1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "llvm/ADT/SmallBitVector.h"
24#include "TreeTransform.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08,
53    /// \brief Whether we are performing template argument deduction for
54    /// parameters and arguments in a top-level template argument
55    TDF_TopLevelParameterTypeList = 0x10
56  };
57}
58
59using namespace clang;
60
61/// \brief Compare two APSInts, extending and switching the sign as
62/// necessary to compare their values regardless of underlying type.
63static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64  if (Y.getBitWidth() > X.getBitWidth())
65    X = X.extend(Y.getBitWidth());
66  else if (Y.getBitWidth() < X.getBitWidth())
67    Y = Y.extend(X.getBitWidth());
68
69  // If there is a signedness mismatch, correct it.
70  if (X.isSigned() != Y.isSigned()) {
71    // If the signed value is negative, then the values cannot be the same.
72    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73      return false;
74
75    Y.setIsSigned(true);
76    X.setIsSigned(true);
77  }
78
79  return X == Y;
80}
81
82static Sema::TemplateDeductionResult
83DeduceTemplateArguments(Sema &S,
84                        TemplateParameterList *TemplateParams,
85                        const TemplateArgument &Param,
86                        TemplateArgument Arg,
87                        TemplateDeductionInfo &Info,
88                      SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89
90/// \brief Whether template argument deduction for two reference parameters
91/// resulted in the argument type, parameter type, or neither type being more
92/// qualified than the other.
93enum DeductionQualifierComparison {
94  NeitherMoreQualified = 0,
95  ParamMoreQualified,
96  ArgMoreQualified
97};
98
99/// \brief Stores the result of comparing two reference parameters while
100/// performing template argument deduction for partial ordering of function
101/// templates.
102struct RefParamPartialOrderingComparison {
103  /// \brief Whether the parameter type is an rvalue reference type.
104  bool ParamIsRvalueRef;
105  /// \brief Whether the argument type is an rvalue reference type.
106  bool ArgIsRvalueRef;
107
108  /// \brief Whether the parameter or argument (or neither) is more qualified.
109  DeductionQualifierComparison Qualifiers;
110};
111
112
113
114static Sema::TemplateDeductionResult
115DeduceTemplateArgumentsByTypeMatch(Sema &S,
116                                   TemplateParameterList *TemplateParams,
117                                   QualType Param,
118                                   QualType Arg,
119                                   TemplateDeductionInfo &Info,
120                                   SmallVectorImpl<DeducedTemplateArgument> &
121                                                      Deduced,
122                                   unsigned TDF,
123                                   bool PartialOrdering = false,
124                            SmallVectorImpl<RefParamPartialOrderingComparison> *
125                                                      RefParamComparisons = 0);
126
127static Sema::TemplateDeductionResult
128DeduceTemplateArguments(Sema &S,
129                        TemplateParameterList *TemplateParams,
130                        const TemplateArgument *Params, unsigned NumParams,
131                        const TemplateArgument *Args, unsigned NumArgs,
132                        TemplateDeductionInfo &Info,
133                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
134                        bool NumberOfArgumentsMustMatch = true);
135
136/// \brief If the given expression is of a form that permits the deduction
137/// of a non-type template parameter, return the declaration of that
138/// non-type template parameter.
139static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
140  // If we are within an alias template, the expression may have undergone
141  // any number of parameter substitutions already.
142  while (1) {
143    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
144      E = IC->getSubExpr();
145    else if (SubstNonTypeTemplateParmExpr *Subst =
146               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
147      E = Subst->getReplacement();
148    else
149      break;
150  }
151
152  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
153    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
154
155  return 0;
156}
157
158/// \brief Determine whether two declaration pointers refer to the same
159/// declaration.
160static bool isSameDeclaration(Decl *X, Decl *Y) {
161  if (!X || !Y)
162    return !X && !Y;
163
164  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165    X = NX->getUnderlyingDecl();
166  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167    Y = NY->getUnderlyingDecl();
168
169  return X->getCanonicalDecl() == Y->getCanonicalDecl();
170}
171
172/// \brief Verify that the given, deduced template arguments are compatible.
173///
174/// \returns The deduced template argument, or a NULL template argument if
175/// the deduced template arguments were incompatible.
176static DeducedTemplateArgument
177checkDeducedTemplateArguments(ASTContext &Context,
178                              const DeducedTemplateArgument &X,
179                              const DeducedTemplateArgument &Y) {
180  // We have no deduction for one or both of the arguments; they're compatible.
181  if (X.isNull())
182    return Y;
183  if (Y.isNull())
184    return X;
185
186  switch (X.getKind()) {
187  case TemplateArgument::Null:
188    llvm_unreachable("Non-deduced template arguments handled above");
189
190  case TemplateArgument::Type:
191    // If two template type arguments have the same type, they're compatible.
192    if (Y.getKind() == TemplateArgument::Type &&
193        Context.hasSameType(X.getAsType(), Y.getAsType()))
194      return X;
195
196    return DeducedTemplateArgument();
197
198  case TemplateArgument::Integral:
199    // If we deduced a constant in one case and either a dependent expression or
200    // declaration in another case, keep the integral constant.
201    // If both are integral constants with the same value, keep that value.
202    if (Y.getKind() == TemplateArgument::Expression ||
203        Y.getKind() == TemplateArgument::Declaration ||
204        (Y.getKind() == TemplateArgument::Integral &&
205         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206      return DeducedTemplateArgument(X,
207                                     X.wasDeducedFromArrayBound() &&
208                                     Y.wasDeducedFromArrayBound());
209
210    // All other combinations are incompatible.
211    return DeducedTemplateArgument();
212
213  case TemplateArgument::Template:
214    if (Y.getKind() == TemplateArgument::Template &&
215        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216      return X;
217
218    // All other combinations are incompatible.
219    return DeducedTemplateArgument();
220
221  case TemplateArgument::TemplateExpansion:
222    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224                                    Y.getAsTemplateOrTemplatePattern()))
225      return X;
226
227    // All other combinations are incompatible.
228    return DeducedTemplateArgument();
229
230  case TemplateArgument::Expression:
231    // If we deduced a dependent expression in one case and either an integral
232    // constant or a declaration in another case, keep the integral constant
233    // or declaration.
234    if (Y.getKind() == TemplateArgument::Integral ||
235        Y.getKind() == TemplateArgument::Declaration)
236      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237                                     Y.wasDeducedFromArrayBound());
238
239    if (Y.getKind() == TemplateArgument::Expression) {
240      // Compare the expressions for equality
241      llvm::FoldingSetNodeID ID1, ID2;
242      X.getAsExpr()->Profile(ID1, Context, true);
243      Y.getAsExpr()->Profile(ID2, Context, true);
244      if (ID1 == ID2)
245        return X;
246    }
247
248    // All other combinations are incompatible.
249    return DeducedTemplateArgument();
250
251  case TemplateArgument::Declaration:
252    // If we deduced a declaration and a dependent expression, keep the
253    // declaration.
254    if (Y.getKind() == TemplateArgument::Expression)
255      return X;
256
257    // If we deduced a declaration and an integral constant, keep the
258    // integral constant.
259    if (Y.getKind() == TemplateArgument::Integral)
260      return Y;
261
262    // If we deduced two declarations, make sure they they refer to the
263    // same declaration.
264    if (Y.getKind() == TemplateArgument::Declaration &&
265        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
266      return X;
267
268    // All other combinations are incompatible.
269    return DeducedTemplateArgument();
270
271  case TemplateArgument::Pack:
272    if (Y.getKind() != TemplateArgument::Pack ||
273        X.pack_size() != Y.pack_size())
274      return DeducedTemplateArgument();
275
276    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
277                                      XAEnd = X.pack_end(),
278                                         YA = Y.pack_begin();
279         XA != XAEnd; ++XA, ++YA) {
280      if (checkDeducedTemplateArguments(Context,
281                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
282                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
283            .isNull())
284        return DeducedTemplateArgument();
285    }
286
287    return X;
288  }
289
290  llvm_unreachable("Invalid TemplateArgument Kind!");
291}
292
293/// \brief Deduce the value of the given non-type template parameter
294/// from the given constant.
295static Sema::TemplateDeductionResult
296DeduceNonTypeTemplateArgument(Sema &S,
297                              NonTypeTemplateParmDecl *NTTP,
298                              llvm::APSInt Value, QualType ValueType,
299                              bool DeducedFromArrayBound,
300                              TemplateDeductionInfo &Info,
301                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
302  assert(NTTP->getDepth() == 0 &&
303         "Cannot deduce non-type template argument with depth > 0");
304
305  DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
306                                     DeducedFromArrayBound);
307  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
308                                                     Deduced[NTTP->getIndex()],
309                                                                 NewDeduced);
310  if (Result.isNull()) {
311    Info.Param = NTTP;
312    Info.FirstArg = Deduced[NTTP->getIndex()];
313    Info.SecondArg = NewDeduced;
314    return Sema::TDK_Inconsistent;
315  }
316
317  Deduced[NTTP->getIndex()] = Result;
318  return Sema::TDK_Success;
319}
320
321/// \brief Deduce the value of the given non-type template parameter
322/// from the given type- or value-dependent expression.
323///
324/// \returns true if deduction succeeded, false otherwise.
325static Sema::TemplateDeductionResult
326DeduceNonTypeTemplateArgument(Sema &S,
327                              NonTypeTemplateParmDecl *NTTP,
328                              Expr *Value,
329                              TemplateDeductionInfo &Info,
330                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
331  assert(NTTP->getDepth() == 0 &&
332         "Cannot deduce non-type template argument with depth > 0");
333  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
334         "Expression template argument must be type- or value-dependent.");
335
336  DeducedTemplateArgument NewDeduced(Value);
337  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
338                                                     Deduced[NTTP->getIndex()],
339                                                                 NewDeduced);
340
341  if (Result.isNull()) {
342    Info.Param = NTTP;
343    Info.FirstArg = Deduced[NTTP->getIndex()];
344    Info.SecondArg = NewDeduced;
345    return Sema::TDK_Inconsistent;
346  }
347
348  Deduced[NTTP->getIndex()] = Result;
349  return Sema::TDK_Success;
350}
351
352/// \brief Deduce the value of the given non-type template parameter
353/// from the given declaration.
354///
355/// \returns true if deduction succeeded, false otherwise.
356static Sema::TemplateDeductionResult
357DeduceNonTypeTemplateArgument(Sema &S,
358                              NonTypeTemplateParmDecl *NTTP,
359                              Decl *D,
360                              TemplateDeductionInfo &Info,
361                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
362  assert(NTTP->getDepth() == 0 &&
363         "Cannot deduce non-type template argument with depth > 0");
364
365  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
366  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
367                                                     Deduced[NTTP->getIndex()],
368                                                                 NewDeduced);
369  if (Result.isNull()) {
370    Info.Param = NTTP;
371    Info.FirstArg = Deduced[NTTP->getIndex()];
372    Info.SecondArg = NewDeduced;
373    return Sema::TDK_Inconsistent;
374  }
375
376  Deduced[NTTP->getIndex()] = Result;
377  return Sema::TDK_Success;
378}
379
380static Sema::TemplateDeductionResult
381DeduceTemplateArguments(Sema &S,
382                        TemplateParameterList *TemplateParams,
383                        TemplateName Param,
384                        TemplateName Arg,
385                        TemplateDeductionInfo &Info,
386                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
387  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
388  if (!ParamDecl) {
389    // The parameter type is dependent and is not a template template parameter,
390    // so there is nothing that we can deduce.
391    return Sema::TDK_Success;
392  }
393
394  if (TemplateTemplateParmDecl *TempParam
395        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
396    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
397    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
398                                                 Deduced[TempParam->getIndex()],
399                                                                   NewDeduced);
400    if (Result.isNull()) {
401      Info.Param = TempParam;
402      Info.FirstArg = Deduced[TempParam->getIndex()];
403      Info.SecondArg = NewDeduced;
404      return Sema::TDK_Inconsistent;
405    }
406
407    Deduced[TempParam->getIndex()] = Result;
408    return Sema::TDK_Success;
409  }
410
411  // Verify that the two template names are equivalent.
412  if (S.Context.hasSameTemplateName(Param, Arg))
413    return Sema::TDK_Success;
414
415  // Mismatch of non-dependent template parameter to argument.
416  Info.FirstArg = TemplateArgument(Param);
417  Info.SecondArg = TemplateArgument(Arg);
418  return Sema::TDK_NonDeducedMismatch;
419}
420
421/// \brief Deduce the template arguments by comparing the template parameter
422/// type (which is a template-id) with the template argument type.
423///
424/// \param S the Sema
425///
426/// \param TemplateParams the template parameters that we are deducing
427///
428/// \param Param the parameter type
429///
430/// \param Arg the argument type
431///
432/// \param Info information about the template argument deduction itself
433///
434/// \param Deduced the deduced template arguments
435///
436/// \returns the result of template argument deduction so far. Note that a
437/// "success" result means that template argument deduction has not yet failed,
438/// but it may still fail, later, for other reasons.
439static Sema::TemplateDeductionResult
440DeduceTemplateArguments(Sema &S,
441                        TemplateParameterList *TemplateParams,
442                        const TemplateSpecializationType *Param,
443                        QualType Arg,
444                        TemplateDeductionInfo &Info,
445                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
446  assert(Arg.isCanonical() && "Argument type must be canonical");
447
448  // Check whether the template argument is a dependent template-id.
449  if (const TemplateSpecializationType *SpecArg
450        = dyn_cast<TemplateSpecializationType>(Arg)) {
451    // Perform template argument deduction for the template name.
452    if (Sema::TemplateDeductionResult Result
453          = DeduceTemplateArguments(S, TemplateParams,
454                                    Param->getTemplateName(),
455                                    SpecArg->getTemplateName(),
456                                    Info, Deduced))
457      return Result;
458
459
460    // Perform template argument deduction on each template
461    // argument. Ignore any missing/extra arguments, since they could be
462    // filled in by default arguments.
463    return DeduceTemplateArguments(S, TemplateParams,
464                                   Param->getArgs(), Param->getNumArgs(),
465                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
466                                   Info, Deduced,
467                                   /*NumberOfArgumentsMustMatch=*/false);
468  }
469
470  // If the argument type is a class template specialization, we
471  // perform template argument deduction using its template
472  // arguments.
473  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
474  if (!RecordArg)
475    return Sema::TDK_NonDeducedMismatch;
476
477  ClassTemplateSpecializationDecl *SpecArg
478    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
479  if (!SpecArg)
480    return Sema::TDK_NonDeducedMismatch;
481
482  // Perform template argument deduction for the template name.
483  if (Sema::TemplateDeductionResult Result
484        = DeduceTemplateArguments(S,
485                                  TemplateParams,
486                                  Param->getTemplateName(),
487                               TemplateName(SpecArg->getSpecializedTemplate()),
488                                  Info, Deduced))
489    return Result;
490
491  // Perform template argument deduction for the template arguments.
492  return DeduceTemplateArguments(S, TemplateParams,
493                                 Param->getArgs(), Param->getNumArgs(),
494                                 SpecArg->getTemplateArgs().data(),
495                                 SpecArg->getTemplateArgs().size(),
496                                 Info, Deduced);
497}
498
499/// \brief Determines whether the given type is an opaque type that
500/// might be more qualified when instantiated.
501static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
502  switch (T->getTypeClass()) {
503  case Type::TypeOfExpr:
504  case Type::TypeOf:
505  case Type::DependentName:
506  case Type::Decltype:
507  case Type::UnresolvedUsing:
508  case Type::TemplateTypeParm:
509    return true;
510
511  case Type::ConstantArray:
512  case Type::IncompleteArray:
513  case Type::VariableArray:
514  case Type::DependentSizedArray:
515    return IsPossiblyOpaquelyQualifiedType(
516                                      cast<ArrayType>(T)->getElementType());
517
518  default:
519    return false;
520  }
521}
522
523/// \brief Retrieve the depth and index of a template parameter.
524static std::pair<unsigned, unsigned>
525getDepthAndIndex(NamedDecl *ND) {
526  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
527    return std::make_pair(TTP->getDepth(), TTP->getIndex());
528
529  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
530    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
531
532  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
533  return std::make_pair(TTP->getDepth(), TTP->getIndex());
534}
535
536/// \brief Retrieve the depth and index of an unexpanded parameter pack.
537static std::pair<unsigned, unsigned>
538getDepthAndIndex(UnexpandedParameterPack UPP) {
539  if (const TemplateTypeParmType *TTP
540                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
541    return std::make_pair(TTP->getDepth(), TTP->getIndex());
542
543  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
544}
545
546/// \brief Helper function to build a TemplateParameter when we don't
547/// know its type statically.
548static TemplateParameter makeTemplateParameter(Decl *D) {
549  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
550    return TemplateParameter(TTP);
551  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
552    return TemplateParameter(NTTP);
553
554  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
555}
556
557/// \brief Prepare to perform template argument deduction for all of the
558/// arguments in a set of argument packs.
559static void PrepareArgumentPackDeduction(Sema &S,
560                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
561                                           ArrayRef<unsigned> PackIndices,
562                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
563         SmallVectorImpl<
564           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
565  // Save the deduced template arguments for each parameter pack expanded
566  // by this pack expansion, then clear out the deduction.
567  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
568    // Save the previously-deduced argument pack, then clear it out so that we
569    // can deduce a new argument pack.
570    SavedPacks[I] = Deduced[PackIndices[I]];
571    Deduced[PackIndices[I]] = TemplateArgument();
572
573    if (!S.CurrentInstantiationScope)
574      continue;
575
576    // If the template argument pack was explicitly specified, add that to
577    // the set of deduced arguments.
578    const TemplateArgument *ExplicitArgs;
579    unsigned NumExplicitArgs;
580    if (NamedDecl *PartiallySubstitutedPack
581        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
582                                                           &ExplicitArgs,
583                                                           &NumExplicitArgs)) {
584      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
585        NewlyDeducedPacks[I].append(ExplicitArgs,
586                                    ExplicitArgs + NumExplicitArgs);
587    }
588  }
589}
590
591/// \brief Finish template argument deduction for a set of argument packs,
592/// producing the argument packs and checking for consistency with prior
593/// deductions.
594static Sema::TemplateDeductionResult
595FinishArgumentPackDeduction(Sema &S,
596                            TemplateParameterList *TemplateParams,
597                            bool HasAnyArguments,
598                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
599                            ArrayRef<unsigned> PackIndices,
600                    SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
601        SmallVectorImpl<
602          SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
603                            TemplateDeductionInfo &Info) {
604  // Build argument packs for each of the parameter packs expanded by this
605  // pack expansion.
606  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
607    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
608      // We were not able to deduce anything for this parameter pack,
609      // so just restore the saved argument pack.
610      Deduced[PackIndices[I]] = SavedPacks[I];
611      continue;
612    }
613
614    DeducedTemplateArgument NewPack;
615
616    if (NewlyDeducedPacks[I].empty()) {
617      // If we deduced an empty argument pack, create it now.
618      NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
619    } else {
620      TemplateArgument *ArgumentPack
621        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
622      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
623                ArgumentPack);
624      NewPack
625        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
626                                                   NewlyDeducedPacks[I].size()),
627                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
628    }
629
630    DeducedTemplateArgument Result
631      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
632    if (Result.isNull()) {
633      Info.Param
634        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
635      Info.FirstArg = SavedPacks[I];
636      Info.SecondArg = NewPack;
637      return Sema::TDK_Inconsistent;
638    }
639
640    Deduced[PackIndices[I]] = Result;
641  }
642
643  return Sema::TDK_Success;
644}
645
646/// \brief Deduce the template arguments by comparing the list of parameter
647/// types to the list of argument types, as in the parameter-type-lists of
648/// function types (C++ [temp.deduct.type]p10).
649///
650/// \param S The semantic analysis object within which we are deducing
651///
652/// \param TemplateParams The template parameters that we are deducing
653///
654/// \param Params The list of parameter types
655///
656/// \param NumParams The number of types in \c Params
657///
658/// \param Args The list of argument types
659///
660/// \param NumArgs The number of types in \c Args
661///
662/// \param Info information about the template argument deduction itself
663///
664/// \param Deduced the deduced template arguments
665///
666/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
667/// how template argument deduction is performed.
668///
669/// \param PartialOrdering If true, we are performing template argument
670/// deduction for during partial ordering for a call
671/// (C++0x [temp.deduct.partial]).
672///
673/// \param RefParamComparisons If we're performing template argument deduction
674/// in the context of partial ordering, the set of qualifier comparisons.
675///
676/// \returns the result of template argument deduction so far. Note that a
677/// "success" result means that template argument deduction has not yet failed,
678/// but it may still fail, later, for other reasons.
679static Sema::TemplateDeductionResult
680DeduceTemplateArguments(Sema &S,
681                        TemplateParameterList *TemplateParams,
682                        const QualType *Params, unsigned NumParams,
683                        const QualType *Args, unsigned NumArgs,
684                        TemplateDeductionInfo &Info,
685                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
686                        unsigned TDF,
687                        bool PartialOrdering = false,
688                        SmallVectorImpl<RefParamPartialOrderingComparison> *
689                                                     RefParamComparisons = 0) {
690  // Fast-path check to see if we have too many/too few arguments.
691  if (NumParams != NumArgs &&
692      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
693      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
694    return Sema::TDK_NonDeducedMismatch;
695
696  // C++0x [temp.deduct.type]p10:
697  //   Similarly, if P has a form that contains (T), then each parameter type
698  //   Pi of the respective parameter-type- list of P is compared with the
699  //   corresponding parameter type Ai of the corresponding parameter-type-list
700  //   of A. [...]
701  unsigned ArgIdx = 0, ParamIdx = 0;
702  for (; ParamIdx != NumParams; ++ParamIdx) {
703    // Check argument types.
704    const PackExpansionType *Expansion
705                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
706    if (!Expansion) {
707      // Simple case: compare the parameter and argument types at this point.
708
709      // Make sure we have an argument.
710      if (ArgIdx >= NumArgs)
711        return Sema::TDK_NonDeducedMismatch;
712
713      if (isa<PackExpansionType>(Args[ArgIdx])) {
714        // C++0x [temp.deduct.type]p22:
715        //   If the original function parameter associated with A is a function
716        //   parameter pack and the function parameter associated with P is not
717        //   a function parameter pack, then template argument deduction fails.
718        return Sema::TDK_NonDeducedMismatch;
719      }
720
721      if (Sema::TemplateDeductionResult Result
722            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
723                                                 Params[ParamIdx], Args[ArgIdx],
724                                                 Info, Deduced, TDF,
725                                                 PartialOrdering,
726                                                 RefParamComparisons))
727        return Result;
728
729      ++ArgIdx;
730      continue;
731    }
732
733    // C++0x [temp.deduct.type]p5:
734    //   The non-deduced contexts are:
735    //     - A function parameter pack that does not occur at the end of the
736    //       parameter-declaration-clause.
737    if (ParamIdx + 1 < NumParams)
738      return Sema::TDK_Success;
739
740    // C++0x [temp.deduct.type]p10:
741    //   If the parameter-declaration corresponding to Pi is a function
742    //   parameter pack, then the type of its declarator- id is compared with
743    //   each remaining parameter type in the parameter-type-list of A. Each
744    //   comparison deduces template arguments for subsequent positions in the
745    //   template parameter packs expanded by the function parameter pack.
746
747    // Compute the set of template parameter indices that correspond to
748    // parameter packs expanded by the pack expansion.
749    SmallVector<unsigned, 2> PackIndices;
750    QualType Pattern = Expansion->getPattern();
751    {
752      llvm::SmallBitVector SawIndices(TemplateParams->size());
753      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
754      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
755      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
756        unsigned Depth, Index;
757        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
758        if (Depth == 0 && !SawIndices[Index]) {
759          SawIndices[Index] = true;
760          PackIndices.push_back(Index);
761        }
762      }
763    }
764    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
765
766    // Keep track of the deduced template arguments for each parameter pack
767    // expanded by this pack expansion (the outer index) and for each
768    // template argument (the inner SmallVectors).
769    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
770      NewlyDeducedPacks(PackIndices.size());
771    SmallVector<DeducedTemplateArgument, 2>
772      SavedPacks(PackIndices.size());
773    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
774                                 NewlyDeducedPacks);
775
776    bool HasAnyArguments = false;
777    for (; ArgIdx < NumArgs; ++ArgIdx) {
778      HasAnyArguments = true;
779
780      // Deduce template arguments from the pattern.
781      if (Sema::TemplateDeductionResult Result
782            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
783                                                 Args[ArgIdx], Info, Deduced,
784                                                 TDF, PartialOrdering,
785                                                 RefParamComparisons))
786        return Result;
787
788      // Capture the deduced template arguments for each parameter pack expanded
789      // by this pack expansion, add them to the list of arguments we've deduced
790      // for that pack, then clear out the deduced argument.
791      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
792        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
793        if (!DeducedArg.isNull()) {
794          NewlyDeducedPacks[I].push_back(DeducedArg);
795          DeducedArg = DeducedTemplateArgument();
796        }
797      }
798    }
799
800    // Build argument packs for each of the parameter packs expanded by this
801    // pack expansion.
802    if (Sema::TemplateDeductionResult Result
803          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
804                                        Deduced, PackIndices, SavedPacks,
805                                        NewlyDeducedPacks, Info))
806      return Result;
807  }
808
809  // Make sure we don't have any extra arguments.
810  if (ArgIdx < NumArgs)
811    return Sema::TDK_NonDeducedMismatch;
812
813  return Sema::TDK_Success;
814}
815
816/// \brief Determine whether the parameter has qualifiers that are either
817/// inconsistent with or a superset of the argument's qualifiers.
818static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
819                                                  QualType ArgType) {
820  Qualifiers ParamQs = ParamType.getQualifiers();
821  Qualifiers ArgQs = ArgType.getQualifiers();
822
823  if (ParamQs == ArgQs)
824    return false;
825
826  // Mismatched (but not missing) Objective-C GC attributes.
827  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
828      ParamQs.hasObjCGCAttr())
829    return true;
830
831  // Mismatched (but not missing) address spaces.
832  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
833      ParamQs.hasAddressSpace())
834    return true;
835
836  // Mismatched (but not missing) Objective-C lifetime qualifiers.
837  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
838      ParamQs.hasObjCLifetime())
839    return true;
840
841  // CVR qualifier superset.
842  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
843      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
844                                                == ParamQs.getCVRQualifiers());
845}
846
847/// \brief Deduce the template arguments by comparing the parameter type and
848/// the argument type (C++ [temp.deduct.type]).
849///
850/// \param S the semantic analysis object within which we are deducing
851///
852/// \param TemplateParams the template parameters that we are deducing
853///
854/// \param ParamIn the parameter type
855///
856/// \param ArgIn the argument type
857///
858/// \param Info information about the template argument deduction itself
859///
860/// \param Deduced the deduced template arguments
861///
862/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
863/// how template argument deduction is performed.
864///
865/// \param PartialOrdering Whether we're performing template argument deduction
866/// in the context of partial ordering (C++0x [temp.deduct.partial]).
867///
868/// \param RefParamComparisons If we're performing template argument deduction
869/// in the context of partial ordering, the set of qualifier comparisons.
870///
871/// \returns the result of template argument deduction so far. Note that a
872/// "success" result means that template argument deduction has not yet failed,
873/// but it may still fail, later, for other reasons.
874static Sema::TemplateDeductionResult
875DeduceTemplateArgumentsByTypeMatch(Sema &S,
876                                   TemplateParameterList *TemplateParams,
877                                   QualType ParamIn, QualType ArgIn,
878                                   TemplateDeductionInfo &Info,
879                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
880                                   unsigned TDF,
881                                   bool PartialOrdering,
882                            SmallVectorImpl<RefParamPartialOrderingComparison> *
883                                                          RefParamComparisons) {
884  // We only want to look at the canonical types, since typedefs and
885  // sugar are not part of template argument deduction.
886  QualType Param = S.Context.getCanonicalType(ParamIn);
887  QualType Arg = S.Context.getCanonicalType(ArgIn);
888
889  // If the argument type is a pack expansion, look at its pattern.
890  // This isn't explicitly called out
891  if (const PackExpansionType *ArgExpansion
892                                            = dyn_cast<PackExpansionType>(Arg))
893    Arg = ArgExpansion->getPattern();
894
895  if (PartialOrdering) {
896    // C++0x [temp.deduct.partial]p5:
897    //   Before the partial ordering is done, certain transformations are
898    //   performed on the types used for partial ordering:
899    //     - If P is a reference type, P is replaced by the type referred to.
900    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
901    if (ParamRef)
902      Param = ParamRef->getPointeeType();
903
904    //     - If A is a reference type, A is replaced by the type referred to.
905    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
906    if (ArgRef)
907      Arg = ArgRef->getPointeeType();
908
909    if (RefParamComparisons && ParamRef && ArgRef) {
910      // C++0x [temp.deduct.partial]p6:
911      //   If both P and A were reference types (before being replaced with the
912      //   type referred to above), determine which of the two types (if any) is
913      //   more cv-qualified than the other; otherwise the types are considered
914      //   to be equally cv-qualified for partial ordering purposes. The result
915      //   of this determination will be used below.
916      //
917      // We save this information for later, using it only when deduction
918      // succeeds in both directions.
919      RefParamPartialOrderingComparison Comparison;
920      Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
921      Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
922      Comparison.Qualifiers = NeitherMoreQualified;
923
924      Qualifiers ParamQuals = Param.getQualifiers();
925      Qualifiers ArgQuals = Arg.getQualifiers();
926      if (ParamQuals.isStrictSupersetOf(ArgQuals))
927        Comparison.Qualifiers = ParamMoreQualified;
928      else if (ArgQuals.isStrictSupersetOf(ParamQuals))
929        Comparison.Qualifiers = ArgMoreQualified;
930      RefParamComparisons->push_back(Comparison);
931    }
932
933    // C++0x [temp.deduct.partial]p7:
934    //   Remove any top-level cv-qualifiers:
935    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
936    //       version of P.
937    Param = Param.getUnqualifiedType();
938    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
939    //       version of A.
940    Arg = Arg.getUnqualifiedType();
941  } else {
942    // C++0x [temp.deduct.call]p4 bullet 1:
943    //   - If the original P is a reference type, the deduced A (i.e., the type
944    //     referred to by the reference) can be more cv-qualified than the
945    //     transformed A.
946    if (TDF & TDF_ParamWithReferenceType) {
947      Qualifiers Quals;
948      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
949      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
950                             Arg.getCVRQualifiers());
951      Param = S.Context.getQualifiedType(UnqualParam, Quals);
952    }
953
954    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
955      // C++0x [temp.deduct.type]p10:
956      //   If P and A are function types that originated from deduction when
957      //   taking the address of a function template (14.8.2.2) or when deducing
958      //   template arguments from a function declaration (14.8.2.6) and Pi and
959      //   Ai are parameters of the top-level parameter-type-list of P and A,
960      //   respectively, Pi is adjusted if it is an rvalue reference to a
961      //   cv-unqualified template parameter and Ai is an lvalue reference, in
962      //   which case the type of Pi is changed to be the template parameter
963      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
964      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
965      //   deduced as X&. - end note ]
966      TDF &= ~TDF_TopLevelParameterTypeList;
967
968      if (const RValueReferenceType *ParamRef
969                                        = Param->getAs<RValueReferenceType>()) {
970        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
971            !ParamRef->getPointeeType().getQualifiers())
972          if (Arg->isLValueReferenceType())
973            Param = ParamRef->getPointeeType();
974      }
975    }
976  }
977
978  // C++ [temp.deduct.type]p9:
979  //   A template type argument T, a template template argument TT or a
980  //   template non-type argument i can be deduced if P and A have one of
981  //   the following forms:
982  //
983  //     T
984  //     cv-list T
985  if (const TemplateTypeParmType *TemplateTypeParm
986        = Param->getAs<TemplateTypeParmType>()) {
987    // Just skip any attempts to deduce from a placeholder type.
988    if (Arg->isPlaceholderType())
989      return Sema::TDK_Success;
990
991    unsigned Index = TemplateTypeParm->getIndex();
992    bool RecanonicalizeArg = false;
993
994    // If the argument type is an array type, move the qualifiers up to the
995    // top level, so they can be matched with the qualifiers on the parameter.
996    if (isa<ArrayType>(Arg)) {
997      Qualifiers Quals;
998      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
999      if (Quals) {
1000        Arg = S.Context.getQualifiedType(Arg, Quals);
1001        RecanonicalizeArg = true;
1002      }
1003    }
1004
1005    // The argument type can not be less qualified than the parameter
1006    // type.
1007    if (!(TDF & TDF_IgnoreQualifiers) &&
1008        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1009      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1010      Info.FirstArg = TemplateArgument(Param);
1011      Info.SecondArg = TemplateArgument(Arg);
1012      return Sema::TDK_Underqualified;
1013    }
1014
1015    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1016    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1017    QualType DeducedType = Arg;
1018
1019    // Remove any qualifiers on the parameter from the deduced type.
1020    // We checked the qualifiers for consistency above.
1021    Qualifiers DeducedQs = DeducedType.getQualifiers();
1022    Qualifiers ParamQs = Param.getQualifiers();
1023    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1024    if (ParamQs.hasObjCGCAttr())
1025      DeducedQs.removeObjCGCAttr();
1026    if (ParamQs.hasAddressSpace())
1027      DeducedQs.removeAddressSpace();
1028    if (ParamQs.hasObjCLifetime())
1029      DeducedQs.removeObjCLifetime();
1030
1031    // Objective-C ARC:
1032    //   If template deduction would produce a lifetime qualifier on a type
1033    //   that is not a lifetime type, template argument deduction fails.
1034    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1035        !DeducedType->isDependentType()) {
1036      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1037      Info.FirstArg = TemplateArgument(Param);
1038      Info.SecondArg = TemplateArgument(Arg);
1039      return Sema::TDK_Underqualified;
1040    }
1041
1042    // Objective-C ARC:
1043    //   If template deduction would produce an argument type with lifetime type
1044    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1045    if (S.getLangOpts().ObjCAutoRefCount &&
1046        DeducedType->isObjCLifetimeType() &&
1047        !DeducedQs.hasObjCLifetime())
1048      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1049
1050    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1051                                             DeducedQs);
1052
1053    if (RecanonicalizeArg)
1054      DeducedType = S.Context.getCanonicalType(DeducedType);
1055
1056    DeducedTemplateArgument NewDeduced(DeducedType);
1057    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1058                                                                 Deduced[Index],
1059                                                                   NewDeduced);
1060    if (Result.isNull()) {
1061      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1062      Info.FirstArg = Deduced[Index];
1063      Info.SecondArg = NewDeduced;
1064      return Sema::TDK_Inconsistent;
1065    }
1066
1067    Deduced[Index] = Result;
1068    return Sema::TDK_Success;
1069  }
1070
1071  // Set up the template argument deduction information for a failure.
1072  Info.FirstArg = TemplateArgument(ParamIn);
1073  Info.SecondArg = TemplateArgument(ArgIn);
1074
1075  // If the parameter is an already-substituted template parameter
1076  // pack, do nothing: we don't know which of its arguments to look
1077  // at, so we have to wait until all of the parameter packs in this
1078  // expansion have arguments.
1079  if (isa<SubstTemplateTypeParmPackType>(Param))
1080    return Sema::TDK_Success;
1081
1082  // Check the cv-qualifiers on the parameter and argument types.
1083  if (!(TDF & TDF_IgnoreQualifiers)) {
1084    if (TDF & TDF_ParamWithReferenceType) {
1085      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1086        return Sema::TDK_NonDeducedMismatch;
1087    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1088      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1089        return Sema::TDK_NonDeducedMismatch;
1090    }
1091
1092    // If the parameter type is not dependent, there is nothing to deduce.
1093    if (!Param->isDependentType()) {
1094      if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
1095        return Sema::TDK_NonDeducedMismatch;
1096
1097      return Sema::TDK_Success;
1098    }
1099  } else if (!Param->isDependentType() &&
1100             Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
1101    return Sema::TDK_Success;
1102  }
1103
1104  switch (Param->getTypeClass()) {
1105    // Non-canonical types cannot appear here.
1106#define NON_CANONICAL_TYPE(Class, Base) \
1107  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1108#define TYPE(Class, Base)
1109#include "clang/AST/TypeNodes.def"
1110
1111    case Type::TemplateTypeParm:
1112    case Type::SubstTemplateTypeParmPack:
1113      llvm_unreachable("Type nodes handled above");
1114
1115    // These types cannot be dependent, so simply check whether the types are
1116    // the same.
1117    case Type::Builtin:
1118    case Type::VariableArray:
1119    case Type::Vector:
1120    case Type::FunctionNoProto:
1121    case Type::Record:
1122    case Type::Enum:
1123    case Type::ObjCObject:
1124    case Type::ObjCInterface:
1125    case Type::ObjCObjectPointer: {
1126      if (TDF & TDF_SkipNonDependent)
1127        return Sema::TDK_Success;
1128
1129      if (TDF & TDF_IgnoreQualifiers) {
1130        Param = Param.getUnqualifiedType();
1131        Arg = Arg.getUnqualifiedType();
1132      }
1133
1134      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1135    }
1136
1137    //     _Complex T   [placeholder extension]
1138    case Type::Complex:
1139      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1140        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1141                                    cast<ComplexType>(Param)->getElementType(),
1142                                    ComplexArg->getElementType(),
1143                                    Info, Deduced, TDF);
1144
1145      return Sema::TDK_NonDeducedMismatch;
1146
1147    //     _Atomic T   [extension]
1148    case Type::Atomic:
1149      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1150        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1151                                       cast<AtomicType>(Param)->getValueType(),
1152                                       AtomicArg->getValueType(),
1153                                       Info, Deduced, TDF);
1154
1155      return Sema::TDK_NonDeducedMismatch;
1156
1157    //     T *
1158    case Type::Pointer: {
1159      QualType PointeeType;
1160      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1161        PointeeType = PointerArg->getPointeeType();
1162      } else if (const ObjCObjectPointerType *PointerArg
1163                   = Arg->getAs<ObjCObjectPointerType>()) {
1164        PointeeType = PointerArg->getPointeeType();
1165      } else {
1166        return Sema::TDK_NonDeducedMismatch;
1167      }
1168
1169      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1170      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1171                                     cast<PointerType>(Param)->getPointeeType(),
1172                                     PointeeType,
1173                                     Info, Deduced, SubTDF);
1174    }
1175
1176    //     T &
1177    case Type::LValueReference: {
1178      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1179      if (!ReferenceArg)
1180        return Sema::TDK_NonDeducedMismatch;
1181
1182      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1183                           cast<LValueReferenceType>(Param)->getPointeeType(),
1184                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1185    }
1186
1187    //     T && [C++0x]
1188    case Type::RValueReference: {
1189      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1190      if (!ReferenceArg)
1191        return Sema::TDK_NonDeducedMismatch;
1192
1193      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1194                             cast<RValueReferenceType>(Param)->getPointeeType(),
1195                             ReferenceArg->getPointeeType(),
1196                             Info, Deduced, 0);
1197    }
1198
1199    //     T [] (implied, but not stated explicitly)
1200    case Type::IncompleteArray: {
1201      const IncompleteArrayType *IncompleteArrayArg =
1202        S.Context.getAsIncompleteArrayType(Arg);
1203      if (!IncompleteArrayArg)
1204        return Sema::TDK_NonDeducedMismatch;
1205
1206      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1207      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1208                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1209                    IncompleteArrayArg->getElementType(),
1210                    Info, Deduced, SubTDF);
1211    }
1212
1213    //     T [integer-constant]
1214    case Type::ConstantArray: {
1215      const ConstantArrayType *ConstantArrayArg =
1216        S.Context.getAsConstantArrayType(Arg);
1217      if (!ConstantArrayArg)
1218        return Sema::TDK_NonDeducedMismatch;
1219
1220      const ConstantArrayType *ConstantArrayParm =
1221        S.Context.getAsConstantArrayType(Param);
1222      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1223        return Sema::TDK_NonDeducedMismatch;
1224
1225      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1226      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1227                                           ConstantArrayParm->getElementType(),
1228                                           ConstantArrayArg->getElementType(),
1229                                           Info, Deduced, SubTDF);
1230    }
1231
1232    //     type [i]
1233    case Type::DependentSizedArray: {
1234      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1235      if (!ArrayArg)
1236        return Sema::TDK_NonDeducedMismatch;
1237
1238      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1239
1240      // Check the element type of the arrays
1241      const DependentSizedArrayType *DependentArrayParm
1242        = S.Context.getAsDependentSizedArrayType(Param);
1243      if (Sema::TemplateDeductionResult Result
1244            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1245                                          DependentArrayParm->getElementType(),
1246                                          ArrayArg->getElementType(),
1247                                          Info, Deduced, SubTDF))
1248        return Result;
1249
1250      // Determine the array bound is something we can deduce.
1251      NonTypeTemplateParmDecl *NTTP
1252        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1253      if (!NTTP)
1254        return Sema::TDK_Success;
1255
1256      // We can perform template argument deduction for the given non-type
1257      // template parameter.
1258      assert(NTTP->getDepth() == 0 &&
1259             "Cannot deduce non-type template argument at depth > 0");
1260      if (const ConstantArrayType *ConstantArrayArg
1261            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1262        llvm::APSInt Size(ConstantArrayArg->getSize());
1263        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1264                                             S.Context.getSizeType(),
1265                                             /*ArrayBound=*/true,
1266                                             Info, Deduced);
1267      }
1268      if (const DependentSizedArrayType *DependentArrayArg
1269            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1270        if (DependentArrayArg->getSizeExpr())
1271          return DeduceNonTypeTemplateArgument(S, NTTP,
1272                                               DependentArrayArg->getSizeExpr(),
1273                                               Info, Deduced);
1274
1275      // Incomplete type does not match a dependently-sized array type
1276      return Sema::TDK_NonDeducedMismatch;
1277    }
1278
1279    //     type(*)(T)
1280    //     T(*)()
1281    //     T(*)(T)
1282    case Type::FunctionProto: {
1283      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1284      const FunctionProtoType *FunctionProtoArg =
1285        dyn_cast<FunctionProtoType>(Arg);
1286      if (!FunctionProtoArg)
1287        return Sema::TDK_NonDeducedMismatch;
1288
1289      const FunctionProtoType *FunctionProtoParam =
1290        cast<FunctionProtoType>(Param);
1291
1292      if (FunctionProtoParam->getTypeQuals()
1293            != FunctionProtoArg->getTypeQuals() ||
1294          FunctionProtoParam->getRefQualifier()
1295            != FunctionProtoArg->getRefQualifier() ||
1296          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1297        return Sema::TDK_NonDeducedMismatch;
1298
1299      // Check return types.
1300      if (Sema::TemplateDeductionResult Result
1301            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1302                                            FunctionProtoParam->getResultType(),
1303                                            FunctionProtoArg->getResultType(),
1304                                            Info, Deduced, 0))
1305        return Result;
1306
1307      return DeduceTemplateArguments(S, TemplateParams,
1308                                     FunctionProtoParam->arg_type_begin(),
1309                                     FunctionProtoParam->getNumArgs(),
1310                                     FunctionProtoArg->arg_type_begin(),
1311                                     FunctionProtoArg->getNumArgs(),
1312                                     Info, Deduced, SubTDF);
1313    }
1314
1315    case Type::InjectedClassName: {
1316      // Treat a template's injected-class-name as if the template
1317      // specialization type had been used.
1318      Param = cast<InjectedClassNameType>(Param)
1319        ->getInjectedSpecializationType();
1320      assert(isa<TemplateSpecializationType>(Param) &&
1321             "injected class name is not a template specialization type");
1322      // fall through
1323    }
1324
1325    //     template-name<T> (where template-name refers to a class template)
1326    //     template-name<i>
1327    //     TT<T>
1328    //     TT<i>
1329    //     TT<>
1330    case Type::TemplateSpecialization: {
1331      const TemplateSpecializationType *SpecParam
1332        = cast<TemplateSpecializationType>(Param);
1333
1334      // Try to deduce template arguments from the template-id.
1335      Sema::TemplateDeductionResult Result
1336        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1337                                  Info, Deduced);
1338
1339      if (Result && (TDF & TDF_DerivedClass)) {
1340        // C++ [temp.deduct.call]p3b3:
1341        //   If P is a class, and P has the form template-id, then A can be a
1342        //   derived class of the deduced A. Likewise, if P is a pointer to a
1343        //   class of the form template-id, A can be a pointer to a derived
1344        //   class pointed to by the deduced A.
1345        //
1346        // More importantly:
1347        //   These alternatives are considered only if type deduction would
1348        //   otherwise fail.
1349        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1350          // We cannot inspect base classes as part of deduction when the type
1351          // is incomplete, so either instantiate any templates necessary to
1352          // complete the type, or skip over it if it cannot be completed.
1353          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1354            return Result;
1355
1356          // Use data recursion to crawl through the list of base classes.
1357          // Visited contains the set of nodes we have already visited, while
1358          // ToVisit is our stack of records that we still need to visit.
1359          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1360          SmallVector<const RecordType *, 8> ToVisit;
1361          ToVisit.push_back(RecordT);
1362          bool Successful = false;
1363          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1364                                                              Deduced.end());
1365          while (!ToVisit.empty()) {
1366            // Retrieve the next class in the inheritance hierarchy.
1367            const RecordType *NextT = ToVisit.back();
1368            ToVisit.pop_back();
1369
1370            // If we have already seen this type, skip it.
1371            if (!Visited.insert(NextT))
1372              continue;
1373
1374            // If this is a base class, try to perform template argument
1375            // deduction from it.
1376            if (NextT != RecordT) {
1377              Sema::TemplateDeductionResult BaseResult
1378                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1379                                          QualType(NextT, 0), Info, Deduced);
1380
1381              // If template argument deduction for this base was successful,
1382              // note that we had some success. Otherwise, ignore any deductions
1383              // from this base class.
1384              if (BaseResult == Sema::TDK_Success) {
1385                Successful = true;
1386                DeducedOrig.clear();
1387                DeducedOrig.append(Deduced.begin(), Deduced.end());
1388              }
1389              else
1390                Deduced = DeducedOrig;
1391            }
1392
1393            // Visit base classes
1394            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1395            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1396                                                 BaseEnd = Next->bases_end();
1397                 Base != BaseEnd; ++Base) {
1398              assert(Base->getType()->isRecordType() &&
1399                     "Base class that isn't a record?");
1400              ToVisit.push_back(Base->getType()->getAs<RecordType>());
1401            }
1402          }
1403
1404          if (Successful)
1405            return Sema::TDK_Success;
1406        }
1407
1408      }
1409
1410      return Result;
1411    }
1412
1413    //     T type::*
1414    //     T T::*
1415    //     T (type::*)()
1416    //     type (T::*)()
1417    //     type (type::*)(T)
1418    //     type (T::*)(T)
1419    //     T (type::*)(T)
1420    //     T (T::*)()
1421    //     T (T::*)(T)
1422    case Type::MemberPointer: {
1423      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1424      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1425      if (!MemPtrArg)
1426        return Sema::TDK_NonDeducedMismatch;
1427
1428      if (Sema::TemplateDeductionResult Result
1429            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1430                                                 MemPtrParam->getPointeeType(),
1431                                                 MemPtrArg->getPointeeType(),
1432                                                 Info, Deduced,
1433                                                 TDF & TDF_IgnoreQualifiers))
1434        return Result;
1435
1436      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1437                                           QualType(MemPtrParam->getClass(), 0),
1438                                           QualType(MemPtrArg->getClass(), 0),
1439                                           Info, Deduced,
1440                                           TDF & TDF_IgnoreQualifiers);
1441    }
1442
1443    //     (clang extension)
1444    //
1445    //     type(^)(T)
1446    //     T(^)()
1447    //     T(^)(T)
1448    case Type::BlockPointer: {
1449      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1450      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1451
1452      if (!BlockPtrArg)
1453        return Sema::TDK_NonDeducedMismatch;
1454
1455      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1456                                                BlockPtrParam->getPointeeType(),
1457                                                BlockPtrArg->getPointeeType(),
1458                                                Info, Deduced, 0);
1459    }
1460
1461    //     (clang extension)
1462    //
1463    //     T __attribute__(((ext_vector_type(<integral constant>))))
1464    case Type::ExtVector: {
1465      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1466      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1467        // Make sure that the vectors have the same number of elements.
1468        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1469          return Sema::TDK_NonDeducedMismatch;
1470
1471        // Perform deduction on the element types.
1472        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1473                                                  VectorParam->getElementType(),
1474                                                  VectorArg->getElementType(),
1475                                                  Info, Deduced, TDF);
1476      }
1477
1478      if (const DependentSizedExtVectorType *VectorArg
1479                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1480        // We can't check the number of elements, since the argument has a
1481        // dependent number of elements. This can only occur during partial
1482        // ordering.
1483
1484        // Perform deduction on the element types.
1485        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1486                                                  VectorParam->getElementType(),
1487                                                  VectorArg->getElementType(),
1488                                                  Info, Deduced, TDF);
1489      }
1490
1491      return Sema::TDK_NonDeducedMismatch;
1492    }
1493
1494    //     (clang extension)
1495    //
1496    //     T __attribute__(((ext_vector_type(N))))
1497    case Type::DependentSizedExtVector: {
1498      const DependentSizedExtVectorType *VectorParam
1499        = cast<DependentSizedExtVectorType>(Param);
1500
1501      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1502        // Perform deduction on the element types.
1503        if (Sema::TemplateDeductionResult Result
1504              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1505                                                  VectorParam->getElementType(),
1506                                                   VectorArg->getElementType(),
1507                                                   Info, Deduced, TDF))
1508          return Result;
1509
1510        // Perform deduction on the vector size, if we can.
1511        NonTypeTemplateParmDecl *NTTP
1512          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1513        if (!NTTP)
1514          return Sema::TDK_Success;
1515
1516        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1517        ArgSize = VectorArg->getNumElements();
1518        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1519                                             false, Info, Deduced);
1520      }
1521
1522      if (const DependentSizedExtVectorType *VectorArg
1523                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1524        // Perform deduction on the element types.
1525        if (Sema::TemplateDeductionResult Result
1526            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1527                                                 VectorParam->getElementType(),
1528                                                 VectorArg->getElementType(),
1529                                                 Info, Deduced, TDF))
1530          return Result;
1531
1532        // Perform deduction on the vector size, if we can.
1533        NonTypeTemplateParmDecl *NTTP
1534          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1535        if (!NTTP)
1536          return Sema::TDK_Success;
1537
1538        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1539                                             Info, Deduced);
1540      }
1541
1542      return Sema::TDK_NonDeducedMismatch;
1543    }
1544
1545    case Type::TypeOfExpr:
1546    case Type::TypeOf:
1547    case Type::DependentName:
1548    case Type::UnresolvedUsing:
1549    case Type::Decltype:
1550    case Type::UnaryTransform:
1551    case Type::Auto:
1552    case Type::DependentTemplateSpecialization:
1553    case Type::PackExpansion:
1554      // No template argument deduction for these types
1555      return Sema::TDK_Success;
1556  }
1557
1558  llvm_unreachable("Invalid Type Class!");
1559}
1560
1561static Sema::TemplateDeductionResult
1562DeduceTemplateArguments(Sema &S,
1563                        TemplateParameterList *TemplateParams,
1564                        const TemplateArgument &Param,
1565                        TemplateArgument Arg,
1566                        TemplateDeductionInfo &Info,
1567                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1568  // If the template argument is a pack expansion, perform template argument
1569  // deduction against the pattern of that expansion. This only occurs during
1570  // partial ordering.
1571  if (Arg.isPackExpansion())
1572    Arg = Arg.getPackExpansionPattern();
1573
1574  switch (Param.getKind()) {
1575  case TemplateArgument::Null:
1576    llvm_unreachable("Null template argument in parameter list");
1577
1578  case TemplateArgument::Type:
1579    if (Arg.getKind() == TemplateArgument::Type)
1580      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1581                                                Param.getAsType(),
1582                                                Arg.getAsType(),
1583                                                Info, Deduced, 0);
1584    Info.FirstArg = Param;
1585    Info.SecondArg = Arg;
1586    return Sema::TDK_NonDeducedMismatch;
1587
1588  case TemplateArgument::Template:
1589    if (Arg.getKind() == TemplateArgument::Template)
1590      return DeduceTemplateArguments(S, TemplateParams,
1591                                     Param.getAsTemplate(),
1592                                     Arg.getAsTemplate(), Info, Deduced);
1593    Info.FirstArg = Param;
1594    Info.SecondArg = Arg;
1595    return Sema::TDK_NonDeducedMismatch;
1596
1597  case TemplateArgument::TemplateExpansion:
1598    llvm_unreachable("caller should handle pack expansions");
1599
1600  case TemplateArgument::Declaration:
1601    if (Arg.getKind() == TemplateArgument::Declaration &&
1602        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1603      return Sema::TDK_Success;
1604
1605    Info.FirstArg = Param;
1606    Info.SecondArg = Arg;
1607    return Sema::TDK_NonDeducedMismatch;
1608
1609  case TemplateArgument::Integral:
1610    if (Arg.getKind() == TemplateArgument::Integral) {
1611      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1612        return Sema::TDK_Success;
1613
1614      Info.FirstArg = Param;
1615      Info.SecondArg = Arg;
1616      return Sema::TDK_NonDeducedMismatch;
1617    }
1618
1619    if (Arg.getKind() == TemplateArgument::Expression) {
1620      Info.FirstArg = Param;
1621      Info.SecondArg = Arg;
1622      return Sema::TDK_NonDeducedMismatch;
1623    }
1624
1625    Info.FirstArg = Param;
1626    Info.SecondArg = Arg;
1627    return Sema::TDK_NonDeducedMismatch;
1628
1629  case TemplateArgument::Expression: {
1630    if (NonTypeTemplateParmDecl *NTTP
1631          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1632      if (Arg.getKind() == TemplateArgument::Integral)
1633        return DeduceNonTypeTemplateArgument(S, NTTP,
1634                                             Arg.getAsIntegral(),
1635                                             Arg.getIntegralType(),
1636                                             /*ArrayBound=*/false,
1637                                             Info, Deduced);
1638      if (Arg.getKind() == TemplateArgument::Expression)
1639        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1640                                             Info, Deduced);
1641      if (Arg.getKind() == TemplateArgument::Declaration)
1642        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1643                                             Info, Deduced);
1644
1645      Info.FirstArg = Param;
1646      Info.SecondArg = Arg;
1647      return Sema::TDK_NonDeducedMismatch;
1648    }
1649
1650    // Can't deduce anything, but that's okay.
1651    return Sema::TDK_Success;
1652  }
1653  case TemplateArgument::Pack:
1654    llvm_unreachable("Argument packs should be expanded by the caller!");
1655  }
1656
1657  llvm_unreachable("Invalid TemplateArgument Kind!");
1658}
1659
1660/// \brief Determine whether there is a template argument to be used for
1661/// deduction.
1662///
1663/// This routine "expands" argument packs in-place, overriding its input
1664/// parameters so that \c Args[ArgIdx] will be the available template argument.
1665///
1666/// \returns true if there is another template argument (which will be at
1667/// \c Args[ArgIdx]), false otherwise.
1668static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1669                                            unsigned &ArgIdx,
1670                                            unsigned &NumArgs) {
1671  if (ArgIdx == NumArgs)
1672    return false;
1673
1674  const TemplateArgument &Arg = Args[ArgIdx];
1675  if (Arg.getKind() != TemplateArgument::Pack)
1676    return true;
1677
1678  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1679  Args = Arg.pack_begin();
1680  NumArgs = Arg.pack_size();
1681  ArgIdx = 0;
1682  return ArgIdx < NumArgs;
1683}
1684
1685/// \brief Determine whether the given set of template arguments has a pack
1686/// expansion that is not the last template argument.
1687static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1688                                      unsigned NumArgs) {
1689  unsigned ArgIdx = 0;
1690  while (ArgIdx < NumArgs) {
1691    const TemplateArgument &Arg = Args[ArgIdx];
1692
1693    // Unwrap argument packs.
1694    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1695      Args = Arg.pack_begin();
1696      NumArgs = Arg.pack_size();
1697      ArgIdx = 0;
1698      continue;
1699    }
1700
1701    ++ArgIdx;
1702    if (ArgIdx == NumArgs)
1703      return false;
1704
1705    if (Arg.isPackExpansion())
1706      return true;
1707  }
1708
1709  return false;
1710}
1711
1712static Sema::TemplateDeductionResult
1713DeduceTemplateArguments(Sema &S,
1714                        TemplateParameterList *TemplateParams,
1715                        const TemplateArgument *Params, unsigned NumParams,
1716                        const TemplateArgument *Args, unsigned NumArgs,
1717                        TemplateDeductionInfo &Info,
1718                    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1719                        bool NumberOfArgumentsMustMatch) {
1720  // C++0x [temp.deduct.type]p9:
1721  //   If the template argument list of P contains a pack expansion that is not
1722  //   the last template argument, the entire template argument list is a
1723  //   non-deduced context.
1724  if (hasPackExpansionBeforeEnd(Params, NumParams))
1725    return Sema::TDK_Success;
1726
1727  // C++0x [temp.deduct.type]p9:
1728  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1729  //   respective template argument list P is compared with the corresponding
1730  //   argument Ai of the corresponding template argument list of A.
1731  unsigned ArgIdx = 0, ParamIdx = 0;
1732  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1733       ++ParamIdx) {
1734    if (!Params[ParamIdx].isPackExpansion()) {
1735      // The simple case: deduce template arguments by matching Pi and Ai.
1736
1737      // Check whether we have enough arguments.
1738      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1739        return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1740                                         : Sema::TDK_Success;
1741
1742      if (Args[ArgIdx].isPackExpansion()) {
1743        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1744        // but applied to pack expansions that are template arguments.
1745        return Sema::TDK_NonDeducedMismatch;
1746      }
1747
1748      // Perform deduction for this Pi/Ai pair.
1749      if (Sema::TemplateDeductionResult Result
1750            = DeduceTemplateArguments(S, TemplateParams,
1751                                      Params[ParamIdx], Args[ArgIdx],
1752                                      Info, Deduced))
1753        return Result;
1754
1755      // Move to the next argument.
1756      ++ArgIdx;
1757      continue;
1758    }
1759
1760    // The parameter is a pack expansion.
1761
1762    // C++0x [temp.deduct.type]p9:
1763    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1764    //   each remaining argument in the template argument list of A. Each
1765    //   comparison deduces template arguments for subsequent positions in the
1766    //   template parameter packs expanded by Pi.
1767    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1768
1769    // Compute the set of template parameter indices that correspond to
1770    // parameter packs expanded by the pack expansion.
1771    SmallVector<unsigned, 2> PackIndices;
1772    {
1773      llvm::SmallBitVector SawIndices(TemplateParams->size());
1774      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1775      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1776      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1777        unsigned Depth, Index;
1778        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1779        if (Depth == 0 && !SawIndices[Index]) {
1780          SawIndices[Index] = true;
1781          PackIndices.push_back(Index);
1782        }
1783      }
1784    }
1785    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1786
1787    // FIXME: If there are no remaining arguments, we can bail out early
1788    // and set any deduced parameter packs to an empty argument pack.
1789    // The latter part of this is a (minor) correctness issue.
1790
1791    // Save the deduced template arguments for each parameter pack expanded
1792    // by this pack expansion, then clear out the deduction.
1793    SmallVector<DeducedTemplateArgument, 2>
1794      SavedPacks(PackIndices.size());
1795    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1796      NewlyDeducedPacks(PackIndices.size());
1797    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1798                                 NewlyDeducedPacks);
1799
1800    // Keep track of the deduced template arguments for each parameter pack
1801    // expanded by this pack expansion (the outer index) and for each
1802    // template argument (the inner SmallVectors).
1803    bool HasAnyArguments = false;
1804    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1805      HasAnyArguments = true;
1806
1807      // Deduce template arguments from the pattern.
1808      if (Sema::TemplateDeductionResult Result
1809            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1810                                      Info, Deduced))
1811        return Result;
1812
1813      // Capture the deduced template arguments for each parameter pack expanded
1814      // by this pack expansion, add them to the list of arguments we've deduced
1815      // for that pack, then clear out the deduced argument.
1816      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1817        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1818        if (!DeducedArg.isNull()) {
1819          NewlyDeducedPacks[I].push_back(DeducedArg);
1820          DeducedArg = DeducedTemplateArgument();
1821        }
1822      }
1823
1824      ++ArgIdx;
1825    }
1826
1827    // Build argument packs for each of the parameter packs expanded by this
1828    // pack expansion.
1829    if (Sema::TemplateDeductionResult Result
1830          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1831                                        Deduced, PackIndices, SavedPacks,
1832                                        NewlyDeducedPacks, Info))
1833      return Result;
1834  }
1835
1836  // If there is an argument remaining, then we had too many arguments.
1837  if (NumberOfArgumentsMustMatch &&
1838      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1839    return Sema::TDK_NonDeducedMismatch;
1840
1841  return Sema::TDK_Success;
1842}
1843
1844static Sema::TemplateDeductionResult
1845DeduceTemplateArguments(Sema &S,
1846                        TemplateParameterList *TemplateParams,
1847                        const TemplateArgumentList &ParamList,
1848                        const TemplateArgumentList &ArgList,
1849                        TemplateDeductionInfo &Info,
1850                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1851  return DeduceTemplateArguments(S, TemplateParams,
1852                                 ParamList.data(), ParamList.size(),
1853                                 ArgList.data(), ArgList.size(),
1854                                 Info, Deduced);
1855}
1856
1857/// \brief Determine whether two template arguments are the same.
1858static bool isSameTemplateArg(ASTContext &Context,
1859                              const TemplateArgument &X,
1860                              const TemplateArgument &Y) {
1861  if (X.getKind() != Y.getKind())
1862    return false;
1863
1864  switch (X.getKind()) {
1865    case TemplateArgument::Null:
1866      llvm_unreachable("Comparing NULL template argument");
1867
1868    case TemplateArgument::Type:
1869      return Context.getCanonicalType(X.getAsType()) ==
1870             Context.getCanonicalType(Y.getAsType());
1871
1872    case TemplateArgument::Declaration:
1873      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1874
1875    case TemplateArgument::Template:
1876    case TemplateArgument::TemplateExpansion:
1877      return Context.getCanonicalTemplateName(
1878                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1879             Context.getCanonicalTemplateName(
1880                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1881
1882    case TemplateArgument::Integral:
1883      return X.getAsIntegral() == Y.getAsIntegral();
1884
1885    case TemplateArgument::Expression: {
1886      llvm::FoldingSetNodeID XID, YID;
1887      X.getAsExpr()->Profile(XID, Context, true);
1888      Y.getAsExpr()->Profile(YID, Context, true);
1889      return XID == YID;
1890    }
1891
1892    case TemplateArgument::Pack:
1893      if (X.pack_size() != Y.pack_size())
1894        return false;
1895
1896      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1897                                        XPEnd = X.pack_end(),
1898                                           YP = Y.pack_begin();
1899           XP != XPEnd; ++XP, ++YP)
1900        if (!isSameTemplateArg(Context, *XP, *YP))
1901          return false;
1902
1903      return true;
1904  }
1905
1906  llvm_unreachable("Invalid TemplateArgument Kind!");
1907}
1908
1909/// \brief Allocate a TemplateArgumentLoc where all locations have
1910/// been initialized to the given location.
1911///
1912/// \param S The semantic analysis object.
1913///
1914/// \param Arg The template argument we are producing template argument
1915/// location information for.
1916///
1917/// \param NTTPType For a declaration template argument, the type of
1918/// the non-type template parameter that corresponds to this template
1919/// argument.
1920///
1921/// \param Loc The source location to use for the resulting template
1922/// argument.
1923static TemplateArgumentLoc
1924getTrivialTemplateArgumentLoc(Sema &S,
1925                              const TemplateArgument &Arg,
1926                              QualType NTTPType,
1927                              SourceLocation Loc) {
1928  switch (Arg.getKind()) {
1929  case TemplateArgument::Null:
1930    llvm_unreachable("Can't get a NULL template argument here");
1931
1932  case TemplateArgument::Type:
1933    return TemplateArgumentLoc(Arg,
1934                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1935
1936  case TemplateArgument::Declaration: {
1937    Expr *E
1938      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1939          .takeAs<Expr>();
1940    return TemplateArgumentLoc(TemplateArgument(E), E);
1941  }
1942
1943  case TemplateArgument::Integral: {
1944    Expr *E
1945      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1946    return TemplateArgumentLoc(TemplateArgument(E), E);
1947  }
1948
1949    case TemplateArgument::Template:
1950    case TemplateArgument::TemplateExpansion: {
1951      NestedNameSpecifierLocBuilder Builder;
1952      TemplateName Template = Arg.getAsTemplate();
1953      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1954        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1955      else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1956        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1957
1958      if (Arg.getKind() == TemplateArgument::Template)
1959        return TemplateArgumentLoc(Arg,
1960                                   Builder.getWithLocInContext(S.Context),
1961                                   Loc);
1962
1963
1964      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1965                                 Loc, Loc);
1966    }
1967
1968  case TemplateArgument::Expression:
1969    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1970
1971  case TemplateArgument::Pack:
1972    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1973  }
1974
1975  llvm_unreachable("Invalid TemplateArgument Kind!");
1976}
1977
1978
1979/// \brief Convert the given deduced template argument and add it to the set of
1980/// fully-converted template arguments.
1981static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1982                                           DeducedTemplateArgument Arg,
1983                                           NamedDecl *Template,
1984                                           QualType NTTPType,
1985                                           unsigned ArgumentPackIndex,
1986                                           TemplateDeductionInfo &Info,
1987                                           bool InFunctionTemplate,
1988                             SmallVectorImpl<TemplateArgument> &Output) {
1989  if (Arg.getKind() == TemplateArgument::Pack) {
1990    // This is a template argument pack, so check each of its arguments against
1991    // the template parameter.
1992    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1993    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1994                                      PAEnd = Arg.pack_end();
1995         PA != PAEnd; ++PA) {
1996      // When converting the deduced template argument, append it to the
1997      // general output list. We need to do this so that the template argument
1998      // checking logic has all of the prior template arguments available.
1999      DeducedTemplateArgument InnerArg(*PA);
2000      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2001      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2002                                         NTTPType, PackedArgsBuilder.size(),
2003                                         Info, InFunctionTemplate, Output))
2004        return true;
2005
2006      // Move the converted template argument into our argument pack.
2007      PackedArgsBuilder.push_back(Output.back());
2008      Output.pop_back();
2009    }
2010
2011    // Create the resulting argument pack.
2012    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2013                                                      PackedArgsBuilder.data(),
2014                                                     PackedArgsBuilder.size()));
2015    return false;
2016  }
2017
2018  // Convert the deduced template argument into a template
2019  // argument that we can check, almost as if the user had written
2020  // the template argument explicitly.
2021  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2022                                                             Info.getLocation());
2023
2024  // Check the template argument, converting it as necessary.
2025  return S.CheckTemplateArgument(Param, ArgLoc,
2026                                 Template,
2027                                 Template->getLocation(),
2028                                 Template->getSourceRange().getEnd(),
2029                                 ArgumentPackIndex,
2030                                 Output,
2031                                 InFunctionTemplate
2032                                  ? (Arg.wasDeducedFromArrayBound()
2033                                       ? Sema::CTAK_DeducedFromArrayBound
2034                                       : Sema::CTAK_Deduced)
2035                                 : Sema::CTAK_Specified);
2036}
2037
2038/// Complete template argument deduction for a class template partial
2039/// specialization.
2040static Sema::TemplateDeductionResult
2041FinishTemplateArgumentDeduction(Sema &S,
2042                                ClassTemplatePartialSpecializationDecl *Partial,
2043                                const TemplateArgumentList &TemplateArgs,
2044                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2045                                TemplateDeductionInfo &Info) {
2046  // Unevaluated SFINAE context.
2047  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2048  Sema::SFINAETrap Trap(S);
2049
2050  Sema::ContextRAII SavedContext(S, Partial);
2051
2052  // C++ [temp.deduct.type]p2:
2053  //   [...] or if any template argument remains neither deduced nor
2054  //   explicitly specified, template argument deduction fails.
2055  SmallVector<TemplateArgument, 4> Builder;
2056  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2057  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2058    NamedDecl *Param = PartialParams->getParam(I);
2059    if (Deduced[I].isNull()) {
2060      Info.Param = makeTemplateParameter(Param);
2061      return Sema::TDK_Incomplete;
2062    }
2063
2064    // We have deduced this argument, so it still needs to be
2065    // checked and converted.
2066
2067    // First, for a non-type template parameter type that is
2068    // initialized by a declaration, we need the type of the
2069    // corresponding non-type template parameter.
2070    QualType NTTPType;
2071    if (NonTypeTemplateParmDecl *NTTP
2072                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2073      NTTPType = NTTP->getType();
2074      if (NTTPType->isDependentType()) {
2075        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2076                                          Builder.data(), Builder.size());
2077        NTTPType = S.SubstType(NTTPType,
2078                               MultiLevelTemplateArgumentList(TemplateArgs),
2079                               NTTP->getLocation(),
2080                               NTTP->getDeclName());
2081        if (NTTPType.isNull()) {
2082          Info.Param = makeTemplateParameter(Param);
2083          // FIXME: These template arguments are temporary. Free them!
2084          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2085                                                      Builder.data(),
2086                                                      Builder.size()));
2087          return Sema::TDK_SubstitutionFailure;
2088        }
2089      }
2090    }
2091
2092    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2093                                       Partial, NTTPType, 0, Info, false,
2094                                       Builder)) {
2095      Info.Param = makeTemplateParameter(Param);
2096      // FIXME: These template arguments are temporary. Free them!
2097      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2098                                                  Builder.size()));
2099      return Sema::TDK_SubstitutionFailure;
2100    }
2101  }
2102
2103  // Form the template argument list from the deduced template arguments.
2104  TemplateArgumentList *DeducedArgumentList
2105    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2106                                       Builder.size());
2107
2108  Info.reset(DeducedArgumentList);
2109
2110  // Substitute the deduced template arguments into the template
2111  // arguments of the class template partial specialization, and
2112  // verify that the instantiated template arguments are both valid
2113  // and are equivalent to the template arguments originally provided
2114  // to the class template.
2115  LocalInstantiationScope InstScope(S);
2116  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2117  const TemplateArgumentLoc *PartialTemplateArgs
2118    = Partial->getTemplateArgsAsWritten();
2119
2120  // Note that we don't provide the langle and rangle locations.
2121  TemplateArgumentListInfo InstArgs;
2122
2123  if (S.Subst(PartialTemplateArgs,
2124              Partial->getNumTemplateArgsAsWritten(),
2125              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2126    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2127    if (ParamIdx >= Partial->getTemplateParameters()->size())
2128      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2129
2130    Decl *Param
2131      = const_cast<NamedDecl *>(
2132                          Partial->getTemplateParameters()->getParam(ParamIdx));
2133    Info.Param = makeTemplateParameter(Param);
2134    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2135    return Sema::TDK_SubstitutionFailure;
2136  }
2137
2138  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2139  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2140                                  InstArgs, false, ConvertedInstArgs))
2141    return Sema::TDK_SubstitutionFailure;
2142
2143  TemplateParameterList *TemplateParams
2144    = ClassTemplate->getTemplateParameters();
2145  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2146    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2147    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2148      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2149      Info.FirstArg = TemplateArgs[I];
2150      Info.SecondArg = InstArg;
2151      return Sema::TDK_NonDeducedMismatch;
2152    }
2153  }
2154
2155  if (Trap.hasErrorOccurred())
2156    return Sema::TDK_SubstitutionFailure;
2157
2158  return Sema::TDK_Success;
2159}
2160
2161/// \brief Perform template argument deduction to determine whether
2162/// the given template arguments match the given class template
2163/// partial specialization per C++ [temp.class.spec.match].
2164Sema::TemplateDeductionResult
2165Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2166                              const TemplateArgumentList &TemplateArgs,
2167                              TemplateDeductionInfo &Info) {
2168  // C++ [temp.class.spec.match]p2:
2169  //   A partial specialization matches a given actual template
2170  //   argument list if the template arguments of the partial
2171  //   specialization can be deduced from the actual template argument
2172  //   list (14.8.2).
2173
2174  // Unevaluated SFINAE context.
2175  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2176  SFINAETrap Trap(*this);
2177
2178  SmallVector<DeducedTemplateArgument, 4> Deduced;
2179  Deduced.resize(Partial->getTemplateParameters()->size());
2180  if (TemplateDeductionResult Result
2181        = ::DeduceTemplateArguments(*this,
2182                                    Partial->getTemplateParameters(),
2183                                    Partial->getTemplateArgs(),
2184                                    TemplateArgs, Info, Deduced))
2185    return Result;
2186
2187  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2188  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2189                             DeducedArgs, Info);
2190  if (Inst)
2191    return TDK_InstantiationDepth;
2192
2193  if (Trap.hasErrorOccurred())
2194    return Sema::TDK_SubstitutionFailure;
2195
2196  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2197                                           Deduced, Info);
2198}
2199
2200/// \brief Determine whether the given type T is a simple-template-id type.
2201static bool isSimpleTemplateIdType(QualType T) {
2202  if (const TemplateSpecializationType *Spec
2203        = T->getAs<TemplateSpecializationType>())
2204    return Spec->getTemplateName().getAsTemplateDecl() != 0;
2205
2206  return false;
2207}
2208
2209/// \brief Substitute the explicitly-provided template arguments into the
2210/// given function template according to C++ [temp.arg.explicit].
2211///
2212/// \param FunctionTemplate the function template into which the explicit
2213/// template arguments will be substituted.
2214///
2215/// \param ExplicitTemplateArgs the explicitly-specified template
2216/// arguments.
2217///
2218/// \param Deduced the deduced template arguments, which will be populated
2219/// with the converted and checked explicit template arguments.
2220///
2221/// \param ParamTypes will be populated with the instantiated function
2222/// parameters.
2223///
2224/// \param FunctionType if non-NULL, the result type of the function template
2225/// will also be instantiated and the pointed-to value will be updated with
2226/// the instantiated function type.
2227///
2228/// \param Info if substitution fails for any reason, this object will be
2229/// populated with more information about the failure.
2230///
2231/// \returns TDK_Success if substitution was successful, or some failure
2232/// condition.
2233Sema::TemplateDeductionResult
2234Sema::SubstituteExplicitTemplateArguments(
2235                                      FunctionTemplateDecl *FunctionTemplate,
2236                               TemplateArgumentListInfo &ExplicitTemplateArgs,
2237                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2238                                 SmallVectorImpl<QualType> &ParamTypes,
2239                                          QualType *FunctionType,
2240                                          TemplateDeductionInfo &Info) {
2241  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2242  TemplateParameterList *TemplateParams
2243    = FunctionTemplate->getTemplateParameters();
2244
2245  if (ExplicitTemplateArgs.size() == 0) {
2246    // No arguments to substitute; just copy over the parameter types and
2247    // fill in the function type.
2248    for (FunctionDecl::param_iterator P = Function->param_begin(),
2249                                   PEnd = Function->param_end();
2250         P != PEnd;
2251         ++P)
2252      ParamTypes.push_back((*P)->getType());
2253
2254    if (FunctionType)
2255      *FunctionType = Function->getType();
2256    return TDK_Success;
2257  }
2258
2259  // Unevaluated SFINAE context.
2260  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2261  SFINAETrap Trap(*this);
2262
2263  // C++ [temp.arg.explicit]p3:
2264  //   Template arguments that are present shall be specified in the
2265  //   declaration order of their corresponding template-parameters. The
2266  //   template argument list shall not specify more template-arguments than
2267  //   there are corresponding template-parameters.
2268  SmallVector<TemplateArgument, 4> Builder;
2269
2270  // Enter a new template instantiation context where we check the
2271  // explicitly-specified template arguments against this function template,
2272  // and then substitute them into the function parameter types.
2273  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2274  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2275                             FunctionTemplate, DeducedArgs,
2276           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2277                             Info);
2278  if (Inst)
2279    return TDK_InstantiationDepth;
2280
2281  if (CheckTemplateArgumentList(FunctionTemplate,
2282                                SourceLocation(),
2283                                ExplicitTemplateArgs,
2284                                true,
2285                                Builder) || Trap.hasErrorOccurred()) {
2286    unsigned Index = Builder.size();
2287    if (Index >= TemplateParams->size())
2288      Index = TemplateParams->size() - 1;
2289    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2290    return TDK_InvalidExplicitArguments;
2291  }
2292
2293  // Form the template argument list from the explicitly-specified
2294  // template arguments.
2295  TemplateArgumentList *ExplicitArgumentList
2296    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2297  Info.reset(ExplicitArgumentList);
2298
2299  // Template argument deduction and the final substitution should be
2300  // done in the context of the templated declaration.  Explicit
2301  // argument substitution, on the other hand, needs to happen in the
2302  // calling context.
2303  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2304
2305  // If we deduced template arguments for a template parameter pack,
2306  // note that the template argument pack is partially substituted and record
2307  // the explicit template arguments. They'll be used as part of deduction
2308  // for this template parameter pack.
2309  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2310    const TemplateArgument &Arg = Builder[I];
2311    if (Arg.getKind() == TemplateArgument::Pack) {
2312      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2313                                                 TemplateParams->getParam(I),
2314                                                             Arg.pack_begin(),
2315                                                             Arg.pack_size());
2316      break;
2317    }
2318  }
2319
2320  const FunctionProtoType *Proto
2321    = Function->getType()->getAs<FunctionProtoType>();
2322  assert(Proto && "Function template does not have a prototype?");
2323
2324  // Instantiate the types of each of the function parameters given the
2325  // explicitly-specified template arguments. If the function has a trailing
2326  // return type, substitute it after the arguments to ensure we substitute
2327  // in lexical order.
2328  if (Proto->hasTrailingReturn()) {
2329    if (SubstParmTypes(Function->getLocation(),
2330                       Function->param_begin(), Function->getNumParams(),
2331                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2332                       ParamTypes))
2333      return TDK_SubstitutionFailure;
2334  }
2335
2336  // Instantiate the return type.
2337  // FIXME: exception-specifications?
2338  QualType ResultType;
2339  {
2340    // C++11 [expr.prim.general]p3:
2341    //   If a declaration declares a member function or member function
2342    //   template of a class X, the expression this is a prvalue of type
2343    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2344    //   and the end of the function-definition, member-declarator, or
2345    //   declarator.
2346    unsigned ThisTypeQuals = 0;
2347    CXXRecordDecl *ThisContext = 0;
2348    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2349      ThisContext = Method->getParent();
2350      ThisTypeQuals = Method->getTypeQualifiers();
2351    }
2352
2353    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2354                               getLangOpts().CPlusPlus0x);
2355
2356    ResultType = SubstType(Proto->getResultType(),
2357                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2358                   Function->getTypeSpecStartLoc(),
2359                   Function->getDeclName());
2360    if (ResultType.isNull() || Trap.hasErrorOccurred())
2361      return TDK_SubstitutionFailure;
2362  }
2363
2364  // Instantiate the types of each of the function parameters given the
2365  // explicitly-specified template arguments if we didn't do so earlier.
2366  if (!Proto->hasTrailingReturn() &&
2367      SubstParmTypes(Function->getLocation(),
2368                     Function->param_begin(), Function->getNumParams(),
2369                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2370                     ParamTypes))
2371    return TDK_SubstitutionFailure;
2372
2373  if (FunctionType) {
2374    *FunctionType = BuildFunctionType(ResultType,
2375                                      ParamTypes.data(), ParamTypes.size(),
2376                                      Proto->isVariadic(),
2377                                      Proto->hasTrailingReturn(),
2378                                      Proto->getTypeQuals(),
2379                                      Proto->getRefQualifier(),
2380                                      Function->getLocation(),
2381                                      Function->getDeclName(),
2382                                      Proto->getExtInfo());
2383    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2384      return TDK_SubstitutionFailure;
2385  }
2386
2387  // C++ [temp.arg.explicit]p2:
2388  //   Trailing template arguments that can be deduced (14.8.2) may be
2389  //   omitted from the list of explicit template-arguments. If all of the
2390  //   template arguments can be deduced, they may all be omitted; in this
2391  //   case, the empty template argument list <> itself may also be omitted.
2392  //
2393  // Take all of the explicitly-specified arguments and put them into
2394  // the set of deduced template arguments. Explicitly-specified
2395  // parameter packs, however, will be set to NULL since the deduction
2396  // mechanisms handle explicitly-specified argument packs directly.
2397  Deduced.reserve(TemplateParams->size());
2398  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2399    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2400    if (Arg.getKind() == TemplateArgument::Pack)
2401      Deduced.push_back(DeducedTemplateArgument());
2402    else
2403      Deduced.push_back(Arg);
2404  }
2405
2406  return TDK_Success;
2407}
2408
2409/// \brief Check whether the deduced argument type for a call to a function
2410/// template matches the actual argument type per C++ [temp.deduct.call]p4.
2411static bool
2412CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2413                              QualType DeducedA) {
2414  ASTContext &Context = S.Context;
2415
2416  QualType A = OriginalArg.OriginalArgType;
2417  QualType OriginalParamType = OriginalArg.OriginalParamType;
2418
2419  // Check for type equality (top-level cv-qualifiers are ignored).
2420  if (Context.hasSameUnqualifiedType(A, DeducedA))
2421    return false;
2422
2423  // Strip off references on the argument types; they aren't needed for
2424  // the following checks.
2425  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2426    DeducedA = DeducedARef->getPointeeType();
2427  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2428    A = ARef->getPointeeType();
2429
2430  // C++ [temp.deduct.call]p4:
2431  //   [...] However, there are three cases that allow a difference:
2432  //     - If the original P is a reference type, the deduced A (i.e., the
2433  //       type referred to by the reference) can be more cv-qualified than
2434  //       the transformed A.
2435  if (const ReferenceType *OriginalParamRef
2436      = OriginalParamType->getAs<ReferenceType>()) {
2437    // We don't want to keep the reference around any more.
2438    OriginalParamType = OriginalParamRef->getPointeeType();
2439
2440    Qualifiers AQuals = A.getQualifiers();
2441    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2442
2443    // Under Objective-C++ ARC, the deduced type may have implicitly been
2444    // given strong lifetime. If so, update the original qualifiers to
2445    // include this strong lifetime.
2446    if (S.getLangOpts().ObjCAutoRefCount &&
2447        DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2448        AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
2449      AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
2450    }
2451
2452    if (AQuals == DeducedAQuals) {
2453      // Qualifiers match; there's nothing to do.
2454    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2455      return true;
2456    } else {
2457      // Qualifiers are compatible, so have the argument type adopt the
2458      // deduced argument type's qualifiers as if we had performed the
2459      // qualification conversion.
2460      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2461    }
2462  }
2463
2464  //    - The transformed A can be another pointer or pointer to member
2465  //      type that can be converted to the deduced A via a qualification
2466  //      conversion.
2467  //
2468  // Also allow conversions which merely strip [[noreturn]] from function types
2469  // (recursively) as an extension.
2470  // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2471  bool ObjCLifetimeConversion = false;
2472  QualType ResultTy;
2473  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2474      (S.IsQualificationConversion(A, DeducedA, false,
2475                                   ObjCLifetimeConversion) ||
2476       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2477    return false;
2478
2479
2480  //    - If P is a class and P has the form simple-template-id, then the
2481  //      transformed A can be a derived class of the deduced A. [...]
2482  //     [...] Likewise, if P is a pointer to a class of the form
2483  //      simple-template-id, the transformed A can be a pointer to a
2484  //      derived class pointed to by the deduced A.
2485  if (const PointerType *OriginalParamPtr
2486      = OriginalParamType->getAs<PointerType>()) {
2487    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2488      if (const PointerType *APtr = A->getAs<PointerType>()) {
2489        if (A->getPointeeType()->isRecordType()) {
2490          OriginalParamType = OriginalParamPtr->getPointeeType();
2491          DeducedA = DeducedAPtr->getPointeeType();
2492          A = APtr->getPointeeType();
2493        }
2494      }
2495    }
2496  }
2497
2498  if (Context.hasSameUnqualifiedType(A, DeducedA))
2499    return false;
2500
2501  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2502      S.IsDerivedFrom(A, DeducedA))
2503    return false;
2504
2505  return true;
2506}
2507
2508/// \brief Finish template argument deduction for a function template,
2509/// checking the deduced template arguments for completeness and forming
2510/// the function template specialization.
2511///
2512/// \param OriginalCallArgs If non-NULL, the original call arguments against
2513/// which the deduced argument types should be compared.
2514Sema::TemplateDeductionResult
2515Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2516                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2517                                      unsigned NumExplicitlySpecified,
2518                                      FunctionDecl *&Specialization,
2519                                      TemplateDeductionInfo &Info,
2520        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2521  TemplateParameterList *TemplateParams
2522    = FunctionTemplate->getTemplateParameters();
2523
2524  // Unevaluated SFINAE context.
2525  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2526  SFINAETrap Trap(*this);
2527
2528  // Enter a new template instantiation context while we instantiate the
2529  // actual function declaration.
2530  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2531  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2532                             FunctionTemplate, DeducedArgs,
2533              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2534                             Info);
2535  if (Inst)
2536    return TDK_InstantiationDepth;
2537
2538  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2539
2540  // C++ [temp.deduct.type]p2:
2541  //   [...] or if any template argument remains neither deduced nor
2542  //   explicitly specified, template argument deduction fails.
2543  SmallVector<TemplateArgument, 4> Builder;
2544  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2545    NamedDecl *Param = TemplateParams->getParam(I);
2546
2547    if (!Deduced[I].isNull()) {
2548      if (I < NumExplicitlySpecified) {
2549        // We have already fully type-checked and converted this
2550        // argument, because it was explicitly-specified. Just record the
2551        // presence of this argument.
2552        Builder.push_back(Deduced[I]);
2553        continue;
2554      }
2555
2556      // We have deduced this argument, so it still needs to be
2557      // checked and converted.
2558
2559      // First, for a non-type template parameter type that is
2560      // initialized by a declaration, we need the type of the
2561      // corresponding non-type template parameter.
2562      QualType NTTPType;
2563      if (NonTypeTemplateParmDecl *NTTP
2564                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2565        NTTPType = NTTP->getType();
2566        if (NTTPType->isDependentType()) {
2567          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2568                                            Builder.data(), Builder.size());
2569          NTTPType = SubstType(NTTPType,
2570                               MultiLevelTemplateArgumentList(TemplateArgs),
2571                               NTTP->getLocation(),
2572                               NTTP->getDeclName());
2573          if (NTTPType.isNull()) {
2574            Info.Param = makeTemplateParameter(Param);
2575            // FIXME: These template arguments are temporary. Free them!
2576            Info.reset(TemplateArgumentList::CreateCopy(Context,
2577                                                        Builder.data(),
2578                                                        Builder.size()));
2579            return TDK_SubstitutionFailure;
2580          }
2581        }
2582      }
2583
2584      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2585                                         FunctionTemplate, NTTPType, 0, Info,
2586                                         true, Builder)) {
2587        Info.Param = makeTemplateParameter(Param);
2588        // FIXME: These template arguments are temporary. Free them!
2589        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2590                                                    Builder.size()));
2591        return TDK_SubstitutionFailure;
2592      }
2593
2594      continue;
2595    }
2596
2597    // C++0x [temp.arg.explicit]p3:
2598    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2599    //    be deduced to an empty sequence of template arguments.
2600    // FIXME: Where did the word "trailing" come from?
2601    if (Param->isTemplateParameterPack()) {
2602      // We may have had explicitly-specified template arguments for this
2603      // template parameter pack. If so, our empty deduction extends the
2604      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2605      const TemplateArgument *ExplicitArgs;
2606      unsigned NumExplicitArgs;
2607      if (CurrentInstantiationScope &&
2608          CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2609                                                             &NumExplicitArgs)
2610          == Param)
2611        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2612      else
2613        Builder.push_back(TemplateArgument(0, 0));
2614
2615      continue;
2616    }
2617
2618    // Substitute into the default template argument, if available.
2619    TemplateArgumentLoc DefArg
2620      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2621                                              FunctionTemplate->getLocation(),
2622                                  FunctionTemplate->getSourceRange().getEnd(),
2623                                                Param,
2624                                                Builder);
2625
2626    // If there was no default argument, deduction is incomplete.
2627    if (DefArg.getArgument().isNull()) {
2628      Info.Param = makeTemplateParameter(
2629                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2630      return TDK_Incomplete;
2631    }
2632
2633    // Check whether we can actually use the default argument.
2634    if (CheckTemplateArgument(Param, DefArg,
2635                              FunctionTemplate,
2636                              FunctionTemplate->getLocation(),
2637                              FunctionTemplate->getSourceRange().getEnd(),
2638                              0, Builder,
2639                              CTAK_Specified)) {
2640      Info.Param = makeTemplateParameter(
2641                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2642      // FIXME: These template arguments are temporary. Free them!
2643      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2644                                                  Builder.size()));
2645      return TDK_SubstitutionFailure;
2646    }
2647
2648    // If we get here, we successfully used the default template argument.
2649  }
2650
2651  // Form the template argument list from the deduced template arguments.
2652  TemplateArgumentList *DeducedArgumentList
2653    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2654  Info.reset(DeducedArgumentList);
2655
2656  // Substitute the deduced template arguments into the function template
2657  // declaration to produce the function template specialization.
2658  DeclContext *Owner = FunctionTemplate->getDeclContext();
2659  if (FunctionTemplate->getFriendObjectKind())
2660    Owner = FunctionTemplate->getLexicalDeclContext();
2661  Specialization = cast_or_null<FunctionDecl>(
2662                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2663                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2664  if (!Specialization || Specialization->isInvalidDecl())
2665    return TDK_SubstitutionFailure;
2666
2667  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2668         FunctionTemplate->getCanonicalDecl());
2669
2670  // If the template argument list is owned by the function template
2671  // specialization, release it.
2672  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2673      !Trap.hasErrorOccurred())
2674    Info.take();
2675
2676  // There may have been an error that did not prevent us from constructing a
2677  // declaration. Mark the declaration invalid and return with a substitution
2678  // failure.
2679  if (Trap.hasErrorOccurred()) {
2680    Specialization->setInvalidDecl(true);
2681    return TDK_SubstitutionFailure;
2682  }
2683
2684  if (OriginalCallArgs) {
2685    // C++ [temp.deduct.call]p4:
2686    //   In general, the deduction process attempts to find template argument
2687    //   values that will make the deduced A identical to A (after the type A
2688    //   is transformed as described above). [...]
2689    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2690      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2691      unsigned ParamIdx = OriginalArg.ArgIdx;
2692
2693      if (ParamIdx >= Specialization->getNumParams())
2694        continue;
2695
2696      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2697      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2698        return Sema::TDK_SubstitutionFailure;
2699    }
2700  }
2701
2702  // If we suppressed any diagnostics while performing template argument
2703  // deduction, and if we haven't already instantiated this declaration,
2704  // keep track of these diagnostics. They'll be emitted if this specialization
2705  // is actually used.
2706  if (Info.diag_begin() != Info.diag_end()) {
2707    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
2708      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2709    if (Pos == SuppressedDiagnostics.end())
2710        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2711          .append(Info.diag_begin(), Info.diag_end());
2712  }
2713
2714  return TDK_Success;
2715}
2716
2717/// Gets the type of a function for template-argument-deducton
2718/// purposes when it's considered as part of an overload set.
2719static QualType GetTypeOfFunction(ASTContext &Context,
2720                                  const OverloadExpr::FindResult &R,
2721                                  FunctionDecl *Fn) {
2722  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2723    if (Method->isInstance()) {
2724      // An instance method that's referenced in a form that doesn't
2725      // look like a member pointer is just invalid.
2726      if (!R.HasFormOfMemberPointer) return QualType();
2727
2728      return Context.getMemberPointerType(Fn->getType(),
2729               Context.getTypeDeclType(Method->getParent()).getTypePtr());
2730    }
2731
2732  if (!R.IsAddressOfOperand) return Fn->getType();
2733  return Context.getPointerType(Fn->getType());
2734}
2735
2736/// Apply the deduction rules for overload sets.
2737///
2738/// \return the null type if this argument should be treated as an
2739/// undeduced context
2740static QualType
2741ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2742                            Expr *Arg, QualType ParamType,
2743                            bool ParamWasReference) {
2744
2745  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2746
2747  OverloadExpr *Ovl = R.Expression;
2748
2749  // C++0x [temp.deduct.call]p4
2750  unsigned TDF = 0;
2751  if (ParamWasReference)
2752    TDF |= TDF_ParamWithReferenceType;
2753  if (R.IsAddressOfOperand)
2754    TDF |= TDF_IgnoreQualifiers;
2755
2756  // C++0x [temp.deduct.call]p6:
2757  //   When P is a function type, pointer to function type, or pointer
2758  //   to member function type:
2759
2760  if (!ParamType->isFunctionType() &&
2761      !ParamType->isFunctionPointerType() &&
2762      !ParamType->isMemberFunctionPointerType()) {
2763    if (Ovl->hasExplicitTemplateArgs()) {
2764      // But we can still look for an explicit specialization.
2765      if (FunctionDecl *ExplicitSpec
2766            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2767        return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2768    }
2769
2770    return QualType();
2771  }
2772
2773  // Gather the explicit template arguments, if any.
2774  TemplateArgumentListInfo ExplicitTemplateArgs;
2775  if (Ovl->hasExplicitTemplateArgs())
2776    Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2777  QualType Match;
2778  for (UnresolvedSetIterator I = Ovl->decls_begin(),
2779         E = Ovl->decls_end(); I != E; ++I) {
2780    NamedDecl *D = (*I)->getUnderlyingDecl();
2781
2782    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2783      //   - If the argument is an overload set containing one or more
2784      //     function templates, the parameter is treated as a
2785      //     non-deduced context.
2786      if (!Ovl->hasExplicitTemplateArgs())
2787        return QualType();
2788
2789      // Otherwise, see if we can resolve a function type
2790      FunctionDecl *Specialization = 0;
2791      TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2792      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2793                                    Specialization, Info))
2794        continue;
2795
2796      D = Specialization;
2797    }
2798
2799    FunctionDecl *Fn = cast<FunctionDecl>(D);
2800    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2801    if (ArgType.isNull()) continue;
2802
2803    // Function-to-pointer conversion.
2804    if (!ParamWasReference && ParamType->isPointerType() &&
2805        ArgType->isFunctionType())
2806      ArgType = S.Context.getPointerType(ArgType);
2807
2808    //   - If the argument is an overload set (not containing function
2809    //     templates), trial argument deduction is attempted using each
2810    //     of the members of the set. If deduction succeeds for only one
2811    //     of the overload set members, that member is used as the
2812    //     argument value for the deduction. If deduction succeeds for
2813    //     more than one member of the overload set the parameter is
2814    //     treated as a non-deduced context.
2815
2816    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2817    //   Type deduction is done independently for each P/A pair, and
2818    //   the deduced template argument values are then combined.
2819    // So we do not reject deductions which were made elsewhere.
2820    SmallVector<DeducedTemplateArgument, 8>
2821      Deduced(TemplateParams->size());
2822    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2823    Sema::TemplateDeductionResult Result
2824      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2825                                           ArgType, Info, Deduced, TDF);
2826    if (Result) continue;
2827    if (!Match.isNull()) return QualType();
2828    Match = ArgType;
2829  }
2830
2831  return Match;
2832}
2833
2834/// \brief Perform the adjustments to the parameter and argument types
2835/// described in C++ [temp.deduct.call].
2836///
2837/// \returns true if the caller should not attempt to perform any template
2838/// argument deduction based on this P/A pair.
2839static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2840                                          TemplateParameterList *TemplateParams,
2841                                                      QualType &ParamType,
2842                                                      QualType &ArgType,
2843                                                      Expr *Arg,
2844                                                      unsigned &TDF) {
2845  // C++0x [temp.deduct.call]p3:
2846  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
2847  //   are ignored for type deduction.
2848  if (ParamType.hasQualifiers())
2849    ParamType = ParamType.getUnqualifiedType();
2850  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2851  if (ParamRefType) {
2852    QualType PointeeType = ParamRefType->getPointeeType();
2853
2854    // If the argument has incomplete array type, try to complete it's type.
2855    if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
2856      ArgType = Arg->getType();
2857
2858    //   [C++0x] If P is an rvalue reference to a cv-unqualified
2859    //   template parameter and the argument is an lvalue, the type
2860    //   "lvalue reference to A" is used in place of A for type
2861    //   deduction.
2862    if (isa<RValueReferenceType>(ParamType)) {
2863      if (!PointeeType.getQualifiers() &&
2864          isa<TemplateTypeParmType>(PointeeType) &&
2865          Arg->Classify(S.Context).isLValue() &&
2866          Arg->getType() != S.Context.OverloadTy &&
2867          Arg->getType() != S.Context.BoundMemberTy)
2868        ArgType = S.Context.getLValueReferenceType(ArgType);
2869    }
2870
2871    //   [...] If P is a reference type, the type referred to by P is used
2872    //   for type deduction.
2873    ParamType = PointeeType;
2874  }
2875
2876  // Overload sets usually make this parameter an undeduced
2877  // context, but there are sometimes special circumstances.
2878  if (ArgType == S.Context.OverloadTy) {
2879    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2880                                          Arg, ParamType,
2881                                          ParamRefType != 0);
2882    if (ArgType.isNull())
2883      return true;
2884  }
2885
2886  if (ParamRefType) {
2887    // C++0x [temp.deduct.call]p3:
2888    //   [...] If P is of the form T&&, where T is a template parameter, and
2889    //   the argument is an lvalue, the type A& is used in place of A for
2890    //   type deduction.
2891    if (ParamRefType->isRValueReferenceType() &&
2892        ParamRefType->getAs<TemplateTypeParmType>() &&
2893        Arg->isLValue())
2894      ArgType = S.Context.getLValueReferenceType(ArgType);
2895  } else {
2896    // C++ [temp.deduct.call]p2:
2897    //   If P is not a reference type:
2898    //   - If A is an array type, the pointer type produced by the
2899    //     array-to-pointer standard conversion (4.2) is used in place of
2900    //     A for type deduction; otherwise,
2901    if (ArgType->isArrayType())
2902      ArgType = S.Context.getArrayDecayedType(ArgType);
2903    //   - If A is a function type, the pointer type produced by the
2904    //     function-to-pointer standard conversion (4.3) is used in place
2905    //     of A for type deduction; otherwise,
2906    else if (ArgType->isFunctionType())
2907      ArgType = S.Context.getPointerType(ArgType);
2908    else {
2909      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2910      //   type are ignored for type deduction.
2911      ArgType = ArgType.getUnqualifiedType();
2912    }
2913  }
2914
2915  // C++0x [temp.deduct.call]p4:
2916  //   In general, the deduction process attempts to find template argument
2917  //   values that will make the deduced A identical to A (after the type A
2918  //   is transformed as described above). [...]
2919  TDF = TDF_SkipNonDependent;
2920
2921  //     - If the original P is a reference type, the deduced A (i.e., the
2922  //       type referred to by the reference) can be more cv-qualified than
2923  //       the transformed A.
2924  if (ParamRefType)
2925    TDF |= TDF_ParamWithReferenceType;
2926  //     - The transformed A can be another pointer or pointer to member
2927  //       type that can be converted to the deduced A via a qualification
2928  //       conversion (4.4).
2929  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2930      ArgType->isObjCObjectPointerType())
2931    TDF |= TDF_IgnoreQualifiers;
2932  //     - If P is a class and P has the form simple-template-id, then the
2933  //       transformed A can be a derived class of the deduced A. Likewise,
2934  //       if P is a pointer to a class of the form simple-template-id, the
2935  //       transformed A can be a pointer to a derived class pointed to by
2936  //       the deduced A.
2937  if (isSimpleTemplateIdType(ParamType) ||
2938      (isa<PointerType>(ParamType) &&
2939       isSimpleTemplateIdType(
2940                              ParamType->getAs<PointerType>()->getPointeeType())))
2941    TDF |= TDF_DerivedClass;
2942
2943  return false;
2944}
2945
2946static bool hasDeducibleTemplateParameters(Sema &S,
2947                                           FunctionTemplateDecl *FunctionTemplate,
2948                                           QualType T);
2949
2950/// \brief Perform template argument deduction by matching a parameter type
2951///        against a single expression, where the expression is an element of
2952///        an initializer list that was originally matched against the argument
2953///        type.
2954static Sema::TemplateDeductionResult
2955DeduceTemplateArgumentByListElement(Sema &S,
2956                                    TemplateParameterList *TemplateParams,
2957                                    QualType ParamType, Expr *Arg,
2958                                    TemplateDeductionInfo &Info,
2959                              SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2960                                    unsigned TDF) {
2961  // Handle the case where an init list contains another init list as the
2962  // element.
2963  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
2964    QualType X;
2965    if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
2966      return Sema::TDK_Success; // Just ignore this expression.
2967
2968    // Recurse down into the init list.
2969    for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
2970      if (Sema::TemplateDeductionResult Result =
2971            DeduceTemplateArgumentByListElement(S, TemplateParams, X,
2972                                                 ILE->getInit(i),
2973                                                 Info, Deduced, TDF))
2974        return Result;
2975    }
2976    return Sema::TDK_Success;
2977  }
2978
2979  // For all other cases, just match by type.
2980  QualType ArgType = Arg->getType();
2981  if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
2982                                                ArgType, Arg, TDF))
2983    return Sema::TDK_FailedOverloadResolution;
2984  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2985                                            ArgType, Info, Deduced, TDF);
2986}
2987
2988/// \brief Perform template argument deduction from a function call
2989/// (C++ [temp.deduct.call]).
2990///
2991/// \param FunctionTemplate the function template for which we are performing
2992/// template argument deduction.
2993///
2994/// \param ExplicitTemplateArgs the explicit template arguments provided
2995/// for this call.
2996///
2997/// \param Args the function call arguments
2998///
2999/// \param Name the name of the function being called. This is only significant
3000/// when the function template is a conversion function template, in which
3001/// case this routine will also perform template argument deduction based on
3002/// the function to which
3003///
3004/// \param Specialization if template argument deduction was successful,
3005/// this will be set to the function template specialization produced by
3006/// template argument deduction.
3007///
3008/// \param Info the argument will be updated to provide additional information
3009/// about template argument deduction.
3010///
3011/// \returns the result of template argument deduction.
3012Sema::TemplateDeductionResult
3013Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3014                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3015                              llvm::ArrayRef<Expr *> Args,
3016                              FunctionDecl *&Specialization,
3017                              TemplateDeductionInfo &Info) {
3018  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3019
3020  // C++ [temp.deduct.call]p1:
3021  //   Template argument deduction is done by comparing each function template
3022  //   parameter type (call it P) with the type of the corresponding argument
3023  //   of the call (call it A) as described below.
3024  unsigned CheckArgs = Args.size();
3025  if (Args.size() < Function->getMinRequiredArguments())
3026    return TDK_TooFewArguments;
3027  else if (Args.size() > Function->getNumParams()) {
3028    const FunctionProtoType *Proto
3029      = Function->getType()->getAs<FunctionProtoType>();
3030    if (Proto->isTemplateVariadic())
3031      /* Do nothing */;
3032    else if (Proto->isVariadic())
3033      CheckArgs = Function->getNumParams();
3034    else
3035      return TDK_TooManyArguments;
3036  }
3037
3038  // The types of the parameters from which we will perform template argument
3039  // deduction.
3040  LocalInstantiationScope InstScope(*this);
3041  TemplateParameterList *TemplateParams
3042    = FunctionTemplate->getTemplateParameters();
3043  SmallVector<DeducedTemplateArgument, 4> Deduced;
3044  SmallVector<QualType, 4> ParamTypes;
3045  unsigned NumExplicitlySpecified = 0;
3046  if (ExplicitTemplateArgs) {
3047    TemplateDeductionResult Result =
3048      SubstituteExplicitTemplateArguments(FunctionTemplate,
3049                                          *ExplicitTemplateArgs,
3050                                          Deduced,
3051                                          ParamTypes,
3052                                          0,
3053                                          Info);
3054    if (Result)
3055      return Result;
3056
3057    NumExplicitlySpecified = Deduced.size();
3058  } else {
3059    // Just fill in the parameter types from the function declaration.
3060    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3061      ParamTypes.push_back(Function->getParamDecl(I)->getType());
3062  }
3063
3064  // Deduce template arguments from the function parameters.
3065  Deduced.resize(TemplateParams->size());
3066  unsigned ArgIdx = 0;
3067  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3068  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3069       ParamIdx != NumParams; ++ParamIdx) {
3070    QualType OrigParamType = ParamTypes[ParamIdx];
3071    QualType ParamType = OrigParamType;
3072
3073    const PackExpansionType *ParamExpansion
3074      = dyn_cast<PackExpansionType>(ParamType);
3075    if (!ParamExpansion) {
3076      // Simple case: matching a function parameter to a function argument.
3077      if (ArgIdx >= CheckArgs)
3078        break;
3079
3080      Expr *Arg = Args[ArgIdx++];
3081      QualType ArgType = Arg->getType();
3082
3083      unsigned TDF = 0;
3084      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3085                                                    ParamType, ArgType, Arg,
3086                                                    TDF))
3087        continue;
3088
3089      // If we have nothing to deduce, we're done.
3090      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3091        continue;
3092
3093      // If the argument is an initializer list ...
3094      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3095        // ... then the parameter is an undeduced context, unless the parameter
3096        // type is (reference to cv) std::initializer_list<P'>, in which case
3097        // deduction is done for each element of the initializer list, and the
3098        // result is the deduced type if it's the same for all elements.
3099        QualType X;
3100        // Removing references was already done.
3101        if (!isStdInitializerList(ParamType, &X))
3102          continue;
3103
3104        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3105          if (TemplateDeductionResult Result =
3106                DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3107                                                     ILE->getInit(i),
3108                                                     Info, Deduced, TDF))
3109            return Result;
3110        }
3111        // Don't track the argument type, since an initializer list has none.
3112        continue;
3113      }
3114
3115      // Keep track of the argument type and corresponding parameter index,
3116      // so we can check for compatibility between the deduced A and A.
3117      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3118                                                 ArgType));
3119
3120      if (TemplateDeductionResult Result
3121            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3122                                                 ParamType, ArgType,
3123                                                 Info, Deduced, TDF))
3124        return Result;
3125
3126      continue;
3127    }
3128
3129    // C++0x [temp.deduct.call]p1:
3130    //   For a function parameter pack that occurs at the end of the
3131    //   parameter-declaration-list, the type A of each remaining argument of
3132    //   the call is compared with the type P of the declarator-id of the
3133    //   function parameter pack. Each comparison deduces template arguments
3134    //   for subsequent positions in the template parameter packs expanded by
3135    //   the function parameter pack. For a function parameter pack that does
3136    //   not occur at the end of the parameter-declaration-list, the type of
3137    //   the parameter pack is a non-deduced context.
3138    if (ParamIdx + 1 < NumParams)
3139      break;
3140
3141    QualType ParamPattern = ParamExpansion->getPattern();
3142    SmallVector<unsigned, 2> PackIndices;
3143    {
3144      llvm::SmallBitVector SawIndices(TemplateParams->size());
3145      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3146      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3147      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3148        unsigned Depth, Index;
3149        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3150        if (Depth == 0 && !SawIndices[Index]) {
3151          SawIndices[Index] = true;
3152          PackIndices.push_back(Index);
3153        }
3154      }
3155    }
3156    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3157
3158    // Keep track of the deduced template arguments for each parameter pack
3159    // expanded by this pack expansion (the outer index) and for each
3160    // template argument (the inner SmallVectors).
3161    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3162      NewlyDeducedPacks(PackIndices.size());
3163    SmallVector<DeducedTemplateArgument, 2>
3164      SavedPacks(PackIndices.size());
3165    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3166                                 NewlyDeducedPacks);
3167    bool HasAnyArguments = false;
3168    for (; ArgIdx < Args.size(); ++ArgIdx) {
3169      HasAnyArguments = true;
3170
3171      QualType OrigParamType = ParamPattern;
3172      ParamType = OrigParamType;
3173      Expr *Arg = Args[ArgIdx];
3174      QualType ArgType = Arg->getType();
3175
3176      unsigned TDF = 0;
3177      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3178                                                    ParamType, ArgType, Arg,
3179                                                    TDF)) {
3180        // We can't actually perform any deduction for this argument, so stop
3181        // deduction at this point.
3182        ++ArgIdx;
3183        break;
3184      }
3185
3186      // As above, initializer lists need special handling.
3187      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3188        QualType X;
3189        if (!isStdInitializerList(ParamType, &X)) {
3190          ++ArgIdx;
3191          break;
3192        }
3193
3194        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3195          if (TemplateDeductionResult Result =
3196                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3197                                                   ILE->getInit(i)->getType(),
3198                                                   Info, Deduced, TDF))
3199            return Result;
3200        }
3201      } else {
3202
3203        // Keep track of the argument type and corresponding argument index,
3204        // so we can check for compatibility between the deduced A and A.
3205        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3206          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3207                                                     ArgType));
3208
3209        if (TemplateDeductionResult Result
3210            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3211                                                 ParamType, ArgType, Info,
3212                                                 Deduced, TDF))
3213          return Result;
3214      }
3215
3216      // Capture the deduced template arguments for each parameter pack expanded
3217      // by this pack expansion, add them to the list of arguments we've deduced
3218      // for that pack, then clear out the deduced argument.
3219      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3220        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3221        if (!DeducedArg.isNull()) {
3222          NewlyDeducedPacks[I].push_back(DeducedArg);
3223          DeducedArg = DeducedTemplateArgument();
3224        }
3225      }
3226    }
3227
3228    // Build argument packs for each of the parameter packs expanded by this
3229    // pack expansion.
3230    if (Sema::TemplateDeductionResult Result
3231          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3232                                        Deduced, PackIndices, SavedPacks,
3233                                        NewlyDeducedPacks, Info))
3234      return Result;
3235
3236    // After we've matching against a parameter pack, we're done.
3237    break;
3238  }
3239
3240  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3241                                         NumExplicitlySpecified,
3242                                         Specialization, Info, &OriginalCallArgs);
3243}
3244
3245/// \brief Deduce template arguments when taking the address of a function
3246/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3247/// a template.
3248///
3249/// \param FunctionTemplate the function template for which we are performing
3250/// template argument deduction.
3251///
3252/// \param ExplicitTemplateArgs the explicitly-specified template
3253/// arguments.
3254///
3255/// \param ArgFunctionType the function type that will be used as the
3256/// "argument" type (A) when performing template argument deduction from the
3257/// function template's function type. This type may be NULL, if there is no
3258/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3259///
3260/// \param Specialization if template argument deduction was successful,
3261/// this will be set to the function template specialization produced by
3262/// template argument deduction.
3263///
3264/// \param Info the argument will be updated to provide additional information
3265/// about template argument deduction.
3266///
3267/// \returns the result of template argument deduction.
3268Sema::TemplateDeductionResult
3269Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3270                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3271                              QualType ArgFunctionType,
3272                              FunctionDecl *&Specialization,
3273                              TemplateDeductionInfo &Info) {
3274  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3275  TemplateParameterList *TemplateParams
3276    = FunctionTemplate->getTemplateParameters();
3277  QualType FunctionType = Function->getType();
3278
3279  // Substitute any explicit template arguments.
3280  LocalInstantiationScope InstScope(*this);
3281  SmallVector<DeducedTemplateArgument, 4> Deduced;
3282  unsigned NumExplicitlySpecified = 0;
3283  SmallVector<QualType, 4> ParamTypes;
3284  if (ExplicitTemplateArgs) {
3285    if (TemplateDeductionResult Result
3286          = SubstituteExplicitTemplateArguments(FunctionTemplate,
3287                                                *ExplicitTemplateArgs,
3288                                                Deduced, ParamTypes,
3289                                                &FunctionType, Info))
3290      return Result;
3291
3292    NumExplicitlySpecified = Deduced.size();
3293  }
3294
3295  // Unevaluated SFINAE context.
3296  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3297  SFINAETrap Trap(*this);
3298
3299  Deduced.resize(TemplateParams->size());
3300
3301  if (!ArgFunctionType.isNull()) {
3302    // Deduce template arguments from the function type.
3303    if (TemplateDeductionResult Result
3304          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3305                                      FunctionType, ArgFunctionType, Info,
3306                                      Deduced, TDF_TopLevelParameterTypeList))
3307      return Result;
3308  }
3309
3310  if (TemplateDeductionResult Result
3311        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3312                                          NumExplicitlySpecified,
3313                                          Specialization, Info))
3314    return Result;
3315
3316  // If the requested function type does not match the actual type of the
3317  // specialization, template argument deduction fails.
3318  if (!ArgFunctionType.isNull() &&
3319      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3320    return TDK_NonDeducedMismatch;
3321
3322  return TDK_Success;
3323}
3324
3325/// \brief Deduce template arguments for a templated conversion
3326/// function (C++ [temp.deduct.conv]) and, if successful, produce a
3327/// conversion function template specialization.
3328Sema::TemplateDeductionResult
3329Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3330                              QualType ToType,
3331                              CXXConversionDecl *&Specialization,
3332                              TemplateDeductionInfo &Info) {
3333  CXXConversionDecl *Conv
3334    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3335  QualType FromType = Conv->getConversionType();
3336
3337  // Canonicalize the types for deduction.
3338  QualType P = Context.getCanonicalType(FromType);
3339  QualType A = Context.getCanonicalType(ToType);
3340
3341  // C++0x [temp.deduct.conv]p2:
3342  //   If P is a reference type, the type referred to by P is used for
3343  //   type deduction.
3344  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3345    P = PRef->getPointeeType();
3346
3347  // C++0x [temp.deduct.conv]p4:
3348  //   [...] If A is a reference type, the type referred to by A is used
3349  //   for type deduction.
3350  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3351    A = ARef->getPointeeType().getUnqualifiedType();
3352  // C++ [temp.deduct.conv]p3:
3353  //
3354  //   If A is not a reference type:
3355  else {
3356    assert(!A->isReferenceType() && "Reference types were handled above");
3357
3358    //   - If P is an array type, the pointer type produced by the
3359    //     array-to-pointer standard conversion (4.2) is used in place
3360    //     of P for type deduction; otherwise,
3361    if (P->isArrayType())
3362      P = Context.getArrayDecayedType(P);
3363    //   - If P is a function type, the pointer type produced by the
3364    //     function-to-pointer standard conversion (4.3) is used in
3365    //     place of P for type deduction; otherwise,
3366    else if (P->isFunctionType())
3367      P = Context.getPointerType(P);
3368    //   - If P is a cv-qualified type, the top level cv-qualifiers of
3369    //     P's type are ignored for type deduction.
3370    else
3371      P = P.getUnqualifiedType();
3372
3373    // C++0x [temp.deduct.conv]p4:
3374    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3375    //   type are ignored for type deduction. If A is a reference type, the type
3376    //   referred to by A is used for type deduction.
3377    A = A.getUnqualifiedType();
3378  }
3379
3380  // Unevaluated SFINAE context.
3381  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3382  SFINAETrap Trap(*this);
3383
3384  // C++ [temp.deduct.conv]p1:
3385  //   Template argument deduction is done by comparing the return
3386  //   type of the template conversion function (call it P) with the
3387  //   type that is required as the result of the conversion (call it
3388  //   A) as described in 14.8.2.4.
3389  TemplateParameterList *TemplateParams
3390    = FunctionTemplate->getTemplateParameters();
3391  SmallVector<DeducedTemplateArgument, 4> Deduced;
3392  Deduced.resize(TemplateParams->size());
3393
3394  // C++0x [temp.deduct.conv]p4:
3395  //   In general, the deduction process attempts to find template
3396  //   argument values that will make the deduced A identical to
3397  //   A. However, there are two cases that allow a difference:
3398  unsigned TDF = 0;
3399  //     - If the original A is a reference type, A can be more
3400  //       cv-qualified than the deduced A (i.e., the type referred to
3401  //       by the reference)
3402  if (ToType->isReferenceType())
3403    TDF |= TDF_ParamWithReferenceType;
3404  //     - The deduced A can be another pointer or pointer to member
3405  //       type that can be converted to A via a qualification
3406  //       conversion.
3407  //
3408  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3409  // both P and A are pointers or member pointers. In this case, we
3410  // just ignore cv-qualifiers completely).
3411  if ((P->isPointerType() && A->isPointerType()) ||
3412      (P->isMemberPointerType() && A->isMemberPointerType()))
3413    TDF |= TDF_IgnoreQualifiers;
3414  if (TemplateDeductionResult Result
3415        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3416                                             P, A, Info, Deduced, TDF))
3417    return Result;
3418
3419  // Finish template argument deduction.
3420  LocalInstantiationScope InstScope(*this);
3421  FunctionDecl *Spec = 0;
3422  TemplateDeductionResult Result
3423    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3424                                      Info);
3425  Specialization = cast_or_null<CXXConversionDecl>(Spec);
3426  return Result;
3427}
3428
3429/// \brief Deduce template arguments for a function template when there is
3430/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3431///
3432/// \param FunctionTemplate the function template for which we are performing
3433/// template argument deduction.
3434///
3435/// \param ExplicitTemplateArgs the explicitly-specified template
3436/// arguments.
3437///
3438/// \param Specialization if template argument deduction was successful,
3439/// this will be set to the function template specialization produced by
3440/// template argument deduction.
3441///
3442/// \param Info the argument will be updated to provide additional information
3443/// about template argument deduction.
3444///
3445/// \returns the result of template argument deduction.
3446Sema::TemplateDeductionResult
3447Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3448                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3449                              FunctionDecl *&Specialization,
3450                              TemplateDeductionInfo &Info) {
3451  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3452                                 QualType(), Specialization, Info);
3453}
3454
3455namespace {
3456  /// Substitute the 'auto' type specifier within a type for a given replacement
3457  /// type.
3458  class SubstituteAutoTransform :
3459    public TreeTransform<SubstituteAutoTransform> {
3460    QualType Replacement;
3461  public:
3462    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3463      TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3464    }
3465    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3466      // If we're building the type pattern to deduce against, don't wrap the
3467      // substituted type in an AutoType. Certain template deduction rules
3468      // apply only when a template type parameter appears directly (and not if
3469      // the parameter is found through desugaring). For instance:
3470      //   auto &&lref = lvalue;
3471      // must transform into "rvalue reference to T" not "rvalue reference to
3472      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3473      if (isa<TemplateTypeParmType>(Replacement)) {
3474        QualType Result = Replacement;
3475        TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3476        NewTL.setNameLoc(TL.getNameLoc());
3477        return Result;
3478      } else {
3479        QualType Result = RebuildAutoType(Replacement);
3480        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3481        NewTL.setNameLoc(TL.getNameLoc());
3482        return Result;
3483      }
3484    }
3485
3486    ExprResult TransformLambdaExpr(LambdaExpr *E) {
3487      // Lambdas never need to be transformed.
3488      return E;
3489    }
3490  };
3491
3492  /// Determine whether the specified type (which contains an 'auto' type
3493  /// specifier) is dependent. This is not trivial, because the 'auto' specifier
3494  /// itself claims to be type-dependent.
3495  bool isDependentAutoType(QualType Ty) {
3496    while (1) {
3497      QualType Pointee = Ty->getPointeeType();
3498      if (!Pointee.isNull()) {
3499        Ty = Pointee;
3500      } else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
3501        if (MPT->getClass()->isDependentType())
3502          return true;
3503        Ty = MPT->getPointeeType();
3504      } else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
3505        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
3506                                                  E = FPT->arg_type_end();
3507             I != E; ++I)
3508          if ((*I)->isDependentType())
3509            return true;
3510        Ty = FPT->getResultType();
3511      } else if (Ty->isDependentSizedArrayType()) {
3512        return true;
3513      } else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
3514        Ty = AT->getElementType();
3515      } else if (Ty->getAs<DependentSizedExtVectorType>()) {
3516        return true;
3517      } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3518        Ty = VT->getElementType();
3519      } else {
3520        break;
3521      }
3522    }
3523    assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
3524    return false;
3525  }
3526}
3527
3528/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3529///
3530/// \param Type the type pattern using the auto type-specifier.
3531///
3532/// \param Init the initializer for the variable whose type is to be deduced.
3533///
3534/// \param Result if type deduction was successful, this will be set to the
3535/// deduced type. This may still contain undeduced autos if the type is
3536/// dependent. This will be set to null if deduction succeeded, but auto
3537/// substitution failed; the appropriate diagnostic will already have been
3538/// produced in that case.
3539Sema::DeduceAutoResult
3540Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
3541                     TypeSourceInfo *&Result) {
3542  if (Init->getType()->isNonOverloadPlaceholderType()) {
3543    ExprResult result = CheckPlaceholderExpr(Init);
3544    if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
3545    Init = result.take();
3546  }
3547
3548  if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) {
3549    Result = Type;
3550    return DAR_Succeeded;
3551  }
3552
3553  SourceLocation Loc = Init->getExprLoc();
3554
3555  LocalInstantiationScope InstScope(*this);
3556
3557  // Build template<class TemplParam> void Func(FuncParam);
3558  TemplateTypeParmDecl *TemplParam =
3559    TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3560                                 false, false);
3561  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3562  NamedDecl *TemplParamPtr = TemplParam;
3563  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3564                                                   Loc);
3565
3566  TypeSourceInfo *FuncParamInfo =
3567    SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3568  assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3569  QualType FuncParam = FuncParamInfo->getType();
3570
3571  // Deduce type of TemplParam in Func(Init)
3572  SmallVector<DeducedTemplateArgument, 1> Deduced;
3573  Deduced.resize(1);
3574  QualType InitType = Init->getType();
3575  unsigned TDF = 0;
3576
3577  TemplateDeductionInfo Info(Context, Loc);
3578
3579  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3580  if (InitList) {
3581    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3582      if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3583                                              TemplArg,
3584                                              InitList->getInit(i),
3585                                              Info, Deduced, TDF))
3586        return DAR_Failed;
3587    }
3588  } else {
3589    if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3590                                                  FuncParam, InitType, Init,
3591                                                  TDF))
3592      return DAR_Failed;
3593
3594    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3595                                           InitType, Info, Deduced, TDF))
3596      return DAR_Failed;
3597  }
3598
3599  QualType DeducedType = Deduced[0].getAsType();
3600  if (DeducedType.isNull())
3601    return DAR_Failed;
3602
3603  if (InitList) {
3604    DeducedType = BuildStdInitializerList(DeducedType, Loc);
3605    if (DeducedType.isNull())
3606      return DAR_FailedAlreadyDiagnosed;
3607  }
3608
3609  Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3610
3611  // Check that the deduced argument type is compatible with the original
3612  // argument type per C++ [temp.deduct.call]p4.
3613  if (!InitList && Result &&
3614      CheckOriginalCallArgDeduction(*this,
3615                                    Sema::OriginalCallArg(FuncParam,0,InitType),
3616                                    Result->getType())) {
3617    Result = 0;
3618    return DAR_Failed;
3619  }
3620
3621  return DAR_Succeeded;
3622}
3623
3624void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3625  if (isa<InitListExpr>(Init))
3626    Diag(VDecl->getLocation(),
3627         diag::err_auto_var_deduction_failure_from_init_list)
3628      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3629  else
3630    Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3631      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3632      << Init->getSourceRange();
3633}
3634
3635static void
3636MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3637                           bool OnlyDeduced,
3638                           unsigned Level,
3639                           llvm::SmallBitVector &Deduced);
3640
3641/// \brief If this is a non-static member function,
3642static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3643                                                CXXMethodDecl *Method,
3644                                 SmallVectorImpl<QualType> &ArgTypes) {
3645  if (Method->isStatic())
3646    return;
3647
3648  // C++ [over.match.funcs]p4:
3649  //
3650  //   For non-static member functions, the type of the implicit
3651  //   object parameter is
3652  //     - "lvalue reference to cv X" for functions declared without a
3653  //       ref-qualifier or with the & ref-qualifier
3654  //     - "rvalue reference to cv X" for functions declared with the
3655  //       && ref-qualifier
3656  //
3657  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3658  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3659  ArgTy = Context.getQualifiedType(ArgTy,
3660                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3661  ArgTy = Context.getLValueReferenceType(ArgTy);
3662  ArgTypes.push_back(ArgTy);
3663}
3664
3665/// \brief Determine whether the function template \p FT1 is at least as
3666/// specialized as \p FT2.
3667static bool isAtLeastAsSpecializedAs(Sema &S,
3668                                     SourceLocation Loc,
3669                                     FunctionTemplateDecl *FT1,
3670                                     FunctionTemplateDecl *FT2,
3671                                     TemplatePartialOrderingContext TPOC,
3672                                     unsigned NumCallArguments,
3673    SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3674  FunctionDecl *FD1 = FT1->getTemplatedDecl();
3675  FunctionDecl *FD2 = FT2->getTemplatedDecl();
3676  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3677  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3678
3679  assert(Proto1 && Proto2 && "Function templates must have prototypes");
3680  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3681  SmallVector<DeducedTemplateArgument, 4> Deduced;
3682  Deduced.resize(TemplateParams->size());
3683
3684  // C++0x [temp.deduct.partial]p3:
3685  //   The types used to determine the ordering depend on the context in which
3686  //   the partial ordering is done:
3687  TemplateDeductionInfo Info(S.Context, Loc);
3688  CXXMethodDecl *Method1 = 0;
3689  CXXMethodDecl *Method2 = 0;
3690  bool IsNonStatic2 = false;
3691  bool IsNonStatic1 = false;
3692  unsigned Skip2 = 0;
3693  switch (TPOC) {
3694  case TPOC_Call: {
3695    //   - In the context of a function call, the function parameter types are
3696    //     used.
3697    Method1 = dyn_cast<CXXMethodDecl>(FD1);
3698    Method2 = dyn_cast<CXXMethodDecl>(FD2);
3699    IsNonStatic1 = Method1 && !Method1->isStatic();
3700    IsNonStatic2 = Method2 && !Method2->isStatic();
3701
3702    // C++0x [temp.func.order]p3:
3703    //   [...] If only one of the function templates is a non-static
3704    //   member, that function template is considered to have a new
3705    //   first parameter inserted in its function parameter list. The
3706    //   new parameter is of type "reference to cv A," where cv are
3707    //   the cv-qualifiers of the function template (if any) and A is
3708    //   the class of which the function template is a member.
3709    //
3710    // C++98/03 doesn't have this provision, so instead we drop the
3711    // first argument of the free function or static member, which
3712    // seems to match existing practice.
3713    SmallVector<QualType, 4> Args1;
3714    unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
3715      IsNonStatic2 && !IsNonStatic1;
3716    if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3717      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3718    Args1.insert(Args1.end(),
3719                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3720
3721    SmallVector<QualType, 4> Args2;
3722    Skip2 = !S.getLangOpts().CPlusPlus0x &&
3723      IsNonStatic1 && !IsNonStatic2;
3724    if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3725      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3726    Args2.insert(Args2.end(),
3727                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3728
3729    // C++ [temp.func.order]p5:
3730    //   The presence of unused ellipsis and default arguments has no effect on
3731    //   the partial ordering of function templates.
3732    if (Args1.size() > NumCallArguments)
3733      Args1.resize(NumCallArguments);
3734    if (Args2.size() > NumCallArguments)
3735      Args2.resize(NumCallArguments);
3736    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3737                                Args1.data(), Args1.size(), Info, Deduced,
3738                                TDF_None, /*PartialOrdering=*/true,
3739                                RefParamComparisons))
3740        return false;
3741
3742    break;
3743  }
3744
3745  case TPOC_Conversion:
3746    //   - In the context of a call to a conversion operator, the return types
3747    //     of the conversion function templates are used.
3748    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3749                                           Proto2->getResultType(),
3750                                           Proto1->getResultType(),
3751                                           Info, Deduced, TDF_None,
3752                                           /*PartialOrdering=*/true,
3753                                           RefParamComparisons))
3754      return false;
3755    break;
3756
3757  case TPOC_Other:
3758    //   - In other contexts (14.6.6.2) the function template's function type
3759    //     is used.
3760    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3761                                           FD2->getType(), FD1->getType(),
3762                                           Info, Deduced, TDF_None,
3763                                           /*PartialOrdering=*/true,
3764                                           RefParamComparisons))
3765      return false;
3766    break;
3767  }
3768
3769  // C++0x [temp.deduct.partial]p11:
3770  //   In most cases, all template parameters must have values in order for
3771  //   deduction to succeed, but for partial ordering purposes a template
3772  //   parameter may remain without a value provided it is not used in the
3773  //   types being used for partial ordering. [ Note: a template parameter used
3774  //   in a non-deduced context is considered used. -end note]
3775  unsigned ArgIdx = 0, NumArgs = Deduced.size();
3776  for (; ArgIdx != NumArgs; ++ArgIdx)
3777    if (Deduced[ArgIdx].isNull())
3778      break;
3779
3780  if (ArgIdx == NumArgs) {
3781    // All template arguments were deduced. FT1 is at least as specialized
3782    // as FT2.
3783    return true;
3784  }
3785
3786  // Figure out which template parameters were used.
3787  llvm::SmallBitVector UsedParameters(TemplateParams->size());
3788  switch (TPOC) {
3789  case TPOC_Call: {
3790    unsigned NumParams = std::min(NumCallArguments,
3791                                  std::min(Proto1->getNumArgs(),
3792                                           Proto2->getNumArgs()));
3793    if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3794      ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3795                                   false,
3796                                   TemplateParams->getDepth(), UsedParameters);
3797    for (unsigned I = Skip2; I < NumParams; ++I)
3798      ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3799                                   TemplateParams->getDepth(),
3800                                   UsedParameters);
3801    break;
3802  }
3803
3804  case TPOC_Conversion:
3805    ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3806                                 TemplateParams->getDepth(),
3807                                 UsedParameters);
3808    break;
3809
3810  case TPOC_Other:
3811    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3812                                 TemplateParams->getDepth(),
3813                                 UsedParameters);
3814    break;
3815  }
3816
3817  for (; ArgIdx != NumArgs; ++ArgIdx)
3818    // If this argument had no value deduced but was used in one of the types
3819    // used for partial ordering, then deduction fails.
3820    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3821      return false;
3822
3823  return true;
3824}
3825
3826/// \brief Determine whether this a function template whose parameter-type-list
3827/// ends with a function parameter pack.
3828static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3829  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3830  unsigned NumParams = Function->getNumParams();
3831  if (NumParams == 0)
3832    return false;
3833
3834  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3835  if (!Last->isParameterPack())
3836    return false;
3837
3838  // Make sure that no previous parameter is a parameter pack.
3839  while (--NumParams > 0) {
3840    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3841      return false;
3842  }
3843
3844  return true;
3845}
3846
3847/// \brief Returns the more specialized function template according
3848/// to the rules of function template partial ordering (C++ [temp.func.order]).
3849///
3850/// \param FT1 the first function template
3851///
3852/// \param FT2 the second function template
3853///
3854/// \param TPOC the context in which we are performing partial ordering of
3855/// function templates.
3856///
3857/// \param NumCallArguments The number of arguments in a call, used only
3858/// when \c TPOC is \c TPOC_Call.
3859///
3860/// \returns the more specialized function template. If neither
3861/// template is more specialized, returns NULL.
3862FunctionTemplateDecl *
3863Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3864                                 FunctionTemplateDecl *FT2,
3865                                 SourceLocation Loc,
3866                                 TemplatePartialOrderingContext TPOC,
3867                                 unsigned NumCallArguments) {
3868  SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3869  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3870                                          NumCallArguments, 0);
3871  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3872                                          NumCallArguments,
3873                                          &RefParamComparisons);
3874
3875  if (Better1 != Better2) // We have a clear winner
3876    return Better1? FT1 : FT2;
3877
3878  if (!Better1 && !Better2) // Neither is better than the other
3879    return 0;
3880
3881  // C++0x [temp.deduct.partial]p10:
3882  //   If for each type being considered a given template is at least as
3883  //   specialized for all types and more specialized for some set of types and
3884  //   the other template is not more specialized for any types or is not at
3885  //   least as specialized for any types, then the given template is more
3886  //   specialized than the other template. Otherwise, neither template is more
3887  //   specialized than the other.
3888  Better1 = false;
3889  Better2 = false;
3890  for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3891    // C++0x [temp.deduct.partial]p9:
3892    //   If, for a given type, deduction succeeds in both directions (i.e., the
3893    //   types are identical after the transformations above) and both P and A
3894    //   were reference types (before being replaced with the type referred to
3895    //   above):
3896
3897    //     -- if the type from the argument template was an lvalue reference
3898    //        and the type from the parameter template was not, the argument
3899    //        type is considered to be more specialized than the other;
3900    //        otherwise,
3901    if (!RefParamComparisons[I].ArgIsRvalueRef &&
3902        RefParamComparisons[I].ParamIsRvalueRef) {
3903      Better2 = true;
3904      if (Better1)
3905        return 0;
3906      continue;
3907    } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3908               RefParamComparisons[I].ArgIsRvalueRef) {
3909      Better1 = true;
3910      if (Better2)
3911        return 0;
3912      continue;
3913    }
3914
3915    //     -- if the type from the argument template is more cv-qualified than
3916    //        the type from the parameter template (as described above), the
3917    //        argument type is considered to be more specialized than the
3918    //        other; otherwise,
3919    switch (RefParamComparisons[I].Qualifiers) {
3920    case NeitherMoreQualified:
3921      break;
3922
3923    case ParamMoreQualified:
3924      Better1 = true;
3925      if (Better2)
3926        return 0;
3927      continue;
3928
3929    case ArgMoreQualified:
3930      Better2 = true;
3931      if (Better1)
3932        return 0;
3933      continue;
3934    }
3935
3936    //     -- neither type is more specialized than the other.
3937  }
3938
3939  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3940  if (Better1)
3941    return FT1;
3942  else if (Better2)
3943    return FT2;
3944
3945  // FIXME: This mimics what GCC implements, but doesn't match up with the
3946  // proposed resolution for core issue 692. This area needs to be sorted out,
3947  // but for now we attempt to maintain compatibility.
3948  bool Variadic1 = isVariadicFunctionTemplate(FT1);
3949  bool Variadic2 = isVariadicFunctionTemplate(FT2);
3950  if (Variadic1 != Variadic2)
3951    return Variadic1? FT2 : FT1;
3952
3953  return 0;
3954}
3955
3956/// \brief Determine if the two templates are equivalent.
3957static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3958  if (T1 == T2)
3959    return true;
3960
3961  if (!T1 || !T2)
3962    return false;
3963
3964  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3965}
3966
3967/// \brief Retrieve the most specialized of the given function template
3968/// specializations.
3969///
3970/// \param SpecBegin the start iterator of the function template
3971/// specializations that we will be comparing.
3972///
3973/// \param SpecEnd the end iterator of the function template
3974/// specializations, paired with \p SpecBegin.
3975///
3976/// \param TPOC the partial ordering context to use to compare the function
3977/// template specializations.
3978///
3979/// \param NumCallArguments The number of arguments in a call, used only
3980/// when \c TPOC is \c TPOC_Call.
3981///
3982/// \param Loc the location where the ambiguity or no-specializations
3983/// diagnostic should occur.
3984///
3985/// \param NoneDiag partial diagnostic used to diagnose cases where there are
3986/// no matching candidates.
3987///
3988/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3989/// occurs.
3990///
3991/// \param CandidateDiag partial diagnostic used for each function template
3992/// specialization that is a candidate in the ambiguous ordering. One parameter
3993/// in this diagnostic should be unbound, which will correspond to the string
3994/// describing the template arguments for the function template specialization.
3995///
3996/// \param Index if non-NULL and the result of this function is non-nULL,
3997/// receives the index corresponding to the resulting function template
3998/// specialization.
3999///
4000/// \returns the most specialized function template specialization, if
4001/// found. Otherwise, returns SpecEnd.
4002///
4003/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
4004/// template argument deduction.
4005UnresolvedSetIterator
4006Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
4007                        UnresolvedSetIterator SpecEnd,
4008                         TemplatePartialOrderingContext TPOC,
4009                         unsigned NumCallArguments,
4010                         SourceLocation Loc,
4011                         const PartialDiagnostic &NoneDiag,
4012                         const PartialDiagnostic &AmbigDiag,
4013                         const PartialDiagnostic &CandidateDiag,
4014                         bool Complain,
4015                         QualType TargetType) {
4016  if (SpecBegin == SpecEnd) {
4017    if (Complain)
4018      Diag(Loc, NoneDiag);
4019    return SpecEnd;
4020  }
4021
4022  if (SpecBegin + 1 == SpecEnd)
4023    return SpecBegin;
4024
4025  // Find the function template that is better than all of the templates it
4026  // has been compared to.
4027  UnresolvedSetIterator Best = SpecBegin;
4028  FunctionTemplateDecl *BestTemplate
4029    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4030  assert(BestTemplate && "Not a function template specialization?");
4031  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4032    FunctionTemplateDecl *Challenger
4033      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4034    assert(Challenger && "Not a function template specialization?");
4035    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4036                                                  Loc, TPOC, NumCallArguments),
4037                       Challenger)) {
4038      Best = I;
4039      BestTemplate = Challenger;
4040    }
4041  }
4042
4043  // Make sure that the "best" function template is more specialized than all
4044  // of the others.
4045  bool Ambiguous = false;
4046  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4047    FunctionTemplateDecl *Challenger
4048      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4049    if (I != Best &&
4050        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4051                                                   Loc, TPOC, NumCallArguments),
4052                        BestTemplate)) {
4053      Ambiguous = true;
4054      break;
4055    }
4056  }
4057
4058  if (!Ambiguous) {
4059    // We found an answer. Return it.
4060    return Best;
4061  }
4062
4063  // Diagnose the ambiguity.
4064  if (Complain)
4065    Diag(Loc, AmbigDiag);
4066
4067  if (Complain)
4068  // FIXME: Can we order the candidates in some sane way?
4069    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4070      PartialDiagnostic PD = CandidateDiag;
4071      PD << getTemplateArgumentBindingsText(
4072          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4073                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4074      if (!TargetType.isNull())
4075        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4076                                   TargetType);
4077      Diag((*I)->getLocation(), PD);
4078    }
4079
4080  return SpecEnd;
4081}
4082
4083/// \brief Returns the more specialized class template partial specialization
4084/// according to the rules of partial ordering of class template partial
4085/// specializations (C++ [temp.class.order]).
4086///
4087/// \param PS1 the first class template partial specialization
4088///
4089/// \param PS2 the second class template partial specialization
4090///
4091/// \returns the more specialized class template partial specialization. If
4092/// neither partial specialization is more specialized, returns NULL.
4093ClassTemplatePartialSpecializationDecl *
4094Sema::getMoreSpecializedPartialSpecialization(
4095                                  ClassTemplatePartialSpecializationDecl *PS1,
4096                                  ClassTemplatePartialSpecializationDecl *PS2,
4097                                              SourceLocation Loc) {
4098  // C++ [temp.class.order]p1:
4099  //   For two class template partial specializations, the first is at least as
4100  //   specialized as the second if, given the following rewrite to two
4101  //   function templates, the first function template is at least as
4102  //   specialized as the second according to the ordering rules for function
4103  //   templates (14.6.6.2):
4104  //     - the first function template has the same template parameters as the
4105  //       first partial specialization and has a single function parameter
4106  //       whose type is a class template specialization with the template
4107  //       arguments of the first partial specialization, and
4108  //     - the second function template has the same template parameters as the
4109  //       second partial specialization and has a single function parameter
4110  //       whose type is a class template specialization with the template
4111  //       arguments of the second partial specialization.
4112  //
4113  // Rather than synthesize function templates, we merely perform the
4114  // equivalent partial ordering by performing deduction directly on
4115  // the template arguments of the class template partial
4116  // specializations. This computation is slightly simpler than the
4117  // general problem of function template partial ordering, because
4118  // class template partial specializations are more constrained. We
4119  // know that every template parameter is deducible from the class
4120  // template partial specialization's template arguments, for
4121  // example.
4122  SmallVector<DeducedTemplateArgument, 4> Deduced;
4123  TemplateDeductionInfo Info(Context, Loc);
4124
4125  QualType PT1 = PS1->getInjectedSpecializationType();
4126  QualType PT2 = PS2->getInjectedSpecializationType();
4127
4128  // Determine whether PS1 is at least as specialized as PS2
4129  Deduced.resize(PS2->getTemplateParameters()->size());
4130  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4131                                            PS2->getTemplateParameters(),
4132                                            PT2, PT1, Info, Deduced, TDF_None,
4133                                            /*PartialOrdering=*/true,
4134                                            /*RefParamComparisons=*/0);
4135  if (Better1) {
4136    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4137    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4138                               DeducedArgs, Info);
4139    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4140                                                 PS1->getTemplateArgs(),
4141                                                 Deduced, Info);
4142  }
4143
4144  // Determine whether PS2 is at least as specialized as PS1
4145  Deduced.clear();
4146  Deduced.resize(PS1->getTemplateParameters()->size());
4147  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4148                                            PS1->getTemplateParameters(),
4149                                            PT1, PT2, Info, Deduced, TDF_None,
4150                                            /*PartialOrdering=*/true,
4151                                            /*RefParamComparisons=*/0);
4152  if (Better2) {
4153    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4154    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4155                               DeducedArgs, Info);
4156    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4157                                                 PS2->getTemplateArgs(),
4158                                                 Deduced, Info);
4159  }
4160
4161  if (Better1 == Better2)
4162    return 0;
4163
4164  return Better1? PS1 : PS2;
4165}
4166
4167static void
4168MarkUsedTemplateParameters(ASTContext &Ctx,
4169                           const TemplateArgument &TemplateArg,
4170                           bool OnlyDeduced,
4171                           unsigned Depth,
4172                           llvm::SmallBitVector &Used);
4173
4174/// \brief Mark the template parameters that are used by the given
4175/// expression.
4176static void
4177MarkUsedTemplateParameters(ASTContext &Ctx,
4178                           const Expr *E,
4179                           bool OnlyDeduced,
4180                           unsigned Depth,
4181                           llvm::SmallBitVector &Used) {
4182  // We can deduce from a pack expansion.
4183  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4184    E = Expansion->getPattern();
4185
4186  // Skip through any implicit casts we added while type-checking, and any
4187  // substitutions performed by template alias expansion.
4188  while (1) {
4189    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4190      E = ICE->getSubExpr();
4191    else if (const SubstNonTypeTemplateParmExpr *Subst =
4192               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4193      E = Subst->getReplacement();
4194    else
4195      break;
4196  }
4197
4198  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4199  // find other occurrences of template parameters.
4200  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4201  if (!DRE)
4202    return;
4203
4204  const NonTypeTemplateParmDecl *NTTP
4205    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4206  if (!NTTP)
4207    return;
4208
4209  if (NTTP->getDepth() == Depth)
4210    Used[NTTP->getIndex()] = true;
4211}
4212
4213/// \brief Mark the template parameters that are used by the given
4214/// nested name specifier.
4215static void
4216MarkUsedTemplateParameters(ASTContext &Ctx,
4217                           NestedNameSpecifier *NNS,
4218                           bool OnlyDeduced,
4219                           unsigned Depth,
4220                           llvm::SmallBitVector &Used) {
4221  if (!NNS)
4222    return;
4223
4224  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4225                             Used);
4226  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4227                             OnlyDeduced, Depth, Used);
4228}
4229
4230/// \brief Mark the template parameters that are used by the given
4231/// template name.
4232static void
4233MarkUsedTemplateParameters(ASTContext &Ctx,
4234                           TemplateName Name,
4235                           bool OnlyDeduced,
4236                           unsigned Depth,
4237                           llvm::SmallBitVector &Used) {
4238  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4239    if (TemplateTemplateParmDecl *TTP
4240          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4241      if (TTP->getDepth() == Depth)
4242        Used[TTP->getIndex()] = true;
4243    }
4244    return;
4245  }
4246
4247  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4248    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4249                               Depth, Used);
4250  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4251    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4252                               Depth, Used);
4253}
4254
4255/// \brief Mark the template parameters that are used by the given
4256/// type.
4257static void
4258MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4259                           bool OnlyDeduced,
4260                           unsigned Depth,
4261                           llvm::SmallBitVector &Used) {
4262  if (T.isNull())
4263    return;
4264
4265  // Non-dependent types have nothing deducible
4266  if (!T->isDependentType())
4267    return;
4268
4269  T = Ctx.getCanonicalType(T);
4270  switch (T->getTypeClass()) {
4271  case Type::Pointer:
4272    MarkUsedTemplateParameters(Ctx,
4273                               cast<PointerType>(T)->getPointeeType(),
4274                               OnlyDeduced,
4275                               Depth,
4276                               Used);
4277    break;
4278
4279  case Type::BlockPointer:
4280    MarkUsedTemplateParameters(Ctx,
4281                               cast<BlockPointerType>(T)->getPointeeType(),
4282                               OnlyDeduced,
4283                               Depth,
4284                               Used);
4285    break;
4286
4287  case Type::LValueReference:
4288  case Type::RValueReference:
4289    MarkUsedTemplateParameters(Ctx,
4290                               cast<ReferenceType>(T)->getPointeeType(),
4291                               OnlyDeduced,
4292                               Depth,
4293                               Used);
4294    break;
4295
4296  case Type::MemberPointer: {
4297    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4298    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4299                               Depth, Used);
4300    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4301                               OnlyDeduced, Depth, Used);
4302    break;
4303  }
4304
4305  case Type::DependentSizedArray:
4306    MarkUsedTemplateParameters(Ctx,
4307                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
4308                               OnlyDeduced, Depth, Used);
4309    // Fall through to check the element type
4310
4311  case Type::ConstantArray:
4312  case Type::IncompleteArray:
4313    MarkUsedTemplateParameters(Ctx,
4314                               cast<ArrayType>(T)->getElementType(),
4315                               OnlyDeduced, Depth, Used);
4316    break;
4317
4318  case Type::Vector:
4319  case Type::ExtVector:
4320    MarkUsedTemplateParameters(Ctx,
4321                               cast<VectorType>(T)->getElementType(),
4322                               OnlyDeduced, Depth, Used);
4323    break;
4324
4325  case Type::DependentSizedExtVector: {
4326    const DependentSizedExtVectorType *VecType
4327      = cast<DependentSizedExtVectorType>(T);
4328    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4329                               Depth, Used);
4330    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4331                               Depth, Used);
4332    break;
4333  }
4334
4335  case Type::FunctionProto: {
4336    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4337    MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4338                               Depth, Used);
4339    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4340      MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4341                                 Depth, Used);
4342    break;
4343  }
4344
4345  case Type::TemplateTypeParm: {
4346    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4347    if (TTP->getDepth() == Depth)
4348      Used[TTP->getIndex()] = true;
4349    break;
4350  }
4351
4352  case Type::SubstTemplateTypeParmPack: {
4353    const SubstTemplateTypeParmPackType *Subst
4354      = cast<SubstTemplateTypeParmPackType>(T);
4355    MarkUsedTemplateParameters(Ctx,
4356                               QualType(Subst->getReplacedParameter(), 0),
4357                               OnlyDeduced, Depth, Used);
4358    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4359                               OnlyDeduced, Depth, Used);
4360    break;
4361  }
4362
4363  case Type::InjectedClassName:
4364    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4365    // fall through
4366
4367  case Type::TemplateSpecialization: {
4368    const TemplateSpecializationType *Spec
4369      = cast<TemplateSpecializationType>(T);
4370    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4371                               Depth, Used);
4372
4373    // C++0x [temp.deduct.type]p9:
4374    //   If the template argument list of P contains a pack expansion that is not
4375    //   the last template argument, the entire template argument list is a
4376    //   non-deduced context.
4377    if (OnlyDeduced &&
4378        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4379      break;
4380
4381    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4382      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4383                                 Used);
4384    break;
4385  }
4386
4387  case Type::Complex:
4388    if (!OnlyDeduced)
4389      MarkUsedTemplateParameters(Ctx,
4390                                 cast<ComplexType>(T)->getElementType(),
4391                                 OnlyDeduced, Depth, Used);
4392    break;
4393
4394  case Type::Atomic:
4395    if (!OnlyDeduced)
4396      MarkUsedTemplateParameters(Ctx,
4397                                 cast<AtomicType>(T)->getValueType(),
4398                                 OnlyDeduced, Depth, Used);
4399    break;
4400
4401  case Type::DependentName:
4402    if (!OnlyDeduced)
4403      MarkUsedTemplateParameters(Ctx,
4404                                 cast<DependentNameType>(T)->getQualifier(),
4405                                 OnlyDeduced, Depth, Used);
4406    break;
4407
4408  case Type::DependentTemplateSpecialization: {
4409    const DependentTemplateSpecializationType *Spec
4410      = cast<DependentTemplateSpecializationType>(T);
4411    if (!OnlyDeduced)
4412      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4413                                 OnlyDeduced, Depth, Used);
4414
4415    // C++0x [temp.deduct.type]p9:
4416    //   If the template argument list of P contains a pack expansion that is not
4417    //   the last template argument, the entire template argument list is a
4418    //   non-deduced context.
4419    if (OnlyDeduced &&
4420        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4421      break;
4422
4423    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4424      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4425                                 Used);
4426    break;
4427  }
4428
4429  case Type::TypeOf:
4430    if (!OnlyDeduced)
4431      MarkUsedTemplateParameters(Ctx,
4432                                 cast<TypeOfType>(T)->getUnderlyingType(),
4433                                 OnlyDeduced, Depth, Used);
4434    break;
4435
4436  case Type::TypeOfExpr:
4437    if (!OnlyDeduced)
4438      MarkUsedTemplateParameters(Ctx,
4439                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4440                                 OnlyDeduced, Depth, Used);
4441    break;
4442
4443  case Type::Decltype:
4444    if (!OnlyDeduced)
4445      MarkUsedTemplateParameters(Ctx,
4446                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
4447                                 OnlyDeduced, Depth, Used);
4448    break;
4449
4450  case Type::UnaryTransform:
4451    if (!OnlyDeduced)
4452      MarkUsedTemplateParameters(Ctx,
4453                               cast<UnaryTransformType>(T)->getUnderlyingType(),
4454                                 OnlyDeduced, Depth, Used);
4455    break;
4456
4457  case Type::PackExpansion:
4458    MarkUsedTemplateParameters(Ctx,
4459                               cast<PackExpansionType>(T)->getPattern(),
4460                               OnlyDeduced, Depth, Used);
4461    break;
4462
4463  case Type::Auto:
4464    MarkUsedTemplateParameters(Ctx,
4465                               cast<AutoType>(T)->getDeducedType(),
4466                               OnlyDeduced, Depth, Used);
4467
4468  // None of these types have any template parameters in them.
4469  case Type::Builtin:
4470  case Type::VariableArray:
4471  case Type::FunctionNoProto:
4472  case Type::Record:
4473  case Type::Enum:
4474  case Type::ObjCInterface:
4475  case Type::ObjCObject:
4476  case Type::ObjCObjectPointer:
4477  case Type::UnresolvedUsing:
4478#define TYPE(Class, Base)
4479#define ABSTRACT_TYPE(Class, Base)
4480#define DEPENDENT_TYPE(Class, Base)
4481#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4482#include "clang/AST/TypeNodes.def"
4483    break;
4484  }
4485}
4486
4487/// \brief Mark the template parameters that are used by this
4488/// template argument.
4489static void
4490MarkUsedTemplateParameters(ASTContext &Ctx,
4491                           const TemplateArgument &TemplateArg,
4492                           bool OnlyDeduced,
4493                           unsigned Depth,
4494                           llvm::SmallBitVector &Used) {
4495  switch (TemplateArg.getKind()) {
4496  case TemplateArgument::Null:
4497  case TemplateArgument::Integral:
4498  case TemplateArgument::Declaration:
4499    break;
4500
4501  case TemplateArgument::Type:
4502    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4503                               Depth, Used);
4504    break;
4505
4506  case TemplateArgument::Template:
4507  case TemplateArgument::TemplateExpansion:
4508    MarkUsedTemplateParameters(Ctx,
4509                               TemplateArg.getAsTemplateOrTemplatePattern(),
4510                               OnlyDeduced, Depth, Used);
4511    break;
4512
4513  case TemplateArgument::Expression:
4514    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4515                               Depth, Used);
4516    break;
4517
4518  case TemplateArgument::Pack:
4519    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4520                                      PEnd = TemplateArg.pack_end();
4521         P != PEnd; ++P)
4522      MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4523    break;
4524  }
4525}
4526
4527/// \brief Mark which template parameters can be deduced from a given
4528/// template argument list.
4529///
4530/// \param TemplateArgs the template argument list from which template
4531/// parameters will be deduced.
4532///
4533/// \param Used a bit vector whose elements will be set to \c true
4534/// to indicate when the corresponding template parameter will be
4535/// deduced.
4536void
4537Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4538                                 bool OnlyDeduced, unsigned Depth,
4539                                 llvm::SmallBitVector &Used) {
4540  // C++0x [temp.deduct.type]p9:
4541  //   If the template argument list of P contains a pack expansion that is not
4542  //   the last template argument, the entire template argument list is a
4543  //   non-deduced context.
4544  if (OnlyDeduced &&
4545      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4546    return;
4547
4548  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4549    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4550                                 Depth, Used);
4551}
4552
4553/// \brief Marks all of the template parameters that will be deduced by a
4554/// call to the given function template.
4555void
4556Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4557                                    FunctionTemplateDecl *FunctionTemplate,
4558                                    llvm::SmallBitVector &Deduced) {
4559  TemplateParameterList *TemplateParams
4560    = FunctionTemplate->getTemplateParameters();
4561  Deduced.clear();
4562  Deduced.resize(TemplateParams->size());
4563
4564  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4565  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4566    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4567                                 true, TemplateParams->getDepth(), Deduced);
4568}
4569
4570bool hasDeducibleTemplateParameters(Sema &S,
4571                                    FunctionTemplateDecl *FunctionTemplate,
4572                                    QualType T) {
4573  if (!T->isDependentType())
4574    return false;
4575
4576  TemplateParameterList *TemplateParams
4577    = FunctionTemplate->getTemplateParameters();
4578  llvm::SmallBitVector Deduced(TemplateParams->size());
4579  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4580                               Deduced);
4581
4582  return Deduced.any();
4583}
4584