4915 4916 CanonType = Context.getTypeDeclType(Specialization); 4917 } 4918 4919 // C++ [temp.expl.spec]p6: 4920 // If a template, a member template or the member of a class template is 4921 // explicitly specialized then that specialization shall be declared 4922 // before the first use of that specialization that would cause an implicit 4923 // instantiation to take place, in every translation unit in which such a 4924 // use occurs; no diagnostic is required. 4925 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4926 bool Okay = false; 4927 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4928 // Is there any previous explicit specialization declaration? 4929 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4930 Okay = true; 4931 break; 4932 } 4933 } 4934 4935 if (!Okay) { 4936 SourceRange Range(TemplateNameLoc, RAngleLoc); 4937 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4938 << Context.getTypeDeclType(Specialization) << Range; 4939 4940 Diag(PrevDecl->getPointOfInstantiation(), 4941 diag::note_instantiation_required_here) 4942 << (PrevDecl->getTemplateSpecializationKind() 4943 != TSK_ImplicitInstantiation); 4944 return true; 4945 } 4946 } 4947 4948 // If this is not a friend, note that this is an explicit specialization. 4949 if (TUK != TUK_Friend) 4950 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4951 4952 // Check that this isn't a redefinition of this specialization. 4953 if (TUK == TUK_Definition) { 4954 if (RecordDecl *Def = Specialization->getDefinition()) { 4955 SourceRange Range(TemplateNameLoc, RAngleLoc); 4956 Diag(TemplateNameLoc, diag::err_redefinition) 4957 << Context.getTypeDeclType(Specialization) << Range; 4958 Diag(Def->getLocation(), diag::note_previous_definition); 4959 Specialization->setInvalidDecl(); 4960 return true; 4961 } 4962 } 4963 4964 if (Attr) 4965 ProcessDeclAttributeList(S, Specialization, Attr); 4966 4967 // Build the fully-sugared type for this class template 4968 // specialization as the user wrote in the specialization 4969 // itself. This means that we'll pretty-print the type retrieved 4970 // from the specialization's declaration the way that the user 4971 // actually wrote the specialization, rather than formatting the 4972 // name based on the "canonical" representation used to store the 4973 // template arguments in the specialization. 4974 TypeSourceInfo *WrittenTy 4975 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4976 TemplateArgs, CanonType); 4977 if (TUK != TUK_Friend) { 4978 Specialization->setTypeAsWritten(WrittenTy); 4979 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4980 } 4981 TemplateArgsIn.release(); 4982 4983 // C++ [temp.expl.spec]p9: 4984 // A template explicit specialization is in the scope of the 4985 // namespace in which the template was defined. 4986 // 4987 // We actually implement this paragraph where we set the semantic 4988 // context (in the creation of the ClassTemplateSpecializationDecl), 4989 // but we also maintain the lexical context where the actual 4990 // definition occurs. 4991 Specialization->setLexicalDeclContext(CurContext); 4992 4993 // We may be starting the definition of this specialization. 4994 if (TUK == TUK_Definition) 4995 Specialization->startDefinition(); 4996 4997 if (TUK == TUK_Friend) { 4998 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4999 TemplateNameLoc, 5000 WrittenTy, 5001 /*FIXME:*/KWLoc); 5002 Friend->setAccess(AS_public); 5003 CurContext->addDecl(Friend); 5004 } else { 5005 // Add the specialization into its lexical context, so that it can 5006 // be seen when iterating through the list of declarations in that 5007 // context. However, specializations are not found by name lookup. 5008 CurContext->addDecl(Specialization); 5009 } 5010 return Specialization; 5011} 5012 5013Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5014 MultiTemplateParamsArg TemplateParameterLists, 5015 Declarator &D) { 5016 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5017} 5018 5019Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5020 MultiTemplateParamsArg TemplateParameterLists, 5021 Declarator &D) { 5022 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5023 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5024 5025 if (FTI.hasPrototype) { 5026 // FIXME: Diagnose arguments without names in C. 5027 } 5028 5029 Scope *ParentScope = FnBodyScope->getParent(); 5030 5031 Decl *DP = HandleDeclarator(ParentScope, D, 5032 move(TemplateParameterLists), 5033 /*IsFunctionDefinition=*/true); 5034 if (FunctionTemplateDecl *FunctionTemplate 5035 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5036 return ActOnStartOfFunctionDef(FnBodyScope, 5037 FunctionTemplate->getTemplatedDecl()); 5038 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5039 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5040 return 0; 5041} 5042 5043/// \brief Strips various properties off an implicit instantiation 5044/// that has just been explicitly specialized. 5045static void StripImplicitInstantiation(NamedDecl *D) { 5046 D->dropAttrs(); 5047 5048 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5049 FD->setInlineSpecified(false); 5050 } 5051} 5052 5053/// \brief Diagnose cases where we have an explicit template specialization 5054/// before/after an explicit template instantiation, producing diagnostics 5055/// for those cases where they are required and determining whether the 5056/// new specialization/instantiation will have any effect. 5057/// 5058/// \param NewLoc the location of the new explicit specialization or 5059/// instantiation. 5060/// 5061/// \param NewTSK the kind of the new explicit specialization or instantiation. 5062/// 5063/// \param PrevDecl the previous declaration of the entity. 5064/// 5065/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5066/// 5067/// \param PrevPointOfInstantiation if valid, indicates where the previus 5068/// declaration was instantiated (either implicitly or explicitly). 5069/// 5070/// \param HasNoEffect will be set to true to indicate that the new 5071/// specialization or instantiation has no effect and should be ignored. 5072/// 5073/// \returns true if there was an error that should prevent the introduction of 5074/// the new declaration into the AST, false otherwise. 5075bool 5076Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5077 TemplateSpecializationKind NewTSK, 5078 NamedDecl *PrevDecl, 5079 TemplateSpecializationKind PrevTSK, 5080 SourceLocation PrevPointOfInstantiation, 5081 bool &HasNoEffect) { 5082 HasNoEffect = false; 5083 5084 switch (NewTSK) { 5085 case TSK_Undeclared: 5086 case TSK_ImplicitInstantiation: 5087 assert(false && "Don't check implicit instantiations here"); 5088 return false; 5089 5090 case TSK_ExplicitSpecialization: 5091 switch (PrevTSK) { 5092 case TSK_Undeclared: 5093 case TSK_ExplicitSpecialization: 5094 // Okay, we're just specializing something that is either already 5095 // explicitly specialized or has merely been mentioned without any 5096 // instantiation. 5097 return false; 5098 5099 case TSK_ImplicitInstantiation: 5100 if (PrevPointOfInstantiation.isInvalid()) { 5101 // The declaration itself has not actually been instantiated, so it is 5102 // still okay to specialize it. 5103 StripImplicitInstantiation(PrevDecl); 5104 return false; 5105 } 5106 // Fall through 5107 5108 case TSK_ExplicitInstantiationDeclaration: 5109 case TSK_ExplicitInstantiationDefinition: 5110 assert((PrevTSK == TSK_ImplicitInstantiation || 5111 PrevPointOfInstantiation.isValid()) && 5112 "Explicit instantiation without point of instantiation?"); 5113 5114 // C++ [temp.expl.spec]p6: 5115 // If a template, a member template or the member of a class template 5116 // is explicitly specialized then that specialization shall be declared 5117 // before the first use of that specialization that would cause an 5118 // implicit instantiation to take place, in every translation unit in 5119 // which such a use occurs; no diagnostic is required. 5120 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5121 // Is there any previous explicit specialization declaration? 5122 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5123 return false; 5124 } 5125 5126 Diag(NewLoc, diag::err_specialization_after_instantiation) 5127 << PrevDecl; 5128 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5129 << (PrevTSK != TSK_ImplicitInstantiation); 5130 5131 return true; 5132 } 5133 break; 5134 5135 case TSK_ExplicitInstantiationDeclaration: 5136 switch (PrevTSK) { 5137 case TSK_ExplicitInstantiationDeclaration: 5138 // This explicit instantiation declaration is redundant (that's okay). 5139 HasNoEffect = true; 5140 return false; 5141 5142 case TSK_Undeclared: 5143 case TSK_ImplicitInstantiation: 5144 // We're explicitly instantiating something that may have already been 5145 // implicitly instantiated; that's fine. 5146 return false; 5147 5148 case TSK_ExplicitSpecialization: 5149 // C++0x [temp.explicit]p4: 5150 // For a given set of template parameters, if an explicit instantiation 5151 // of a template appears after a declaration of an explicit 5152 // specialization for that template, the explicit instantiation has no 5153 // effect. 5154 HasNoEffect = true; 5155 return false; 5156 5157 case TSK_ExplicitInstantiationDefinition: 5158 // C++0x [temp.explicit]p10: 5159 // If an entity is the subject of both an explicit instantiation 5160 // declaration and an explicit instantiation definition in the same 5161 // translation unit, the definition shall follow the declaration. 5162 Diag(NewLoc, 5163 diag::err_explicit_instantiation_declaration_after_definition); 5164 Diag(PrevPointOfInstantiation, 5165 diag::note_explicit_instantiation_definition_here); 5166 assert(PrevPointOfInstantiation.isValid() && 5167 "Explicit instantiation without point of instantiation?"); 5168 HasNoEffect = true; 5169 return false; 5170 } 5171 break; 5172 5173 case TSK_ExplicitInstantiationDefinition: 5174 switch (PrevTSK) { 5175 case TSK_Undeclared: 5176 case TSK_ImplicitInstantiation: 5177 // We're explicitly instantiating something that may have already been 5178 // implicitly instantiated; that's fine. 5179 return false; 5180 5181 case TSK_ExplicitSpecialization: 5182 // C++ DR 259, C++0x [temp.explicit]p4: 5183 // For a given set of template parameters, if an explicit 5184 // instantiation of a template appears after a declaration of 5185 // an explicit specialization for that template, the explicit 5186 // instantiation has no effect. 5187 // 5188 // In C++98/03 mode, we only give an extension warning here, because it 5189 // is not harmful to try to explicitly instantiate something that 5190 // has been explicitly specialized. 5191 if (!getLangOptions().CPlusPlus0x) { 5192 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5193 << PrevDecl; 5194 Diag(PrevDecl->getLocation(), 5195 diag::note_previous_template_specialization); 5196 } 5197 HasNoEffect = true; 5198 return false; 5199 5200 case TSK_ExplicitInstantiationDeclaration: 5201 // We're explicity instantiating a definition for something for which we 5202 // were previously asked to suppress instantiations. That's fine. 5203 return false; 5204 5205 case TSK_ExplicitInstantiationDefinition: 5206 // C++0x [temp.spec]p5: 5207 // For a given template and a given set of template-arguments, 5208 // - an explicit instantiation definition shall appear at most once 5209 // in a program, 5210 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5211 << PrevDecl; 5212 Diag(PrevPointOfInstantiation, 5213 diag::note_previous_explicit_instantiation); 5214 HasNoEffect = true; 5215 return false; 5216 } 5217 break; 5218 } 5219 5220 assert(false && "Missing specialization/instantiation case?"); 5221 5222 return false; 5223} 5224 5225/// \brief Perform semantic analysis for the given dependent function 5226/// template specialization. The only possible way to get a dependent 5227/// function template specialization is with a friend declaration, 5228/// like so: 5229/// 5230/// template <class T> void foo(T); 5231/// template <class T> class A { 5232/// friend void foo<>(T); 5233/// }; 5234/// 5235/// There really isn't any useful analysis we can do here, so we 5236/// just store the information. 5237bool 5238Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5239 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5240 LookupResult &Previous) { 5241 // Remove anything from Previous that isn't a function template in 5242 // the correct context. 5243 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5244 LookupResult::Filter F = Previous.makeFilter(); 5245 while (F.hasNext()) { 5246 NamedDecl *D = F.next()->getUnderlyingDecl(); 5247 if (!isa<FunctionTemplateDecl>(D) || 5248 !FDLookupContext->InEnclosingNamespaceSetOf( 5249 D->getDeclContext()->getRedeclContext())) 5250 F.erase(); 5251 } 5252 F.done(); 5253 5254 // Should this be diagnosed here? 5255 if (Previous.empty()) return true; 5256 5257 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5258 ExplicitTemplateArgs); 5259 return false; 5260} 5261 5262/// \brief Perform semantic analysis for the given function template 5263/// specialization. 5264/// 5265/// This routine performs all of the semantic analysis required for an 5266/// explicit function template specialization. On successful completion, 5267/// the function declaration \p FD will become a function template 5268/// specialization. 5269/// 5270/// \param FD the function declaration, which will be updated to become a 5271/// function template specialization. 5272/// 5273/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5274/// if any. Note that this may be valid info even when 0 arguments are 5275/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5276/// as it anyway contains info on the angle brackets locations. 5277/// 5278/// \param PrevDecl the set of declarations that may be specialized by 5279/// this function specialization. 5280bool 5281Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5282 TemplateArgumentListInfo *ExplicitTemplateArgs, 5283 LookupResult &Previous) { 5284 // The set of function template specializations that could match this 5285 // explicit function template specialization. 5286 UnresolvedSet<8> Candidates; 5287 5288 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5289 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5290 I != E; ++I) { 5291 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5292 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5293 // Only consider templates found within the same semantic lookup scope as 5294 // FD. 5295 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5296 Ovl->getDeclContext()->getRedeclContext())) 5297 continue; 5298 5299 // C++ [temp.expl.spec]p11: 5300 // A trailing template-argument can be left unspecified in the 5301 // template-id naming an explicit function template specialization 5302 // provided it can be deduced from the function argument type. 5303 // Perform template argument deduction to determine whether we may be 5304 // specializing this template. 5305 // FIXME: It is somewhat wasteful to build 5306 TemplateDeductionInfo Info(Context, FD->getLocation()); 5307 FunctionDecl *Specialization = 0; 5308 if (TemplateDeductionResult TDK 5309 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5310 FD->getType(), 5311 Specialization, 5312 Info)) { 5313 // FIXME: Template argument deduction failed; record why it failed, so 5314 // that we can provide nifty diagnostics. 5315 (void)TDK; 5316 continue; 5317 } 5318 5319 // Record this candidate. 5320 Candidates.addDecl(Specialization, I.getAccess()); 5321 } 5322 } 5323 5324 // Find the most specialized function template. 5325 UnresolvedSetIterator Result 5326 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5327 TPOC_Other, 0, FD->getLocation(), 5328 PDiag(diag::err_function_template_spec_no_match) 5329 << FD->getDeclName(), 5330 PDiag(diag::err_function_template_spec_ambiguous) 5331 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5332 PDiag(diag::note_function_template_spec_matched)); 5333 if (Result == Candidates.end()) 5334 return true; 5335 5336 // Ignore access information; it doesn't figure into redeclaration checking. 5337 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5338 5339 FunctionTemplateSpecializationInfo *SpecInfo 5340 = Specialization->getTemplateSpecializationInfo(); 5341 assert(SpecInfo && "Function template specialization info missing?"); 5342 { 5343 // Note: do not overwrite location info if previous template 5344 // specialization kind was explicit. 5345 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5346 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5347 Specialization->setLocation(FD->getLocation()); 5348 } 5349 5350 // FIXME: Check if the prior specialization has a point of instantiation. 5351 // If so, we have run afoul of . 5352 5353 // If this is a friend declaration, then we're not really declaring 5354 // an explicit specialization. 5355 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5356 5357 // Check the scope of this explicit specialization. 5358 if (!isFriend && 5359 CheckTemplateSpecializationScope(*this, 5360 Specialization->getPrimaryTemplate(), 5361 Specialization, FD->getLocation(), 5362 false)) 5363 return true; 5364 5365 // C++ [temp.expl.spec]p6: 5366 // If a template, a member template or the member of a class template is 5367 // explicitly specialized then that specialization shall be declared 5368 // before the first use of that specialization that would cause an implicit 5369 // instantiation to take place, in every translation unit in which such a 5370 // use occurs; no diagnostic is required. 5371 bool HasNoEffect = false; 5372 if (!isFriend && 5373 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5374 TSK_ExplicitSpecialization, 5375 Specialization, 5376 SpecInfo->getTemplateSpecializationKind(), 5377 SpecInfo->getPointOfInstantiation(), 5378 HasNoEffect)) 5379 return true; 5380 5381 // Mark the prior declaration as an explicit specialization, so that later 5382 // clients know that this is an explicit specialization. 5383 if (!isFriend) { 5384 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5385 MarkUnusedFileScopedDecl(Specialization); 5386 } 5387 5388 // Turn the given function declaration into a function template 5389 // specialization, with the template arguments from the previous 5390 // specialization. 5391 // Take copies of (semantic and syntactic) template argument lists. 5392 const TemplateArgumentList* TemplArgs = new (Context) 5393 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5394 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5395 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5396 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5397 TemplArgs, /*InsertPos=*/0, 5398 SpecInfo->getTemplateSpecializationKind(), 5399 TemplArgsAsWritten); 5400 FD->setStorageClass(Specialization->getStorageClass()); 5401 5402 // The "previous declaration" for this function template specialization is 5403 // the prior function template specialization. 5404 Previous.clear(); 5405 Previous.addDecl(Specialization); 5406 return false; 5407} 5408 5409/// \brief Perform semantic analysis for the given non-template member 5410/// specialization. 5411/// 5412/// This routine performs all of the semantic analysis required for an 5413/// explicit member function specialization. On successful completion, 5414/// the function declaration \p FD will become a member function 5415/// specialization. 5416/// 5417/// \param Member the member declaration, which will be updated to become a 5418/// specialization. 5419/// 5420/// \param Previous the set of declarations, one of which may be specialized 5421/// by this function specialization; the set will be modified to contain the 5422/// redeclared member. 5423bool 5424Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5425 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5426 5427 // Try to find the member we are instantiating. 5428 NamedDecl *Instantiation = 0; 5429 NamedDecl *InstantiatedFrom = 0; 5430 MemberSpecializationInfo *MSInfo = 0; 5431 5432 if (Previous.empty()) { 5433 // Nowhere to look anyway. 5434 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5435 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5436 I != E; ++I) { 5437 NamedDecl *D = (*I)->getUnderlyingDecl(); 5438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5439 if (Context.hasSameType(Function->getType(), Method->getType())) { 5440 Instantiation = Method; 5441 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5442 MSInfo = Method->getMemberSpecializationInfo(); 5443 break; 5444 } 5445 } 5446 } 5447 } else if (isa<VarDecl>(Member)) { 5448 VarDecl *PrevVar; 5449 if (Previous.isSingleResult() && 5450 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5451 if (PrevVar->isStaticDataMember()) { 5452 Instantiation = PrevVar; 5453 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5454 MSInfo = PrevVar->getMemberSpecializationInfo(); 5455 } 5456 } else if (isa<RecordDecl>(Member)) { 5457 CXXRecordDecl *PrevRecord; 5458 if (Previous.isSingleResult() && 5459 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5460 Instantiation = PrevRecord; 5461 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5462 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5463 } 5464 } 5465 5466 if (!Instantiation) { 5467 // There is no previous declaration that matches. Since member 5468 // specializations are always out-of-line, the caller will complain about 5469 // this mismatch later. 5470 return false; 5471 } 5472 5473 // If this is a friend, just bail out here before we start turning 5474 // things into explicit specializations. 5475 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5476 // Preserve instantiation information. 5477 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5478 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5479 cast<CXXMethodDecl>(InstantiatedFrom), 5480 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5481 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5482 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5483 cast<CXXRecordDecl>(InstantiatedFrom), 5484 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5485 } 5486 5487 Previous.clear(); 5488 Previous.addDecl(Instantiation); 5489 return false; 5490 } 5491 5492 // Make sure that this is a specialization of a member. 5493 if (!InstantiatedFrom) { 5494 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5495 << Member; 5496 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5497 return true; 5498 } 5499 5500 // C++ [temp.expl.spec]p6: 5501 // If a template, a member template or the member of a class template is 5502 // explicitly specialized then that spe- cialization shall be declared 5503 // before the first use of that specialization that would cause an implicit 5504 // instantiation to take place, in every translation unit in which such a 5505 // use occurs; no diagnostic is required. 5506 assert(MSInfo && "Member specialization info missing?"); 5507 5508 bool HasNoEffect = false; 5509 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5510 TSK_ExplicitSpecialization, 5511 Instantiation, 5512 MSInfo->getTemplateSpecializationKind(), 5513 MSInfo->getPointOfInstantiation(), 5514 HasNoEffect)) 5515 return true; 5516 5517 // Check the scope of this explicit specialization. 5518 if (CheckTemplateSpecializationScope(*this, 5519 InstantiatedFrom, 5520 Instantiation, Member->getLocation(), 5521 false)) 5522 return true; 5523 5524 // Note that this is an explicit instantiation of a member. 5525 // the original declaration to note that it is an explicit specialization 5526 // (if it was previously an implicit instantiation). This latter step 5527 // makes bookkeeping easier. 5528 if (isa<FunctionDecl>(Member)) { 5529 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5530 if (InstantiationFunction->getTemplateSpecializationKind() == 5531 TSK_ImplicitInstantiation) { 5532 InstantiationFunction->setTemplateSpecializationKind( 5533 TSK_ExplicitSpecialization); 5534 InstantiationFunction->setLocation(Member->getLocation()); 5535 } 5536 5537 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5538 cast<CXXMethodDecl>(InstantiatedFrom), 5539 TSK_ExplicitSpecialization); 5540 MarkUnusedFileScopedDecl(InstantiationFunction); 5541 } else if (isa<VarDecl>(Member)) { 5542 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5543 if (InstantiationVar->getTemplateSpecializationKind() == 5544 TSK_ImplicitInstantiation) { 5545 InstantiationVar->setTemplateSpecializationKind( 5546 TSK_ExplicitSpecialization); 5547 InstantiationVar->setLocation(Member->getLocation()); 5548 } 5549 5550 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5551 cast<VarDecl>(InstantiatedFrom), 5552 TSK_ExplicitSpecialization); 5553 MarkUnusedFileScopedDecl(InstantiationVar); 5554 } else { 5555 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5556 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5557 if (InstantiationClass->getTemplateSpecializationKind() == 5558 TSK_ImplicitInstantiation) { 5559 InstantiationClass->setTemplateSpecializationKind( 5560 TSK_ExplicitSpecialization); 5561 InstantiationClass->setLocation(Member->getLocation()); 5562 } 5563 5564 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5565 cast<CXXRecordDecl>(InstantiatedFrom), 5566 TSK_ExplicitSpecialization); 5567 } 5568 5569 // Save the caller the trouble of having to figure out which declaration 5570 // this specialization matches. 5571 Previous.clear(); 5572 Previous.addDecl(Instantiation); 5573 return false; 5574} 5575 5576/// \brief Check the scope of an explicit instantiation. 5577/// 5578/// \returns true if a serious error occurs, false otherwise. 5579static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5580 SourceLocation InstLoc, 5581 bool WasQualifiedName) { 5582 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5583 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5584 5585 if (CurContext->isRecord()) { 5586 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5587 << D; 5588 return true; 5589 } 5590 5591 // C++0x [temp.explicit]p2: 5592 // An explicit instantiation shall appear in an enclosing namespace of its 5593 // template. 5594 // 5595 // This is DR275, which we do not retroactively apply to C++98/03. 5596 if (S.getLangOptions().CPlusPlus0x && 5597 !CurContext->Encloses(OrigContext)) { 5598 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5599 S.Diag(InstLoc, 5600 S.getLangOptions().CPlusPlus0x? 5601 diag::err_explicit_instantiation_out_of_scope 5602 : diag::warn_explicit_instantiation_out_of_scope_0x) 5603 << D << NS; 5604 else 5605 S.Diag(InstLoc, 5606 S.getLangOptions().CPlusPlus0x? 5607 diag::err_explicit_instantiation_must_be_global 5608 : diag::warn_explicit_instantiation_out_of_scope_0x) 5609 << D; 5610 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5611 return false; 5612 } 5613 5614 // C++0x [temp.explicit]p2: 5615 // If the name declared in the explicit instantiation is an unqualified 5616 // name, the explicit instantiation shall appear in the namespace where 5617 // its template is declared or, if that namespace is inline (7.3.1), any 5618 // namespace from its enclosing namespace set. 5619 if (WasQualifiedName) 5620 return false; 5621 5622 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5623 return false; 5624 5625 S.Diag(InstLoc, 5626 S.getLangOptions().CPlusPlus0x? 5627 diag::err_explicit_instantiation_unqualified_wrong_namespace 5628 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5629 << D << OrigContext; 5630 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5631 return false; 5632} 5633 5634/// \brief Determine whether the given scope specifier has a template-id in it. 5635static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5636 if (!SS.isSet()) 5637 return false; 5638 5639 // C++0x [temp.explicit]p2: 5640 // If the explicit instantiation is for a member function, a member class 5641 // or a static data member of a class template specialization, the name of 5642 // the class template specialization in the qualified-id for the member 5643 // name shall be a simple-template-id. 5644 // 5645 // C++98 has the same restriction, just worded differently. 5646 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5647 NNS; NNS = NNS->getPrefix()) 5648 if (const Type *T = NNS->getAsType()) 5649 if (isa<TemplateSpecializationType>(T)) 5650 return true; 5651 5652 return false; 5653} 5654 5655// Explicit instantiation of a class template specialization 5656DeclResult 5657Sema::ActOnExplicitInstantiation(Scope *S, 5658 SourceLocation ExternLoc, 5659 SourceLocation TemplateLoc, 5660 unsigned TagSpec, 5661 SourceLocation KWLoc, 5662 const CXXScopeSpec &SS, 5663 TemplateTy TemplateD, 5664 SourceLocation TemplateNameLoc, 5665 SourceLocation LAngleLoc, 5666 ASTTemplateArgsPtr TemplateArgsIn, 5667 SourceLocation RAngleLoc, 5668 AttributeList *Attr) { 5669 // Find the class template we're specializing 5670 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5671 ClassTemplateDecl *ClassTemplate 5672 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5673 5674 // Check that the specialization uses the same tag kind as the 5675 // original template. 5676 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5677 assert(Kind != TTK_Enum && 5678 "Invalid enum tag in class template explicit instantiation!"); 5679 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5680 Kind, KWLoc, 5681 *ClassTemplate->getIdentifier())) { 5682 Diag(KWLoc, diag::err_use_with_wrong_tag) 5683 << ClassTemplate 5684 << FixItHint::CreateReplacement(KWLoc, 5685 ClassTemplate->getTemplatedDecl()->getKindName()); 5686 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5687 diag::note_previous_use); 5688 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5689 } 5690 5691 // C++0x [temp.explicit]p2: 5692 // There are two forms of explicit instantiation: an explicit instantiation 5693 // definition and an explicit instantiation declaration. An explicit 5694 // instantiation declaration begins with the extern keyword. [...] 5695 TemplateSpecializationKind TSK 5696 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5697 : TSK_ExplicitInstantiationDeclaration; 5698 5699 // Translate the parser's template argument list in our AST format. 5700 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5701 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5702 5703 // Check that the template argument list is well-formed for this 5704 // template. 5705 llvm::SmallVector<TemplateArgument, 4> Converted; 5706 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5707 TemplateArgs, false, Converted)) 5708 return true; 5709 5710 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5711 "Converted template argument list is too short!"); 5712 5713 // Find the class template specialization declaration that 5714 // corresponds to these arguments. 5715 void *InsertPos = 0; 5716 ClassTemplateSpecializationDecl *PrevDecl 5717 = ClassTemplate->findSpecialization(Converted.data(), 5718 Converted.size(), InsertPos); 5719 5720 TemplateSpecializationKind PrevDecl_TSK 5721 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5722 5723 // C++0x [temp.explicit]p2: 5724 // [...] An explicit instantiation shall appear in an enclosing 5725 // namespace of its template. [...] 5726 // 5727 // This is C++ DR 275. 5728 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5729 SS.isSet())) 5730 return true; 5731 5732 ClassTemplateSpecializationDecl *Specialization = 0; 5733 5734 bool HasNoEffect = false; 5735 if (PrevDecl) { 5736 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5737 PrevDecl, PrevDecl_TSK, 5738 PrevDecl->getPointOfInstantiation(), 5739 HasNoEffect)) 5740 return PrevDecl; 5741 5742 // Even though HasNoEffect == true means that this explicit instantiation 5743 // has no effect on semantics, we go on to put its syntax in the AST. 5744 5745 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5746 PrevDecl_TSK == TSK_Undeclared) { 5747 // Since the only prior class template specialization with these 5748 // arguments was referenced but not declared, reuse that 5749 // declaration node as our own, updating the source location 5750 // for the template name to reflect our new declaration. 5751 // (Other source locations will be updated later.) 5752 Specialization = PrevDecl; 5753 Specialization->setLocation(TemplateNameLoc); 5754 PrevDecl = 0; 5755 } 5756 } 5757 5758 if (!Specialization) { 5759 // Create a new class template specialization declaration node for 5760 // this explicit specialization. 5761 Specialization 5762 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5763 ClassTemplate->getDeclContext(), 5764 KWLoc, TemplateNameLoc, 5765 ClassTemplate, 5766 Converted.data(), 5767 Converted.size(), 5768 PrevDecl); 5769 SetNestedNameSpecifier(Specialization, SS); 5770 5771 if (!HasNoEffect && !PrevDecl) { 5772 // Insert the new specialization. 5773 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5774 } 5775 } 5776 5777 // Build the fully-sugared type for this explicit instantiation as 5778 // the user wrote in the explicit instantiation itself. This means 5779 // that we'll pretty-print the type retrieved from the 5780 // specialization's declaration the way that the user actually wrote 5781 // the explicit instantiation, rather than formatting the name based 5782 // on the "canonical" representation used to store the template 5783 // arguments in the specialization. 5784 TypeSourceInfo *WrittenTy 5785 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5786 TemplateArgs, 5787 Context.getTypeDeclType(Specialization)); 5788 Specialization->setTypeAsWritten(WrittenTy); 5789 TemplateArgsIn.release(); 5790 5791 // Set source locations for keywords. 5792 Specialization->setExternLoc(ExternLoc); 5793 Specialization->setTemplateKeywordLoc(TemplateLoc); 5794 5795 // Add the explicit instantiation into its lexical context. However, 5796 // since explicit instantiations are never found by name lookup, we 5797 // just put it into the declaration context directly. 5798 Specialization->setLexicalDeclContext(CurContext); 5799 CurContext->addDecl(Specialization); 5800 5801 // Syntax is now OK, so return if it has no other effect on semantics. 5802 if (HasNoEffect) { 5803 // Set the template specialization kind. 5804 Specialization->setTemplateSpecializationKind(TSK); 5805 return Specialization; 5806 } 5807 5808 // C++ [temp.explicit]p3: 5809 // A definition of a class template or class member template 5810 // shall be in scope at the point of the explicit instantiation of 5811 // the class template or class member template. 5812 // 5813 // This check comes when we actually try to perform the 5814 // instantiation. 5815 ClassTemplateSpecializationDecl *Def 5816 = cast_or_null<ClassTemplateSpecializationDecl>( 5817 Specialization->getDefinition()); 5818 if (!Def) 5819 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5820 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5821 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5822 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5823 } 5824 5825 // Instantiate the members of this class template specialization. 5826 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5827 Specialization->getDefinition()); 5828 if (Def) { 5829 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5830 5831 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5832 // TSK_ExplicitInstantiationDefinition 5833 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5834 TSK == TSK_ExplicitInstantiationDefinition) 5835 Def->setTemplateSpecializationKind(TSK); 5836 5837 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5838 } 5839 5840 // Set the template specialization kind. 5841 Specialization->setTemplateSpecializationKind(TSK); 5842 return Specialization; 5843} 5844 5845// Explicit instantiation of a member class of a class template. 5846DeclResult 5847Sema::ActOnExplicitInstantiation(Scope *S, 5848 SourceLocation ExternLoc, 5849 SourceLocation TemplateLoc, 5850 unsigned TagSpec, 5851 SourceLocation KWLoc, 5852 CXXScopeSpec &SS, 5853 IdentifierInfo *Name, 5854 SourceLocation NameLoc, 5855 AttributeList *Attr) { 5856 5857 bool Owned = false; 5858 bool IsDependent = false; 5859 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5860 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5861 MultiTemplateParamsArg(*this, 0, 0), 5862 Owned, IsDependent, false, false, 5863 TypeResult()); 5864 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5865 5866 if (!TagD) 5867 return true; 5868 5869 TagDecl *Tag = cast<TagDecl>(TagD); 5870 if (Tag->isEnum()) { 5871 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5872 << Context.getTypeDeclType(Tag); 5873 return true; 5874 } 5875 5876 if (Tag->isInvalidDecl()) 5877 return true; 5878 5879 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5880 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5881 if (!Pattern) { 5882 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5883 << Context.getTypeDeclType(Record); 5884 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5885 return true; 5886 } 5887 5888 // C++0x [temp.explicit]p2: 5889 // If the explicit instantiation is for a class or member class, the 5890 // elaborated-type-specifier in the declaration shall include a 5891 // simple-template-id. 5892 // 5893 // C++98 has the same restriction, just worded differently. 5894 if (!ScopeSpecifierHasTemplateId(SS)) 5895 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5896 << Record << SS.getRange(); 5897 5898 // C++0x [temp.explicit]p2: 5899 // There are two forms of explicit instantiation: an explicit instantiation 5900 // definition and an explicit instantiation declaration. An explicit 5901 // instantiation declaration begins with the extern keyword. [...] 5902 TemplateSpecializationKind TSK 5903 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5904 : TSK_ExplicitInstantiationDeclaration; 5905 5906 // C++0x [temp.explicit]p2: 5907 // [...] An explicit instantiation shall appear in an enclosing 5908 // namespace of its template. [...] 5909 // 5910 // This is C++ DR 275. 5911 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5912 5913 // Verify that it is okay to explicitly instantiate here. 5914 CXXRecordDecl *PrevDecl 5915 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5916 if (!PrevDecl && Record->getDefinition()) 5917 PrevDecl = Record; 5918 if (PrevDecl) { 5919 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5920 bool HasNoEffect = false; 5921 assert(MSInfo && "No member specialization information?"); 5922 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5923 PrevDecl, 5924 MSInfo->getTemplateSpecializationKind(), 5925 MSInfo->getPointOfInstantiation(), 5926 HasNoEffect)) 5927 return true; 5928 if (HasNoEffect) 5929 return TagD; 5930 } 5931 5932 CXXRecordDecl *RecordDef 5933 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5934 if (!RecordDef) { 5935 // C++ [temp.explicit]p3: 5936 // A definition of a member class of a class template shall be in scope 5937 // at the point of an explicit instantiation of the member class. 5938 CXXRecordDecl *Def 5939 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5940 if (!Def) { 5941 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5942 << 0 << Record->getDeclName() << Record->getDeclContext(); 5943 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5944 << Pattern; 5945 return true; 5946 } else { 5947 if (InstantiateClass(NameLoc, Record, Def, 5948 getTemplateInstantiationArgs(Record), 5949 TSK)) 5950 return true; 5951 5952 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5953 if (!RecordDef) 5954 return true; 5955 } 5956 } 5957 5958 // Instantiate all of the members of the class. 5959 InstantiateClassMembers(NameLoc, RecordDef, 5960 getTemplateInstantiationArgs(Record), TSK); 5961 5962 if (TSK == TSK_ExplicitInstantiationDefinition) 5963 MarkVTableUsed(NameLoc, RecordDef, true); 5964 5965 // FIXME: We don't have any representation for explicit instantiations of 5966 // member classes. Such a representation is not needed for compilation, but it 5967 // should be available for clients that want to see all of the declarations in 5968 // the source code. 5969 return TagD; 5970} 5971 5972DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5973 SourceLocation ExternLoc, 5974 SourceLocation TemplateLoc, 5975 Declarator &D) { 5976 // Explicit instantiations always require a name. 5977 // TODO: check if/when DNInfo should replace Name. 5978 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5979 DeclarationName Name = NameInfo.getName(); 5980 if (!Name) { 5981 if (!D.isInvalidType()) 5982 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5983 diag::err_explicit_instantiation_requires_name) 5984 << D.getDeclSpec().getSourceRange() 5985 << D.getSourceRange(); 5986 5987 return true; 5988 } 5989 5990 // The scope passed in may not be a decl scope. Zip up the scope tree until 5991 // we find one that is. 5992 while ((S->getFlags() & Scope::DeclScope) == 0 || 5993 (S->getFlags() & Scope::TemplateParamScope) != 0) 5994 S = S->getParent(); 5995 5996 // Determine the type of the declaration. 5997 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5998 QualType R = T->getType(); 5999 if (R.isNull()) 6000 return true; 6001 6002 // C++ [dcl.stc]p1: 6003 // A storage-class-specifier shall not be specified in [...] an explicit 6004 // instantiation (14.7.2) directive. 6005 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6006 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6007 << Name; 6008 return true; 6009 } else if (D.getDeclSpec().getStorageClassSpec() 6010 != DeclSpec::SCS_unspecified) { 6011 // Complain about then remove the storage class specifier. 6012 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6013 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6014 6015 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6016 } 6017 6018 // C++0x [temp.explicit]p1: 6019 // [...] An explicit instantiation of a function template shall not use the 6020 // inline or constexpr specifiers. 6021 // Presumably, this also applies to member functions of class templates as 6022 // well. 6023 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6024 Diag(D.getDeclSpec().getInlineSpecLoc(), 6025 diag::err_explicit_instantiation_inline) 6026 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6027 6028 // FIXME: check for constexpr specifier. 6029 6030 // C++0x [temp.explicit]p2: 6031 // There are two forms of explicit instantiation: an explicit instantiation 6032 // definition and an explicit instantiation declaration. An explicit 6033 // instantiation declaration begins with the extern keyword. [...] 6034 TemplateSpecializationKind TSK 6035 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6036 : TSK_ExplicitInstantiationDeclaration; 6037 6038 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6039 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6040 6041 if (!R->isFunctionType()) { 6042 // C++ [temp.explicit]p1: 6043 // A [...] static data member of a class template can be explicitly 6044 // instantiated from the member definition associated with its class 6045 // template. 6046 if (Previous.isAmbiguous()) 6047 return true; 6048 6049 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6050 if (!Prev || !Prev->isStaticDataMember()) { 6051 // We expect to see a data data member here. 6052 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6053 << Name; 6054 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6055 P != PEnd; ++P) 6056 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6057 return true; 6058 } 6059 6060 if (!Prev->getInstantiatedFromStaticDataMember()) { 6061 // FIXME: Check for explicit specialization? 6062 Diag(D.getIdentifierLoc(), 6063 diag::err_explicit_instantiation_data_member_not_instantiated) 6064 << Prev; 6065 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6066 // FIXME: Can we provide a note showing where this was declared? 6067 return true; 6068 } 6069 6070 // C++0x [temp.explicit]p2: 6071 // If the explicit instantiation is for a member function, a member class 6072 // or a static data member of a class template specialization, the name of 6073 // the class template specialization in the qualified-id for the member 6074 // name shall be a simple-template-id. 6075 // 6076 // C++98 has the same restriction, just worded differently. 6077 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6078 Diag(D.getIdentifierLoc(), 6079 diag::ext_explicit_instantiation_without_qualified_id) 6080 << Prev << D.getCXXScopeSpec().getRange(); 6081 6082 // Check the scope of this explicit instantiation. 6083 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6084 6085 // Verify that it is okay to explicitly instantiate here. 6086 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6087 assert(MSInfo && "Missing static data member specialization info?"); 6088 bool HasNoEffect = false; 6089 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6090 MSInfo->getTemplateSpecializationKind(), 6091 MSInfo->getPointOfInstantiation(), 6092 HasNoEffect)) 6093 return true; 6094 if (HasNoEffect) 6095 return (Decl*) 0; 6096 6097 // Instantiate static data member. 6098 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6099 if (TSK == TSK_ExplicitInstantiationDefinition) 6100 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6101 6102 // FIXME: Create an ExplicitInstantiation node? 6103 return (Decl*) 0; 6104 } 6105 6106 // If the declarator is a template-id, translate the parser's template 6107 // argument list into our AST format. 6108 bool HasExplicitTemplateArgs = false; 6109 TemplateArgumentListInfo TemplateArgs; 6110 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6111 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6112 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6113 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6114 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6115 TemplateId->getTemplateArgs(), 6116 TemplateId->NumArgs); 6117 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6118 HasExplicitTemplateArgs = true; 6119 TemplateArgsPtr.release(); 6120 } 6121 6122 // C++ [temp.explicit]p1: 6123 // A [...] function [...] can be explicitly instantiated from its template. 6124 // A member function [...] of a class template can be explicitly 6125 // instantiated from the member definition associated with its class 6126 // template. 6127 UnresolvedSet<8> Matches; 6128 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6129 P != PEnd; ++P) { 6130 NamedDecl *Prev = *P; 6131 if (!HasExplicitTemplateArgs) { 6132 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6133 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6134 Matches.clear(); 6135 6136 Matches.addDecl(Method, P.getAccess()); 6137 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6138 break; 6139 } 6140 } 6141 } 6142 6143 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6144 if (!FunTmpl) 6145 continue; 6146 6147 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6148 FunctionDecl *Specialization = 0; 6149 if (TemplateDeductionResult TDK 6150 = DeduceTemplateArguments(FunTmpl, 6151 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6152 R, Specialization, Info)) { 6153 // FIXME: Keep track of almost-matches? 6154 (void)TDK; 6155 continue; 6156 } 6157 6158 Matches.addDecl(Specialization, P.getAccess()); 6159 } 6160 6161 // Find the most specialized function template specialization. 6162 UnresolvedSetIterator Result 6163 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6164 D.getIdentifierLoc(), 6165 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6166 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6167 PDiag(diag::note_explicit_instantiation_candidate)); 6168 6169 if (Result == Matches.end()) 6170 return true; 6171 6172 // Ignore access control bits, we don't need them for redeclaration checking. 6173 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6174 6175 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6176 Diag(D.getIdentifierLoc(), 6177 diag::err_explicit_instantiation_member_function_not_instantiated) 6178 << Specialization 6179 << (Specialization->getTemplateSpecializationKind() == 6180 TSK_ExplicitSpecialization); 6181 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6182 return true; 6183 } 6184 6185 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6186 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6187 PrevDecl = Specialization; 6188 6189 if (PrevDecl) { 6190 bool HasNoEffect = false; 6191 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6192 PrevDecl, 6193 PrevDecl->getTemplateSpecializationKind(), 6194 PrevDecl->getPointOfInstantiation(), 6195 HasNoEffect)) 6196 return true; 6197 6198 // FIXME: We may still want to build some representation of this 6199 // explicit specialization. 6200 if (HasNoEffect) 6201 return (Decl*) 0; 6202 } 6203 6204 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6205 6206 if (TSK == TSK_ExplicitInstantiationDefinition) 6207 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6208 6209 // C++0x [temp.explicit]p2: 6210 // If the explicit instantiation is for a member function, a member class 6211 // or a static data member of a class template specialization, the name of 6212 // the class template specialization in the qualified-id for the member 6213 // name shall be a simple-template-id. 6214 // 6215 // C++98 has the same restriction, just worded differently. 6216 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6217 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6218 D.getCXXScopeSpec().isSet() && 6219 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6220 Diag(D.getIdentifierLoc(), 6221 diag::ext_explicit_instantiation_without_qualified_id) 6222 << Specialization << D.getCXXScopeSpec().getRange(); 6223 6224 CheckExplicitInstantiationScope(*this, 6225 FunTmpl? (NamedDecl *)FunTmpl 6226 : Specialization->getInstantiatedFromMemberFunction(), 6227 D.getIdentifierLoc(), 6228 D.getCXXScopeSpec().isSet()); 6229 6230 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6231 return (Decl*) 0; 6232} 6233 6234TypeResult 6235Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6236 const CXXScopeSpec &SS, IdentifierInfo *Name, 6237 SourceLocation TagLoc, SourceLocation NameLoc) { 6238 // This has to hold, because SS is expected to be defined. 6239 assert(Name && "Expected a name in a dependent tag"); 6240 6241 NestedNameSpecifier *NNS 6242 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6243 if (!NNS) 6244 return true; 6245 6246 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6247 6248 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6249 Diag(NameLoc, diag::err_dependent_tag_decl) 6250 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6251 return true; 6252 } 6253 6254 // Create the resulting type. 6255 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6256 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6257 6258 // Create type-source location information for this type. 6259 TypeLocBuilder TLB; 6260 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6261 TL.setKeywordLoc(TagLoc); 6262 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6263 TL.setNameLoc(NameLoc); 6264 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6265} 6266 6267TypeResult 6268Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6269 const CXXScopeSpec &SS, const IdentifierInfo &II, 6270 SourceLocation IdLoc) { 6271 if (SS.isInvalid()) 6272 return true; 6273 6274 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6275 !getLangOptions().CPlusPlus0x) 6276 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6277 << FixItHint::CreateRemoval(TypenameLoc); 6278 6279 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6280 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6281 TypenameLoc, QualifierLoc, II, IdLoc); 6282 if (T.isNull()) 6283 return true; 6284 6285 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6286 if (isa<DependentNameType>(T)) { 6287 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6288 TL.setKeywordLoc(TypenameLoc); 6289 TL.setQualifierLoc(QualifierLoc); 6290 TL.setNameLoc(IdLoc); 6291 } else { 6292 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6293 TL.setKeywordLoc(TypenameLoc); 6294 TL.setQualifierLoc(QualifierLoc); 6295 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6296 } 6297 6298 return CreateParsedType(T, TSI); 6299} 6300 6301TypeResult 6302Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6303 const CXXScopeSpec &SS, 6304 SourceLocation TemplateLoc, 6305 TemplateTy TemplateIn, 6306 SourceLocation TemplateNameLoc, 6307 SourceLocation LAngleLoc, 6308 ASTTemplateArgsPtr TemplateArgsIn, 6309 SourceLocation RAngleLoc) { 6310 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6311 !getLangOptions().CPlusPlus0x) 6312 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6313 << FixItHint::CreateRemoval(TypenameLoc); 6314 6315 // Translate the parser's template argument list in our AST format. 6316 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6317 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6318 6319 TemplateName Template = TemplateIn.get(); 6320 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6321 // Construct a dependent template specialization type. 6322 assert(DTN && "dependent template has non-dependent name?"); 6323 assert(DTN->getQualifier() 6324 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6325 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6326 DTN->getQualifier(), 6327 DTN->getIdentifier(), 6328 TemplateArgs); 6329 6330 // Create source-location information for this type. 6331 TypeLocBuilder Builder; 6332 DependentTemplateSpecializationTypeLoc SpecTL 6333 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6334 SpecTL.setLAngleLoc(LAngleLoc); 6335 SpecTL.setRAngleLoc(RAngleLoc); 6336 SpecTL.setKeywordLoc(TypenameLoc); 6337 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6338 SpecTL.setNameLoc(TemplateNameLoc); 6339 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6340 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6341 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6342 } 6343 6344 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6345 if (T.isNull()) 6346 return true; 6347 6348 // Provide source-location information for the template specialization 6349 // type. 6350 TypeLocBuilder Builder; 6351 TemplateSpecializationTypeLoc SpecTL 6352 = Builder.push<TemplateSpecializationTypeLoc>(T); 6353 6354 // FIXME: No place to set the location of the 'template' keyword! 6355 SpecTL.setLAngleLoc(LAngleLoc); 6356 SpecTL.setRAngleLoc(RAngleLoc); 6357 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6358 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6359 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6360 6361 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6362 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6363 TL.setKeywordLoc(TypenameLoc); 6364 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6365 6366 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6367 return CreateParsedType(T, TSI); 6368} 6369 6370 6371/// \brief Build the type that describes a C++ typename specifier, 6372/// e.g., "typename T::type". 6373QualType 6374Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6375 SourceLocation KeywordLoc, 6376 NestedNameSpecifierLoc QualifierLoc, 6377 const IdentifierInfo &II, 6378 SourceLocation IILoc) { 6379 CXXScopeSpec SS; 6380 SS.Adopt(QualifierLoc); 6381 6382 DeclContext *Ctx = computeDeclContext(SS); 6383 if (!Ctx) { 6384 // If the nested-name-specifier is dependent and couldn't be 6385 // resolved to a type, build a typename type. 6386 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6387 return Context.getDependentNameType(Keyword, 6388 QualifierLoc.getNestedNameSpecifier(), 6389 &II); 6390 } 6391 6392 // If the nested-name-specifier refers to the current instantiation, 6393 // the "typename" keyword itself is superfluous. In C++03, the 6394 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6395 // allows such extraneous "typename" keywords, and we retroactively 6396 // apply this DR to C++03 code with only a warning. In any case we continue. 6397 6398 if (RequireCompleteDeclContext(SS, Ctx)) 6399 return QualType(); 6400 6401 DeclarationName Name(&II); 6402 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6403 LookupQualifiedName(Result, Ctx); 6404 unsigned DiagID = 0; 6405 Decl *Referenced = 0; 6406 switch (Result.getResultKind()) { 6407 case LookupResult::NotFound: 6408 DiagID = diag::err_typename_nested_not_found; 6409 break; 6410 6411 case LookupResult::FoundUnresolvedValue: { 6412 // We found a using declaration that is a value. Most likely, the using 6413 // declaration itself is meant to have the 'typename' keyword. 6414 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6415 IILoc); 6416 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6417 << Name << Ctx << FullRange; 6418 if (UnresolvedUsingValueDecl *Using 6419 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6420 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6421 Diag(Loc, diag::note_using_value_decl_missing_typename) 6422 << FixItHint::CreateInsertion(Loc, "typename "); 6423 } 6424 } 6425 // Fall through to create a dependent typename type, from which we can recover 6426 // better. 6427 6428 case LookupResult::NotFoundInCurrentInstantiation: 6429 // Okay, it's a member of an unknown instantiation. 6430 return Context.getDependentNameType(Keyword, 6431 QualifierLoc.getNestedNameSpecifier(), 6432 &II); 6433 6434 case LookupResult::Found: 6435 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6436 // We found a type. Build an ElaboratedType, since the 6437 // typename-specifier was just sugar. 6438 return Context.getElaboratedType(ETK_Typename, 6439 QualifierLoc.getNestedNameSpecifier(), 6440 Context.getTypeDeclType(Type)); 6441 } 6442 6443 DiagID = diag::err_typename_nested_not_type; 6444 Referenced = Result.getFoundDecl(); 6445 break; 6446 6447 6448 llvm_unreachable("unresolved using decl in non-dependent context"); 6449 return QualType(); 6450 6451 case LookupResult::FoundOverloaded: 6452 DiagID = diag::err_typename_nested_not_type; 6453 Referenced = *Result.begin(); 6454 break; 6455 6456 case LookupResult::Ambiguous: 6457 return QualType(); 6458 } 6459 6460 // If we get here, it's because name lookup did not find a 6461 // type. Emit an appropriate diagnostic and return an error. 6462 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6463 IILoc); 6464 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6465 if (Referenced) 6466 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6467 << Name; 6468 return QualType(); 6469} 6470 6471namespace { 6472 // See Sema::RebuildTypeInCurrentInstantiation 6473 class CurrentInstantiationRebuilder 6474 : public TreeTransform<CurrentInstantiationRebuilder> { 6475 SourceLocation Loc; 6476 DeclarationName Entity; 6477 6478 public: 6479 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6480 6481 CurrentInstantiationRebuilder(Sema &SemaRef, 6482 SourceLocation Loc, 6483 DeclarationName Entity) 6484 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6485 Loc(Loc), Entity(Entity) { } 6486 6487 /// \brief Determine whether the given type \p T has already been 6488 /// transformed. 6489 /// 6490 /// For the purposes of type reconstruction, a type has already been 6491 /// transformed if it is NULL or if it is not dependent. 6492 bool AlreadyTransformed(QualType T) { 6493 return T.isNull() || !T->isDependentType(); 6494 } 6495 6496 /// \brief Returns the location of the entity whose type is being 6497 /// rebuilt. 6498 SourceLocation getBaseLocation() { return Loc; } 6499 6500 /// \brief Returns the name of the entity whose type is being rebuilt. 6501 DeclarationName getBaseEntity() { return Entity; } 6502 6503 /// \brief Sets the "base" location and entity when that 6504 /// information is known based on another transformation. 6505 void setBase(SourceLocation Loc, DeclarationName Entity) { 6506 this->Loc = Loc; 6507 this->Entity = Entity; 6508 } 6509 }; 6510} 6511 6512/// \brief Rebuilds a type within the context of the current instantiation. 6513/// 6514/// The type \p T is part of the type of an out-of-line member definition of 6515/// a class template (or class template partial specialization) that was parsed 6516/// and constructed before we entered the scope of the class template (or 6517/// partial specialization thereof). This routine will rebuild that type now 6518/// that we have entered the declarator's scope, which may produce different 6519/// canonical types, e.g., 6520/// 6521/// \code 6522/// template<typename T> 6523/// struct X { 6524/// typedef T* pointer; 6525/// pointer data(); 6526/// }; 6527/// 6528/// template<typename T> 6529/// typename X<T>::pointer X<T>::data() { ... } 6530/// \endcode 6531/// 6532/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6533/// since we do not know that we can look into X<T> when we parsed the type. 6534/// This function will rebuild the type, performing the lookup of "pointer" 6535/// in X<T> and returning an ElaboratedType whose canonical type is the same 6536/// as the canonical type of T*, allowing the return types of the out-of-line 6537/// definition and the declaration to match. 6538TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6539 SourceLocation Loc, 6540 DeclarationName Name) { 6541 if (!T || !T->getType()->isDependentType()) 6542 return T; 6543 6544 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6545 return Rebuilder.TransformType(T); 6546} 6547 6548ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6549 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6550 DeclarationName()); 6551 return Rebuilder.TransformExpr(E); 6552} 6553 6554bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6555 if (SS.isInvalid()) 6556 return true; 6557 6558 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6559 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6560 DeclarationName()); 6561 NestedNameSpecifierLoc Rebuilt 6562 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6563 if (!Rebuilt) 6564 return true; 6565 6566 SS.Adopt(Rebuilt); 6567 return false; 6568} 6569 6570/// \brief Produces a formatted string that describes the binding of 6571/// template parameters to template arguments. 6572std::string 6573Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6574 const TemplateArgumentList &Args) { 6575 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6576} 6577 6578std::string 6579Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6580 const TemplateArgument *Args, 6581 unsigned NumArgs) { 6582 llvm::SmallString<128> Str; 6583 llvm::raw_svector_ostream Out(Str); 6584 6585 if (!Params || Params->size() == 0 || NumArgs == 0) 6586 return std::string(); 6587 6588 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6589 if (I >= NumArgs) 6590 break; 6591 6592 if (I == 0) 6593 Out << "[with "; 6594 else 6595 Out << ", "; 6596 6597 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6598 Out << Id->getName(); 6599 } else { 6600 Out << '$' << I; 6601 } 6602 6603 Out << " = "; 6604 Args[I].print(Context.PrintingPolicy, Out); 6605 } 6606 6607 Out << ']'; 6608 return Out.str(); 6609} 6610 6611void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6612 if (!FD) 6613 return; 6614 FD->setLateTemplateParsed(Flag); 6615} 6616 6617bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6618 DeclContext *DC = CurContext; 6619 6620 while (DC) { 6621 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6622 const FunctionDecl *FD = RD->isLocalClass(); 6623 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6624 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6625 return false; 6626 6627 DC = DC->getParent(); 6628 } 6629 return false; 6630} 6631