1//===-- sanitizer_allocator64.h ---------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// Specialized allocator which works only in 64-bit address space.
10// To be used by ThreadSanitizer, MemorySanitizer and possibly other tools.
11// The main feature of this allocator is that the header is located far away
12// from the user memory region, so that the tool does not use extra shadow
13// for the header.
14//
15// Status: not yet ready.
16//===----------------------------------------------------------------------===//
17#ifndef SANITIZER_ALLOCATOR_H
18#define SANITIZER_ALLOCATOR_H
19
20#include "sanitizer_common.h"
21#include "sanitizer_internal_defs.h"
22#include "sanitizer_libc.h"
23#include "sanitizer_list.h"
24#include "sanitizer_mutex.h"
25
26namespace __sanitizer {
27
28// Maps size class id to size and back.
29class DefaultSizeClassMap {
30 private:
31  // Here we use a spline composed of 5 polynomials of oder 1.
32  // The first size class is l0, then the classes go with step s0
33  // untill they reach l1, after which they go with step s1 and so on.
34  // Steps should be powers of two for cheap division.
35  // The size of the last size class should be a power of two.
36  // There should be at most 256 size classes.
37  static const uptr l0 = 1 << 4;
38  static const uptr l1 = 1 << 9;
39  static const uptr l2 = 1 << 12;
40  static const uptr l3 = 1 << 15;
41  static const uptr l4 = 1 << 18;
42  static const uptr l5 = 1 << 21;
43
44  static const uptr s0 = 1 << 4;
45  static const uptr s1 = 1 << 6;
46  static const uptr s2 = 1 << 9;
47  static const uptr s3 = 1 << 12;
48  static const uptr s4 = 1 << 15;
49
50  static const uptr u0 = 0  + (l1 - l0) / s0;
51  static const uptr u1 = u0 + (l2 - l1) / s1;
52  static const uptr u2 = u1 + (l3 - l2) / s2;
53  static const uptr u3 = u2 + (l4 - l3) / s3;
54  static const uptr u4 = u3 + (l5 - l4) / s4;
55
56  // Max cached in local cache blocks.
57  static const uptr c0 = 256;
58  static const uptr c1 = 64;
59  static const uptr c2 = 16;
60  static const uptr c3 = 4;
61  static const uptr c4 = 1;
62
63 public:
64  static const uptr kNumClasses = u4 + 1;
65  static const uptr kMaxSize = l5;
66  static const uptr kMinSize = l0;
67
68  COMPILER_CHECK(kNumClasses <= 256);
69  COMPILER_CHECK((kMaxSize & (kMaxSize - 1)) == 0);
70
71  static uptr Size(uptr class_id) {
72    if (class_id <= u0) return l0 + s0 * (class_id - 0);
73    if (class_id <= u1) return l1 + s1 * (class_id - u0);
74    if (class_id <= u2) return l2 + s2 * (class_id - u1);
75    if (class_id <= u3) return l3 + s3 * (class_id - u2);
76    if (class_id <= u4) return l4 + s4 * (class_id - u3);
77    return 0;
78  }
79  static uptr ClassID(uptr size) {
80    if (size <= l1) return 0  + (size - l0 + s0 - 1) / s0;
81    if (size <= l2) return u0 + (size - l1 + s1 - 1) / s1;
82    if (size <= l3) return u1 + (size - l2 + s2 - 1) / s2;
83    if (size <= l4) return u2 + (size - l3 + s3 - 1) / s3;
84    if (size <= l5) return u3 + (size - l4 + s4 - 1) / s4;
85    return 0;
86  }
87
88  static uptr MaxCached(uptr class_id) {
89    if (class_id <= u0) return c0;
90    if (class_id <= u1) return c1;
91    if (class_id <= u2) return c2;
92    if (class_id <= u3) return c3;
93    if (class_id <= u4) return c4;
94    return 0;
95  }
96};
97
98struct AllocatorListNode {
99  AllocatorListNode *next;
100};
101
102typedef IntrusiveList<AllocatorListNode> AllocatorFreeList;
103
104
105// Space: a portion of address space of kSpaceSize bytes starting at
106// a fixed address (kSpaceBeg). Both constants are powers of two and
107// kSpaceBeg is kSpaceSize-aligned.
108//
109// Region: a part of Space dedicated to a single size class.
110// There are kNumClasses Regions of equal size.
111//
112// UserChunk: a piece of memory returned to user.
113// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
114//
115// A Region looks like this:
116// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
117template <const uptr kSpaceBeg, const uptr kSpaceSize,
118          const uptr kMetadataSize, class SizeClassMap>
119class SizeClassAllocator64 {
120 public:
121  void Init() {
122    CHECK_EQ(AllocBeg(), reinterpret_cast<uptr>(MmapFixedNoReserve(
123             AllocBeg(), AllocSize())));
124  }
125
126  bool CanAllocate(uptr size, uptr alignment) {
127    return size <= SizeClassMap::kMaxSize &&
128      alignment <= SizeClassMap::kMaxSize;
129  }
130
131  void *Allocate(uptr size, uptr alignment) {
132    CHECK(CanAllocate(size, alignment));
133    return AllocateBySizeClass(SizeClassMap::ClassID(size));
134  }
135
136  void Deallocate(void *p) {
137    CHECK(PointerIsMine(p));
138    DeallocateBySizeClass(p, GetSizeClass(p));
139  }
140
141  // Allocate several chunks of the given class_id.
142  void BulkAllocate(uptr class_id, AllocatorFreeList *free_list) {
143    CHECK_LT(class_id, kNumClasses);
144    RegionInfo *region = GetRegionInfo(class_id);
145    SpinMutexLock l(&region->mutex);
146    if (region->free_list.empty()) {
147      PopulateFreeList(class_id, region);
148    }
149    CHECK(!region->free_list.empty());
150    uptr count = SizeClassMap::MaxCached(class_id);
151    if (region->free_list.size() <= count) {
152      free_list->append_front(&region->free_list);
153    } else {
154      for (uptr i = 0; i < count; i++) {
155        AllocatorListNode *node = region->free_list.front();
156        region->free_list.pop_front();
157        free_list->push_front(node);
158      }
159    }
160    CHECK(!free_list->empty());
161  }
162
163  // Swallow the entire free_list for the given class_id.
164  void BulkDeallocate(uptr class_id, AllocatorFreeList *free_list) {
165    CHECK_LT(class_id, kNumClasses);
166    RegionInfo *region = GetRegionInfo(class_id);
167    SpinMutexLock l(&region->mutex);
168    region->free_list.append_front(free_list);
169  }
170
171  static bool PointerIsMine(void *p) {
172    return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
173  }
174
175  static uptr GetSizeClass(void *p) {
176    return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClasses;
177  }
178
179  static void *GetBlockBegin(void *p) {
180    uptr class_id = GetSizeClass(p);
181    uptr size = SizeClassMap::Size(class_id);
182    uptr chunk_idx = GetChunkIdx((uptr)p, size);
183    uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
184    uptr begin = reg_beg + chunk_idx * size;
185    return (void*)begin;
186  }
187
188  static uptr GetActuallyAllocatedSize(void *p) {
189    CHECK(PointerIsMine(p));
190    return SizeClassMap::Size(GetSizeClass(p));
191  }
192
193  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
194
195  void *GetMetaData(void *p) {
196    uptr class_id = GetSizeClass(p);
197    uptr size = SizeClassMap::Size(class_id);
198    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
199    return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
200                                   (1 + chunk_idx) * kMetadataSize);
201  }
202
203  uptr TotalMemoryUsed() {
204    uptr res = 0;
205    for (uptr i = 0; i < kNumClasses; i++)
206      res += GetRegionInfo(i)->allocated_user;
207    return res;
208  }
209
210  // Test-only.
211  void TestOnlyUnmap() {
212    UnmapOrDie(reinterpret_cast<void*>(AllocBeg()), AllocSize());
213  }
214
215  static uptr AllocBeg()  { return kSpaceBeg; }
216  static uptr AllocEnd()  { return kSpaceBeg  + kSpaceSize + AdditionalSize(); }
217  static uptr AllocSize() { return kSpaceSize + AdditionalSize(); }
218
219  static const uptr kNumClasses = 256;  // Power of two <= 256
220  typedef SizeClassMap SizeClassMapT;
221
222 private:
223  COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
224  COMPILER_CHECK(kNumClasses <= SizeClassMap::kNumClasses);
225  static const uptr kRegionSize = kSpaceSize / kNumClasses;
226  COMPILER_CHECK((kRegionSize >> 32) > 0);  // kRegionSize must be >= 2^32.
227  // Populate the free list with at most this number of bytes at once
228  // or with one element if its size is greater.
229  static const uptr kPopulateSize = 1 << 18;
230
231  struct RegionInfo {
232    SpinMutex mutex;
233    AllocatorFreeList free_list;
234    uptr allocated_user;  // Bytes allocated for user memory.
235    uptr allocated_meta;  // Bytes allocated for metadata.
236    char padding[kCacheLineSize - 3 * sizeof(uptr) - sizeof(AllocatorFreeList)];
237  };
238  COMPILER_CHECK(sizeof(RegionInfo) == kCacheLineSize);
239
240  static uptr AdditionalSize() {
241    uptr res = sizeof(RegionInfo) * kNumClasses;
242    CHECK_EQ(res % kPageSize, 0);
243    return res;
244  }
245
246  RegionInfo *GetRegionInfo(uptr class_id) {
247    CHECK_LT(class_id, kNumClasses);
248    RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
249    return &regions[class_id];
250  }
251
252  static uptr GetChunkIdx(uptr chunk, uptr size) {
253    u32 offset = chunk % kRegionSize;
254    // Here we divide by a non-constant. This is costly.
255    // We require that kRegionSize is at least 2^32 so that offset is 32-bit.
256    // We save 2x by using 32-bit div, but may need to use a 256-way switch.
257    return offset / (u32)size;
258  }
259
260  void PopulateFreeList(uptr class_id, RegionInfo *region) {
261    uptr size = SizeClassMap::Size(class_id);
262    uptr beg_idx = region->allocated_user;
263    uptr end_idx = beg_idx + kPopulateSize;
264    region->free_list.clear();
265    uptr region_beg = kSpaceBeg + kRegionSize * class_id;
266    uptr idx = beg_idx;
267    uptr i = 0;
268    do {  // do-while loop because we need to put at least one item.
269      uptr p = region_beg + idx;
270      region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
271      idx += size;
272      i++;
273    } while (idx < end_idx);
274    region->allocated_user += idx - beg_idx;
275    region->allocated_meta += i * kMetadataSize;
276    CHECK_LT(region->allocated_user + region->allocated_meta, kRegionSize);
277  }
278
279  void *AllocateBySizeClass(uptr class_id) {
280    CHECK_LT(class_id, kNumClasses);
281    RegionInfo *region = GetRegionInfo(class_id);
282    SpinMutexLock l(&region->mutex);
283    if (region->free_list.empty()) {
284      PopulateFreeList(class_id, region);
285    }
286    CHECK(!region->free_list.empty());
287    AllocatorListNode *node = region->free_list.front();
288    region->free_list.pop_front();
289    return reinterpret_cast<void*>(node);
290  }
291
292  void DeallocateBySizeClass(void *p, uptr class_id) {
293    RegionInfo *region = GetRegionInfo(class_id);
294    SpinMutexLock l(&region->mutex);
295    region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
296  }
297};
298
299// Objects of this type should be used as local caches for SizeClassAllocator64.
300// Since the typical use of this class is to have one object per thread in TLS,
301// is has to be POD.
302template<const uptr kNumClasses, class SizeClassAllocator>
303struct SizeClassAllocatorLocalCache {
304  // Don't need to call Init if the object is a global (i.e. zero-initialized).
305  void Init() {
306    internal_memset(this, 0, sizeof(*this));
307  }
308
309  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
310    CHECK_LT(class_id, kNumClasses);
311    AllocatorFreeList *free_list = &free_lists_[class_id];
312    if (free_list->empty())
313      allocator->BulkAllocate(class_id, free_list);
314    CHECK(!free_list->empty());
315    void *res = free_list->front();
316    free_list->pop_front();
317    return res;
318  }
319
320  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
321    CHECK_LT(class_id, kNumClasses);
322    AllocatorFreeList *free_list = &free_lists_[class_id];
323    free_list->push_front(reinterpret_cast<AllocatorListNode*>(p));
324    if (free_list->size() >= 2 * SizeClassMap::MaxCached(class_id))
325      DrainHalf(allocator, class_id);
326  }
327
328  void Drain(SizeClassAllocator *allocator) {
329    for (uptr i = 0; i < kNumClasses; i++) {
330      allocator->BulkDeallocate(i, &free_lists_[i]);
331      CHECK(free_lists_[i].empty());
332    }
333  }
334
335  // private:
336  typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
337  AllocatorFreeList free_lists_[kNumClasses];
338
339  void DrainHalf(SizeClassAllocator *allocator, uptr class_id) {
340    AllocatorFreeList *free_list = &free_lists_[class_id];
341    AllocatorFreeList half;
342    half.clear();
343    const uptr count = free_list->size() / 2;
344    for (uptr i = 0; i < count; i++) {
345      AllocatorListNode *node = free_list->front();
346      free_list->pop_front();
347      half.push_front(node);
348    }
349    allocator->BulkDeallocate(class_id, &half);
350  }
351};
352
353// This class can (de)allocate only large chunks of memory using mmap/unmap.
354// The main purpose of this allocator is to cover large and rare allocation
355// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
356// The result is always page-aligned.
357class LargeMmapAllocator {
358 public:
359  void Init() {
360    internal_memset(this, 0, sizeof(*this));
361  }
362  void *Allocate(uptr size, uptr alignment) {
363    CHECK_LE(alignment, kPageSize);  // Not implemented. Do we need it?
364    if (size + alignment + 2 * kPageSize < size)
365      return 0;
366    uptr map_size = RoundUpMapSize(size);
367    void *map = MmapOrDie(map_size, "LargeMmapAllocator");
368    void *res = reinterpret_cast<void*>(reinterpret_cast<uptr>(map)
369                                        + kPageSize);
370    Header *h = GetHeader(res);
371    h->size = size;
372    {
373      SpinMutexLock l(&mutex_);
374      h->next = list_;
375      h->prev = 0;
376      if (list_)
377        list_->prev = h;
378      list_ = h;
379    }
380    return res;
381  }
382
383  void Deallocate(void *p) {
384    Header *h = GetHeader(p);
385    uptr map_size = RoundUpMapSize(h->size);
386    {
387      SpinMutexLock l(&mutex_);
388      Header *prev = h->prev;
389      Header *next = h->next;
390      if (prev)
391        prev->next = next;
392      if (next)
393        next->prev = prev;
394      if (h == list_)
395        list_ = next;
396    }
397    UnmapOrDie(h, map_size);
398  }
399
400  uptr TotalMemoryUsed() {
401    SpinMutexLock l(&mutex_);
402    uptr res = 0;
403    for (Header *l = list_; l; l = l->next) {
404      res += RoundUpMapSize(l->size);
405    }
406    return res;
407  }
408
409  bool PointerIsMine(void *p) {
410    // Fast check.
411    if ((reinterpret_cast<uptr>(p) % kPageSize) != 0) return false;
412    SpinMutexLock l(&mutex_);
413    for (Header *l = list_; l; l = l->next) {
414      if (GetUser(l) == p) return true;
415    }
416    return false;
417  }
418
419  uptr GetActuallyAllocatedSize(void *p) {
420    return RoundUpMapSize(GetHeader(p)->size) - kPageSize;
421  }
422
423  // At least kPageSize/2 metadata bytes is available.
424  void *GetMetaData(void *p) {
425    return GetHeader(p) + 1;
426  }
427
428  void *GetBlockBegin(void *p) {
429    SpinMutexLock l(&mutex_);
430    for (Header *l = list_; l; l = l->next) {
431      void *b = GetUser(l);
432      if (p >= b && p < (u8*)b + l->size)
433        return b;
434    }
435    return 0;
436  }
437
438 private:
439  struct Header {
440    uptr size;
441    Header *next;
442    Header *prev;
443  };
444
445  Header *GetHeader(void *p) {
446    return reinterpret_cast<Header*>(reinterpret_cast<uptr>(p) - kPageSize);
447  }
448
449  void *GetUser(Header *h) {
450    return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + kPageSize);
451  }
452
453  uptr RoundUpMapSize(uptr size) {
454    return RoundUpTo(size, kPageSize) + kPageSize;
455  }
456
457  Header *list_;
458  SpinMutex mutex_;
459};
460
461// This class implements a complete memory allocator by using two
462// internal allocators:
463// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
464//  When allocating 2^x bytes it should return 2^x aligned chunk.
465// PrimaryAllocator is used via a local AllocatorCache.
466// SecondaryAllocator can allocate anything, but is not efficient.
467template <class PrimaryAllocator, class AllocatorCache,
468          class SecondaryAllocator>  // NOLINT
469class CombinedAllocator {
470 public:
471  void Init() {
472    primary_.Init();
473    secondary_.Init();
474  }
475
476  void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
477                 bool cleared = false) {
478    // Returning 0 on malloc(0) may break a lot of code.
479    if (size == 0)
480      size = 1;
481    if (size + alignment < size)
482      return 0;
483    if (alignment > 8)
484      size = RoundUpTo(size, alignment);
485    void *res;
486    if (primary_.CanAllocate(size, alignment))
487      res = cache->Allocate(&primary_, primary_.ClassID(size));
488    else
489      res = secondary_.Allocate(size, alignment);
490    if (alignment > 8)
491      CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
492    if (cleared && res)
493      internal_memset(res, 0, size);
494    return res;
495  }
496
497  void Deallocate(AllocatorCache *cache, void *p) {
498    if (!p) return;
499    if (primary_.PointerIsMine(p))
500      cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
501    else
502      secondary_.Deallocate(p);
503  }
504
505  void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
506                   uptr alignment) {
507    if (!p)
508      return Allocate(cache, new_size, alignment);
509    if (!new_size) {
510      Deallocate(cache, p);
511      return 0;
512    }
513    CHECK(PointerIsMine(p));
514    uptr old_size = GetActuallyAllocatedSize(p);
515    uptr memcpy_size = Min(new_size, old_size);
516    void *new_p = Allocate(cache, new_size, alignment);
517    if (new_p)
518      internal_memcpy(new_p, p, memcpy_size);
519    Deallocate(cache, p);
520    return new_p;
521  }
522
523  bool PointerIsMine(void *p) {
524    if (primary_.PointerIsMine(p))
525      return true;
526    return secondary_.PointerIsMine(p);
527  }
528
529  void *GetMetaData(void *p) {
530    if (primary_.PointerIsMine(p))
531      return primary_.GetMetaData(p);
532    return secondary_.GetMetaData(p);
533  }
534
535  void *GetBlockBegin(void *p) {
536    if (primary_.PointerIsMine(p))
537      return primary_.GetBlockBegin(p);
538    return secondary_.GetBlockBegin(p);
539  }
540
541  uptr GetActuallyAllocatedSize(void *p) {
542    if (primary_.PointerIsMine(p))
543      return primary_.GetActuallyAllocatedSize(p);
544    return secondary_.GetActuallyAllocatedSize(p);
545  }
546
547  uptr TotalMemoryUsed() {
548    return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
549  }
550
551  void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
552
553  void SwallowCache(AllocatorCache *cache) {
554    cache->Drain(&primary_);
555  }
556
557 private:
558  PrimaryAllocator primary_;
559  SecondaryAllocator secondary_;
560};
561
562}  // namespace __sanitizer
563
564#endif  // SANITIZER_ALLOCATOR_H
565