ucnv_lmb.c revision b13da9df870a61b11249bf741347908dbea0edd8
1/*
2**********************************************************************
3*   Copyright (C) 2000-2006, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5**********************************************************************
6*   file name:  ucnv_lmb.cpp
7*   encoding:   US-ASCII
8*   tab size:   4 (not used)
9*   indentation:4
10*
11*   created on: 2000feb09
12*   created by: Brendan Murray
13*   extensively hacked up by: Jim Snyder-Grant
14*
15* Modification History:
16*
17*   Date        Name             Description
18*
19*   06/20/2000  helena           OS/400 port changes; mostly typecast.
20*   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
21*                                Add comments to document LMBCS format and implementation
22*                                restructured order & breakdown of functions
23*   06/28/2000  helena           Major rewrite for the callback API changes.
24*/
25
26#include "unicode/utypes.h"
27
28#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
29
30#include "unicode/ucnv_err.h"
31#include "unicode/ucnv.h"
32#include "unicode/uset.h"
33#include "cmemory.h"
34#include "cstring.h"
35#include "uassert.h"
36#include "ucnv_imp.h"
37#include "ucnv_bld.h"
38#include "ucnv_cnv.h"
39
40#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
41
42/*
43  LMBCS
44
45  (Lotus Multi-Byte Character Set)
46
47  LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
48  databases and in Lotus 1-2-3 files. Programmers who work with the APIs
49  into these products will sometimes need to deal with strings in this format.
50
51  The code in this file provides an implementation for an ICU converter of
52  LMBCS to and from Unicode.
53
54  Since the LMBCS character set is only sparsely documented in existing
55  printed or online material, we have added  extensive annotation to this
56  file to serve as a guide to understanding LMBCS.
57
58  LMBCS was originally designed with these four sometimes-competing design goals:
59
60  -Provide encodings for the characters in 12 existing national standards
61   (plus a few other characters)
62  -Minimal memory footprint
63  -Maximal speed of conversion into the existing national character sets
64  -No need to track a changing state as you interpret a string.
65
66
67  All of the national character sets LMBCS was trying to encode are 'ANSI'
68  based, in that the bytes from 0x20 - 0x7F are almost exactly the
69  same common Latin unaccented characters and symbols in all character sets.
70
71  So, in order to help meet the speed & memory design goals, the common ANSI
72  bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
73
74  The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
75  follows:
76
77  [G] D1 [D2]
78
79  That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
80  data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
81*/
82#define ULMBCS_CHARSIZE_MAX      3
83/*
84  The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
85  We often have to figure out if byte values are below or above this, so we
86  use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
87  characters just above & below the common lower-ANSI  range */
88#define ULMBCS_C0END           0x1F
89#define ULMBCS_C1START         0x80
90/*
91  Since LMBCS is always dealing in byte units. we create a local type here for
92  dealing with these units of LMBCS code units:
93
94*/
95typedef uint8_t ulmbcs_byte_t;
96
97/*
98   Most of the values less than 0x20 are reserved in LMBCS to announce
99   which national  character standard is being used for the 'D' bytes.
100   In the comments we show the common name and the IBM character-set ID
101   for these character-set announcers:
102*/
103
104#define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
105#define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
106#define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
107#define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
108#define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
109#define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
110#define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
111#define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
112#define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
113#define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
114#define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
115#define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
116
117/*
118   So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
119   character is one of those 12 values, you can interpret the remaining bytes of
120   that character as coming from one of those character sets. Since the lower
121   ANSI bytes already are represented in single bytes, using one of the character
122   set announcers is used to announce a character that starts with a byte of
123   0x80 or greater.
124
125   The character sets are  arranged so that the single byte sets all appear
126   before the multi-byte character sets. When we need to tell whether a
127   group byte is for a single byte char set or not we use this define: */
128
129#define ULMBCS_DOUBLEOPTGROUP_START  0x10
130
131/*
132However, to fully understand LMBCS, you must also understand a series of
133exceptions & optimizations made in service of the design goals.
134
135First, those of you who are character set mavens may have noticed that
136the 'double-byte' character sets are actually multi-byte character sets
137that can have 1 or two bytes, even in the upper-ascii range. To force
138each group byte to introduce a fixed-width encoding (to make it faster to
139count characters), we use a convention of doubling up on the group byte
140to introduce any single-byte character > 0x80 in an otherwise double-byte
141character set. So, for example, the LMBCS sequence x10 x10 xAE is the
142same as '0xAE' in the Japanese code page 943.
143
144Next, you will notice that the list of group bytes has some gaps.
145These are used in various ways.
146
147We reserve a few special single byte values for common control
148characters. These are in the same place as their ANSI eqivalents for speed.
149*/
150
151#define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
152#define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
153#define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
154
155/* Then, 1-2-3 reserved a special single-byte character to put at the
156beginning of internal 'system' range names: */
157
158#define ULMBCS_123SYSTEMRANGE  0x19
159
160/* Then we needed a place to put all the other ansi control characters
161that must be moved to different values because LMBCS reserves those
162values for other purposes. To represent the control characters, we start
163with a first byte of 0xF & add the control chaarcter value as the
164second byte */
165#define ULMBCS_GRP_CTRL       0x0F
166
167/* For the C0 controls (less than 0x20), we add 0x20 to preserve the
168useful doctrine that any byte less than 0x20 in a LMBCS char must be
169the first byte of a character:*/
170#define ULMBCS_CTRLOFFSET      0x20
171
172/*
173Where to put the characters that aren't part of any of the 12 national
174character sets? The first thing that was done, in the earlier years of
175LMBCS, was to use up the spaces of the form
176
177  [G] D1,
178
179 where  'G' was one of the single-byte character groups, and
180 D1 was less than 0x80. These sequences are gathered together
181 into a Lotus-invented doublebyte character set to represent a
182 lot of stray values. Internally, in this implementation, we track this
183 as group '0', as a place to tuck this exceptions list.*/
184
185#define ULMBCS_GRP_EXCEPT     0x00
186/*
187 Finally, as the durability and usefulness of UNICODE became clear,
188 LOTUS added a new group 0x14 to hold Unicode values not otherwise
189 represented in LMBCS: */
190#define ULMBCS_GRP_UNICODE    0x14
191/* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
192(Big-Endian) characters. The exception comes when the UTF16
193representation would have a zero as the second byte. In that case,
194'F6' is used in its place, and the bytes are swapped. (This prevents
195LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
1960xF6xx is in the middle of the Private Use Area.)*/
197#define ULMBCS_UNICOMPATZERO   0xF6
198
199/* It is also useful in our code to have a constant for the size of
200a LMBCS char that holds a literal Unicode value */
201#define ULMBCS_UNICODE_SIZE      3
202
203/*
204To squish the LMBCS representations down even further, and to make
205translations even faster,sometimes the optimization group byte can be dropped
206from a LMBCS character. This is decided on a process-by-process basis. The
207group byte that is dropped is called the 'optimization group'.
208
209For Notes, the optimzation group is always 0x1.*/
210#define ULMBCS_DEFAULTOPTGROUP 0x1
211/* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
212file.
213
214 In any case, when using ICU, you either pass in the
215optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
216etc.). Using plain 'LMBCS' as the name of the converter will give you
217LMBCS-1.
218
219
220*** Implementation strategy ***
221
222
223Because of the extensive use of other character sets, the LMBCS converter
224keeps a mapping between optimization groups and IBM character sets, so that
225ICU converters can be created and used as needed. */
226
227/* As you can see, even though any byte below 0x20 could be an optimization
228byte, only those at 0x13 or below can map to an actual converter. To limit
229some loops and searches, we define a value for that last group converter:*/
230
231#define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
232
233static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
234   /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
235   /* 0x0001 */ "ibm-850",
236   /* 0x0002 */ "ibm-851",
237   /* 0x0003 */ "windows-1255",
238   /* 0x0004 */ "windows-1256",
239   /* 0x0005 */ "windows-1251",
240   /* 0x0006 */ "ibm-852",
241   /* 0x0007 */ NULL,      /* Unused */
242   /* 0x0008 */ "windows-1254",
243   /* 0x0009 */ NULL,      /* Control char HT */
244   /* 0x000A */ NULL,      /* Control char LF */
245   /* 0x000B */ "windows-874",
246   /* 0x000C */ NULL,      /* Unused */
247   /* 0x000D */ NULL,      /* Control char CR */
248   /* 0x000E */ NULL,      /* Unused */
249   /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
250   /* 0x0010 */ "windows-932",
251   /* 0x0011 */ "windows-949",
252   /* 0x0012 */ "windows-950",
253   /* 0x0013 */ "windows-936"
254
255   /* The rest are null, including the 0x0014 Unicode compatibility region
256   and 0x0019, the 1-2-3 system range control char */
257};
258
259
260/* That's approximately all the data that's needed for translating
261  LMBCS to Unicode.
262
263
264However, to translate Unicode to LMBCS, we need some more support.
265
266That's because there are often more than one possible mappings from a Unicode
267code point back into LMBCS. The first thing we do is look up into a table
268to figure out if there are more than one possible mappings. This table,
269arranged by Unicode values (including ranges) either lists which group
270to use, or says that it could go into one or more of the SBCS sets, or
271into one or more of the DBCS sets.  (If the character exists in both DBCS &
272SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
273length as small as possible. Here's the two special markers we use to indicate
274ambiguous mappings: */
275
276#define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one
277                                          LMBCS sbcs native encoding
278                                          (example: most accented latin) */
279#define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one
280                                          LMBCS mbcs native encoding
281                                          (example: Unihan) */
282
283/* And here's a simple way to see if a group falls in an appropriate range */
284#define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
285                  ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
286                  (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
287                  (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
288                  (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START))
289
290
291/* The table & some code to use it: */
292
293
294static const struct _UniLMBCSGrpMap
295{
296   const UChar uniStartRange;
297   const UChar uniEndRange;
298   const ulmbcs_byte_t  GrpType;
299} UniLMBCSGrpMap[]
300=
301{
302
303   {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
304   {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
305   {0x00A0, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
306   {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
307   {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
308   {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
309   {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
310   {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
311   {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
312   {0x0384, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
313   {0x0400, 0x044E,  ULMBCS_GRP_RU},
314   {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_MBCS},
315   {0x0450, 0x0491,  ULMBCS_GRP_RU},
316   {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
317   {0x060C, 0x06AF,  ULMBCS_GRP_AR},
318   {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
319   {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
320   {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
321   {0x2013, 0x2015,  ULMBCS_AMBIGUOUS_SBCS},
322   {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
323   {0x2017, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
324   {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
325   {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_SBCS},
326   {0x2027, 0x2027,  ULMBCS_GRP_CN},
327   {0x2030, 0x2033,  ULMBCS_AMBIGUOUS_SBCS},
328   {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
329   {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
330   {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
331   {0x2074, 0x2074,  ULMBCS_GRP_KO},
332   {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
333   {0x2081, 0x2084,  ULMBCS_GRP_KO},
334   {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
335   {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
336   {0x2111, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
337   {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
338   {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
339   {0x2153, 0x2154,  ULMBCS_GRP_KO},
340   {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
341   {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
342   {0x2190, 0x2195,  ULMBCS_GRP_EXCEPT},
343   {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
344   {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
345   {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
346   {0x21D0, 0x21D5,  ULMBCS_GRP_EXCEPT},
347   {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
348   {0x2200, 0x220B,  ULMBCS_GRP_EXCEPT},
349   {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
350   {0x2219, 0x2220,  ULMBCS_GRP_EXCEPT},
351   {0x2223, 0x2228,  ULMBCS_AMBIGUOUS_MBCS},
352   {0x2229, 0x222B,  ULMBCS_GRP_EXCEPT},
353   {0x222C, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
354   {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
355   {0x224C, 0x224C,  ULMBCS_GRP_TW},
356   {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
357   {0x2260, 0x2265,  ULMBCS_GRP_EXCEPT},
358   {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
359   {0x2282, 0x2297,  ULMBCS_GRP_EXCEPT},
360   {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
361   {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
362   {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
363   {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
364   {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
365   {0x2318, 0x2321,  ULMBCS_GRP_CN},
366   {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
367   {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
368   {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
369   {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_SBCS},
370   {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
371   {0x2504, 0x2505,  ULMBCS_GRP_TW},
372   {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_MBCS},
373   {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
374   {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
375   {0x2667, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
376   {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
377   {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
378   {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
379   {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
380   {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
381   {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
382};
383
384static ulmbcs_byte_t
385FindLMBCSUniRange(UChar uniChar)
386{
387   const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
388
389   while (uniChar > pTable->uniEndRange)
390   {
391      pTable++;
392   }
393
394   if (uniChar >= pTable->uniStartRange)
395   {
396      return pTable->GrpType;
397   }
398   return ULMBCS_GRP_UNICODE;
399}
400
401/*
402We also ask the creator of a converter to send in a preferred locale
403that we can use in resolving ambiguous mappings. They send the locale
404in as a string, and we map it, if possible, to one of the
405LMBCS groups. We use this table, and the associated code, to
406do the lookup: */
407
408/**************************************************
409  This table maps locale ID's to LMBCS opt groups.
410  The default return is group 0x01. Note that for
411  performance reasons, the table is sorted in
412  increasing alphabetic order, with the notable
413  exception of zhTW. This is to force the check
414  for Traditonal Chinese before dropping back to
415  Simplified.
416
417  Note too that the Latin-1 groups have been
418  commented out because it's the default, and
419  this shortens the table, allowing a serial
420  search to go quickly.
421 *************************************************/
422
423static const struct _LocaleLMBCSGrpMap
424{
425   const char    *LocaleID;
426   const ulmbcs_byte_t OptGroup;
427} LocaleLMBCSGrpMap[] =
428{
429    {"ar", ULMBCS_GRP_AR},
430    {"be", ULMBCS_GRP_RU},
431    {"bg", ULMBCS_GRP_L2},
432   /* {"ca", ULMBCS_GRP_L1}, */
433    {"cs", ULMBCS_GRP_L2},
434   /* {"da", ULMBCS_GRP_L1}, */
435   /* {"de", ULMBCS_GRP_L1}, */
436    {"el", ULMBCS_GRP_GR},
437   /* {"en", ULMBCS_GRP_L1}, */
438   /* {"es", ULMBCS_GRP_L1}, */
439   /* {"et", ULMBCS_GRP_L1}, */
440   /* {"fi", ULMBCS_GRP_L1}, */
441   /* {"fr", ULMBCS_GRP_L1}, */
442    {"he", ULMBCS_GRP_HE},
443    {"hu", ULMBCS_GRP_L2},
444   /* {"is", ULMBCS_GRP_L1}, */
445   /* {"it", ULMBCS_GRP_L1}, */
446    {"iw", ULMBCS_GRP_HE},
447    {"ja", ULMBCS_GRP_JA},
448    {"ko", ULMBCS_GRP_KO},
449   /* {"lt", ULMBCS_GRP_L1}, */
450   /* {"lv", ULMBCS_GRP_L1}, */
451    {"mk", ULMBCS_GRP_RU},
452   /* {"nl", ULMBCS_GRP_L1}, */
453   /* {"no", ULMBCS_GRP_L1}, */
454    {"pl", ULMBCS_GRP_L2},
455   /* {"pt", ULMBCS_GRP_L1}, */
456    {"ro", ULMBCS_GRP_L2},
457    {"ru", ULMBCS_GRP_RU},
458    {"sh", ULMBCS_GRP_L2},
459    {"sk", ULMBCS_GRP_L2},
460    {"sl", ULMBCS_GRP_L2},
461    {"sq", ULMBCS_GRP_L2},
462    {"sr", ULMBCS_GRP_RU},
463   /* {"sv", ULMBCS_GRP_L1}, */
464    {"th", ULMBCS_GRP_TH},
465    {"tr", ULMBCS_GRP_TR},
466    {"uk", ULMBCS_GRP_RU},
467   /* {"vi", ULMBCS_GRP_L1}, */
468    {"zhTW", ULMBCS_GRP_TW},
469    {"zh", ULMBCS_GRP_CN},
470    {NULL, ULMBCS_GRP_L1}
471};
472
473
474static ulmbcs_byte_t
475FindLMBCSLocale(const char *LocaleID)
476{
477   const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
478
479   if ((!LocaleID) || (!*LocaleID))
480   {
481      return 0;
482   }
483
484   while (pTable->LocaleID)
485   {
486      if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
487      {
488         /* First char matches - check whole name, for entry-length */
489         if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
490            return pTable->OptGroup;
491      }
492      else
493      if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
494         break;
495      pTable++;
496   }
497   return ULMBCS_GRP_L1;
498}
499
500
501/*
502  Before we get to the main body of code, here's how we hook up to the rest
503  of ICU. ICU converters are required to define a structure that includes
504  some function pointers, and some common data, in the style of a C++
505  vtable. There is also room in there for converter-specific data. LMBCS
506  uses that converter-specific data to keep track of the 12 subconverters
507  we use, the optimization group, and the group (if any) that matches the
508  locale. We have one structure instantiated for each of the 12 possible
509  optimization groups. To avoid typos & to avoid boring the reader, we
510  put the declarations of these structures and functions into macros. To see
511  the definitions of these structures, see unicode\ucnv_bld.h
512*/
513
514typedef struct
515  {
516    UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
517    uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
518    uint8_t    localeConverterIndex;      /* reasonable locale match for index */
519  }
520UConverterDataLMBCS;
521
522
523#define DECLARE_LMBCS_DATA(n) \
524static const UConverterImpl _LMBCSImpl##n={\
525    UCNV_LMBCS_##n,\
526    NULL,NULL,\
527    _LMBCSOpen##n,\
528    _LMBCSClose,\
529    NULL,\
530    _LMBCSToUnicodeWithOffsets,\
531    _LMBCSToUnicodeWithOffsets,\
532    _LMBCSFromUnicode,\
533    _LMBCSFromUnicode,\
534    NULL,\
535    NULL,\
536    NULL,\
537    NULL,\
538    _LMBCSSafeClone,\
539    _LMBCSGetUnicodeSet\
540};\
541static const UConverterStaticData _LMBCSStaticData##n={\
542  sizeof(UConverterStaticData),\
543 "LMBCS-"  #n,\
544    0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
545    { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
546};\
547const UConverterSharedData _LMBCSData##n={\
548    sizeof(UConverterSharedData), ~((uint32_t) 0),\
549    NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
550    0 \
551};
552
553 /* The only function we needed to duplicate 12 times was the 'open'
554function, which will do basically the same thing except set a  different
555optimization group. So, we put the common stuff into a worker function,
556and set up another macro to stamp out the 12 open functions:*/
557#define DEFINE_LMBCS_OPEN(n) \
558static void \
559   _LMBCSOpen##n(UConverter*  _this,const char* name,const char* locale,uint32_t options,UErrorCode*  err) \
560{ _LMBCSOpenWorker(_this, name,locale,options, err, n);}
561
562
563
564/* Here's the open worker & the common close function */
565static void
566_LMBCSOpenWorker(UConverter*  _this,
567                       const char*  name,
568                       const char*  locale,
569                       uint32_t options,
570                       UErrorCode*  err,
571                       ulmbcs_byte_t OptGroup
572                       )
573{
574    UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
575    if(extraInfo != NULL)
576    {
577        ulmbcs_byte_t i;
578
579        uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
580
581        for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
582        {
583            if(OptGroupByteToCPName[i] != NULL) {
584                extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], NULL, err);
585            }
586        }
587
588        if(U_SUCCESS(*err)) {
589            extraInfo->OptGroup = OptGroup;
590            extraInfo->localeConverterIndex = FindLMBCSLocale(locale);
591        } else {
592            /* one of the subconverters could not be loaded, unload the previous ones */
593            while(i > 0) {
594                if(extraInfo->OptGrpConverter[--i] != NULL) {
595                    ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[i]);
596                    extraInfo->OptGrpConverter[i] = NULL;
597                }
598            }
599        }
600   }
601   else
602   {
603       *err = U_MEMORY_ALLOCATION_ERROR;
604   }
605   _this->extraInfo = extraInfo;
606}
607
608static void
609_LMBCSClose(UConverter *   _this)
610{
611    if (_this->extraInfo != NULL)
612    {
613        ulmbcs_byte_t Ix;
614        UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
615
616        for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
617        {
618           if (extraInfo->OptGrpConverter[Ix] != NULL)
619              ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
620        }
621        if (!_this->isExtraLocal) {
622            uprv_free (_this->extraInfo);
623        }
624    }
625}
626
627typedef struct LMBCSClone {
628    UConverter cnv;
629    UConverterDataLMBCS lmbcs;
630} LMBCSClone;
631
632static UConverter *
633_LMBCSSafeClone(const UConverter *cnv,
634                void *stackBuffer,
635                int32_t *pBufferSize,
636                UErrorCode *status) {
637    LMBCSClone *newLMBCS;
638    UConverterDataLMBCS *extraInfo;
639    int32_t i;
640
641    if(*pBufferSize<=0) {
642        *pBufferSize=(int32_t)sizeof(LMBCSClone);
643        return NULL;
644    }
645
646    extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
647    newLMBCS=(LMBCSClone *)stackBuffer;
648
649    /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
650
651    uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
652
653    /* share the subconverters */
654    for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
655        if(extraInfo->OptGrpConverter[i] != NULL) {
656            ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
657        }
658    }
659
660    newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
661    newLMBCS->cnv.isExtraLocal = TRUE;
662    return &newLMBCS->cnv;
663}
664
665static void
666_LMBCSGetUnicodeSet(const UConverter *cnv,
667                   const USetAdder *sa,
668                   UConverterUnicodeSet which,
669                   UErrorCode *pErrorCode) {
670    /* all but U+F6xx, see LMBCS explanation above (search for F6xx) */
671    sa->addRange(sa->set, 0, 0xf5ff);
672    sa->addRange(sa->set, 0xf700, 0x10ffff);
673}
674
675/*
676   Here's the basic helper function that we use when converting from
677   Unicode to LMBCS, and we suspect that a Unicode character will fit into
678   one of the 12 groups. The return value is the number of bytes written
679   starting at pStartLMBCS (if any).
680*/
681
682static size_t
683LMBCSConversionWorker (
684   UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
685   ulmbcs_byte_t group,                /* The group to try */
686   ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
687   UChar * pUniChar,                   /* The input unicode character */
688   ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
689   UBool * groups_tried                /* output: track any unsuccessful groups */
690)
691{
692   ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
693   UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
694
695   int bytesConverted;
696   uint32_t value;
697   ulmbcs_byte_t firstByte;
698
699   U_ASSERT(xcnv);
700   U_ASSERT(group<ULMBCS_GRP_UNICODE);
701
702   bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
703
704   /* get the first result byte */
705   if(bytesConverted > 0) {
706      firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
707   } else {
708      /* most common failure mode is an unassigned character */
709      groups_tried[group] = TRUE;
710      return 0;
711   }
712
713   *lastConverterIndex = group;
714
715   /* All initial byte values in lower ascii range should have been caught by now,
716      except with the exception group.
717    */
718   U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
719
720   /* use converted data: first write 0, 1 or two group bytes */
721   if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
722   {
723      *pLMBCS++ = group;
724      if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
725      {
726         *pLMBCS++ = group;
727      }
728   }
729
730  /* don't emit control chars */
731   if ( bytesConverted == 1 && firstByte < 0x20 )
732      return 0;
733
734
735   /* then move over the converted data */
736   switch(bytesConverted)
737   {
738   case 4:
739      *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
740   case 3:
741      *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
742   case 2:
743      *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
744   case 1:
745      *pLMBCS++ = (ulmbcs_byte_t)value;
746   default:
747      /* will never occur */
748      break;
749   }
750
751   return (pLMBCS - pStartLMBCS);
752}
753
754
755/* This is a much simpler version of above, when we
756know we are writing LMBCS using the Unicode group
757*/
758static size_t
759LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
760{
761     /* encode into LMBCS Unicode range */
762   uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
763   uint8_t HighCh  = (uint8_t)(uniChar >> 8);
764
765   *pLMBCS++ = ULMBCS_GRP_UNICODE;
766
767   if (LowCh == 0)
768   {
769      *pLMBCS++ = ULMBCS_UNICOMPATZERO;
770      *pLMBCS++ = HighCh;
771   }
772   else
773   {
774      *pLMBCS++ = HighCh;
775      *pLMBCS++ = LowCh;
776   }
777   return ULMBCS_UNICODE_SIZE;
778}
779
780
781
782/* The main Unicode to LMBCS conversion function */
783static void
784_LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
785                  UErrorCode*     err)
786{
787   ulmbcs_byte_t lastConverterIndex = 0;
788   UChar uniChar;
789   ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
790   ulmbcs_byte_t  * pLMBCS;
791   int bytes_written;
792   UBool groups_tried[ULMBCS_GRP_LAST+1];
793   UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
794   int sourceIndex = 0;
795
796
797   /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
798      If that succeeds, see if it will all fit into the target & copy it over
799      if it does.
800
801      We try conversions in the following order:
802
803      1. Single-byte ascii & special fixed control chars (&null)
804      2. Look up group in table & try that (could be
805            A) Unicode group
806            B) control group,
807            C) national encoding,
808               or ambiguous SBCS or MBCS group (on to step 4...)
809
810      3. If its ambiguous, try this order:
811         A) The optimization group
812         B) The locale group
813         C) The last group that succeeded with this string.
814         D) every other group that's relevent (single or double)
815         E) If its single-byte ambiguous, try the exceptions group
816
817      4. And as a grand fallback: Unicode
818   */
819
820   while (args->source < args->sourceLimit && !U_FAILURE(*err))
821   {
822      if (args->target >= args->targetLimit)
823      {
824         *err = U_BUFFER_OVERFLOW_ERROR;
825         break;
826      }
827      uniChar = *(args->source);
828      bytes_written = 0;
829      pLMBCS = LMBCS;
830
831      /* check cases in rough order of how common they are, for speed */
832
833      /* single byte matches: strategy 1 */
834
835      if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
836          uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
837          uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
838          )
839      {
840         *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
841         bytes_written = 1;
842      }
843
844
845      if (!bytes_written)
846      {
847         /* Check by UNICODE range (Strategy 2) */
848         ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
849
850         if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
851         {
852            pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
853
854            bytes_written = pLMBCS - LMBCS;
855         }
856         else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
857         {
858            /* Handle control characters here */
859            if (uniChar <= ULMBCS_C0END)
860            {
861               *pLMBCS++ = ULMBCS_GRP_CTRL;
862               *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
863            }
864            else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
865            {
866               *pLMBCS++ = ULMBCS_GRP_CTRL;
867               *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
868            }
869            bytes_written = pLMBCS - LMBCS;
870         }
871         else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
872         {
873            /* a specific converter has been identified - use it */
874            bytes_written = LMBCSConversionWorker (
875                              extraInfo, group, pLMBCS, &uniChar,
876                              &lastConverterIndex, groups_tried);
877         }
878         if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
879         {
880            uprv_memset(groups_tried, 0, sizeof(groups_tried));
881
882         /* check for non-default optimization group (Strategy 3A )*/
883            if (extraInfo->OptGroup != 1
884                  && ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup))
885            {
886               bytes_written = LMBCSConversionWorker (extraInfo,
887                  extraInfo->OptGroup, pLMBCS, &uniChar,
888                  &lastConverterIndex, groups_tried);
889            }
890            /* check for locale optimization group (Strategy 3B) */
891            if (!bytes_written
892               && (extraInfo->localeConverterIndex)
893               && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
894               {
895                  bytes_written = LMBCSConversionWorker (extraInfo,
896                     extraInfo->localeConverterIndex, pLMBCS, &uniChar,
897                     &lastConverterIndex, groups_tried);
898               }
899            /* check for last optimization group used for this string (Strategy 3C) */
900            if (!bytes_written
901                && (lastConverterIndex)
902               && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
903               {
904                  bytes_written = LMBCSConversionWorker (extraInfo,
905                     lastConverterIndex, pLMBCS, &uniChar,
906                     &lastConverterIndex, groups_tried);
907
908               }
909            if (!bytes_written)
910            {
911               /* just check every possible matching converter (Strategy 3D) */
912               ulmbcs_byte_t grp_start;
913               ulmbcs_byte_t grp_end;
914               ulmbcs_byte_t grp_ix;
915               grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
916                        ? ULMBCS_DOUBLEOPTGROUP_START
917                        :  ULMBCS_GRP_L1);
918               grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
919                        ? ULMBCS_GRP_LAST
920                        :  ULMBCS_GRP_TH);
921               for (grp_ix = grp_start;
922                   grp_ix <= grp_end && !bytes_written;
923                    grp_ix++)
924               {
925                  if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
926                  {
927                     bytes_written = LMBCSConversionWorker (extraInfo,
928                       grp_ix, pLMBCS, &uniChar,
929                       &lastConverterIndex, groups_tried);
930                  }
931               }
932                /* a final conversion fallback to the exceptions group if its likely
933                     to be single byte  (Strategy 3E) */
934               if (!bytes_written && grp_start == ULMBCS_GRP_L1)
935               {
936                  bytes_written = LMBCSConversionWorker (extraInfo,
937                     ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
938                     &lastConverterIndex, groups_tried);
939               }
940            }
941            /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
942            if (!bytes_written)
943            {
944
945               pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
946               bytes_written = pLMBCS - LMBCS;
947            }
948         }
949      }
950
951      /* we have a translation. increment source and write as much as posible to target */
952      args->source++;
953      pLMBCS = LMBCS;
954      while (args->target < args->targetLimit && bytes_written--)
955      {
956         *(args->target)++ = *pLMBCS++;
957         if (args->offsets)
958         {
959            *(args->offsets)++ = sourceIndex;
960         }
961      }
962      sourceIndex++;
963      if (bytes_written > 0)
964      {
965         /* write any bytes that didn't fit in target to the error buffer,
966            common code will move this to target if we get called back with
967            enough target room
968         */
969         uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
970         *err = U_BUFFER_OVERFLOW_ERROR;
971         args->converter->charErrorBufferLength = (int8_t)bytes_written;
972         while (bytes_written--)
973         {
974            *pErrorBuffer++ = *pLMBCS++;
975         }
976      }
977   }
978}
979
980
981/* Now, the Unicode from LMBCS section */
982
983
984/* A function to call when we are looking at the Unicode group byte in LMBCS */
985static UChar
986GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
987{
988   uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
989   uint8_t  LowCh  = *(*ppLMBCSin)++;
990
991   if (HighCh == ULMBCS_UNICOMPATZERO )
992   {
993      HighCh = LowCh;
994      LowCh = 0; /* zero-byte in LSB special character */
995   }
996   return (UChar)((HighCh << 8) | LowCh);
997}
998
999
1000
1001/* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1002   bytes left in source up to  sourceLimit.Errors appropriately if not.
1003   If we reach the limit, then update the source pointer to there to consume
1004   all input as required by ICU converter semantics.
1005*/
1006
1007#define CHECK_SOURCE_LIMIT(index) \
1008     if (args->source+index > args->sourceLimit){\
1009         *err = U_TRUNCATED_CHAR_FOUND;\
1010         args->source = args->sourceLimit;\
1011         return 0xffff;}
1012
1013/* Return the Unicode representation for the current LMBCS character */
1014
1015static UChar32
1016_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1017                         UErrorCode*   err)
1018{
1019    UChar32 uniChar = 0;    /* an output UNICODE char */
1020    ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1021
1022    /* error check */
1023    if (args->source >= args->sourceLimit)
1024    {
1025        *err = U_ILLEGAL_ARGUMENT_ERROR;
1026        return 0xffff;
1027    }
1028    /* Grab first byte & save address for error recovery */
1029    CurByte = *((ulmbcs_byte_t  *) (args->source++));
1030
1031    /*
1032    * at entry of each if clause:
1033    * 1. 'CurByte' points at the first byte of a LMBCS character
1034    * 2. '*source'points to the next byte of the source stream after 'CurByte'
1035    *
1036    * the job of each if clause is:
1037    * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1038    * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1039    */
1040
1041    /* First lets check the simple fixed values. */
1042
1043    if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1044    ||  (CurByte == 0)
1045    ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1046    ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1047    {
1048        uniChar = CurByte;
1049    }
1050    else
1051    {
1052        UConverterDataLMBCS * extraInfo;
1053        ulmbcs_byte_t group;
1054        UConverterSharedData *cnv;
1055
1056        if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1057        {
1058            ulmbcs_byte_t  C0C1byte;
1059            CHECK_SOURCE_LIMIT(1);
1060            C0C1byte = *(args->source)++;
1061            uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1062        }
1063        else
1064        if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1065        {
1066            CHECK_SOURCE_LIMIT(2);
1067
1068            /* don't check for error indicators fffe/ffff below */
1069            return GetUniFromLMBCSUni(&(args->source));
1070        }
1071        else if (CurByte <= ULMBCS_CTRLOFFSET)
1072        {
1073            group = CurByte;                   /* group byte is in the source */
1074            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1075            if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1076            {
1077                /* this is not a valid group byte - no converter*/
1078                *err = U_INVALID_CHAR_FOUND;
1079            }
1080            else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1081            {
1082
1083                CHECK_SOURCE_LIMIT(2);
1084
1085                /* check for LMBCS doubled-group-byte case */
1086                if (*args->source == group) {
1087                    /* single byte */
1088                    ++args->source;
1089                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1090                    ++args->source;
1091                } else {
1092                    /* double byte */
1093                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1094                    args->source += 2;
1095                }
1096            }
1097            else {                                  /* single byte conversion */
1098                CHECK_SOURCE_LIMIT(1);
1099                CurByte = *(args->source)++;
1100
1101                if (CurByte >= ULMBCS_C1START)
1102                {
1103                    uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1104                }
1105                else
1106                {
1107                    /* The non-optimizable oddballs where there is an explicit byte
1108                    * AND the second byte is not in the upper ascii range
1109                    */
1110                    char bytes[2];
1111
1112                    extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1113                    cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1114
1115                    /* Lookup value must include opt group */
1116                    bytes[0] = group;
1117                    bytes[1] = CurByte;
1118                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1119                }
1120            }
1121        }
1122        else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1123        {
1124            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1125            group = extraInfo->OptGroup;
1126            cnv = extraInfo->OptGrpConverter[group];
1127            if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1128            {
1129                if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1130                {
1131                    CHECK_SOURCE_LIMIT(0);
1132
1133                    /* let the MBCS conversion consume CurByte again */
1134                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1135                }
1136                else
1137                {
1138                    CHECK_SOURCE_LIMIT(1);
1139                    /* let the MBCS conversion consume CurByte again */
1140                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1141                    ++args->source;
1142                }
1143            }
1144            else                                   /* single byte conversion */
1145            {
1146                uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1147            }
1148        }
1149    }
1150    return uniChar;
1151}
1152
1153
1154/* The exported function that converts lmbcs to one or more
1155   UChars - currently UTF-16
1156*/
1157static void
1158_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1159                     UErrorCode*    err)
1160{
1161   char LMBCS [ULMBCS_CHARSIZE_MAX];
1162   UChar uniChar;    /* one output UNICODE char */
1163   const char * saveSource; /* beginning of current code point */
1164   const char * pStartLMBCS = args->source;  /* beginning of whole string */
1165   const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1166   int8_t savebytes = 0;
1167
1168   /* Process from source to limit, or until error */
1169   while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1170   {
1171      saveSource = args->source; /* beginning of current code point */
1172
1173      if (args->converter->toULength) /* reassemble char from previous call */
1174      {
1175        const char *saveSourceLimit;
1176        size_t size_old = args->converter->toULength;
1177
1178         /* limit from source is either remainder of temp buffer, or user limit on source */
1179        size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1180        size_t size_new_maybe_2 = args->sourceLimit - args->source;
1181        size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1182
1183
1184        uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1185        uprv_memcpy(LMBCS + size_old, args->source, size_new);
1186        saveSourceLimit = args->sourceLimit;
1187        args->source = errSource = LMBCS;
1188        args->sourceLimit = LMBCS+size_old+size_new;
1189        savebytes = (int8_t)(size_old+size_new);
1190        uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1191        args->source = saveSource + ((args->source - LMBCS) - size_old);
1192        args->sourceLimit = saveSourceLimit;
1193
1194        if (*err == U_TRUNCATED_CHAR_FOUND)
1195        {
1196            /* evil special case: source buffers so small a char spans more than 2 buffers */
1197            args->converter->toULength = savebytes;
1198            uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1199            args->source = args->sourceLimit;
1200            *err = U_ZERO_ERROR;
1201            return;
1202         }
1203         else
1204         {
1205            /* clear the partial-char marker */
1206            args->converter->toULength = 0;
1207         }
1208      }
1209      else
1210      {
1211         errSource = saveSource;
1212         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1213         savebytes = (int8_t)(args->source - saveSource);
1214      }
1215      if (U_SUCCESS(*err))
1216      {
1217         if (uniChar < 0xfffe)
1218         {
1219            *(args->target)++ = uniChar;
1220            if(args->offsets)
1221            {
1222               *(args->offsets)++ = saveSource - pStartLMBCS;
1223            }
1224         }
1225         else if (uniChar == 0xfffe)
1226         {
1227            *err = U_INVALID_CHAR_FOUND;
1228         }
1229         else /* if (uniChar == 0xffff) */
1230         {
1231            *err = U_ILLEGAL_CHAR_FOUND;
1232         }
1233      }
1234   }
1235   /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1236   if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1237   {
1238      *err = U_BUFFER_OVERFLOW_ERROR;
1239   }
1240   else if (U_FAILURE(*err))
1241   {
1242      /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1243      args->converter->toULength = savebytes;
1244      if (savebytes > 0) {
1245         uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1246      }
1247      if (*err == U_TRUNCATED_CHAR_FOUND) {
1248         *err = U_ZERO_ERROR;
1249      }
1250   }
1251}
1252
1253/* And now, the macroized declarations of data & functions: */
1254DEFINE_LMBCS_OPEN(1)
1255DEFINE_LMBCS_OPEN(2)
1256DEFINE_LMBCS_OPEN(3)
1257DEFINE_LMBCS_OPEN(4)
1258DEFINE_LMBCS_OPEN(5)
1259DEFINE_LMBCS_OPEN(6)
1260DEFINE_LMBCS_OPEN(8)
1261DEFINE_LMBCS_OPEN(11)
1262DEFINE_LMBCS_OPEN(16)
1263DEFINE_LMBCS_OPEN(17)
1264DEFINE_LMBCS_OPEN(18)
1265DEFINE_LMBCS_OPEN(19)
1266
1267
1268DECLARE_LMBCS_DATA(1)
1269DECLARE_LMBCS_DATA(2)
1270DECLARE_LMBCS_DATA(3)
1271DECLARE_LMBCS_DATA(4)
1272DECLARE_LMBCS_DATA(5)
1273DECLARE_LMBCS_DATA(6)
1274DECLARE_LMBCS_DATA(8)
1275DECLARE_LMBCS_DATA(11)
1276DECLARE_LMBCS_DATA(16)
1277DECLARE_LMBCS_DATA(17)
1278DECLARE_LMBCS_DATA(18)
1279DECLARE_LMBCS_DATA(19)
1280
1281#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1282