SemaTemplate.cpp revision ff66803b43f2ea9206637dceb793e9505f3b9c48
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    }
69
70    // FIXME: What follows is a gross hack.
71    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
72      if (FD->getType()->isDependentType()) {
73        TemplateResult = TemplateTy::make(FD);
74        return TNK_Function_template;
75      }
76    } else if (OverloadedFunctionDecl *Ovl
77                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
78      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
79                                                  FEnd = Ovl->function_end();
80           F != FEnd; ++F) {
81        if ((*F)->getType()->isDependentType()) {
82          TemplateResult = TemplateTy::make(Ovl);
83          return TNK_Function_template;
84        }
85      }
86    }
87
88    if (TNK != TNK_Non_template) {
89      if (SS && SS->isSet() && !SS->isInvalid()) {
90        NestedNameSpecifier *Qualifier
91          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
92        TemplateResult
93          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
94                                                              false,
95                                                              Template));
96      } else
97        TemplateResult = TemplateTy::make(TemplateName(Template));
98    }
99  }
100  return TNK;
101}
102
103/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
104/// that the template parameter 'PrevDecl' is being shadowed by a new
105/// declaration at location Loc. Returns true to indicate that this is
106/// an error, and false otherwise.
107bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
108  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
109
110  // Microsoft Visual C++ permits template parameters to be shadowed.
111  if (getLangOptions().Microsoft)
112    return false;
113
114  // C++ [temp.local]p4:
115  //   A template-parameter shall not be redeclared within its
116  //   scope (including nested scopes).
117  Diag(Loc, diag::err_template_param_shadow)
118    << cast<NamedDecl>(PrevDecl)->getDeclName();
119  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
120  return true;
121}
122
123/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
124/// the parameter D to reference the templated declaration and return a pointer
125/// to the template declaration. Otherwise, do nothing to D and return null.
126TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
127  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
128    D = DeclPtrTy::make(Temp->getTemplatedDecl());
129    return Temp;
130  }
131  return 0;
132}
133
134/// ActOnTypeParameter - Called when a C++ template type parameter
135/// (e.g., "typename T") has been parsed. Typename specifies whether
136/// the keyword "typename" was used to declare the type parameter
137/// (otherwise, "class" was used), and KeyLoc is the location of the
138/// "class" or "typename" keyword. ParamName is the name of the
139/// parameter (NULL indicates an unnamed template parameter) and
140/// ParamName is the location of the parameter name (if any).
141/// If the type parameter has a default argument, it will be added
142/// later via ActOnTypeParameterDefault.
143Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
144                                         SourceLocation KeyLoc,
145                                         IdentifierInfo *ParamName,
146                                         SourceLocation ParamNameLoc,
147                                         unsigned Depth, unsigned Position) {
148  assert(S->isTemplateParamScope() &&
149	 "Template type parameter not in template parameter scope!");
150  bool Invalid = false;
151
152  if (ParamName) {
153    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
154    if (PrevDecl && PrevDecl->isTemplateParameter())
155      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
156							   PrevDecl);
157  }
158
159  SourceLocation Loc = ParamNameLoc;
160  if (!ParamName)
161    Loc = KeyLoc;
162
163  TemplateTypeParmDecl *Param
164    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
165                                   Depth, Position, ParamName, Typename);
166  if (Invalid)
167    Param->setInvalidDecl();
168
169  if (ParamName) {
170    // Add the template parameter into the current scope.
171    S->AddDecl(DeclPtrTy::make(Param));
172    IdResolver.AddDecl(Param);
173  }
174
175  return DeclPtrTy::make(Param);
176}
177
178/// ActOnTypeParameterDefault - Adds a default argument (the type
179/// Default) to the given template type parameter (TypeParam).
180void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
181                                     SourceLocation EqualLoc,
182                                     SourceLocation DefaultLoc,
183                                     TypeTy *DefaultT) {
184  TemplateTypeParmDecl *Parm
185    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
186  QualType Default = QualType::getFromOpaquePtr(DefaultT);
187
188  // C++ [temp.param]p14:
189  //   A template-parameter shall not be used in its own default argument.
190  // FIXME: Implement this check! Needs a recursive walk over the types.
191
192  // Check the template argument itself.
193  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
194    Parm->setInvalidDecl();
195    return;
196  }
197
198  Parm->setDefaultArgument(Default, DefaultLoc, false);
199}
200
201/// \brief Check that the type of a non-type template parameter is
202/// well-formed.
203///
204/// \returns the (possibly-promoted) parameter type if valid;
205/// otherwise, produces a diagnostic and returns a NULL type.
206QualType
207Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
208  // C++ [temp.param]p4:
209  //
210  // A non-type template-parameter shall have one of the following
211  // (optionally cv-qualified) types:
212  //
213  //       -- integral or enumeration type,
214  if (T->isIntegralType() || T->isEnumeralType() ||
215      //   -- pointer to object or pointer to function,
216      (T->isPointerType() &&
217       (T->getAsPointerType()->getPointeeType()->isObjectType() ||
218        T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
219      //   -- reference to object or reference to function,
220      T->isReferenceType() ||
221      //   -- pointer to member.
222      T->isMemberPointerType() ||
223      // If T is a dependent type, we can't do the check now, so we
224      // assume that it is well-formed.
225      T->isDependentType())
226    return T;
227  // C++ [temp.param]p8:
228  //
229  //   A non-type template-parameter of type "array of T" or
230  //   "function returning T" is adjusted to be of type "pointer to
231  //   T" or "pointer to function returning T", respectively.
232  else if (T->isArrayType())
233    // FIXME: Keep the type prior to promotion?
234    return Context.getArrayDecayedType(T);
235  else if (T->isFunctionType())
236    // FIXME: Keep the type prior to promotion?
237    return Context.getPointerType(T);
238
239  Diag(Loc, diag::err_template_nontype_parm_bad_type)
240    << T;
241
242  return QualType();
243}
244
245/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
246/// template parameter (e.g., "int Size" in "template<int Size>
247/// class Array") has been parsed. S is the current scope and D is
248/// the parsed declarator.
249Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
250                                                    unsigned Depth,
251                                                    unsigned Position) {
252  QualType T = GetTypeForDeclarator(D, S);
253
254  assert(S->isTemplateParamScope() &&
255         "Non-type template parameter not in template parameter scope!");
256  bool Invalid = false;
257
258  IdentifierInfo *ParamName = D.getIdentifier();
259  if (ParamName) {
260    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
261    if (PrevDecl && PrevDecl->isTemplateParameter())
262      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
263                                                           PrevDecl);
264  }
265
266  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
267  if (T.isNull()) {
268    T = Context.IntTy; // Recover with an 'int' type.
269    Invalid = true;
270  }
271
272  NonTypeTemplateParmDecl *Param
273    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
274                                      Depth, Position, ParamName, T);
275  if (Invalid)
276    Param->setInvalidDecl();
277
278  if (D.getIdentifier()) {
279    // Add the template parameter into the current scope.
280    S->AddDecl(DeclPtrTy::make(Param));
281    IdResolver.AddDecl(Param);
282  }
283  return DeclPtrTy::make(Param);
284}
285
286/// \brief Adds a default argument to the given non-type template
287/// parameter.
288void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
289                                                SourceLocation EqualLoc,
290                                                ExprArg DefaultE) {
291  NonTypeTemplateParmDecl *TemplateParm
292    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
293  Expr *Default = static_cast<Expr *>(DefaultE.get());
294
295  // C++ [temp.param]p14:
296  //   A template-parameter shall not be used in its own default argument.
297  // FIXME: Implement this check! Needs a recursive walk over the types.
298
299  // Check the well-formedness of the default template argument.
300  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default)) {
301    TemplateParm->setInvalidDecl();
302    return;
303  }
304
305  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
306}
307
308
309/// ActOnTemplateTemplateParameter - Called when a C++ template template
310/// parameter (e.g. T in template <template <typename> class T> class array)
311/// has been parsed. S is the current scope.
312Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
313                                                     SourceLocation TmpLoc,
314                                                     TemplateParamsTy *Params,
315                                                     IdentifierInfo *Name,
316                                                     SourceLocation NameLoc,
317                                                     unsigned Depth,
318                                                     unsigned Position)
319{
320  assert(S->isTemplateParamScope() &&
321         "Template template parameter not in template parameter scope!");
322
323  // Construct the parameter object.
324  TemplateTemplateParmDecl *Param =
325    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
326                                     Position, Name,
327                                     (TemplateParameterList*)Params);
328
329  // Make sure the parameter is valid.
330  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
331  // do anything yet. However, if the template parameter list or (eventual)
332  // default value is ever invalidated, that will propagate here.
333  bool Invalid = false;
334  if (Invalid) {
335    Param->setInvalidDecl();
336  }
337
338  // If the tt-param has a name, then link the identifier into the scope
339  // and lookup mechanisms.
340  if (Name) {
341    S->AddDecl(DeclPtrTy::make(Param));
342    IdResolver.AddDecl(Param);
343  }
344
345  return DeclPtrTy::make(Param);
346}
347
348/// \brief Adds a default argument to the given template template
349/// parameter.
350void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
351                                                 SourceLocation EqualLoc,
352                                                 ExprArg DefaultE) {
353  TemplateTemplateParmDecl *TemplateParm
354    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
355
356  // Since a template-template parameter's default argument is an
357  // id-expression, it must be a DeclRefExpr.
358  DeclRefExpr *Default
359    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
360
361  // C++ [temp.param]p14:
362  //   A template-parameter shall not be used in its own default argument.
363  // FIXME: Implement this check! Needs a recursive walk over the types.
364
365  // Check the well-formedness of the template argument.
366  if (!isa<TemplateDecl>(Default->getDecl())) {
367    Diag(Default->getSourceRange().getBegin(),
368         diag::err_template_arg_must_be_template)
369      << Default->getSourceRange();
370    TemplateParm->setInvalidDecl();
371    return;
372  }
373  if (CheckTemplateArgument(TemplateParm, Default)) {
374    TemplateParm->setInvalidDecl();
375    return;
376  }
377
378  DefaultE.release();
379  TemplateParm->setDefaultArgument(Default);
380}
381
382/// ActOnTemplateParameterList - Builds a TemplateParameterList that
383/// contains the template parameters in Params/NumParams.
384Sema::TemplateParamsTy *
385Sema::ActOnTemplateParameterList(unsigned Depth,
386                                 SourceLocation ExportLoc,
387                                 SourceLocation TemplateLoc,
388                                 SourceLocation LAngleLoc,
389                                 DeclPtrTy *Params, unsigned NumParams,
390                                 SourceLocation RAngleLoc) {
391  if (ExportLoc.isValid())
392    Diag(ExportLoc, diag::note_template_export_unsupported);
393
394  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
395                                       (Decl**)Params, NumParams, RAngleLoc);
396}
397
398Sema::DeclResult
399Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
400                         SourceLocation KWLoc, const CXXScopeSpec &SS,
401                         IdentifierInfo *Name, SourceLocation NameLoc,
402                         AttributeList *Attr,
403                         MultiTemplateParamsArg TemplateParameterLists,
404                         AccessSpecifier AS) {
405  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
406  assert(TK != TK_Reference && "Can only declare or define class templates");
407  bool Invalid = false;
408
409  // Check that we can declare a template here.
410  if (CheckTemplateDeclScope(S, TemplateParameterLists))
411    return true;
412
413  TagDecl::TagKind Kind;
414  switch (TagSpec) {
415  default: assert(0 && "Unknown tag type!");
416  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
417  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
418  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
419  }
420
421  // There is no such thing as an unnamed class template.
422  if (!Name) {
423    Diag(KWLoc, diag::err_template_unnamed_class);
424    return true;
425  }
426
427  // Find any previous declaration with this name.
428  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
429                                           true);
430  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
431  NamedDecl *PrevDecl = 0;
432  if (Previous.begin() != Previous.end())
433    PrevDecl = *Previous.begin();
434
435  DeclContext *SemanticContext = CurContext;
436  if (SS.isNotEmpty() && !SS.isInvalid()) {
437    SemanticContext = computeDeclContext(SS);
438
439    // FIXME: need to match up several levels of template parameter
440    // lists here.
441  }
442
443  // FIXME: member templates!
444  TemplateParameterList *TemplateParams
445    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
446
447  // If there is a previous declaration with the same name, check
448  // whether this is a valid redeclaration.
449  ClassTemplateDecl *PrevClassTemplate
450    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
451  if (PrevClassTemplate) {
452    // Ensure that the template parameter lists are compatible.
453    if (!TemplateParameterListsAreEqual(TemplateParams,
454                                   PrevClassTemplate->getTemplateParameters(),
455                                        /*Complain=*/true))
456      return true;
457
458    // C++ [temp.class]p4:
459    //   In a redeclaration, partial specialization, explicit
460    //   specialization or explicit instantiation of a class template,
461    //   the class-key shall agree in kind with the original class
462    //   template declaration (7.1.5.3).
463    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
464    if (!isAcceptableTagRedeclaration(PrevRecordDecl->getTagKind(), Kind)) {
465      Diag(KWLoc, diag::err_use_with_wrong_tag)
466        << Name
467        << CodeModificationHint::CreateReplacement(KWLoc,
468                            PrevRecordDecl->getKindName());
469      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
470      Kind = PrevRecordDecl->getTagKind();
471    }
472
473    // Check for redefinition of this class template.
474    if (TK == TK_Definition) {
475      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
476        Diag(NameLoc, diag::err_redefinition) << Name;
477        Diag(Def->getLocation(), diag::note_previous_definition);
478        // FIXME: Would it make sense to try to "forget" the previous
479        // definition, as part of error recovery?
480        return true;
481      }
482    }
483  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
484    // Maybe we will complain about the shadowed template parameter.
485    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
486    // Just pretend that we didn't see the previous declaration.
487    PrevDecl = 0;
488  } else if (PrevDecl) {
489    // C++ [temp]p5:
490    //   A class template shall not have the same name as any other
491    //   template, class, function, object, enumeration, enumerator,
492    //   namespace, or type in the same scope (3.3), except as specified
493    //   in (14.5.4).
494    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
495    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
496    return true;
497  }
498
499  // Check the template parameter list of this declaration, possibly
500  // merging in the template parameter list from the previous class
501  // template declaration.
502  if (CheckTemplateParameterList(TemplateParams,
503            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
504    Invalid = true;
505
506  // FIXME: If we had a scope specifier, we better have a previous template
507  // declaration!
508
509  CXXRecordDecl *NewClass =
510    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
511                          PrevClassTemplate?
512                            PrevClassTemplate->getTemplatedDecl() : 0);
513
514  ClassTemplateDecl *NewTemplate
515    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
516                                DeclarationName(Name), TemplateParams,
517                                NewClass, PrevClassTemplate);
518  NewClass->setDescribedClassTemplate(NewTemplate);
519
520  // Set the access specifier.
521  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
522
523  // Set the lexical context of these templates
524  NewClass->setLexicalDeclContext(CurContext);
525  NewTemplate->setLexicalDeclContext(CurContext);
526
527  if (TK == TK_Definition)
528    NewClass->startDefinition();
529
530  if (Attr)
531    ProcessDeclAttributeList(NewClass, Attr);
532
533  PushOnScopeChains(NewTemplate, S);
534
535  if (Invalid) {
536    NewTemplate->setInvalidDecl();
537    NewClass->setInvalidDecl();
538  }
539  return DeclPtrTy::make(NewTemplate);
540}
541
542/// \brief Checks the validity of a template parameter list, possibly
543/// considering the template parameter list from a previous
544/// declaration.
545///
546/// If an "old" template parameter list is provided, it must be
547/// equivalent (per TemplateParameterListsAreEqual) to the "new"
548/// template parameter list.
549///
550/// \param NewParams Template parameter list for a new template
551/// declaration. This template parameter list will be updated with any
552/// default arguments that are carried through from the previous
553/// template parameter list.
554///
555/// \param OldParams If provided, template parameter list from a
556/// previous declaration of the same template. Default template
557/// arguments will be merged from the old template parameter list to
558/// the new template parameter list.
559///
560/// \returns true if an error occurred, false otherwise.
561bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
562                                      TemplateParameterList *OldParams) {
563  bool Invalid = false;
564
565  // C++ [temp.param]p10:
566  //   The set of default template-arguments available for use with a
567  //   template declaration or definition is obtained by merging the
568  //   default arguments from the definition (if in scope) and all
569  //   declarations in scope in the same way default function
570  //   arguments are (8.3.6).
571  bool SawDefaultArgument = false;
572  SourceLocation PreviousDefaultArgLoc;
573
574  // Dummy initialization to avoid warnings.
575  TemplateParameterList::iterator OldParam = NewParams->end();
576  if (OldParams)
577    OldParam = OldParams->begin();
578
579  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
580                                    NewParamEnd = NewParams->end();
581       NewParam != NewParamEnd; ++NewParam) {
582    // Variables used to diagnose redundant default arguments
583    bool RedundantDefaultArg = false;
584    SourceLocation OldDefaultLoc;
585    SourceLocation NewDefaultLoc;
586
587    // Variables used to diagnose missing default arguments
588    bool MissingDefaultArg = false;
589
590    // Merge default arguments for template type parameters.
591    if (TemplateTypeParmDecl *NewTypeParm
592          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
593      TemplateTypeParmDecl *OldTypeParm
594          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
595
596      if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
597          NewTypeParm->hasDefaultArgument()) {
598        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
599        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
600        SawDefaultArgument = true;
601        RedundantDefaultArg = true;
602        PreviousDefaultArgLoc = NewDefaultLoc;
603      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
604        // Merge the default argument from the old declaration to the
605        // new declaration.
606        SawDefaultArgument = true;
607        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
608                                        OldTypeParm->getDefaultArgumentLoc(),
609                                        true);
610        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
611      } else if (NewTypeParm->hasDefaultArgument()) {
612        SawDefaultArgument = true;
613        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
614      } else if (SawDefaultArgument)
615        MissingDefaultArg = true;
616    }
617    // Merge default arguments for non-type template parameters
618    else if (NonTypeTemplateParmDecl *NewNonTypeParm
619               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
620      NonTypeTemplateParmDecl *OldNonTypeParm
621        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
622      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
623          NewNonTypeParm->hasDefaultArgument()) {
624        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
625        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
626        SawDefaultArgument = true;
627        RedundantDefaultArg = true;
628        PreviousDefaultArgLoc = NewDefaultLoc;
629      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
630        // Merge the default argument from the old declaration to the
631        // new declaration.
632        SawDefaultArgument = true;
633        // FIXME: We need to create a new kind of "default argument"
634        // expression that points to a previous template template
635        // parameter.
636        NewNonTypeParm->setDefaultArgument(
637                                        OldNonTypeParm->getDefaultArgument());
638        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
639      } else if (NewNonTypeParm->hasDefaultArgument()) {
640        SawDefaultArgument = true;
641        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
642      } else if (SawDefaultArgument)
643        MissingDefaultArg = true;
644    }
645    // Merge default arguments for template template parameters
646    else {
647      TemplateTemplateParmDecl *NewTemplateParm
648        = cast<TemplateTemplateParmDecl>(*NewParam);
649      TemplateTemplateParmDecl *OldTemplateParm
650        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
651      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
652          NewTemplateParm->hasDefaultArgument()) {
653        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
654        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
655        SawDefaultArgument = true;
656        RedundantDefaultArg = true;
657        PreviousDefaultArgLoc = NewDefaultLoc;
658      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
659        // Merge the default argument from the old declaration to the
660        // new declaration.
661        SawDefaultArgument = true;
662        // FIXME: We need to create a new kind of "default argument"
663        // expression that points to a previous template template
664        // parameter.
665        NewTemplateParm->setDefaultArgument(
666                                        OldTemplateParm->getDefaultArgument());
667        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
668      } else if (NewTemplateParm->hasDefaultArgument()) {
669        SawDefaultArgument = true;
670        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
671      } else if (SawDefaultArgument)
672        MissingDefaultArg = true;
673    }
674
675    if (RedundantDefaultArg) {
676      // C++ [temp.param]p12:
677      //   A template-parameter shall not be given default arguments
678      //   by two different declarations in the same scope.
679      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
680      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
681      Invalid = true;
682    } else if (MissingDefaultArg) {
683      // C++ [temp.param]p11:
684      //   If a template-parameter has a default template-argument,
685      //   all subsequent template-parameters shall have a default
686      //   template-argument supplied.
687      Diag((*NewParam)->getLocation(),
688           diag::err_template_param_default_arg_missing);
689      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
690      Invalid = true;
691    }
692
693    // If we have an old template parameter list that we're merging
694    // in, move on to the next parameter.
695    if (OldParams)
696      ++OldParam;
697  }
698
699  return Invalid;
700}
701
702/// \brief Translates template arguments as provided by the parser
703/// into template arguments used by semantic analysis.
704static void
705translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
706                           SourceLocation *TemplateArgLocs,
707                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
708  TemplateArgs.reserve(TemplateArgsIn.size());
709
710  void **Args = TemplateArgsIn.getArgs();
711  bool *ArgIsType = TemplateArgsIn.getArgIsType();
712  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
713    TemplateArgs.push_back(
714      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
715                                       QualType::getFromOpaquePtr(Args[Arg]))
716                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
717  }
718}
719
720/// \brief Build a canonical version of a template argument list.
721///
722/// This function builds a canonical version of the given template
723/// argument list, where each of the template arguments has been
724/// converted into its canonical form. This routine is typically used
725/// to canonicalize a template argument list when the template name
726/// itself is dependent. When the template name refers to an actual
727/// template declaration, Sema::CheckTemplateArgumentList should be
728/// used to check and canonicalize the template arguments.
729///
730/// \param TemplateArgs The incoming template arguments.
731///
732/// \param NumTemplateArgs The number of template arguments in \p
733/// TemplateArgs.
734///
735/// \param Canonical A vector to be filled with the canonical versions
736/// of the template arguments.
737///
738/// \param Context The ASTContext in which the template arguments live.
739static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
740                                          unsigned NumTemplateArgs,
741                            llvm::SmallVectorImpl<TemplateArgument> &Canonical,
742                                          ASTContext &Context) {
743  Canonical.reserve(NumTemplateArgs);
744  for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
745    switch (TemplateArgs[Idx].getKind()) {
746    case TemplateArgument::Expression:
747      // FIXME: Build canonical expression (!)
748      Canonical.push_back(TemplateArgs[Idx]);
749      break;
750
751    case TemplateArgument::Declaration:
752      Canonical.push_back(
753                 TemplateArgument(SourceLocation(),
754                    Context.getCanonicalDecl(TemplateArgs[Idx].getAsDecl())));
755      break;
756
757    case TemplateArgument::Integral:
758      Canonical.push_back(TemplateArgument(SourceLocation(),
759                                           *TemplateArgs[Idx].getAsIntegral(),
760                                        TemplateArgs[Idx].getIntegralType()));
761
762    case TemplateArgument::Type: {
763      QualType CanonType
764        = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
765      Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
766    }
767    }
768  }
769}
770
771QualType Sema::CheckTemplateIdType(TemplateName Name,
772                                   SourceLocation TemplateLoc,
773                                   SourceLocation LAngleLoc,
774                                   const TemplateArgument *TemplateArgs,
775                                   unsigned NumTemplateArgs,
776                                   SourceLocation RAngleLoc) {
777  TemplateDecl *Template = Name.getAsTemplateDecl();
778  if (!Template) {
779    // The template name does not resolve to a template, so we just
780    // build a dependent template-id type.
781
782    // Canonicalize the template arguments to build the canonical
783    // template-id type.
784    llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
785    CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
786                                  CanonicalTemplateArgs, Context);
787
788    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
789    QualType CanonType
790      = Context.getTemplateSpecializationType(CanonName,
791                                              &CanonicalTemplateArgs[0],
792                                              CanonicalTemplateArgs.size());
793
794    // Build the dependent template-id type.
795    return Context.getTemplateSpecializationType(Name, TemplateArgs,
796                                                 NumTemplateArgs, CanonType);
797  }
798
799  // Check that the template argument list is well-formed for this
800  // template.
801  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
802  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
803                                TemplateArgs, NumTemplateArgs, RAngleLoc,
804                                ConvertedTemplateArgs))
805    return QualType();
806
807  assert((ConvertedTemplateArgs.size() ==
808            Template->getTemplateParameters()->size()) &&
809         "Converted template argument list is too short!");
810
811  QualType CanonType;
812
813  if (TemplateSpecializationType::anyDependentTemplateArguments(
814                                                      TemplateArgs,
815                                                      NumTemplateArgs)) {
816    // This class template specialization is a dependent
817    // type. Therefore, its canonical type is another class template
818    // specialization type that contains all of the converted
819    // arguments in canonical form. This ensures that, e.g., A<T> and
820    // A<T, T> have identical types when A is declared as:
821    //
822    //   template<typename T, typename U = T> struct A;
823    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
824    CanonType = Context.getTemplateSpecializationType(CanonName,
825                                                    &ConvertedTemplateArgs[0],
826                                                ConvertedTemplateArgs.size());
827  } else if (ClassTemplateDecl *ClassTemplate
828               = dyn_cast<ClassTemplateDecl>(Template)) {
829    // Find the class template specialization declaration that
830    // corresponds to these arguments.
831    llvm::FoldingSetNodeID ID;
832    ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
833                                             ConvertedTemplateArgs.size());
834    void *InsertPos = 0;
835    ClassTemplateSpecializationDecl *Decl
836      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
837    if (!Decl) {
838      // This is the first time we have referenced this class template
839      // specialization. Create the canonical declaration and add it to
840      // the set of specializations.
841      Decl = ClassTemplateSpecializationDecl::Create(Context,
842                                           ClassTemplate->getDeclContext(),
843                                                     TemplateLoc,
844                                                     ClassTemplate,
845                                                     &ConvertedTemplateArgs[0],
846                                                  ConvertedTemplateArgs.size(),
847                                                     0);
848      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
849      Decl->setLexicalDeclContext(CurContext);
850    }
851
852    CanonType = Context.getTypeDeclType(Decl);
853  }
854
855  // Build the fully-sugared type for this class template
856  // specialization, which refers back to the class template
857  // specialization we created or found.
858  return Context.getTemplateSpecializationType(Name, TemplateArgs,
859                                               NumTemplateArgs, CanonType);
860}
861
862Action::TypeResult
863Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
864                          SourceLocation LAngleLoc,
865                          ASTTemplateArgsPtr TemplateArgsIn,
866                          SourceLocation *TemplateArgLocs,
867                          SourceLocation RAngleLoc) {
868  TemplateName Template = TemplateD.getAsVal<TemplateName>();
869
870  // Translate the parser's template argument list in our AST format.
871  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
872  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
873
874  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
875                                        &TemplateArgs[0], TemplateArgs.size(),
876                                        RAngleLoc);
877  TemplateArgsIn.release();
878
879  if (Result.isNull())
880    return true;
881
882  return Result.getAsOpaquePtr();
883}
884
885/// \brief Form a dependent template name.
886///
887/// This action forms a dependent template name given the template
888/// name and its (presumably dependent) scope specifier. For
889/// example, given "MetaFun::template apply", the scope specifier \p
890/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
891/// of the "template" keyword, and "apply" is the \p Name.
892Sema::TemplateTy
893Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
894                                 const IdentifierInfo &Name,
895                                 SourceLocation NameLoc,
896                                 const CXXScopeSpec &SS) {
897  if (!SS.isSet() || SS.isInvalid())
898    return TemplateTy();
899
900  NestedNameSpecifier *Qualifier
901    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
902
903  // FIXME: member of the current instantiation
904
905  if (!Qualifier->isDependent()) {
906    // C++0x [temp.names]p5:
907    //   If a name prefixed by the keyword template is not the name of
908    //   a template, the program is ill-formed. [Note: the keyword
909    //   template may not be applied to non-template members of class
910    //   templates. -end note ] [ Note: as is the case with the
911    //   typename prefix, the template prefix is allowed in cases
912    //   where it is not strictly necessary; i.e., when the
913    //   nested-name-specifier or the expression on the left of the ->
914    //   or . is not dependent on a template-parameter, or the use
915    //   does not appear in the scope of a template. -end note]
916    //
917    // Note: C++03 was more strict here, because it banned the use of
918    // the "template" keyword prior to a template-name that was not a
919    // dependent name. C++ DR468 relaxed this requirement (the
920    // "template" keyword is now permitted). We follow the C++0x
921    // rules, even in C++03 mode, retroactively applying the DR.
922    TemplateTy Template;
923    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
924    if (TNK == TNK_Non_template) {
925      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
926        << &Name;
927      return TemplateTy();
928    }
929
930    return Template;
931  }
932
933  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
934}
935
936/// \brief Check that the given template argument list is well-formed
937/// for specializing the given template.
938bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
939                                     SourceLocation TemplateLoc,
940                                     SourceLocation LAngleLoc,
941                                     const TemplateArgument *TemplateArgs,
942                                     unsigned NumTemplateArgs,
943                                     SourceLocation RAngleLoc,
944                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
945  TemplateParameterList *Params = Template->getTemplateParameters();
946  unsigned NumParams = Params->size();
947  unsigned NumArgs = NumTemplateArgs;
948  bool Invalid = false;
949
950  if (NumArgs > NumParams ||
951      NumArgs < Params->getMinRequiredArguments()) {
952    // FIXME: point at either the first arg beyond what we can handle,
953    // or the '>', depending on whether we have too many or too few
954    // arguments.
955    SourceRange Range;
956    if (NumArgs > NumParams)
957      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
958    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
959      << (NumArgs > NumParams)
960      << (isa<ClassTemplateDecl>(Template)? 0 :
961          isa<FunctionTemplateDecl>(Template)? 1 :
962          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
963      << Template << Range;
964    Diag(Template->getLocation(), diag::note_template_decl_here)
965      << Params->getSourceRange();
966    Invalid = true;
967  }
968
969  // C++ [temp.arg]p1:
970  //   [...] The type and form of each template-argument specified in
971  //   a template-id shall match the type and form specified for the
972  //   corresponding parameter declared by the template in its
973  //   template-parameter-list.
974  unsigned ArgIdx = 0;
975  for (TemplateParameterList::iterator Param = Params->begin(),
976                                       ParamEnd = Params->end();
977       Param != ParamEnd; ++Param, ++ArgIdx) {
978    // Decode the template argument
979    TemplateArgument Arg;
980    if (ArgIdx >= NumArgs) {
981      // Retrieve the default template argument from the template
982      // parameter.
983      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
984        if (!TTP->hasDefaultArgument())
985          break;
986
987        QualType ArgType = TTP->getDefaultArgument();
988
989        // If the argument type is dependent, instantiate it now based
990        // on the previously-computed template arguments.
991        if (ArgType->isDependentType()) {
992          InstantiatingTemplate Inst(*this, TemplateLoc,
993                                     Template, &Converted[0],
994                                     Converted.size(),
995                                     SourceRange(TemplateLoc, RAngleLoc));
996
997          TemplateArgumentList TemplateArgs(Context, &Converted[0],
998                                            Converted.size(),
999                                            /*CopyArgs=*/false);
1000          ArgType = InstantiateType(ArgType, TemplateArgs,
1001                                    TTP->getDefaultArgumentLoc(),
1002                                    TTP->getDeclName());
1003        }
1004
1005        if (ArgType.isNull())
1006          return true;
1007
1008        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1009      } else if (NonTypeTemplateParmDecl *NTTP
1010                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1011        if (!NTTP->hasDefaultArgument())
1012          break;
1013
1014        // FIXME: Instantiate default argument
1015        Arg = TemplateArgument(NTTP->getDefaultArgument());
1016      } else {
1017        TemplateTemplateParmDecl *TempParm
1018          = cast<TemplateTemplateParmDecl>(*Param);
1019
1020        if (!TempParm->hasDefaultArgument())
1021          break;
1022
1023        // FIXME: Instantiate default argument
1024        Arg = TemplateArgument(TempParm->getDefaultArgument());
1025      }
1026    } else {
1027      // Retrieve the template argument produced by the user.
1028      Arg = TemplateArgs[ArgIdx];
1029    }
1030
1031
1032    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1033      // Check template type parameters.
1034      if (Arg.getKind() == TemplateArgument::Type) {
1035        if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
1036          Invalid = true;
1037
1038        // Add the converted template type argument.
1039        Converted.push_back(
1040                 TemplateArgument(Arg.getLocation(),
1041                                  Context.getCanonicalType(Arg.getAsType())));
1042        continue;
1043      }
1044
1045      // C++ [temp.arg.type]p1:
1046      //   A template-argument for a template-parameter which is a
1047      //   type shall be a type-id.
1048
1049      // We have a template type parameter but the template argument
1050      // is not a type.
1051      Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1052      Diag((*Param)->getLocation(), diag::note_template_param_here);
1053      Invalid = true;
1054    } else if (NonTypeTemplateParmDecl *NTTP
1055                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1056      // Check non-type template parameters.
1057
1058      // Instantiate the type of the non-type template parameter with
1059      // the template arguments we've seen thus far.
1060      QualType NTTPType = NTTP->getType();
1061      if (NTTPType->isDependentType()) {
1062        // Instantiate the type of the non-type template parameter.
1063        InstantiatingTemplate Inst(*this, TemplateLoc,
1064                                   Template, &Converted[0],
1065                                   Converted.size(),
1066                                   SourceRange(TemplateLoc, RAngleLoc));
1067
1068        TemplateArgumentList TemplateArgs(Context, &Converted[0],
1069                                          Converted.size(),
1070                                          /*CopyArgs=*/false);
1071        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1072                                   NTTP->getLocation(),
1073                                   NTTP->getDeclName());
1074        // If that worked, check the non-type template parameter type
1075        // for validity.
1076        if (!NTTPType.isNull())
1077          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1078                                                       NTTP->getLocation());
1079
1080        if (NTTPType.isNull()) {
1081          Invalid = true;
1082          break;
1083        }
1084      }
1085
1086      switch (Arg.getKind()) {
1087      case TemplateArgument::Expression: {
1088        Expr *E = Arg.getAsExpr();
1089        if (CheckTemplateArgument(NTTP, NTTPType, E, &Converted))
1090          Invalid = true;
1091        break;
1092      }
1093
1094      case TemplateArgument::Declaration:
1095      case TemplateArgument::Integral:
1096        // We've already checked this template argument, so just copy
1097        // it to the list of converted arguments.
1098        Converted.push_back(Arg);
1099        break;
1100
1101      case TemplateArgument::Type:
1102        // We have a non-type template parameter but the template
1103        // argument is a type.
1104
1105        // C++ [temp.arg]p2:
1106        //   In a template-argument, an ambiguity between a type-id and
1107        //   an expression is resolved to a type-id, regardless of the
1108        //   form of the corresponding template-parameter.
1109        //
1110        // We warn specifically about this case, since it can be rather
1111        // confusing for users.
1112        if (Arg.getAsType()->isFunctionType())
1113          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1114            << Arg.getAsType();
1115        else
1116          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1117        Diag((*Param)->getLocation(), diag::note_template_param_here);
1118        Invalid = true;
1119      }
1120    } else {
1121      // Check template template parameters.
1122      TemplateTemplateParmDecl *TempParm
1123        = cast<TemplateTemplateParmDecl>(*Param);
1124
1125      switch (Arg.getKind()) {
1126      case TemplateArgument::Expression: {
1127        Expr *ArgExpr = Arg.getAsExpr();
1128        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1129            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1130          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1131            Invalid = true;
1132
1133          // Add the converted template argument.
1134          Decl *D
1135            = Context.getCanonicalDecl(cast<DeclRefExpr>(ArgExpr)->getDecl());
1136          Converted.push_back(TemplateArgument(Arg.getLocation(), D));
1137          continue;
1138        }
1139      }
1140        // fall through
1141
1142      case TemplateArgument::Type: {
1143        // We have a template template parameter but the template
1144        // argument does not refer to a template.
1145        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1146        Invalid = true;
1147        break;
1148      }
1149
1150      case TemplateArgument::Declaration:
1151        // We've already checked this template argument, so just copy
1152        // it to the list of converted arguments.
1153        Converted.push_back(Arg);
1154        break;
1155
1156      case TemplateArgument::Integral:
1157        assert(false && "Integral argument with template template parameter");
1158        break;
1159      }
1160    }
1161  }
1162
1163  return Invalid;
1164}
1165
1166/// \brief Check a template argument against its corresponding
1167/// template type parameter.
1168///
1169/// This routine implements the semantics of C++ [temp.arg.type]. It
1170/// returns true if an error occurred, and false otherwise.
1171bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1172                                 QualType Arg, SourceLocation ArgLoc) {
1173  // C++ [temp.arg.type]p2:
1174  //   A local type, a type with no linkage, an unnamed type or a type
1175  //   compounded from any of these types shall not be used as a
1176  //   template-argument for a template type-parameter.
1177  //
1178  // FIXME: Perform the recursive and no-linkage type checks.
1179  const TagType *Tag = 0;
1180  if (const EnumType *EnumT = Arg->getAsEnumType())
1181    Tag = EnumT;
1182  else if (const RecordType *RecordT = Arg->getAsRecordType())
1183    Tag = RecordT;
1184  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1185    return Diag(ArgLoc, diag::err_template_arg_local_type)
1186      << QualType(Tag, 0);
1187  else if (Tag && !Tag->getDecl()->getDeclName() &&
1188           !Tag->getDecl()->getTypedefForAnonDecl()) {
1189    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1190    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1191    return true;
1192  }
1193
1194  return false;
1195}
1196
1197/// \brief Checks whether the given template argument is the address
1198/// of an object or function according to C++ [temp.arg.nontype]p1.
1199bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1200                                                          NamedDecl *&Entity) {
1201  bool Invalid = false;
1202
1203  // See through any implicit casts we added to fix the type.
1204  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1205    Arg = Cast->getSubExpr();
1206
1207  // C++0x allows nullptr, and there's no further checking to be done for that.
1208  if (Arg->getType()->isNullPtrType())
1209    return false;
1210
1211  // C++ [temp.arg.nontype]p1:
1212  //
1213  //   A template-argument for a non-type, non-template
1214  //   template-parameter shall be one of: [...]
1215  //
1216  //     -- the address of an object or function with external
1217  //        linkage, including function templates and function
1218  //        template-ids but excluding non-static class members,
1219  //        expressed as & id-expression where the & is optional if
1220  //        the name refers to a function or array, or if the
1221  //        corresponding template-parameter is a reference; or
1222  DeclRefExpr *DRE = 0;
1223
1224  // Ignore (and complain about) any excess parentheses.
1225  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1226    if (!Invalid) {
1227      Diag(Arg->getSourceRange().getBegin(),
1228           diag::err_template_arg_extra_parens)
1229        << Arg->getSourceRange();
1230      Invalid = true;
1231    }
1232
1233    Arg = Parens->getSubExpr();
1234  }
1235
1236  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1237    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1238      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1239  } else
1240    DRE = dyn_cast<DeclRefExpr>(Arg);
1241
1242  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1243    return Diag(Arg->getSourceRange().getBegin(),
1244                diag::err_template_arg_not_object_or_func_form)
1245      << Arg->getSourceRange();
1246
1247  // Cannot refer to non-static data members
1248  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1249    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1250      << Field << Arg->getSourceRange();
1251
1252  // Cannot refer to non-static member functions
1253  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1254    if (!Method->isStatic())
1255      return Diag(Arg->getSourceRange().getBegin(),
1256                  diag::err_template_arg_method)
1257        << Method << Arg->getSourceRange();
1258
1259  // Functions must have external linkage.
1260  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1261    if (Func->getStorageClass() == FunctionDecl::Static) {
1262      Diag(Arg->getSourceRange().getBegin(),
1263           diag::err_template_arg_function_not_extern)
1264        << Func << Arg->getSourceRange();
1265      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1266        << true;
1267      return true;
1268    }
1269
1270    // Okay: we've named a function with external linkage.
1271    Entity = Func;
1272    return Invalid;
1273  }
1274
1275  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1276    if (!Var->hasGlobalStorage()) {
1277      Diag(Arg->getSourceRange().getBegin(),
1278           diag::err_template_arg_object_not_extern)
1279        << Var << Arg->getSourceRange();
1280      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1281        << true;
1282      return true;
1283    }
1284
1285    // Okay: we've named an object with external linkage
1286    Entity = Var;
1287    return Invalid;
1288  }
1289
1290  // We found something else, but we don't know specifically what it is.
1291  Diag(Arg->getSourceRange().getBegin(),
1292       diag::err_template_arg_not_object_or_func)
1293      << Arg->getSourceRange();
1294  Diag(DRE->getDecl()->getLocation(),
1295       diag::note_template_arg_refers_here);
1296  return true;
1297}
1298
1299/// \brief Checks whether the given template argument is a pointer to
1300/// member constant according to C++ [temp.arg.nontype]p1.
1301bool
1302Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1303  bool Invalid = false;
1304
1305  // See through any implicit casts we added to fix the type.
1306  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1307    Arg = Cast->getSubExpr();
1308
1309  // C++0x allows nullptr, and there's no further checking to be done for that.
1310  if (Arg->getType()->isNullPtrType())
1311    return false;
1312
1313  // C++ [temp.arg.nontype]p1:
1314  //
1315  //   A template-argument for a non-type, non-template
1316  //   template-parameter shall be one of: [...]
1317  //
1318  //     -- a pointer to member expressed as described in 5.3.1.
1319  QualifiedDeclRefExpr *DRE = 0;
1320
1321  // Ignore (and complain about) any excess parentheses.
1322  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1323    if (!Invalid) {
1324      Diag(Arg->getSourceRange().getBegin(),
1325           diag::err_template_arg_extra_parens)
1326        << Arg->getSourceRange();
1327      Invalid = true;
1328    }
1329
1330    Arg = Parens->getSubExpr();
1331  }
1332
1333  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1334    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1335      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1336
1337  if (!DRE)
1338    return Diag(Arg->getSourceRange().getBegin(),
1339                diag::err_template_arg_not_pointer_to_member_form)
1340      << Arg->getSourceRange();
1341
1342  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1343    assert((isa<FieldDecl>(DRE->getDecl()) ||
1344            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1345           "Only non-static member pointers can make it here");
1346
1347    // Okay: this is the address of a non-static member, and therefore
1348    // a member pointer constant.
1349    Member = DRE->getDecl();
1350    return Invalid;
1351  }
1352
1353  // We found something else, but we don't know specifically what it is.
1354  Diag(Arg->getSourceRange().getBegin(),
1355       diag::err_template_arg_not_pointer_to_member_form)
1356      << Arg->getSourceRange();
1357  Diag(DRE->getDecl()->getLocation(),
1358       diag::note_template_arg_refers_here);
1359  return true;
1360}
1361
1362/// \brief Check a template argument against its corresponding
1363/// non-type template parameter.
1364///
1365/// This routine implements the semantics of C++ [temp.arg.nontype].
1366/// It returns true if an error occurred, and false otherwise. \p
1367/// InstantiatedParamType is the type of the non-type template
1368/// parameter after it has been instantiated.
1369///
1370/// If Converted is non-NULL and no errors occur, the value
1371/// of this argument will be added to the end of the Converted vector.
1372bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1373                                 QualType InstantiatedParamType, Expr *&Arg,
1374                         llvm::SmallVectorImpl<TemplateArgument> *Converted) {
1375  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1376
1377  // If either the parameter has a dependent type or the argument is
1378  // type-dependent, there's nothing we can check now.
1379  // FIXME: Add template argument to Converted!
1380  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1381    // FIXME: Produce a cloned, canonical expression?
1382    Converted->push_back(TemplateArgument(Arg));
1383    return false;
1384  }
1385
1386  // C++ [temp.arg.nontype]p5:
1387  //   The following conversions are performed on each expression used
1388  //   as a non-type template-argument. If a non-type
1389  //   template-argument cannot be converted to the type of the
1390  //   corresponding template-parameter then the program is
1391  //   ill-formed.
1392  //
1393  //     -- for a non-type template-parameter of integral or
1394  //        enumeration type, integral promotions (4.5) and integral
1395  //        conversions (4.7) are applied.
1396  QualType ParamType = InstantiatedParamType;
1397  QualType ArgType = Arg->getType();
1398  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1399    // C++ [temp.arg.nontype]p1:
1400    //   A template-argument for a non-type, non-template
1401    //   template-parameter shall be one of:
1402    //
1403    //     -- an integral constant-expression of integral or enumeration
1404    //        type; or
1405    //     -- the name of a non-type template-parameter; or
1406    SourceLocation NonConstantLoc;
1407    llvm::APSInt Value;
1408    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1409      Diag(Arg->getSourceRange().getBegin(),
1410           diag::err_template_arg_not_integral_or_enumeral)
1411        << ArgType << Arg->getSourceRange();
1412      Diag(Param->getLocation(), diag::note_template_param_here);
1413      return true;
1414    } else if (!Arg->isValueDependent() &&
1415               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1416      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1417        << ArgType << Arg->getSourceRange();
1418      return true;
1419    }
1420
1421    // FIXME: We need some way to more easily get the unqualified form
1422    // of the types without going all the way to the
1423    // canonical type.
1424    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1425      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1426    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1427      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1428
1429    // Try to convert the argument to the parameter's type.
1430    if (ParamType == ArgType) {
1431      // Okay: no conversion necessary
1432    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1433               !ParamType->isEnumeralType()) {
1434      // This is an integral promotion or conversion.
1435      ImpCastExprToType(Arg, ParamType);
1436    } else {
1437      // We can't perform this conversion.
1438      Diag(Arg->getSourceRange().getBegin(),
1439           diag::err_template_arg_not_convertible)
1440        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1441      Diag(Param->getLocation(), diag::note_template_param_here);
1442      return true;
1443    }
1444
1445    QualType IntegerType = Context.getCanonicalType(ParamType);
1446    if (const EnumType *Enum = IntegerType->getAsEnumType())
1447      IntegerType = Enum->getDecl()->getIntegerType();
1448
1449    if (!Arg->isValueDependent()) {
1450      // Check that an unsigned parameter does not receive a negative
1451      // value.
1452      if (IntegerType->isUnsignedIntegerType()
1453          && (Value.isSigned() && Value.isNegative())) {
1454        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1455          << Value.toString(10) << Param->getType()
1456          << Arg->getSourceRange();
1457        Diag(Param->getLocation(), diag::note_template_param_here);
1458        return true;
1459      }
1460
1461      // Check that we don't overflow the template parameter type.
1462      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1463      if (Value.getActiveBits() > AllowedBits) {
1464        Diag(Arg->getSourceRange().getBegin(),
1465             diag::err_template_arg_too_large)
1466          << Value.toString(10) << Param->getType()
1467          << Arg->getSourceRange();
1468        Diag(Param->getLocation(), diag::note_template_param_here);
1469        return true;
1470      }
1471
1472      if (Value.getBitWidth() != AllowedBits)
1473        Value.extOrTrunc(AllowedBits);
1474      Value.setIsSigned(IntegerType->isSignedIntegerType());
1475    }
1476
1477    if (Converted) {
1478      // Add the value of this argument to the list of converted
1479      // arguments. We use the bitwidth and signedness of the template
1480      // parameter.
1481      if (Arg->isValueDependent()) {
1482        // The argument is value-dependent. Create a new
1483        // TemplateArgument with the converted expression.
1484        Converted->push_back(TemplateArgument(Arg));
1485        return false;
1486      }
1487
1488      Converted->push_back(TemplateArgument(StartLoc, Value,
1489                                   Context.getCanonicalType(IntegerType)));
1490    }
1491
1492    return false;
1493  }
1494
1495  // Handle pointer-to-function, reference-to-function, and
1496  // pointer-to-member-function all in (roughly) the same way.
1497  if (// -- For a non-type template-parameter of type pointer to
1498      //    function, only the function-to-pointer conversion (4.3) is
1499      //    applied. If the template-argument represents a set of
1500      //    overloaded functions (or a pointer to such), the matching
1501      //    function is selected from the set (13.4).
1502      // In C++0x, any std::nullptr_t value can be converted.
1503      (ParamType->isPointerType() &&
1504       ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
1505      // -- For a non-type template-parameter of type reference to
1506      //    function, no conversions apply. If the template-argument
1507      //    represents a set of overloaded functions, the matching
1508      //    function is selected from the set (13.4).
1509      (ParamType->isReferenceType() &&
1510       ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
1511      // -- For a non-type template-parameter of type pointer to
1512      //    member function, no conversions apply. If the
1513      //    template-argument represents a set of overloaded member
1514      //    functions, the matching member function is selected from
1515      //    the set (13.4).
1516      // Again, C++0x allows a std::nullptr_t value.
1517      (ParamType->isMemberPointerType() &&
1518       ParamType->getAsMemberPointerType()->getPointeeType()
1519         ->isFunctionType())) {
1520    if (Context.hasSameUnqualifiedType(ArgType,
1521                                       ParamType.getNonReferenceType())) {
1522      // We don't have to do anything: the types already match.
1523    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1524                 ParamType->isMemberPointerType())) {
1525      ArgType = ParamType;
1526      ImpCastExprToType(Arg, ParamType);
1527    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1528      ArgType = Context.getPointerType(ArgType);
1529      ImpCastExprToType(Arg, ArgType);
1530    } else if (FunctionDecl *Fn
1531                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1532      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1533        return true;
1534
1535      FixOverloadedFunctionReference(Arg, Fn);
1536      ArgType = Arg->getType();
1537      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1538        ArgType = Context.getPointerType(Arg->getType());
1539        ImpCastExprToType(Arg, ArgType);
1540      }
1541    }
1542
1543    if (!Context.hasSameUnqualifiedType(ArgType,
1544                                        ParamType.getNonReferenceType())) {
1545      // We can't perform this conversion.
1546      Diag(Arg->getSourceRange().getBegin(),
1547           diag::err_template_arg_not_convertible)
1548        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1549      Diag(Param->getLocation(), diag::note_template_param_here);
1550      return true;
1551    }
1552
1553    if (ParamType->isMemberPointerType()) {
1554      NamedDecl *Member = 0;
1555      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1556        return true;
1557
1558      if (Converted) {
1559        Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1560        Converted->push_back(TemplateArgument(StartLoc, Member));
1561      }
1562
1563      return false;
1564    }
1565
1566    NamedDecl *Entity = 0;
1567    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1568      return true;
1569
1570    if (Converted) {
1571      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1572      Converted->push_back(TemplateArgument(StartLoc, Entity));
1573    }
1574    return false;
1575  }
1576
1577  if (ParamType->isPointerType()) {
1578    //   -- for a non-type template-parameter of type pointer to
1579    //      object, qualification conversions (4.4) and the
1580    //      array-to-pointer conversion (4.2) are applied.
1581    // C++0x also allows a value of std::nullptr_t.
1582    assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
1583           "Only object pointers allowed here");
1584
1585    if (ArgType->isNullPtrType()) {
1586      ArgType = ParamType;
1587      ImpCastExprToType(Arg, ParamType);
1588    } else if (ArgType->isArrayType()) {
1589      ArgType = Context.getArrayDecayedType(ArgType);
1590      ImpCastExprToType(Arg, ArgType);
1591    }
1592
1593    if (IsQualificationConversion(ArgType, ParamType)) {
1594      ArgType = ParamType;
1595      ImpCastExprToType(Arg, ParamType);
1596    }
1597
1598    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1599      // We can't perform this conversion.
1600      Diag(Arg->getSourceRange().getBegin(),
1601           diag::err_template_arg_not_convertible)
1602        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1603      Diag(Param->getLocation(), diag::note_template_param_here);
1604      return true;
1605    }
1606
1607    NamedDecl *Entity = 0;
1608    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1609      return true;
1610
1611    if (Converted) {
1612      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1613      Converted->push_back(TemplateArgument(StartLoc, Entity));
1614    }
1615
1616    return false;
1617  }
1618
1619  if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
1620    //   -- For a non-type template-parameter of type reference to
1621    //      object, no conversions apply. The type referred to by the
1622    //      reference may be more cv-qualified than the (otherwise
1623    //      identical) type of the template-argument. The
1624    //      template-parameter is bound directly to the
1625    //      template-argument, which must be an lvalue.
1626    assert(ParamRefType->getPointeeType()->isObjectType() &&
1627           "Only object references allowed here");
1628
1629    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1630      Diag(Arg->getSourceRange().getBegin(),
1631           diag::err_template_arg_no_ref_bind)
1632        << InstantiatedParamType << Arg->getType()
1633        << Arg->getSourceRange();
1634      Diag(Param->getLocation(), diag::note_template_param_here);
1635      return true;
1636    }
1637
1638    unsigned ParamQuals
1639      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1640    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1641
1642    if ((ParamQuals | ArgQuals) != ParamQuals) {
1643      Diag(Arg->getSourceRange().getBegin(),
1644           diag::err_template_arg_ref_bind_ignores_quals)
1645        << InstantiatedParamType << Arg->getType()
1646        << Arg->getSourceRange();
1647      Diag(Param->getLocation(), diag::note_template_param_here);
1648      return true;
1649    }
1650
1651    NamedDecl *Entity = 0;
1652    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1653      return true;
1654
1655    if (Converted) {
1656      Entity = cast<NamedDecl>(Context.getCanonicalDecl(Entity));
1657      Converted->push_back(TemplateArgument(StartLoc, Entity));
1658    }
1659
1660    return false;
1661  }
1662
1663  //     -- For a non-type template-parameter of type pointer to data
1664  //        member, qualification conversions (4.4) are applied.
1665  // C++0x allows std::nullptr_t values.
1666  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1667
1668  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1669    // Types match exactly: nothing more to do here.
1670  } else if (ArgType->isNullPtrType()) {
1671    ImpCastExprToType(Arg, ParamType);
1672  } else if (IsQualificationConversion(ArgType, ParamType)) {
1673    ImpCastExprToType(Arg, ParamType);
1674  } else {
1675    // We can't perform this conversion.
1676    Diag(Arg->getSourceRange().getBegin(),
1677         diag::err_template_arg_not_convertible)
1678      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1679    Diag(Param->getLocation(), diag::note_template_param_here);
1680    return true;
1681  }
1682
1683  NamedDecl *Member = 0;
1684  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1685    return true;
1686
1687  if (Converted) {
1688    Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1689    Converted->push_back(TemplateArgument(StartLoc, Member));
1690  }
1691
1692  return false;
1693}
1694
1695/// \brief Check a template argument against its corresponding
1696/// template template parameter.
1697///
1698/// This routine implements the semantics of C++ [temp.arg.template].
1699/// It returns true if an error occurred, and false otherwise.
1700bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1701                                 DeclRefExpr *Arg) {
1702  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1703  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1704
1705  // C++ [temp.arg.template]p1:
1706  //   A template-argument for a template template-parameter shall be
1707  //   the name of a class template, expressed as id-expression. Only
1708  //   primary class templates are considered when matching the
1709  //   template template argument with the corresponding parameter;
1710  //   partial specializations are not considered even if their
1711  //   parameter lists match that of the template template parameter.
1712  if (!isa<ClassTemplateDecl>(Template)) {
1713    assert(isa<FunctionTemplateDecl>(Template) &&
1714           "Only function templates are possible here");
1715    Diag(Arg->getSourceRange().getBegin(),
1716         diag::note_template_arg_refers_here_func)
1717      << Template;
1718  }
1719
1720  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1721                                         Param->getTemplateParameters(),
1722                                         true, true,
1723                                         Arg->getSourceRange().getBegin());
1724}
1725
1726/// \brief Determine whether the given template parameter lists are
1727/// equivalent.
1728///
1729/// \param New  The new template parameter list, typically written in the
1730/// source code as part of a new template declaration.
1731///
1732/// \param Old  The old template parameter list, typically found via
1733/// name lookup of the template declared with this template parameter
1734/// list.
1735///
1736/// \param Complain  If true, this routine will produce a diagnostic if
1737/// the template parameter lists are not equivalent.
1738///
1739/// \param IsTemplateTemplateParm  If true, this routine is being
1740/// called to compare the template parameter lists of a template
1741/// template parameter.
1742///
1743/// \param TemplateArgLoc If this source location is valid, then we
1744/// are actually checking the template parameter list of a template
1745/// argument (New) against the template parameter list of its
1746/// corresponding template template parameter (Old). We produce
1747/// slightly different diagnostics in this scenario.
1748///
1749/// \returns True if the template parameter lists are equal, false
1750/// otherwise.
1751bool
1752Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
1753                                     TemplateParameterList *Old,
1754                                     bool Complain,
1755                                     bool IsTemplateTemplateParm,
1756                                     SourceLocation TemplateArgLoc) {
1757  if (Old->size() != New->size()) {
1758    if (Complain) {
1759      unsigned NextDiag = diag::err_template_param_list_different_arity;
1760      if (TemplateArgLoc.isValid()) {
1761        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1762        NextDiag = diag::note_template_param_list_different_arity;
1763      }
1764      Diag(New->getTemplateLoc(), NextDiag)
1765          << (New->size() > Old->size())
1766          << IsTemplateTemplateParm
1767          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
1768      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
1769        << IsTemplateTemplateParm
1770        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
1771    }
1772
1773    return false;
1774  }
1775
1776  for (TemplateParameterList::iterator OldParm = Old->begin(),
1777         OldParmEnd = Old->end(), NewParm = New->begin();
1778       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
1779    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
1780      unsigned NextDiag = diag::err_template_param_different_kind;
1781      if (TemplateArgLoc.isValid()) {
1782        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1783        NextDiag = diag::note_template_param_different_kind;
1784      }
1785      Diag((*NewParm)->getLocation(), NextDiag)
1786        << IsTemplateTemplateParm;
1787      Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
1788        << IsTemplateTemplateParm;
1789      return false;
1790    }
1791
1792    if (isa<TemplateTypeParmDecl>(*OldParm)) {
1793      // Okay; all template type parameters are equivalent (since we
1794      // know we're at the same index).
1795#if 0
1796      // FIXME: Enable this code in debug mode *after* we properly go
1797      // through and "instantiate" the template parameter lists of
1798      // template template parameters. It's only after this
1799      // instantiation that (1) any dependent types within the
1800      // template parameter list of the template template parameter
1801      // can be checked, and (2) the template type parameter depths
1802      // will match up.
1803      QualType OldParmType
1804        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
1805      QualType NewParmType
1806        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
1807      assert(Context.getCanonicalType(OldParmType) ==
1808             Context.getCanonicalType(NewParmType) &&
1809             "type parameter mismatch?");
1810#endif
1811    } else if (NonTypeTemplateParmDecl *OldNTTP
1812                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
1813      // The types of non-type template parameters must agree.
1814      NonTypeTemplateParmDecl *NewNTTP
1815        = cast<NonTypeTemplateParmDecl>(*NewParm);
1816      if (Context.getCanonicalType(OldNTTP->getType()) !=
1817            Context.getCanonicalType(NewNTTP->getType())) {
1818        if (Complain) {
1819          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
1820          if (TemplateArgLoc.isValid()) {
1821            Diag(TemplateArgLoc,
1822                 diag::err_template_arg_template_params_mismatch);
1823            NextDiag = diag::note_template_nontype_parm_different_type;
1824          }
1825          Diag(NewNTTP->getLocation(), NextDiag)
1826            << NewNTTP->getType()
1827            << IsTemplateTemplateParm;
1828          Diag(OldNTTP->getLocation(),
1829               diag::note_template_nontype_parm_prev_declaration)
1830            << OldNTTP->getType();
1831        }
1832        return false;
1833      }
1834    } else {
1835      // The template parameter lists of template template
1836      // parameters must agree.
1837      // FIXME: Could we perform a faster "type" comparison here?
1838      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
1839             "Only template template parameters handled here");
1840      TemplateTemplateParmDecl *OldTTP
1841        = cast<TemplateTemplateParmDecl>(*OldParm);
1842      TemplateTemplateParmDecl *NewTTP
1843        = cast<TemplateTemplateParmDecl>(*NewParm);
1844      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
1845                                          OldTTP->getTemplateParameters(),
1846                                          Complain,
1847                                          /*IsTemplateTemplateParm=*/true,
1848                                          TemplateArgLoc))
1849        return false;
1850    }
1851  }
1852
1853  return true;
1854}
1855
1856/// \brief Check whether a template can be declared within this scope.
1857///
1858/// If the template declaration is valid in this scope, returns
1859/// false. Otherwise, issues a diagnostic and returns true.
1860bool
1861Sema::CheckTemplateDeclScope(Scope *S,
1862                             MultiTemplateParamsArg &TemplateParameterLists) {
1863  assert(TemplateParameterLists.size() > 0 && "Not a template");
1864
1865  // Find the nearest enclosing declaration scope.
1866  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1867         (S->getFlags() & Scope::TemplateParamScope) != 0)
1868    S = S->getParent();
1869
1870  TemplateParameterList *TemplateParams =
1871    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
1872  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
1873  SourceRange TemplateRange
1874    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
1875
1876  // C++ [temp]p2:
1877  //   A template-declaration can appear only as a namespace scope or
1878  //   class scope declaration.
1879  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1880  while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
1881    if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
1882      return Diag(TemplateLoc, diag::err_template_linkage)
1883        << TemplateRange;
1884
1885    Ctx = Ctx->getParent();
1886  }
1887
1888  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
1889    return false;
1890
1891  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
1892    << TemplateRange;
1893}
1894
1895/// \brief Check whether a class template specialization or explicit
1896/// instantiation in the current context is well-formed.
1897///
1898/// This routine determines whether a class template specialization or
1899/// explicit instantiation can be declared in the current context
1900/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
1901/// appropriate diagnostics if there was an error. It returns true if
1902// there was an error that we cannot recover from, and false otherwise.
1903bool
1904Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
1905                                   ClassTemplateSpecializationDecl *PrevDecl,
1906                                            SourceLocation TemplateNameLoc,
1907                                            SourceRange ScopeSpecifierRange,
1908                                            bool ExplicitInstantiation) {
1909  // C++ [temp.expl.spec]p2:
1910  //   An explicit specialization shall be declared in the namespace
1911  //   of which the template is a member, or, for member templates, in
1912  //   the namespace of which the enclosing class or enclosing class
1913  //   template is a member. An explicit specialization of a member
1914  //   function, member class or static data member of a class
1915  //   template shall be declared in the namespace of which the class
1916  //   template is a member. Such a declaration may also be a
1917  //   definition. If the declaration is not a definition, the
1918  //   specialization may be defined later in the name- space in which
1919  //   the explicit specialization was declared, or in a namespace
1920  //   that encloses the one in which the explicit specialization was
1921  //   declared.
1922  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1923    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
1924      << ExplicitInstantiation << ClassTemplate;
1925    return true;
1926  }
1927
1928  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
1929  DeclContext *TemplateContext
1930    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
1931  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
1932      !ExplicitInstantiation) {
1933    // There is no prior declaration of this entity, so this
1934    // specialization must be in the same context as the template
1935    // itself.
1936    if (DC != TemplateContext) {
1937      if (isa<TranslationUnitDecl>(TemplateContext))
1938        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
1939          << ClassTemplate << ScopeSpecifierRange;
1940      else if (isa<NamespaceDecl>(TemplateContext))
1941        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
1942          << ClassTemplate << cast<NamedDecl>(TemplateContext)
1943          << ScopeSpecifierRange;
1944
1945      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1946    }
1947
1948    return false;
1949  }
1950
1951  // We have a previous declaration of this entity. Make sure that
1952  // this redeclaration (or definition) occurs in an enclosing namespace.
1953  if (!CurContext->Encloses(TemplateContext)) {
1954    // FIXME: In C++98, we would like to turn these errors into
1955    // warnings, dependent on a -Wc++0x flag.
1956    bool SuppressedDiag = false;
1957    if (isa<TranslationUnitDecl>(TemplateContext)) {
1958      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1959        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
1960          << ExplicitInstantiation << ClassTemplate << ScopeSpecifierRange;
1961      else
1962        SuppressedDiag = true;
1963    } else if (isa<NamespaceDecl>(TemplateContext)) {
1964      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1965        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
1966          << ExplicitInstantiation << ClassTemplate
1967          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
1968      else
1969        SuppressedDiag = true;
1970    }
1971
1972    if (!SuppressedDiag)
1973      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1974  }
1975
1976  return false;
1977}
1978
1979Sema::DeclResult
1980Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
1981                                       SourceLocation KWLoc,
1982                                       const CXXScopeSpec &SS,
1983                                       TemplateTy TemplateD,
1984                                       SourceLocation TemplateNameLoc,
1985                                       SourceLocation LAngleLoc,
1986                                       ASTTemplateArgsPtr TemplateArgsIn,
1987                                       SourceLocation *TemplateArgLocs,
1988                                       SourceLocation RAngleLoc,
1989                                       AttributeList *Attr,
1990                               MultiTemplateParamsArg TemplateParameterLists) {
1991  // Find the class template we're specializing
1992  TemplateName Name = TemplateD.getAsVal<TemplateName>();
1993  ClassTemplateDecl *ClassTemplate
1994    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
1995
1996  // Check the validity of the template headers that introduce this
1997  // template.
1998  // FIXME: Once we have member templates, we'll need to check
1999  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2000  // template<> headers.
2001  if (TemplateParameterLists.size() == 0)
2002    Diag(KWLoc, diag::err_template_spec_needs_header)
2003      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2004  else {
2005    TemplateParameterList *TemplateParams
2006      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2007    if (TemplateParameterLists.size() > 1) {
2008      Diag(TemplateParams->getTemplateLoc(),
2009           diag::err_template_spec_extra_headers);
2010      return true;
2011    }
2012
2013    if (TemplateParams->size() > 0) {
2014      // FIXME: No support for class template partial specialization.
2015      Diag(TemplateParams->getTemplateLoc(), diag::unsup_template_partial_spec);
2016      return true;
2017    }
2018  }
2019
2020  // Check that the specialization uses the same tag kind as the
2021  // original template.
2022  TagDecl::TagKind Kind;
2023  switch (TagSpec) {
2024  default: assert(0 && "Unknown tag type!");
2025  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2026  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2027  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2028  }
2029  if (!isAcceptableTagRedeclaration(
2030                              ClassTemplate->getTemplatedDecl()->getTagKind(),
2031                                    Kind)) {
2032    Diag(KWLoc, diag::err_use_with_wrong_tag)
2033      << ClassTemplate
2034      << CodeModificationHint::CreateReplacement(KWLoc,
2035                            ClassTemplate->getTemplatedDecl()->getKindName());
2036    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2037         diag::note_previous_use);
2038    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2039  }
2040
2041  // Translate the parser's template argument list in our AST format.
2042  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2043  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2044
2045  // Check that the template argument list is well-formed for this
2046  // template.
2047  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
2048  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2049                                &TemplateArgs[0], TemplateArgs.size(),
2050                                RAngleLoc, ConvertedTemplateArgs))
2051    return true;
2052
2053  assert((ConvertedTemplateArgs.size() ==
2054            ClassTemplate->getTemplateParameters()->size()) &&
2055         "Converted template argument list is too short!");
2056
2057  // Find the class template specialization declaration that
2058  // corresponds to these arguments.
2059  llvm::FoldingSetNodeID ID;
2060  ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2061                                           ConvertedTemplateArgs.size());
2062  void *InsertPos = 0;
2063  ClassTemplateSpecializationDecl *PrevDecl
2064    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2065
2066  ClassTemplateSpecializationDecl *Specialization = 0;
2067
2068  // Check whether we can declare a class template specialization in
2069  // the current scope.
2070  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2071                                            TemplateNameLoc,
2072                                            SS.getRange(),
2073                                            /*ExplicitInstantiation=*/false))
2074    return true;
2075
2076  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2077    // Since the only prior class template specialization with these
2078    // arguments was referenced but not declared, reuse that
2079    // declaration node as our own, updating its source location to
2080    // reflect our new declaration.
2081    Specialization = PrevDecl;
2082    Specialization->setLocation(TemplateNameLoc);
2083    PrevDecl = 0;
2084  } else {
2085    // Create a new class template specialization declaration node for
2086    // this explicit specialization.
2087    Specialization
2088      = ClassTemplateSpecializationDecl::Create(Context,
2089                                             ClassTemplate->getDeclContext(),
2090                                                TemplateNameLoc,
2091                                                ClassTemplate,
2092                                                &ConvertedTemplateArgs[0],
2093                                                ConvertedTemplateArgs.size(),
2094                                                PrevDecl);
2095
2096    if (PrevDecl) {
2097      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2098      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2099    } else {
2100      ClassTemplate->getSpecializations().InsertNode(Specialization,
2101                                                     InsertPos);
2102    }
2103  }
2104
2105  // Note that this is an explicit specialization.
2106  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2107
2108  // Check that this isn't a redefinition of this specialization.
2109  if (TK == TK_Definition) {
2110    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2111      // FIXME: Should also handle explicit specialization after
2112      // implicit instantiation with a special diagnostic.
2113      SourceRange Range(TemplateNameLoc, RAngleLoc);
2114      Diag(TemplateNameLoc, diag::err_redefinition)
2115        << Specialization << Range;
2116      Diag(Def->getLocation(), diag::note_previous_definition);
2117      Specialization->setInvalidDecl();
2118      return true;
2119    }
2120  }
2121
2122  // Build the fully-sugared type for this class template
2123  // specialization as the user wrote in the specialization
2124  // itself. This means that we'll pretty-print the type retrieved
2125  // from the specialization's declaration the way that the user
2126  // actually wrote the specialization, rather than formatting the
2127  // name based on the "canonical" representation used to store the
2128  // template arguments in the specialization.
2129  QualType WrittenTy
2130    = Context.getTemplateSpecializationType(Name,
2131                                            &TemplateArgs[0],
2132                                            TemplateArgs.size(),
2133                                  Context.getTypeDeclType(Specialization));
2134  Specialization->setTypeAsWritten(WrittenTy);
2135  TemplateArgsIn.release();
2136
2137  // C++ [temp.expl.spec]p9:
2138  //   A template explicit specialization is in the scope of the
2139  //   namespace in which the template was defined.
2140  //
2141  // We actually implement this paragraph where we set the semantic
2142  // context (in the creation of the ClassTemplateSpecializationDecl),
2143  // but we also maintain the lexical context where the actual
2144  // definition occurs.
2145  Specialization->setLexicalDeclContext(CurContext);
2146
2147  // We may be starting the definition of this specialization.
2148  if (TK == TK_Definition)
2149    Specialization->startDefinition();
2150
2151  // Add the specialization into its lexical context, so that it can
2152  // be seen when iterating through the list of declarations in that
2153  // context. However, specializations are not found by name lookup.
2154  CurContext->addDecl(Context, Specialization);
2155  return DeclPtrTy::make(Specialization);
2156}
2157
2158Sema::DeclResult
2159Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2160                                 unsigned TagSpec,
2161                                 SourceLocation KWLoc,
2162                                 const CXXScopeSpec &SS,
2163                                 TemplateTy TemplateD,
2164                                 SourceLocation TemplateNameLoc,
2165                                 SourceLocation LAngleLoc,
2166                                 ASTTemplateArgsPtr TemplateArgsIn,
2167                                 SourceLocation *TemplateArgLocs,
2168                                 SourceLocation RAngleLoc,
2169                                 AttributeList *Attr) {
2170  // Find the class template we're specializing
2171  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2172  ClassTemplateDecl *ClassTemplate
2173    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2174
2175  // Check that the specialization uses the same tag kind as the
2176  // original template.
2177  TagDecl::TagKind Kind;
2178  switch (TagSpec) {
2179  default: assert(0 && "Unknown tag type!");
2180  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2181  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2182  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2183  }
2184  if (!isAcceptableTagRedeclaration(
2185                              ClassTemplate->getTemplatedDecl()->getTagKind(),
2186                                    Kind)) {
2187    Diag(KWLoc, diag::err_use_with_wrong_tag)
2188      << ClassTemplate
2189      << CodeModificationHint::CreateReplacement(KWLoc,
2190                            ClassTemplate->getTemplatedDecl()->getKindName());
2191    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2192         diag::note_previous_use);
2193    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2194  }
2195
2196  // C++0x [temp.explicit]p2:
2197  //   [...] An explicit instantiation shall appear in an enclosing
2198  //   namespace of its template. [...]
2199  //
2200  // This is C++ DR 275.
2201  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2202                                            TemplateNameLoc,
2203                                            SS.getRange(),
2204                                            /*ExplicitInstantiation=*/true))
2205    return true;
2206
2207  // Translate the parser's template argument list in our AST format.
2208  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2209  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2210
2211  // Check that the template argument list is well-formed for this
2212  // template.
2213  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
2214  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2215                                &TemplateArgs[0], TemplateArgs.size(),
2216                                RAngleLoc, ConvertedTemplateArgs))
2217    return true;
2218
2219  assert((ConvertedTemplateArgs.size() ==
2220            ClassTemplate->getTemplateParameters()->size()) &&
2221         "Converted template argument list is too short!");
2222
2223  // Find the class template specialization declaration that
2224  // corresponds to these arguments.
2225  llvm::FoldingSetNodeID ID;
2226  ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2227                                           ConvertedTemplateArgs.size());
2228  void *InsertPos = 0;
2229  ClassTemplateSpecializationDecl *PrevDecl
2230    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2231
2232  ClassTemplateSpecializationDecl *Specialization = 0;
2233
2234  bool SpecializationRequiresInstantiation = true;
2235  if (PrevDecl) {
2236    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2237      // This particular specialization has already been declared or
2238      // instantiated. We cannot explicitly instantiate it.
2239      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2240        << Context.getTypeDeclType(PrevDecl);
2241      Diag(PrevDecl->getLocation(),
2242           diag::note_previous_explicit_instantiation);
2243      return DeclPtrTy::make(PrevDecl);
2244    }
2245
2246    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2247      // C++0x [temp.explicit]p4:
2248      //   For a given set of template parameters, if an explicit
2249      //   instantiation of a template appears after a declaration of
2250      //   an explicit specialization for that template, the explicit
2251      //   instantiation has no effect.
2252      if (!getLangOptions().CPlusPlus0x) {
2253        Diag(TemplateNameLoc,
2254             diag::ext_explicit_instantiation_after_specialization)
2255          << Context.getTypeDeclType(PrevDecl);
2256        Diag(PrevDecl->getLocation(),
2257             diag::note_previous_template_specialization);
2258      }
2259
2260      // Create a new class template specialization declaration node
2261      // for this explicit specialization. This node is only used to
2262      // record the existence of this explicit instantiation for
2263      // accurate reproduction of the source code; we don't actually
2264      // use it for anything, since it is semantically irrelevant.
2265      Specialization
2266        = ClassTemplateSpecializationDecl::Create(Context,
2267                                             ClassTemplate->getDeclContext(),
2268                                                  TemplateNameLoc,
2269                                                  ClassTemplate,
2270                                                  &ConvertedTemplateArgs[0],
2271                                                  ConvertedTemplateArgs.size(),
2272                                                  0);
2273      Specialization->setLexicalDeclContext(CurContext);
2274      CurContext->addDecl(Context, Specialization);
2275      return DeclPtrTy::make(Specialization);
2276    }
2277
2278    // If we have already (implicitly) instantiated this
2279    // specialization, there is less work to do.
2280    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2281      SpecializationRequiresInstantiation = false;
2282
2283    // Since the only prior class template specialization with these
2284    // arguments was referenced but not declared, reuse that
2285    // declaration node as our own, updating its source location to
2286    // reflect our new declaration.
2287    Specialization = PrevDecl;
2288    Specialization->setLocation(TemplateNameLoc);
2289    PrevDecl = 0;
2290  } else {
2291    // Create a new class template specialization declaration node for
2292    // this explicit specialization.
2293    Specialization
2294      = ClassTemplateSpecializationDecl::Create(Context,
2295                                             ClassTemplate->getDeclContext(),
2296                                                TemplateNameLoc,
2297                                                ClassTemplate,
2298                                                &ConvertedTemplateArgs[0],
2299                                                ConvertedTemplateArgs.size(),
2300                                                0);
2301
2302    ClassTemplate->getSpecializations().InsertNode(Specialization,
2303                                                   InsertPos);
2304  }
2305
2306  // Build the fully-sugared type for this explicit instantiation as
2307  // the user wrote in the explicit instantiation itself. This means
2308  // that we'll pretty-print the type retrieved from the
2309  // specialization's declaration the way that the user actually wrote
2310  // the explicit instantiation, rather than formatting the name based
2311  // on the "canonical" representation used to store the template
2312  // arguments in the specialization.
2313  QualType WrittenTy
2314    = Context.getTemplateSpecializationType(Name,
2315                                            &TemplateArgs[0],
2316                                            TemplateArgs.size(),
2317                                  Context.getTypeDeclType(Specialization));
2318  Specialization->setTypeAsWritten(WrittenTy);
2319  TemplateArgsIn.release();
2320
2321  // Add the explicit instantiation into its lexical context. However,
2322  // since explicit instantiations are never found by name lookup, we
2323  // just put it into the declaration context directly.
2324  Specialization->setLexicalDeclContext(CurContext);
2325  CurContext->addDecl(Context, Specialization);
2326
2327  // C++ [temp.explicit]p3:
2328  //   A definition of a class template or class member template
2329  //   shall be in scope at the point of the explicit instantiation of
2330  //   the class template or class member template.
2331  //
2332  // This check comes when we actually try to perform the
2333  // instantiation.
2334  if (SpecializationRequiresInstantiation &&
2335      InstantiateClassTemplateSpecialization(Specialization, true))
2336    return true;
2337
2338  // FIXME: Instantiate all of the members of the template (that
2339  // haven't already been instantiated!).
2340
2341  return DeclPtrTy::make(Specialization);
2342}
2343
2344Sema::TypeResult
2345Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2346                        const IdentifierInfo &II, SourceLocation IdLoc) {
2347  NestedNameSpecifier *NNS
2348    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2349  if (!NNS)
2350    return true;
2351
2352  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2353  if (T.isNull())
2354    return true;
2355  return T.getAsOpaquePtr();
2356}
2357
2358Sema::TypeResult
2359Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2360                        SourceLocation TemplateLoc, TypeTy *Ty) {
2361  QualType T = QualType::getFromOpaquePtr(Ty);
2362  NestedNameSpecifier *NNS
2363    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2364  const TemplateSpecializationType *TemplateId
2365    = T->getAsTemplateSpecializationType();
2366  assert(TemplateId && "Expected a template specialization type");
2367
2368  if (NNS->isDependent())
2369    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2370
2371  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2372}
2373
2374/// \brief Build the type that describes a C++ typename specifier,
2375/// e.g., "typename T::type".
2376QualType
2377Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2378                        SourceRange Range) {
2379  CXXRecordDecl *CurrentInstantiation = 0;
2380  if (NNS->isDependent()) {
2381    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2382
2383    // If the nested-name-specifier does not refer to the current
2384    // instantiation, then build a typename type.
2385    if (!CurrentInstantiation)
2386      return Context.getTypenameType(NNS, &II);
2387  }
2388
2389  DeclContext *Ctx = 0;
2390
2391  if (CurrentInstantiation)
2392    Ctx = CurrentInstantiation;
2393  else {
2394    CXXScopeSpec SS;
2395    SS.setScopeRep(NNS);
2396    SS.setRange(Range);
2397    if (RequireCompleteDeclContext(SS))
2398      return QualType();
2399
2400    Ctx = computeDeclContext(SS);
2401  }
2402  assert(Ctx && "No declaration context?");
2403
2404  DeclarationName Name(&II);
2405  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
2406                                            false);
2407  unsigned DiagID = 0;
2408  Decl *Referenced = 0;
2409  switch (Result.getKind()) {
2410  case LookupResult::NotFound:
2411    if (Ctx->isTranslationUnit())
2412      DiagID = diag::err_typename_nested_not_found_global;
2413    else
2414      DiagID = diag::err_typename_nested_not_found;
2415    break;
2416
2417  case LookupResult::Found:
2418    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
2419      // We found a type. Build a QualifiedNameType, since the
2420      // typename-specifier was just sugar. FIXME: Tell
2421      // QualifiedNameType that it has a "typename" prefix.
2422      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
2423    }
2424
2425    DiagID = diag::err_typename_nested_not_type;
2426    Referenced = Result.getAsDecl();
2427    break;
2428
2429  case LookupResult::FoundOverloaded:
2430    DiagID = diag::err_typename_nested_not_type;
2431    Referenced = *Result.begin();
2432    break;
2433
2434  case LookupResult::AmbiguousBaseSubobjectTypes:
2435  case LookupResult::AmbiguousBaseSubobjects:
2436  case LookupResult::AmbiguousReference:
2437    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
2438    return QualType();
2439  }
2440
2441  // If we get here, it's because name lookup did not find a
2442  // type. Emit an appropriate diagnostic and return an error.
2443  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
2444    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
2445  else
2446    Diag(Range.getEnd(), DiagID) << Range << Name;
2447  if (Referenced)
2448    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
2449      << Name;
2450  return QualType();
2451}
2452