STLExtras.h revision a2769a33c94f021a609a462b28ebea069eba6f74
1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include <cstddef> // for std::size_t
21#include <functional>
22#include <utility> // for std::pair
23#include "llvm/ADT/iterator.h"
24
25namespace llvm {
26
27//===----------------------------------------------------------------------===//
28//     Extra additions to <functional>
29//===----------------------------------------------------------------------===//
30
31template<class Ty>
32struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
33  bool operator()(const Ty* left, const Ty* right) const {
34    return *right < *left;
35  }
36};
37
38// deleter - Very very very simple method that is used to invoke operator
39// delete on something.  It is used like this:
40//
41//   for_each(V.begin(), B.end(), deleter<Interval>);
42//
43template <class T>
44static inline void deleter(T *Ptr) {
45  delete Ptr;
46}
47
48
49
50//===----------------------------------------------------------------------===//
51//     Extra additions to <iterator>
52//===----------------------------------------------------------------------===//
53
54// mapped_iterator - This is a simple iterator adapter that causes a function to
55// be dereferenced whenever operator* is invoked on the iterator.
56//
57template <class RootIt, class UnaryFunc>
58class mapped_iterator {
59  RootIt current;
60  UnaryFunc Fn;
61public:
62  typedef typename std::iterator_traits<RootIt>::iterator_category
63          iterator_category;
64  typedef typename std::iterator_traits<RootIt>::difference_type
65          difference_type;
66  typedef typename UnaryFunc::result_type value_type;
67
68  typedef void pointer;
69  //typedef typename UnaryFunc::result_type *pointer;
70  typedef void reference;        // Can't modify value returned by fn
71
72  typedef RootIt iterator_type;
73  typedef mapped_iterator<RootIt, UnaryFunc> _Self;
74
75  inline const RootIt &getCurrent() const { return current; }
76  inline const UnaryFunc &getFunc() const { return Fn; }
77
78  inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
79    : current(I), Fn(F) {}
80  inline mapped_iterator(const mapped_iterator &It)
81    : current(It.current), Fn(It.Fn) {}
82
83  inline value_type operator*() const {   // All this work to do this
84    return Fn(*current);         // little change
85  }
86
87  _Self& operator++() { ++current; return *this; }
88  _Self& operator--() { --current; return *this; }
89  _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
90  _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
91  _Self  operator+    (difference_type n) const {
92    return _Self(current + n, Fn);
93  }
94  _Self& operator+=   (difference_type n) { current += n; return *this; }
95  _Self  operator-    (difference_type n) const {
96    return _Self(current - n, Fn);
97  }
98  _Self& operator-=   (difference_type n) { current -= n; return *this; }
99  reference operator[](difference_type n) const { return *(*this + n); }
100
101  inline bool operator!=(const _Self &X) const { return !operator==(X); }
102  inline bool operator==(const _Self &X) const { return current == X.current; }
103  inline bool operator< (const _Self &X) const { return current <  X.current; }
104
105  inline difference_type operator-(const _Self &X) const {
106    return current - X.current;
107  }
108};
109
110template <class _Iterator, class Func>
111inline mapped_iterator<_Iterator, Func>
112operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
113          const mapped_iterator<_Iterator, Func>& X) {
114  return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
115}
116
117
118// map_iterator - Provide a convenient way to create mapped_iterators, just like
119// make_pair is useful for creating pairs...
120//
121template <class ItTy, class FuncTy>
122inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
123  return mapped_iterator<ItTy, FuncTy>(I, F);
124}
125
126
127// next/prior - These functions unlike std::advance do not modify the
128// passed iterator but return a copy.
129//
130// next(myIt) returns copy of myIt incremented once
131// next(myIt, n) returns copy of myIt incremented n times
132// prior(myIt) returns copy of myIt decremented once
133// prior(myIt, n) returns copy of myIt decremented n times
134
135template <typename ItTy, typename Dist>
136inline ItTy next(ItTy it, Dist n)
137{
138  std::advance(it, n);
139  return it;
140}
141
142template <typename ItTy>
143inline ItTy next(ItTy it)
144{
145  return ++it;
146}
147
148template <typename ItTy, typename Dist>
149inline ItTy prior(ItTy it, Dist n)
150{
151  std::advance(it, -n);
152  return it;
153}
154
155template <typename ItTy>
156inline ItTy prior(ItTy it)
157{
158  return --it;
159}
160
161//===----------------------------------------------------------------------===//
162//     Extra additions to <utility>
163//===----------------------------------------------------------------------===//
164
165// tie - this function ties two objects and returns a temporary object
166// that is assignable from a std::pair. This can be used to make code
167// more readable when using values returned from functions bundled in
168// a std::pair. Since an example is worth 1000 words:
169//
170// typedef std::map<int, int> Int2IntMap;
171//
172// Int2IntMap myMap;
173// Int2IntMap::iterator where;
174// bool inserted;
175// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
176//
177// if (inserted)
178//   // do stuff
179// else
180//   // do other stuff
181
182namespace
183{
184  template <typename T1, typename T2>
185  struct tier {
186    typedef T1 &first_type;
187    typedef T2 &second_type;
188
189    first_type first;
190    second_type second;
191
192    tier(first_type f, second_type s) : first(f), second(s) { }
193    tier& operator=(const std::pair<T1, T2>& p) {
194      first = p.first;
195      second = p.second;
196      return *this;
197    }
198  };
199}
200
201template <typename T1, typename T2>
202inline tier<T1, T2> tie(T1& f, T2& s) {
203  return tier<T1, T2>(f, s);
204}
205
206//===----------------------------------------------------------------------===//
207//     Extra additions for arrays
208//===----------------------------------------------------------------------===//
209
210/// Find where an array ends (for ending iterators)
211/// This returns a pointer to the byte immediately
212/// after the end of an array.
213template<class T, std::size_t N>
214inline T *array_endof(T (&x)[N]) {
215  return x+N;
216}
217
218/// Find the length of an array.
219template<class T, std::size_t N>
220inline size_t array_lengthof(T (&x)[N]) {
221  return N;
222}
223
224/// array_pod_sort_comparator - This is helper function for array_pod_sort,
225/// which just uses operator< on T.
226template<typename T>
227static inline int array_pod_sort_comparator(const void *P1, const void *P2) {
228  if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2))
229    return -1;
230  if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1))
231    return 1;
232  return 0;
233}
234
235/// get_array_pad_sort_comparator - This is an internal helper function used to
236/// get type deduction of T right.
237template<typename T>
238static int (*get_array_pad_sort_comparator(const T &X))
239             (const void*, const void*) {
240  return array_pod_sort_comparator<T>;
241}
242
243
244/// array_pod_sort - This sorts an array with the specified start and end
245/// extent.  This is just like std::sort, except that it calls qsort instead of
246/// using an inlined template.  qsort is slightly slower than std::sort, but
247/// most sorts are not performance critical in LLVM and std::sort has to be
248/// template instantiated for each type, leading to significant measured code
249/// bloat.  This function should generally be used instead of std::sort where
250/// possible.
251///
252/// This function assumes that you have simple POD-like types that can be
253/// compared with operator< and can be moved with memcpy.  If this isn't true,
254/// you should use std::sort.
255///
256/// NOTE: If qsort_r were portable, we could allow a custom comparator and
257/// default to std::less.
258template<class IteratorTy>
259static inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
260  // Don't dereference start iterator of empty sequence.
261  if (Start == End) return;
262  qsort(&*Start, End-Start, sizeof(*Start),
263        get_array_pad_sort_comparator(*Start));
264}
265
266} // End llvm namespace
267
268#endif
269