rmd256.c revision f7fc46c63fdc8f39234fea409b8dbe116d73ebf8
1/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10 */
11#include "tomcrypt.h"
12
13/**
14   @param rmd256.c
15   RMD256 Hash function
16*/
17
18#ifdef RIPEMD256
19
20const struct ltc_hash_descriptor rmd256_desc =
21{
22    "rmd256",
23    8,
24    16,
25    64,
26
27    /* OID */
28   { 1, 3, 36, 3, 2, 3 },
29   6,
30
31    &rmd256_init,
32    &rmd256_process,
33    &rmd256_done,
34    &rmd256_test,
35    NULL
36};
37
38/* the four basic functions F(), G() and H() */
39#define F(x, y, z)        ((x) ^ (y) ^ (z))
40#define G(x, y, z)        (((x) & (y)) | (~(x) & (z)))
41#define H(x, y, z)        (((x) | ~(y)) ^ (z))
42#define I(x, y, z)        (((x) & (z)) | ((y) & ~(z)))
43
44/* the eight basic operations FF() through III() */
45#define FF(a, b, c, d, x, s)        \
46      (a) += F((b), (c), (d)) + (x);\
47      (a) = ROLc((a), (s));
48
49#define GG(a, b, c, d, x, s)        \
50      (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
51      (a) = ROLc((a), (s));
52
53#define HH(a, b, c, d, x, s)        \
54      (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
55      (a) = ROLc((a), (s));
56
57#define II(a, b, c, d, x, s)        \
58      (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
59      (a) = ROLc((a), (s));
60
61#define FFF(a, b, c, d, x, s)        \
62      (a) += F((b), (c), (d)) + (x);\
63      (a) = ROLc((a), (s));
64
65#define GGG(a, b, c, d, x, s)        \
66      (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
67      (a) = ROLc((a), (s));
68
69#define HHH(a, b, c, d, x, s)        \
70      (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
71      (a) = ROLc((a), (s));
72
73#define III(a, b, c, d, x, s)        \
74      (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
75      (a) = ROLc((a), (s));
76
77#ifdef LTC_CLEAN_STACK
78static int _rmd256_compress(hash_state *md, unsigned char *buf)
79#else
80static int  rmd256_compress(hash_state *md, unsigned char *buf)
81#endif
82{
83   ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16];
84   int i;
85
86   /* load words X */
87   for (i = 0; i < 16; i++){
88      LOAD32L(X[i], buf + (4 * i));
89   }
90
91   /* load state */
92   aa = md->rmd256.state[0];
93   bb = md->rmd256.state[1];
94   cc = md->rmd256.state[2];
95   dd = md->rmd256.state[3];
96   aaa = md->rmd256.state[4];
97   bbb = md->rmd256.state[5];
98   ccc = md->rmd256.state[6];
99   ddd = md->rmd256.state[7];
100
101   /* round 1 */
102   FF(aa, bb, cc, dd, X[ 0], 11);
103   FF(dd, aa, bb, cc, X[ 1], 14);
104   FF(cc, dd, aa, bb, X[ 2], 15);
105   FF(bb, cc, dd, aa, X[ 3], 12);
106   FF(aa, bb, cc, dd, X[ 4],  5);
107   FF(dd, aa, bb, cc, X[ 5],  8);
108   FF(cc, dd, aa, bb, X[ 6],  7);
109   FF(bb, cc, dd, aa, X[ 7],  9);
110   FF(aa, bb, cc, dd, X[ 8], 11);
111   FF(dd, aa, bb, cc, X[ 9], 13);
112   FF(cc, dd, aa, bb, X[10], 14);
113   FF(bb, cc, dd, aa, X[11], 15);
114   FF(aa, bb, cc, dd, X[12],  6);
115   FF(dd, aa, bb, cc, X[13],  7);
116   FF(cc, dd, aa, bb, X[14],  9);
117   FF(bb, cc, dd, aa, X[15],  8);
118
119   /* parallel round 1 */
120   III(aaa, bbb, ccc, ddd, X[ 5],  8);
121   III(ddd, aaa, bbb, ccc, X[14],  9);
122   III(ccc, ddd, aaa, bbb, X[ 7],  9);
123   III(bbb, ccc, ddd, aaa, X[ 0], 11);
124   III(aaa, bbb, ccc, ddd, X[ 9], 13);
125   III(ddd, aaa, bbb, ccc, X[ 2], 15);
126   III(ccc, ddd, aaa, bbb, X[11], 15);
127   III(bbb, ccc, ddd, aaa, X[ 4],  5);
128   III(aaa, bbb, ccc, ddd, X[13],  7);
129   III(ddd, aaa, bbb, ccc, X[ 6],  7);
130   III(ccc, ddd, aaa, bbb, X[15],  8);
131   III(bbb, ccc, ddd, aaa, X[ 8], 11);
132   III(aaa, bbb, ccc, ddd, X[ 1], 14);
133   III(ddd, aaa, bbb, ccc, X[10], 14);
134   III(ccc, ddd, aaa, bbb, X[ 3], 12);
135   III(bbb, ccc, ddd, aaa, X[12],  6);
136
137   tmp = aa; aa = aaa; aaa = tmp;
138
139   /* round 2 */
140   GG(aa, bb, cc, dd, X[ 7],  7);
141   GG(dd, aa, bb, cc, X[ 4],  6);
142   GG(cc, dd, aa, bb, X[13],  8);
143   GG(bb, cc, dd, aa, X[ 1], 13);
144   GG(aa, bb, cc, dd, X[10], 11);
145   GG(dd, aa, bb, cc, X[ 6],  9);
146   GG(cc, dd, aa, bb, X[15],  7);
147   GG(bb, cc, dd, aa, X[ 3], 15);
148   GG(aa, bb, cc, dd, X[12],  7);
149   GG(dd, aa, bb, cc, X[ 0], 12);
150   GG(cc, dd, aa, bb, X[ 9], 15);
151   GG(bb, cc, dd, aa, X[ 5],  9);
152   GG(aa, bb, cc, dd, X[ 2], 11);
153   GG(dd, aa, bb, cc, X[14],  7);
154   GG(cc, dd, aa, bb, X[11], 13);
155   GG(bb, cc, dd, aa, X[ 8], 12);
156
157   /* parallel round 2 */
158   HHH(aaa, bbb, ccc, ddd, X[ 6],  9);
159   HHH(ddd, aaa, bbb, ccc, X[11], 13);
160   HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
161   HHH(bbb, ccc, ddd, aaa, X[ 7],  7);
162   HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
163   HHH(ddd, aaa, bbb, ccc, X[13],  8);
164   HHH(ccc, ddd, aaa, bbb, X[ 5],  9);
165   HHH(bbb, ccc, ddd, aaa, X[10], 11);
166   HHH(aaa, bbb, ccc, ddd, X[14],  7);
167   HHH(ddd, aaa, bbb, ccc, X[15],  7);
168   HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
169   HHH(bbb, ccc, ddd, aaa, X[12],  7);
170   HHH(aaa, bbb, ccc, ddd, X[ 4],  6);
171   HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
172   HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
173   HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
174
175   tmp = bb; bb = bbb; bbb = tmp;
176
177   /* round 3 */
178   HH(aa, bb, cc, dd, X[ 3], 11);
179   HH(dd, aa, bb, cc, X[10], 13);
180   HH(cc, dd, aa, bb, X[14],  6);
181   HH(bb, cc, dd, aa, X[ 4],  7);
182   HH(aa, bb, cc, dd, X[ 9], 14);
183   HH(dd, aa, bb, cc, X[15],  9);
184   HH(cc, dd, aa, bb, X[ 8], 13);
185   HH(bb, cc, dd, aa, X[ 1], 15);
186   HH(aa, bb, cc, dd, X[ 2], 14);
187   HH(dd, aa, bb, cc, X[ 7],  8);
188   HH(cc, dd, aa, bb, X[ 0], 13);
189   HH(bb, cc, dd, aa, X[ 6],  6);
190   HH(aa, bb, cc, dd, X[13],  5);
191   HH(dd, aa, bb, cc, X[11], 12);
192   HH(cc, dd, aa, bb, X[ 5],  7);
193   HH(bb, cc, dd, aa, X[12],  5);
194
195   /* parallel round 3 */
196   GGG(aaa, bbb, ccc, ddd, X[15],  9);
197   GGG(ddd, aaa, bbb, ccc, X[ 5],  7);
198   GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
199   GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
200   GGG(aaa, bbb, ccc, ddd, X[ 7],  8);
201   GGG(ddd, aaa, bbb, ccc, X[14],  6);
202   GGG(ccc, ddd, aaa, bbb, X[ 6],  6);
203   GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
204   GGG(aaa, bbb, ccc, ddd, X[11], 12);
205   GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
206   GGG(ccc, ddd, aaa, bbb, X[12],  5);
207   GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
208   GGG(aaa, bbb, ccc, ddd, X[10], 13);
209   GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
210   GGG(ccc, ddd, aaa, bbb, X[ 4],  7);
211   GGG(bbb, ccc, ddd, aaa, X[13],  5);
212
213   tmp = cc; cc = ccc; ccc = tmp;
214
215   /* round 4 */
216   II(aa, bb, cc, dd, X[ 1], 11);
217   II(dd, aa, bb, cc, X[ 9], 12);
218   II(cc, dd, aa, bb, X[11], 14);
219   II(bb, cc, dd, aa, X[10], 15);
220   II(aa, bb, cc, dd, X[ 0], 14);
221   II(dd, aa, bb, cc, X[ 8], 15);
222   II(cc, dd, aa, bb, X[12],  9);
223   II(bb, cc, dd, aa, X[ 4],  8);
224   II(aa, bb, cc, dd, X[13],  9);
225   II(dd, aa, bb, cc, X[ 3], 14);
226   II(cc, dd, aa, bb, X[ 7],  5);
227   II(bb, cc, dd, aa, X[15],  6);
228   II(aa, bb, cc, dd, X[14],  8);
229   II(dd, aa, bb, cc, X[ 5],  6);
230   II(cc, dd, aa, bb, X[ 6],  5);
231   II(bb, cc, dd, aa, X[ 2], 12);
232
233   /* parallel round 4 */
234   FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
235   FFF(ddd, aaa, bbb, ccc, X[ 6],  5);
236   FFF(ccc, ddd, aaa, bbb, X[ 4],  8);
237   FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
238   FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
239   FFF(ddd, aaa, bbb, ccc, X[11], 14);
240   FFF(ccc, ddd, aaa, bbb, X[15],  6);
241   FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
242   FFF(aaa, bbb, ccc, ddd, X[ 5],  6);
243   FFF(ddd, aaa, bbb, ccc, X[12],  9);
244   FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
245   FFF(bbb, ccc, ddd, aaa, X[13],  9);
246   FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
247   FFF(ddd, aaa, bbb, ccc, X[ 7],  5);
248   FFF(ccc, ddd, aaa, bbb, X[10], 15);
249   FFF(bbb, ccc, ddd, aaa, X[14],  8);
250
251   tmp = dd; dd = ddd; ddd = tmp;
252
253   /* combine results */
254   md->rmd256.state[0] += aa;
255   md->rmd256.state[1] += bb;
256   md->rmd256.state[2] += cc;
257   md->rmd256.state[3] += dd;
258   md->rmd256.state[4] += aaa;
259   md->rmd256.state[5] += bbb;
260   md->rmd256.state[6] += ccc;
261   md->rmd256.state[7] += ddd;
262
263   return CRYPT_OK;
264}
265
266#ifdef LTC_CLEAN_STACK
267static int rmd256_compress(hash_state *md, unsigned char *buf)
268{
269   int err;
270   err = _rmd256_compress(md, buf);
271   burn_stack(sizeof(ulong32) * 25 + sizeof(int));
272   return err;
273}
274#endif
275
276/**
277   Initialize the hash state
278   @param md   The hash state you wish to initialize
279   @return CRYPT_OK if successful
280*/
281int rmd256_init(hash_state * md)
282{
283   LTC_ARGCHK(md != NULL);
284   md->rmd256.state[0] = 0x67452301UL;
285   md->rmd256.state[1] = 0xefcdab89UL;
286   md->rmd256.state[2] = 0x98badcfeUL;
287   md->rmd256.state[3] = 0x10325476UL;
288   md->rmd256.state[4] = 0x76543210UL;
289   md->rmd256.state[5] = 0xfedcba98UL;
290   md->rmd256.state[6] = 0x89abcdefUL;
291   md->rmd256.state[7] = 0x01234567UL;
292   md->rmd256.curlen   = 0;
293   md->rmd256.length   = 0;
294   return CRYPT_OK;
295}
296
297/**
298   Process a block of memory though the hash
299   @param md     The hash state
300   @param in     The data to hash
301   @param inlen  The length of the data (octets)
302   @return CRYPT_OK if successful
303*/
304HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64)
305
306/**
307   Terminate the hash to get the digest
308   @param md  The hash state
309   @param out [out] The destination of the hash (16 bytes)
310   @return CRYPT_OK if successful
311*/
312int rmd256_done(hash_state * md, unsigned char *out)
313{
314    int i;
315
316    LTC_ARGCHK(md  != NULL);
317    LTC_ARGCHK(out != NULL);
318
319    if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) {
320       return CRYPT_INVALID_ARG;
321    }
322
323
324    /* increase the length of the message */
325    md->rmd256.length += md->rmd256.curlen * 8;
326
327    /* append the '1' bit */
328    md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80;
329
330    /* if the length is currently above 56 bytes we append zeros
331     * then compress.  Then we can fall back to padding zeros and length
332     * encoding like normal.
333     */
334    if (md->rmd256.curlen > 56) {
335        while (md->rmd256.curlen < 64) {
336            md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0;
337        }
338        rmd256_compress(md, md->rmd256.buf);
339        md->rmd256.curlen = 0;
340    }
341
342    /* pad upto 56 bytes of zeroes */
343    while (md->rmd256.curlen < 56) {
344        md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0;
345    }
346
347    /* store length */
348    STORE64L(md->rmd256.length, md->rmd256.buf+56);
349    rmd256_compress(md, md->rmd256.buf);
350
351    /* copy output */
352    for (i = 0; i < 8; i++) {
353        STORE32L(md->rmd256.state[i], out+(4*i));
354    }
355#ifdef LTC_CLEAN_STACK
356    zeromem(md, sizeof(hash_state));
357#endif
358   return CRYPT_OK;
359}
360
361/**
362  Self-test the hash
363  @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
364*/
365int rmd256_test(void)
366{
367#ifndef LTC_TEST
368   return CRYPT_NOP;
369#else
370   static const struct {
371        char *msg;
372        unsigned char md[32];
373   } tests[] = {
374   { "",
375     { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18,
376       0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a,
377       0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63,
378       0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d }
379   },
380   { "a",
381     { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9,
382       0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c,
383       0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf,
384       0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 }
385   },
386   { "abc",
387     { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb,
388       0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1,
389       0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e,
390       0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 }
391   },
392   { "message digest",
393     { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a,
394       0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90,
395       0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55,
396       0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e }
397   },
398   { "abcdefghijklmnopqrstuvwxyz",
399     { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16,
400       0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc,
401       0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87,
402       0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 }
403   },
404   { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
405     { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20,
406       0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f,
407       0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1,
408       0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 }
409   }
410   };
411   int x;
412   unsigned char buf[32];
413   hash_state md;
414
415   for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
416       rmd256_init(&md);
417       rmd256_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg));
418       rmd256_done(&md, buf);
419       if (XMEMCMP(buf, tests[x].md, 32) != 0) {
420       #if 0
421          printf("Failed test %d\n", x);
422       #endif
423          return CRYPT_FAIL_TESTVECTOR;
424       }
425   }
426   return CRYPT_OK;
427#endif
428}
429
430#endif
431
432