genmbcs.c revision c69afcec261fc345fda8daf46f0ea6b4351dc777
1/*
2*******************************************************************************
3*
4*   Copyright (C) 2000-2008, International Business Machines
5*   Corporation and others.  All Rights Reserved.
6*
7*******************************************************************************
8*   file name:  genmbcs.c
9*   encoding:   US-ASCII
10*   tab size:   8 (not used)
11*   indentation:4
12*
13*   created on: 2000jul06
14*   created by: Markus W. Scherer
15*/
16
17#include <stdio.h>
18#include "unicode/utypes.h"
19#include "cstring.h"
20#include "cmemory.h"
21#include "unewdata.h"
22#include "ucnv_cnv.h"
23#include "ucnvmbcs.h"
24#include "ucm.h"
25#include "makeconv.h"
26#include "genmbcs.h"
27
28/*
29 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
30 * Reduce tests for maxCharLength.
31 */
32
33struct MBCSData {
34    NewConverter newConverter;
35
36    UCMFile *ucm;
37
38    /* toUnicode (state table in ucm->states) */
39    _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
40    int32_t countToUFallbacks;
41    uint16_t *unicodeCodeUnits;
42
43    /* fromUnicode */
44    uint16_t stage1[MBCS_STAGE_1_SIZE];
45    uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
46    uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
47    uint8_t *fromUBytes;
48    uint32_t stage2Top, stage3Top;
49
50    /* fromUTF8 */
51    uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT];  /* allow for utf8Max=0xffff */
52
53    /*
54     * Maximum UTF-8-friendly code point.
55     * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
56     * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
57     */
58    uint16_t utf8Max;
59
60    UBool utf8Friendly;
61    UBool omitFromU;
62};
63
64/* prototypes */
65static void
66MBCSClose(NewConverter *cnvData);
67
68static UBool
69MBCSStartMappings(MBCSData *mbcsData);
70
71static UBool
72MBCSAddToUnicode(MBCSData *mbcsData,
73                 const uint8_t *bytes, int32_t length,
74                 UChar32 c,
75                 int8_t flag);
76
77static UBool
78MBCSIsValid(NewConverter *cnvData,
79            const uint8_t *bytes, int32_t length);
80
81static UBool
82MBCSSingleAddFromUnicode(MBCSData *mbcsData,
83                         const uint8_t *bytes, int32_t length,
84                         UChar32 c,
85                         int8_t flag);
86
87static UBool
88MBCSAddFromUnicode(MBCSData *mbcsData,
89                   const uint8_t *bytes, int32_t length,
90                   UChar32 c,
91                   int8_t flag);
92
93static void
94MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
95
96static UBool
97MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
98
99static uint32_t
100MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
101          UNewDataMemory *pData, int32_t tableType);
102
103/* helper ------------------------------------------------------------------- */
104
105static U_INLINE char
106hexDigit(uint8_t digit) {
107    return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
108}
109
110static U_INLINE char *
111printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
112    char *s=buffer;
113    while(length>0) {
114        *s++=hexDigit((uint8_t)(*bytes>>4));
115        *s++=hexDigit((uint8_t)(*bytes&0xf));
116        ++bytes;
117        --length;
118    }
119
120    *s=0;
121    return buffer;
122}
123
124/* implementation ----------------------------------------------------------- */
125
126static MBCSData gDummy;
127
128U_CFUNC const MBCSData *
129MBCSGetDummy() {
130    uprv_memset(&gDummy, 0, sizeof(MBCSData));
131
132    /*
133     * Set "pessimistic" values which may sometimes move too many
134     * mappings to the extension table (but never too few).
135     * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the
136     * largest set of mappings.
137     * Assume maxCharLength>1.
138     */
139    gDummy.utf8Friendly=TRUE;
140    if(SMALL) {
141        gDummy.utf8Max=0xffff;
142        gDummy.omitFromU=TRUE;
143    } else {
144        gDummy.utf8Max=MBCS_UTF8_MAX;
145    }
146    return &gDummy;
147}
148
149static void
150MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
151    uprv_memset(mbcsData, 0, sizeof(MBCSData));
152
153    mbcsData->ucm=ucm; /* aliased, not owned */
154
155    mbcsData->newConverter.close=MBCSClose;
156    mbcsData->newConverter.isValid=MBCSIsValid;
157    mbcsData->newConverter.addTable=MBCSAddTable;
158    mbcsData->newConverter.write=MBCSWrite;
159}
160
161NewConverter *
162MBCSOpen(UCMFile *ucm) {
163    MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
164    if(mbcsData==NULL) {
165        printf("out of memory\n");
166        exit(U_MEMORY_ALLOCATION_ERROR);
167    }
168
169    MBCSInit(mbcsData, ucm);
170    return &mbcsData->newConverter;
171}
172
173static void
174MBCSDestruct(MBCSData *mbcsData) {
175    uprv_free(mbcsData->unicodeCodeUnits);
176    uprv_free(mbcsData->fromUBytes);
177}
178
179static void
180MBCSClose(NewConverter *cnvData) {
181    MBCSData *mbcsData=(MBCSData *)cnvData;
182    if(mbcsData!=NULL) {
183        MBCSDestruct(mbcsData);
184        uprv_free(mbcsData);
185    }
186}
187
188static UBool
189MBCSStartMappings(MBCSData *mbcsData) {
190    int32_t i, sum, maxCharLength,
191            stage2NullLength, stage2AllocLength,
192            stage3NullLength, stage3AllocLength;
193
194    /* toUnicode */
195
196    /* allocate the code unit array and prefill it with "unassigned" values */
197    sum=mbcsData->ucm->states.countToUCodeUnits;
198    if(VERBOSE) {
199        printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
200    }
201
202    if(sum>0) {
203        mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
204        if(mbcsData->unicodeCodeUnits==NULL) {
205            fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
206                (long)sum);
207            return FALSE;
208        }
209        for(i=0; i<sum; ++i) {
210            mbcsData->unicodeCodeUnits[i]=0xfffe;
211        }
212    }
213
214    /* fromUnicode */
215    maxCharLength=mbcsData->ucm->states.maxCharLength;
216
217    /* allocate the codepage mappings and preset the first 16 characters to 0 */
218    if(maxCharLength==1) {
219        /* allocate 64k 16-bit results for single-byte codepages */
220        sum=0x20000;
221    } else {
222        /* allocate 1M * maxCharLength bytes for at most 1M mappings */
223        sum=0x100000*maxCharLength;
224    }
225    mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
226    if(mbcsData->fromUBytes==NULL) {
227        fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
228        return FALSE;
229    }
230    uprv_memset(mbcsData->fromUBytes, 0, sum);
231
232    /*
233     * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
234     * See ucnvmbcs.h for details.
235     *
236     * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
237     * assumes that the initial stage 2/3 blocks are the all-unassigned ones.
238     * Therefore, we refine the data structure while maintaining this placement
239     * even though it would be convenient to allocate the ASCII block at the
240     * beginning of stage 3, for example.
241     *
242     * UTF-8-friendly fromUnicode tries work from sorted tables and are built
243     * pre-compacted, overlapping adjacent stage 2/3 blocks.
244     * This is necessary because the block allocation and compaction changes
245     * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
246     * stage table uses direct indexes into stage 3, without a multiplier and
247     * thus with a smaller reach.
248     *
249     * Non-UTF-8-friendly fromUnicode tries work from unsorted tables
250     * (because implicit precision is used), and are compacted
251     * in post-processing.
252     *
253     * Preallocation for UTF-8-friendly fromUnicode tries:
254     *
255     * Stage 3:
256     * 64-entry all-unassigned first block followed by ASCII (128 entries).
257     *
258     * Stage 2:
259     * 64-entry all-unassigned first block followed by preallocated
260     * 64-block for ASCII.
261     */
262
263    /* Preallocate ASCII as a linear 128-entry stage 3 block. */
264    stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
265    stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
266
267    stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
268    stage3AllocLength=128; /* ASCII U+0000..U+007f */
269
270    /* Initialize stage 1 for the preallocated blocks. */
271    sum=stage2NullLength;
272    for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
273        mbcsData->stage1[i]=sum;
274        sum+=MBCS_STAGE_2_BLOCK_SIZE;
275    }
276    mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
277
278    /*
279     * Stage 2 indexes count 16-blocks in stage 3 as follows:
280     * SBCS: directly, indexes increment by 16
281     * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
282     * MBCS UTF-8: directly, indexes increment by 16
283     */
284    if(maxCharLength==1) {
285        sum=stage3NullLength;
286        for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
287            mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
288            sum+=MBCS_STAGE_3_BLOCK_SIZE;
289        }
290    } else {
291        sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
292        for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
293            mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
294            sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
295        }
296    }
297
298    sum=stage3NullLength;
299    for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
300        mbcsData->stageUTF8[i]=sum;
301        sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
302    }
303
304    /*
305     * Allocate a 64-entry all-unassigned first stage 3 block,
306     * for UTF-8-friendly lookup with a trail byte,
307     * plus 128 entries for ASCII.
308     */
309    mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
310
311    return TRUE;
312}
313
314/* return TRUE for success */
315static UBool
316setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
317    int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
318    if(i>=0) {
319        /* if there is already a fallback for this offset, then overwrite it */
320        mbcsData->toUFallbacks[i].codePoint=c;
321        return TRUE;
322    } else {
323        /* if there is no fallback for this offset, then add one */
324        i=mbcsData->countToUFallbacks;
325        if(i>=MBCS_MAX_FALLBACK_COUNT) {
326            fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
327            return FALSE;
328        } else {
329            mbcsData->toUFallbacks[i].offset=offset;
330            mbcsData->toUFallbacks[i].codePoint=c;
331            mbcsData->countToUFallbacks=i+1;
332            return TRUE;
333        }
334    }
335}
336
337/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
338static int32_t
339removeFallback(MBCSData *mbcsData, uint32_t offset) {
340    int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
341    if(i>=0) {
342        _MBCSToUFallback *toUFallbacks;
343        int32_t limit, old;
344
345        toUFallbacks=mbcsData->toUFallbacks;
346        limit=mbcsData->countToUFallbacks;
347        old=(int32_t)toUFallbacks[i].codePoint;
348
349        /* copy the last fallback entry here to keep the list contiguous */
350        toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
351        toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
352        mbcsData->countToUFallbacks=limit-1;
353        return old;
354    } else {
355        return -1;
356    }
357}
358
359/*
360 * isFallback is almost a boolean:
361 * 1 (TRUE)  this is a fallback mapping
362 * 0 (FALSE) this is a precise mapping
363 * -1        the precision of this mapping is not specified
364 */
365static UBool
366MBCSAddToUnicode(MBCSData *mbcsData,
367                 const uint8_t *bytes, int32_t length,
368                 UChar32 c,
369                 int8_t flag) {
370    char buffer[10];
371    uint32_t offset=0;
372    int32_t i=0, entry, old;
373    uint8_t state=0;
374
375    if(mbcsData->ucm->states.countStates==0) {
376        fprintf(stderr, "error: there is no state information!\n");
377        return FALSE;
378    }
379
380    /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
381    if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
382        state=1;
383    }
384
385    /*
386     * Walk down the state table like in conversion,
387     * much like getNextUChar().
388     * We assume that c<=0x10ffff.
389     */
390    for(i=0;;) {
391        entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
392        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
393            if(i==length) {
394                fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
395                    (short)state, printBytes(buffer, bytes, length), (int)c);
396                return FALSE;
397            }
398            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
399            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
400        } else {
401            if(i<length) {
402                fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n",
403                    (int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
404                return FALSE;
405            }
406            switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
407            case MBCS_STATE_ILLEGAL:
408                fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
409                    (int)c, printBytes(buffer, bytes, length));
410                return FALSE;
411            case MBCS_STATE_CHANGE_ONLY:
412                fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
413                    (int)c, printBytes(buffer, bytes, length));
414                return FALSE;
415            case MBCS_STATE_UNASSIGNED:
416                fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
417                    (int)c, printBytes(buffer, bytes, length));
418                return FALSE;
419            case MBCS_STATE_FALLBACK_DIRECT_16:
420            case MBCS_STATE_VALID_DIRECT_16:
421            case MBCS_STATE_FALLBACK_DIRECT_20:
422            case MBCS_STATE_VALID_DIRECT_20:
423                if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
424                    /* the "direct" action's value is not "valid-direct-16-unassigned" any more */
425                    if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
426                        old=MBCS_ENTRY_FINAL_VALUE(entry);
427                    } else {
428                        old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
429                    }
430                    if(flag>=0) {
431                        fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
432                            (int)c, printBytes(buffer, bytes, length), (int)old);
433                        return FALSE;
434                    } else if(VERBOSE) {
435                        fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
436                            (int)c, printBytes(buffer, bytes, length), (int)old);
437                    }
438                    /*
439                     * Continue after the above warning
440                     * if the precision of the mapping is unspecified.
441                     */
442                }
443                /* reassign the correct action code */
444                entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
445
446                /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
447                if(c<=0xffff) {
448                    entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
449                } else {
450                    entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
451                }
452                mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
453                break;
454            case MBCS_STATE_VALID_16:
455                /* bits 26..16 are not used, 0 */
456                /* bits 15..7 contain the final offset delta to one 16-bit code unit */
457                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
458                /* check that this byte sequence is still unassigned */
459                if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
460                    if(flag>=0) {
461                        fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
462                            (int)c, printBytes(buffer, bytes, length), (int)old);
463                        return FALSE;
464                    } else if(VERBOSE) {
465                        fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
466                            (int)c, printBytes(buffer, bytes, length), (int)old);
467                    }
468                }
469                if(c>=0x10000) {
470                    fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
471                        (int)c, printBytes(buffer, bytes, length));
472                    return FALSE;
473                }
474                if(flag>0) {
475                    /* assign only if there is no precise mapping */
476                    if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
477                        return setFallback(mbcsData, offset, c);
478                    }
479                } else {
480                    mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
481                }
482                break;
483            case MBCS_STATE_VALID_16_PAIR:
484                /* bits 26..16 are not used, 0 */
485                /* bits 15..7 contain the final offset delta to two 16-bit code units */
486                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
487                /* check that this byte sequence is still unassigned */
488                old=mbcsData->unicodeCodeUnits[offset];
489                if(old<0xfffe) {
490                    int32_t real;
491                    if(old<0xd800) {
492                        real=old;
493                    } else if(old<=0xdfff) {
494                        real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
495                    } else /* old<=0xe001 */ {
496                        real=mbcsData->unicodeCodeUnits[offset+1];
497                    }
498                    if(flag>=0) {
499                        fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
500                            (int)c, printBytes(buffer, bytes, length), (int)real);
501                        return FALSE;
502                    } else if(VERBOSE) {
503                        fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
504                            (int)c, printBytes(buffer, bytes, length), (int)real);
505                    }
506                }
507                if(flag>0) {
508                    /* assign only if there is no precise mapping */
509                    if(old<=0xdbff || old==0xe000) {
510                        /* do nothing */
511                    } else if(c<=0xffff) {
512                        /* set a BMP fallback code point as a pair with 0xe001 */
513                        mbcsData->unicodeCodeUnits[offset++]=0xe001;
514                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
515                    } else {
516                        /* set a fallback surrogate pair with two second surrogates */
517                        mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
518                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
519                    }
520                } else {
521                    if(c<0xd800) {
522                        /* set a BMP code point */
523                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
524                    } else if(c<=0xffff) {
525                        /* set a BMP code point above 0xd800 as a pair with 0xe000 */
526                        mbcsData->unicodeCodeUnits[offset++]=0xe000;
527                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
528                    } else {
529                        /* set a surrogate pair */
530                        mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
531                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
532                    }
533                }
534                break;
535            default:
536                /* reserved, must never occur */
537                fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
538                    (int)entry, printBytes(buffer, bytes, length), (int)c);
539                return FALSE;
540            }
541
542            return TRUE;
543        }
544    }
545}
546
547/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
548static UBool
549MBCSIsValid(NewConverter *cnvData,
550            const uint8_t *bytes, int32_t length) {
551    MBCSData *mbcsData=(MBCSData *)cnvData;
552
553    return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
554}
555
556static UBool
557MBCSSingleAddFromUnicode(MBCSData *mbcsData,
558                         const uint8_t *bytes, int32_t length,
559                         UChar32 c,
560                         int8_t flag) {
561    uint16_t *stage3, *p;
562    uint32_t index;
563    uint16_t old;
564    uint8_t b;
565
566    uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
567
568    /* ignore |2 SUB mappings */
569    if(flag==2) {
570        return TRUE;
571    }
572
573    /*
574     * Walk down the triple-stage compact array ("trie") and
575     * allocate parts as necessary.
576     * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
577     * We assume that length<=maxCharLength and that c<=0x10ffff.
578     */
579    stage3=(uint16_t *)mbcsData->fromUBytes;
580    b=*bytes;
581
582    /* inspect stage 1 */
583    index=c>>MBCS_STAGE_1_SHIFT;
584    if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
585        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
586    } else {
587        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
588    }
589    if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
590        /* allocate another block in stage 2 */
591        newBlock=mbcsData->stage2Top;
592        if(mbcsData->utf8Friendly) {
593            min=newBlock-nextOffset; /* minimum block start with overlap */
594            while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
595                --newBlock;
596            }
597        }
598        newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
599
600        if(newTop>MBCS_MAX_STAGE_2_TOP) {
601            fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
602            return FALSE;
603        }
604
605        /*
606         * each stage 2 block contains 64 16-bit words:
607         * 6 code point bits 9..4 with 1 stage 3 index
608         */
609        mbcsData->stage1[index]=(uint16_t)newBlock;
610        mbcsData->stage2Top=newTop;
611    }
612
613    /* inspect stage 2 */
614    index=mbcsData->stage1[index]+nextOffset;
615    if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
616        /* allocate 64-entry blocks for UTF-8-friendly lookup */
617        blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
618        nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
619    } else {
620        blockSize=MBCS_STAGE_3_BLOCK_SIZE;
621        nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
622    }
623    if(mbcsData->stage2Single[index]==0) {
624        /* allocate another block in stage 3 */
625        newBlock=mbcsData->stage3Top;
626        if(mbcsData->utf8Friendly) {
627            min=newBlock-nextOffset; /* minimum block start with overlap */
628            while(min<newBlock && stage3[newBlock-1]==0) {
629                --newBlock;
630            }
631        }
632        newTop=newBlock+blockSize;
633
634        if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
635            fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
636            return FALSE;
637        }
638        /* each block has 16 uint16_t entries */
639        i=index;
640        while(newBlock<newTop) {
641            mbcsData->stage2Single[i++]=(uint16_t)newBlock;
642            newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
643        }
644        mbcsData->stage3Top=newTop; /* ==newBlock */
645    }
646
647    /* write the codepage entry into stage 3 and get the previous entry */
648    p=stage3+mbcsData->stage2Single[index]+nextOffset;
649    old=*p;
650    if(flag<=0) {
651        *p=(uint16_t)(0xf00|b);
652    } else if(IS_PRIVATE_USE(c)) {
653        *p=(uint16_t)(0xc00|b);
654    } else {
655        *p=(uint16_t)(0x800|b);
656    }
657
658    /* check that this Unicode code point was still unassigned */
659    if(old>=0x100) {
660        if(flag>=0) {
661            fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
662                (int)c, b, old&0xff);
663            return FALSE;
664        } else if(VERBOSE) {
665            fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
666                (int)c, b, old&0xff);
667        }
668        /* continue after the above warning if the precision of the mapping is unspecified */
669    }
670
671    return TRUE;
672}
673
674static UBool
675MBCSAddFromUnicode(MBCSData *mbcsData,
676                   const uint8_t *bytes, int32_t length,
677                   UChar32 c,
678                   int8_t flag) {
679    char buffer[10];
680    const uint8_t *pb;
681    uint8_t *stage3, *p;
682    uint32_t index, b, old, stage3Index;
683    int32_t maxCharLength;
684
685    uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
686
687    maxCharLength=mbcsData->ucm->states.maxCharLength;
688
689    if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
690        (*bytes==0xe || *bytes==0xf)
691    ) {
692        fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
693            (int)c, printBytes(buffer, bytes, length));
694        return FALSE;
695    }
696
697    if(flag==1 && length==1 && *bytes==0) {
698        fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
699            (int)c, *bytes);
700        return FALSE;
701    }
702
703    /*
704     * Walk down the triple-stage compact array ("trie") and
705     * allocate parts as necessary.
706     * Note that the first stage 2 and 3 blocks are reserved for
707     * all-unassigned mappings.
708     * We assume that length<=maxCharLength and that c<=0x10ffff.
709     */
710    stage3=mbcsData->fromUBytes;
711
712    /* inspect stage 1 */
713    index=c>>MBCS_STAGE_1_SHIFT;
714    if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
715        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
716    } else {
717        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
718    }
719    if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
720        /* allocate another block in stage 2 */
721        newBlock=mbcsData->stage2Top;
722        if(mbcsData->utf8Friendly) {
723            min=newBlock-nextOffset; /* minimum block start with overlap */
724            while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
725                --newBlock;
726            }
727        }
728        newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
729
730        if(newTop>MBCS_MAX_STAGE_2_TOP) {
731            fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
732                (int)c, printBytes(buffer, bytes, length));
733            return FALSE;
734        }
735
736        /*
737         * each stage 2 block contains 64 32-bit words:
738         * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
739         */
740        i=index;
741        while(newBlock<newTop) {
742            mbcsData->stage1[i++]=(uint16_t)newBlock;
743            newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
744        }
745        mbcsData->stage2Top=newTop; /* ==newBlock */
746    }
747
748    /* inspect stage 2 */
749    index=mbcsData->stage1[index]+nextOffset;
750    if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
751        /* allocate 64-entry blocks for UTF-8-friendly lookup */
752        blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
753        nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
754    } else {
755        blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
756        nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
757    }
758    if(mbcsData->stage2[index]==0) {
759        /* allocate another block in stage 3 */
760        newBlock=mbcsData->stage3Top;
761        if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
762            /*
763             * Overlap stage 3 blocks only in multiples of 16-entry blocks
764             * because of the indexing granularity in stage 2.
765             */
766            maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
767            for(overlap=0;
768                overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
769                ++overlap) {}
770
771            overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
772            overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
773
774            newBlock-=overlap;
775        }
776        newTop=newBlock+blockSize;
777
778        if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
779            fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
780                (int)c, printBytes(buffer, bytes, length));
781            return FALSE;
782        }
783        /* each block has 16*maxCharLength bytes */
784        i=index;
785        while(newBlock<newTop) {
786            mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
787            newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
788        }
789        mbcsData->stage3Top=newTop; /* ==newBlock */
790    }
791
792    stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[index];
793
794    /* Build an alternate, UTF-8-friendly stage table as well. */
795    if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
796        /* Overflow for uint16_t entries in stageUTF8? */
797        if(stage3Index>0xffff) {
798            /*
799             * This can occur only if the mapping table is nearly perfectly filled and if
800             * utf8Max==0xffff.
801             * (There is no known charset like this. GB 18030 does not map
802             * surrogate code points and LMBCS does not map 256 PUA code points.)
803             *
804             * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
805             * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
806             * because we have a sorted table and there are at most MBCS_UTF8_LIMIT
807             * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
808             * the initial all-unassigned block in stage3.
809             *
810             * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
811             *
812             * (See svn revision 20866 of the markus/ucnvutf8 feature branch for
813             * code that causes MBCSAddTable() to rebuild the table not utf8Friendly
814             * in case of overflow. That code was not tested.)
815             */
816            mbcsData->utf8Max=0xfeff;
817        } else {
818            /*
819             * The stage 3 block has been assigned for the regular trie.
820             * Just copy its index into stageUTF8[], without the granularity.
821             */
822            mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
823        }
824    }
825
826    /* write the codepage bytes into stage 3 and get the previous bytes */
827
828    /* assemble the bytes into a single integer */
829    pb=bytes;
830    b=0;
831    switch(length) {
832    case 4:
833        b=*pb++;
834    case 3:
835        b=(b<<8)|*pb++;
836    case 2:
837        b=(b<<8)|*pb++;
838    case 1:
839    default:
840        b=(b<<8)|*pb++;
841        break;
842    }
843
844    old=0;
845    p=stage3+(stage3Index+nextOffset)*maxCharLength;
846    switch(maxCharLength) {
847    case 2:
848        old=*(uint16_t *)p;
849        *(uint16_t *)p=(uint16_t)b;
850        break;
851    case 3:
852        old=(uint32_t)*p<<16;
853        *p++=(uint8_t)(b>>16);
854        old|=(uint32_t)*p<<8;
855        *p++=(uint8_t)(b>>8);
856        old|=*p;
857        *p=(uint8_t)b;
858        break;
859    case 4:
860        old=*(uint32_t *)p;
861        *(uint32_t *)p=b;
862        break;
863    default:
864        /* will never occur */
865        break;
866    }
867
868    /* check that this Unicode code point was still unassigned */
869    if((mbcsData->stage2[index+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
870        if(flag>=0) {
871            fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
872                (int)c, printBytes(buffer, bytes, length), (int)old);
873            return FALSE;
874        } else if(VERBOSE) {
875            fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
876                (int)c, printBytes(buffer, bytes, length), (int)old);
877        }
878        /* continue after the above warning if the precision of the mapping is
879           unspecified */
880    }
881    if(flag<=0) {
882        /* set the roundtrip flag */
883        mbcsData->stage2[index+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
884    }
885
886    return TRUE;
887}
888
889U_CFUNC UBool
890MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
891                         const uint8_t *bytes, int32_t length,
892                         UChar32 c, int8_t flag) {
893    /*
894     * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
895     * the following conditions:
896     *
897     * - a |2 SUB mapping for <subchar1> (no base table data structure for them)
898     * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
899     * - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
900     *
901     * Some of these tests are redundant with ucm_mappingType().
902     */
903    if( (flag==2 && length==1) ||
904        (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
905        (flag<=1 && length>1 && bytes[0]==0)
906    ) {
907        return FALSE;
908    }
909
910    /*
911     * Additional restrictions for UTF-8-friendly fromUnicode tables,
912     * for code points up to the maximum optimized one:
913     *
914     * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
915     * - any |1 fallback (no roundtrip flags in the optimized table)
916     */
917    if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
918        return FALSE;
919    }
920
921    /*
922     * If we omit the fromUnicode data, we can only store roundtrips there
923     * because only they are recoverable from the toUnicode data.
924     * Fallbacks must go into the extension table.
925     */
926    if(mbcsData->omitFromU && flag!=0) {
927        return FALSE;
928    }
929
930    /* All other mappings do fit into the base table. */
931    return TRUE;
932}
933
934/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
935static UBool
936MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
937    MBCSData *mbcsData;
938    UCMapping *m;
939    UChar32 c;
940    int32_t i, maxCharLength;
941    int8_t f;
942    UBool isOK, utf8Friendly;
943
944    staticData->unicodeMask=table->unicodeMask;
945    if(staticData->unicodeMask==3) {
946        fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
947        return FALSE;
948    }
949
950    staticData->conversionType=UCNV_MBCS;
951
952    mbcsData=(MBCSData *)cnvData;
953    maxCharLength=mbcsData->ucm->states.maxCharLength;
954
955    /*
956     * Generation of UTF-8-friendly data requires
957     * a sorted table, which makeconv generates when explicit precision
958     * indicators are used.
959     */
960    mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
961    if(utf8Friendly) {
962        mbcsData->utf8Max=MBCS_UTF8_MAX;
963        if(SMALL && maxCharLength>1) {
964            mbcsData->omitFromU=TRUE;
965        }
966    } else {
967        mbcsData->utf8Max=0;
968        if(SMALL && maxCharLength>1) {
969            fprintf(stderr,
970                "makeconv warning: --small not available for .ucm files without |0 etc.\n");
971        }
972    }
973
974    if(!MBCSStartMappings(mbcsData)) {
975        return FALSE;
976    }
977
978    staticData->hasFromUnicodeFallback=FALSE;
979    staticData->hasToUnicodeFallback=FALSE;
980
981    isOK=TRUE;
982
983    m=table->mappings;
984    for(i=0; i<table->mappingsLength; ++m, ++i) {
985        c=m->u;
986        f=m->f;
987
988        /*
989         * Small optimization for --small .cnv files:
990         *
991         * If there are fromUnicode mappings above MBCS_UTF8_MAX,
992         * then the file size will be smaller if we make utf8Max larger
993         * because the size increase in stageUTF8 will be more than balanced by
994         * how much less of stage2 needs to be stored.
995         *
996         * There is no point in doing this incrementally because stageUTF8
997         * uses so much less space per block than stage2,
998         * so we immediately increase utf8Max to 0xffff.
999         *
1000         * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
1001         * sets it to that value when stageUTF8 overflows.
1002         */
1003        if( mbcsData->omitFromU && f<=1 &&
1004            mbcsData->utf8Max<c && c<=0xffff &&
1005            mbcsData->utf8Max<0xfeff
1006        ) {
1007            mbcsData->utf8Max=0xffff;
1008        }
1009
1010        switch(f) {
1011        case -1:
1012            /* there was no precision/fallback indicator */
1013            /* fall through to set the mappings */
1014        case 0:
1015            /* set roundtrip mappings */
1016            isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1017
1018            if(maxCharLength==1) {
1019                isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1020            } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
1021                isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1022            } else {
1023                m->f|=MBCS_FROM_U_EXT_FLAG;
1024                m->moveFlag=UCM_MOVE_TO_EXT;
1025            }
1026            break;
1027        case 1:
1028            /* set only a fallback mapping from Unicode to codepage */
1029            if(maxCharLength==1) {
1030                staticData->hasFromUnicodeFallback=TRUE;
1031                isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1032            } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
1033                staticData->hasFromUnicodeFallback=TRUE;
1034                isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1035            } else {
1036                m->f|=MBCS_FROM_U_EXT_FLAG;
1037                m->moveFlag=UCM_MOVE_TO_EXT;
1038            }
1039            break;
1040        case 2:
1041            /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
1042            if(maxCharLength>1 && m->bLen==1) {
1043                m->f|=MBCS_FROM_U_EXT_FLAG;
1044                m->moveFlag=UCM_MOVE_TO_EXT;
1045            }
1046            break;
1047        case 3:
1048            /* set only a fallback mapping from codepage to Unicode */
1049            staticData->hasToUnicodeFallback=TRUE;
1050            isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1051            break;
1052        default:
1053            /* will not occur because the parser checked it already */
1054            fprintf(stderr, "error: illegal fallback indicator %d\n", f);
1055            return FALSE;
1056        }
1057    }
1058
1059    MBCSPostprocess(mbcsData, staticData);
1060
1061    return isOK;
1062}
1063
1064static UBool
1065transformEUC(MBCSData *mbcsData) {
1066    uint8_t *p8;
1067    uint32_t i, value, oldLength, old3Top, new3Top;
1068    uint8_t b;
1069
1070    oldLength=mbcsData->ucm->states.maxCharLength;
1071    if(oldLength<3) {
1072        return FALSE;
1073    }
1074
1075    old3Top=mbcsData->stage3Top;
1076
1077    /* careful: 2-byte and 4-byte codes are stored in platform endianness! */
1078
1079    /* test if all first bytes are in {0, 0x8e, 0x8f} */
1080    p8=mbcsData->fromUBytes;
1081
1082#if !U_IS_BIG_ENDIAN
1083    if(oldLength==4) {
1084        p8+=3;
1085    }
1086#endif
1087
1088    for(i=0; i<old3Top; i+=oldLength) {
1089        b=p8[i];
1090        if(b!=0 && b!=0x8e && b!=0x8f) {
1091            /* some first byte does not fit the EUC pattern, nothing to be done */
1092            return FALSE;
1093        }
1094    }
1095    /* restore p if it was modified above */
1096    p8=mbcsData->fromUBytes;
1097
1098    /* modify outputType and adjust stage3Top */
1099    mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
1100    mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
1101
1102    /*
1103     * EUC-encode all byte sequences;
1104     * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
1105     * p. 161 in chapter 4 "Encoding Methods"
1106     *
1107     * This also must reverse the byte order if the platform is little-endian!
1108     */
1109    if(oldLength==3) {
1110        uint16_t *q=(uint16_t *)p8;
1111        for(i=0; i<old3Top; i+=oldLength) {
1112            b=*p8;
1113            if(b==0) {
1114                /* short sequences are stored directly */
1115                /* code set 0 or 1 */
1116                (*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
1117            } else if(b==0x8e) {
1118                /* code set 2 */
1119                (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
1120            } else /* b==0x8f */ {
1121                /* code set 3 */
1122                (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
1123            }
1124            p8+=3;
1125        }
1126    } else /* oldLength==4 */ {
1127        uint8_t *q=p8;
1128        uint32_t *p32=(uint32_t *)p8;
1129        for(i=0; i<old3Top; i+=4) {
1130            value=(*p32++);
1131            if(value<=0xffffff) {
1132                /* short sequences are stored directly */
1133                /* code set 0 or 1 */
1134                (*q++)=(uint8_t)(value>>16);
1135                (*q++)=(uint8_t)(value>>8);
1136                (*q++)=(uint8_t)value;
1137            } else if(value<=0x8effffff) {
1138                /* code set 2 */
1139                (*q++)=(uint8_t)((value>>16)&0x7f);
1140                (*q++)=(uint8_t)(value>>8);
1141                (*q++)=(uint8_t)value;
1142            } else /* first byte is 0x8f */ {
1143                /* code set 3 */
1144                (*q++)=(uint8_t)(value>>16);
1145                (*q++)=(uint8_t)((value>>8)&0x7f);
1146                (*q++)=(uint8_t)value;
1147            }
1148        }
1149    }
1150
1151    return TRUE;
1152}
1153
1154/*
1155 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
1156 * as possible. Overlapping is done on unassigned head and tail
1157 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
1158 * Stage 1 indexes need to be adjusted accordingly.
1159 * This function is very similar to genprops/store.c/compactStage().
1160 */
1161static void
1162singleCompactStage2(MBCSData *mbcsData) {
1163    /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
1164    uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
1165    uint16_t i, start, prevEnd, newStart;
1166
1167    /* enter the all-unassigned first stage 2 block into the map */
1168    map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
1169
1170    /* begin with the first block after the all-unassigned one */
1171    start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
1172    while(start<mbcsData->stage2Top) {
1173        prevEnd=(uint16_t)(newStart-1);
1174
1175        /* find the size of the overlap */
1176        for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
1177
1178        if(i>0) {
1179            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
1180
1181            /* move the non-overlapping indexes to their new positions */
1182            start+=i;
1183            for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
1184                mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
1185            }
1186        } else if(newStart<start) {
1187            /* move the indexes to their new positions */
1188            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
1189            for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
1190                mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
1191            }
1192        } else /* no overlap && newStart==start */ {
1193            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
1194            start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
1195        }
1196    }
1197
1198    /* adjust stage2Top */
1199    if(VERBOSE && newStart<mbcsData->stage2Top) {
1200        printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
1201                (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
1202                (long)(mbcsData->stage2Top-newStart)*2);
1203    }
1204    mbcsData->stage2Top=newStart;
1205
1206    /* now adjust stage 1 */
1207    for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
1208        mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
1209    }
1210}
1211
1212/* Compact stage 3 for SBCS - same algorithm as above. */
1213static void
1214singleCompactStage3(MBCSData *mbcsData) {
1215    uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
1216
1217    /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
1218    uint16_t map[0x1000];
1219    uint16_t i, start, prevEnd, newStart;
1220
1221    /* enter the all-unassigned first stage 3 block into the map */
1222    map[0]=0;
1223
1224    /* begin with the first block after the all-unassigned one */
1225    start=newStart=16;
1226    while(start<mbcsData->stage3Top) {
1227        prevEnd=(uint16_t)(newStart-1);
1228
1229        /* find the size of the overlap */
1230        for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
1231
1232        if(i>0) {
1233            map[start>>4]=(uint16_t)(newStart-i);
1234
1235            /* move the non-overlapping indexes to their new positions */
1236            start+=i;
1237            for(i=(uint16_t)(16-i); i>0; --i) {
1238                stage3[newStart++]=stage3[start++];
1239            }
1240        } else if(newStart<start) {
1241            /* move the indexes to their new positions */
1242            map[start>>4]=newStart;
1243            for(i=16; i>0; --i) {
1244                stage3[newStart++]=stage3[start++];
1245            }
1246        } else /* no overlap && newStart==start */ {
1247            map[start>>4]=start;
1248            start=newStart+=16;
1249        }
1250    }
1251
1252    /* adjust stage3Top */
1253    if(VERBOSE && newStart<mbcsData->stage3Top) {
1254        printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
1255                (unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
1256                (long)(mbcsData->stage3Top-newStart)*2);
1257    }
1258    mbcsData->stage3Top=newStart;
1259
1260    /* now adjust stage 2 */
1261    for(i=0; i<mbcsData->stage2Top; ++i) {
1262        mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
1263    }
1264}
1265
1266/*
1267 * Compact stage 2 by overlapping adjacent stage 2 blocks as far
1268 * as possible. Overlapping is done on unassigned head and tail
1269 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
1270 * Stage 1 indexes need to be adjusted accordingly.
1271 * This function is very similar to genprops/store.c/compactStage().
1272 */
1273static void
1274compactStage2(MBCSData *mbcsData) {
1275    /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
1276    uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
1277    uint16_t i, start, prevEnd, newStart;
1278
1279    /* enter the all-unassigned first stage 2 block into the map */
1280    map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
1281
1282    /* begin with the first block after the all-unassigned one */
1283    start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
1284    while(start<mbcsData->stage2Top) {
1285        prevEnd=(uint16_t)(newStart-1);
1286
1287        /* find the size of the overlap */
1288        for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
1289
1290        if(i>0) {
1291            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
1292
1293            /* move the non-overlapping indexes to their new positions */
1294            start+=i;
1295            for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
1296                mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
1297            }
1298        } else if(newStart<start) {
1299            /* move the indexes to their new positions */
1300            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
1301            for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
1302                mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
1303            }
1304        } else /* no overlap && newStart==start */ {
1305            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
1306            start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
1307        }
1308    }
1309
1310    /* adjust stage2Top */
1311    if(VERBOSE && newStart<mbcsData->stage2Top) {
1312        printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
1313                (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
1314                (long)(mbcsData->stage2Top-newStart)*4);
1315    }
1316    mbcsData->stage2Top=newStart;
1317
1318    /* now adjust stage 1 */
1319    for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
1320        mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
1321    }
1322}
1323
1324static void
1325MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) {
1326    UCMStates *states;
1327    int32_t maxCharLength, stage3Width;
1328
1329    states=&mbcsData->ucm->states;
1330    stage3Width=maxCharLength=states->maxCharLength;
1331
1332    ucm_optimizeStates(states,
1333                       &mbcsData->unicodeCodeUnits,
1334                       mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
1335                       VERBOSE);
1336
1337    /* try to compact the fromUnicode tables */
1338    if(transformEUC(mbcsData)) {
1339        --stage3Width;
1340    }
1341
1342    /*
1343     * UTF-8-friendly tries are built precompacted, to cope with variable
1344     * stage 3 allocation block sizes.
1345     *
1346     * Tables without precision indicators cannot be built that way,
1347     * because if a block was overlapped with a previous one, then a smaller
1348     * code point for the same block would not fit.
1349     * Therefore, such tables are not marked UTF-8-friendly and must be
1350     * compacted after all mappings are entered.
1351     */
1352    if(!mbcsData->utf8Friendly) {
1353        if(maxCharLength==1) {
1354            singleCompactStage3(mbcsData);
1355            singleCompactStage2(mbcsData);
1356        } else {
1357            compactStage2(mbcsData);
1358        }
1359    }
1360
1361    if(VERBOSE) {
1362        /*uint32_t c, i1, i2, i2Limit, i3;*/
1363
1364        printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
1365               maxCharLength==1 ? "16" : "32",
1366               (unsigned long)mbcsData->stage2Top,
1367               (unsigned long)mbcsData->stage2Top);
1368        printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
1369               (int)stage3Width,
1370               (unsigned long)mbcsData->stage3Top/stage3Width,
1371               (unsigned long)mbcsData->stage3Top/stage3Width);
1372#if 0
1373        c=0;
1374        for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
1375            i2=mbcsData->stage1[i1];
1376            if(i2==0) {
1377                c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
1378                continue;
1379            }
1380            for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
1381                if(maxCharLength==1) {
1382                    i3=mbcsData->stage2Single[i2];
1383                } else {
1384                    i3=(uint16_t)mbcsData->stage2[i2];
1385                }
1386                if(i3==0) {
1387                    c+=MBCS_STAGE_3_BLOCK_SIZE;
1388                    continue;
1389                }
1390                printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
1391                       (unsigned long)c,
1392                       (unsigned long)i1,
1393                       (unsigned long)i2,
1394                       (unsigned long)i3);
1395                c+=MBCS_STAGE_3_BLOCK_SIZE;
1396            }
1397        }
1398#endif
1399    }
1400}
1401
1402static uint32_t
1403MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
1404          UNewDataMemory *pData, int32_t tableType) {
1405    MBCSData *mbcsData=(MBCSData *)cnvData;
1406    uint32_t stage2Start, stage2Length;
1407    uint32_t top, stageUTF8Length=0;
1408    int32_t i, stage1Top;
1409    uint32_t headerLength;
1410
1411    _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
1412
1413    stage2Length=mbcsData->stage2Top;
1414    if(mbcsData->omitFromU) {
1415        /* find how much of stage2 can be omitted */
1416        int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
1417        uint32_t st2=0; /*initialized it to avoid compiler warnings */
1418
1419        i=utf8Limit>>MBCS_STAGE_1_SHIFT;
1420        if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
1421            /* utf8Limit is in the middle of an existing stage 2 block */
1422            stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
1423        } else {
1424            /* find the last stage2 block with mappings before utf8Limit */
1425            while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
1426            /* stage2 up to the end of this block corresponds to stageUTF8 */
1427            stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
1428        }
1429        header.options|=MBCS_OPT_NO_FROM_U;
1430        header.fullStage2Length=stage2Length;
1431        stage2Length-=stage2Start;
1432        if(VERBOSE) {
1433            printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
1434                    (unsigned long)stage2Start,
1435                    (unsigned long)mbcsData->stage2Top,
1436                    (unsigned long)mbcsData->stage3Top);
1437            printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
1438        }
1439    } else {
1440        stage2Start=0;
1441    }
1442
1443    if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
1444        stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
1445    } else {
1446        stage1Top=0x40; /* 0x40==64 */
1447    }
1448
1449    /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
1450    if(mbcsData->ucm->states.maxCharLength==1) {
1451        for(i=0; i<stage1Top; ++i) {
1452            mbcsData->stage1[i]+=(uint16_t)stage1Top;
1453        }
1454
1455        /* stage2Top/Length have counted 16-bit results, now we need to count bytes */
1456        /* also round up to a multiple of 4 bytes */
1457        stage2Length=(stage2Length*2+1)&~1;
1458
1459        /* stage3Top has counted 16-bit results, now we need to count bytes */
1460        mbcsData->stage3Top*=2;
1461
1462        if(mbcsData->utf8Friendly) {
1463            header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
1464        }
1465    } else {
1466        for(i=0; i<stage1Top; ++i) {
1467            mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
1468        }
1469
1470        /* stage2Top/Length have counted 32-bit results, now we need to count bytes */
1471        stage2Length*=4;
1472        /* leave stage2Start counting 32-bit units */
1473
1474        if(mbcsData->utf8Friendly) {
1475            stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
1476            header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
1477        }
1478
1479        /* stage3Top has already counted bytes */
1480    }
1481
1482    /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
1483    mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
1484
1485    /* fill the header */
1486    if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
1487        header.version[0]=5;
1488        if(header.options&MBCS_OPT_NO_FROM_U) {
1489            headerLength=10;  /* include fullStage2Length */
1490        } else {
1491            headerLength=MBCS_HEADER_V5_MIN_LENGTH;  /* 9 */
1492        }
1493    } else {
1494        header.version[0]=4;
1495        headerLength=MBCS_HEADER_V4_LENGTH;  /* 8 */
1496    }
1497    header.version[1]=3;
1498    /* header.version[2] set above for utf8Friendly data */
1499
1500    header.options|=(uint32_t)headerLength;
1501
1502    header.countStates=mbcsData->ucm->states.countStates;
1503    header.countToUFallbacks=mbcsData->countToUFallbacks;
1504
1505    header.offsetToUCodeUnits=
1506        headerLength*4+
1507        mbcsData->ucm->states.countStates*1024+
1508        mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
1509    header.offsetFromUTable=
1510        header.offsetToUCodeUnits+
1511        mbcsData->ucm->states.countToUCodeUnits*2;
1512    header.offsetFromUBytes=
1513        header.offsetFromUTable+
1514        stage1Top*2+
1515        stage2Length;
1516    header.fromUBytesLength=mbcsData->stage3Top;
1517
1518    top=header.offsetFromUBytes+stageUTF8Length*2;
1519    if(!(header.options&MBCS_OPT_NO_FROM_U)) {
1520        top+=header.fromUBytesLength;
1521    }
1522
1523    header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
1524
1525    if(tableType&TABLE_EXT) {
1526        if(top>0xffffff) {
1527            fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
1528            return 0;
1529        }
1530
1531        header.flags|=top<<8;
1532    }
1533
1534    /* write the MBCS data */
1535    udata_writeBlock(pData, &header, headerLength*4);
1536    udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
1537    udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
1538    udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
1539    udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
1540    if(mbcsData->ucm->states.maxCharLength==1) {
1541        udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
1542    } else {
1543        udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
1544    }
1545    if(!(header.options&MBCS_OPT_NO_FROM_U)) {
1546        udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
1547    }
1548
1549    if(stageUTF8Length>0) {
1550        udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
1551    }
1552
1553    /* return the number of bytes that should have been written */
1554    return top;
1555}
1556