STLExtras.h revision bc79471be19e412eed4d270908db7ac945be10ca
1//===- STLExtras.h - Useful functions when working with the STL -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functinons.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef SUPPORT_STLEXTRAS_H
18#define SUPPORT_STLEXTRAS_H
19
20#include <functional>
21#include <utility> // for std::pair
22#include "Support/iterator"
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27//     Extra additions to <functional>
28//===----------------------------------------------------------------------===//
29
30// bind_obj - Often times you want to apply the member function of an object
31// as a unary functor.  This macro is shorthand that makes it happen less
32// verbosely.
33//
34// Example:
35//  struct Summer { void accumulate(int x); }
36//  vector<int> Numbers;
37//  Summer MyS;
38//  for_each(Numbers.begin(), Numbers.end(),
39//           bind_obj(&MyS, &Summer::accumulate));
40//
41// TODO: When I get lots of extra time, convert this from an evil macro
42//
43#define bind_obj(OBJ, METHOD) std::bind1st(std::mem_fun(METHOD), OBJ)
44
45
46// bitwise_or - This is a simple functor that applys operator| on its two
47// arguments to get a boolean result.
48//
49template<class Ty>
50struct bitwise_or : public std::binary_function<Ty, Ty, bool> {
51  bool operator()(const Ty& left, const Ty& right) const {
52    return left | right;
53  }
54};
55
56
57// deleter - Very very very simple method that is used to invoke operator
58// delete on something.  It is used like this:
59//
60//   for_each(V.begin(), B.end(), deleter<Interval>);
61//
62template <class T>
63static inline void deleter(T *Ptr) {
64  delete Ptr;
65}
66
67
68
69//===----------------------------------------------------------------------===//
70//     Extra additions to <iterator>
71//===----------------------------------------------------------------------===//
72
73// mapped_iterator - This is a simple iterator adapter that causes a function to
74// be dereferenced whenever operator* is invoked on the iterator.
75//
76// It turns out that this is disturbingly similar to boost::transform_iterator
77//
78template <class RootIt, class UnaryFunc>
79class mapped_iterator {
80  RootIt current;
81  UnaryFunc Fn;
82public:
83  typedef typename std::iterator_traits<RootIt>::iterator_category
84          iterator_category;
85  typedef typename std::iterator_traits<RootIt>::difference_type
86          difference_type;
87  typedef typename UnaryFunc::result_type value_type;
88
89  typedef void pointer;
90  //typedef typename UnaryFunc::result_type *pointer;
91  typedef void reference;        // Can't modify value returned by fn
92
93  typedef RootIt iterator_type;
94  typedef mapped_iterator<RootIt, UnaryFunc> _Self;
95
96  inline RootIt &getCurrent() const { return current; }
97
98  inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
99    : current(I), Fn(F) {}
100  inline mapped_iterator(const mapped_iterator &It)
101    : current(It.current), Fn(It.Fn) {}
102
103  inline value_type operator*() const {   // All this work to do this
104    return Fn(*current);         // little change
105  }
106
107  _Self& operator++() { ++current; return *this; }
108  _Self& operator--() { --current; return *this; }
109  _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
110  _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
111  _Self  operator+    (difference_type n) const { return _Self(current + n); }
112  _Self& operator+=   (difference_type n) { current += n; return *this; }
113  _Self  operator-    (difference_type n) const { return _Self(current - n); }
114  _Self& operator-=   (difference_type n) { current -= n; return *this; }
115  reference operator[](difference_type n) const { return *(*this + n); }
116
117  inline bool operator!=(const _Self &X) const { return !operator==(X); }
118  inline bool operator==(const _Self &X) const { return current == X.current; }
119  inline bool operator< (const _Self &X) const { return current <  X.current; }
120
121  inline difference_type operator-(const _Self &X) const {
122    return current - X.current;
123  }
124};
125
126template <class _Iterator, class Func>
127inline mapped_iterator<_Iterator, Func>
128operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
129          const mapped_iterator<_Iterator, Func>& X) {
130  return mapped_iterator<_Iterator, Func>(X.getCurrent() - N);
131}
132
133
134// map_iterator - Provide a convenient way to create mapped_iterators, just like
135// make_pair is useful for creating pairs...
136//
137template <class ItTy, class FuncTy>
138inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
139  return mapped_iterator<ItTy, FuncTy>(I, F);
140}
141
142
143// next/prior - These functions unlike std::advance do not modify the
144// passed iterator but return a copy.
145//
146// next(myIt) returns copy of myIt incremented once
147// next(myIt, n) returns copy of myIt incremented n times
148// prior(myIt) returns copy of myIt decremented once
149// prior(myIt, n) returns copy of myIt decremented n times
150
151template <typename ItTy, typename Dist>
152inline ItTy next(ItTy it, Dist n)
153{
154  std::advance(it, n);
155  return it;
156}
157
158template <typename ItTy>
159inline ItTy next(ItTy it)
160{
161  std::advance(it, 1);
162  return it;
163}
164
165template <typename ItTy, typename Dist>
166inline ItTy prior(ItTy it, Dist n)
167{
168  std::advance(it, -n);
169  return it;
170}
171
172template <typename ItTy>
173inline ItTy prior(ItTy it)
174{
175  std::advance(it, -1);
176  return it;
177}
178
179
180//===----------------------------------------------------------------------===//
181//     Extra additions to <algorithm>
182//===----------------------------------------------------------------------===//
183
184// apply_until - Apply a functor to a sequence continually, unless the
185// functor returns true.  Return true if the functor returned true, return false
186// if the functor never returned true.
187//
188template <class InputIt, class Function>
189bool apply_until(InputIt First, InputIt Last, Function Func) {
190  for ( ; First != Last; ++First)
191    if (Func(*First)) return true;
192  return false;
193}
194
195
196// reduce - Reduce a sequence values into a single value, given an initial
197// value and an operator.
198//
199template <class InputIt, class Function, class ValueType>
200ValueType reduce(InputIt First, InputIt Last, Function Func, ValueType Value) {
201  for ( ; First != Last; ++First)
202    Value = Func(*First, Value);
203  return Value;
204}
205
206#if 1   // This is likely to be more efficient
207
208// reduce_apply - Reduce the result of applying a function to each value in a
209// sequence, given an initial value, an operator, a function, and a sequence.
210//
211template <class InputIt, class Function, class ValueType, class TransFunc>
212inline ValueType reduce_apply(InputIt First, InputIt Last, Function Func,
213			      ValueType Value, TransFunc XForm) {
214  for ( ; First != Last; ++First)
215    Value = Func(XForm(*First), Value);
216  return Value;
217}
218
219#else  // This is arguably more elegant
220
221// reduce_apply - Reduce the result of applying a function to each value in a
222// sequence, given an initial value, an operator, a function, and a sequence.
223//
224template <class InputIt, class Function, class ValueType, class TransFunc>
225inline ValueType reduce_apply2(InputIt First, InputIt Last, Function Func,
226			       ValueType Value, TransFunc XForm) {
227  return reduce(map_iterator(First, XForm), map_iterator(Last, XForm),
228		Func, Value);
229}
230#endif
231
232
233// reduce_apply_bool - Reduce the result of applying a (bool returning) function
234// to each value in a sequence.  All of the bools returned by the mapped
235// function are bitwise or'd together, and the result is returned.
236//
237template <class InputIt, class Function>
238inline bool reduce_apply_bool(InputIt First, InputIt Last, Function Func) {
239  return reduce_apply(First, Last, bitwise_or<bool>(), false, Func);
240}
241
242
243// map - This function maps the specified input sequence into the specified
244// output iterator, applying a unary function in between.
245//
246template <class InIt, class OutIt, class Functor>
247inline OutIt mapto(InIt Begin, InIt End, OutIt Dest, Functor F) {
248  return copy(map_iterator(Begin, F), map_iterator(End, F), Dest);
249}
250
251
252//===----------------------------------------------------------------------===//
253//     Extra additions to <utility>
254//===----------------------------------------------------------------------===//
255
256// tie - this function ties two objects and returns a temporary object
257// that is assignable from a std::pair. This can be used to make code
258// more readable when using values returned from functions bundled in
259// a std::pair. Since an example is worth 1000 words:
260//
261// typedef std::map<int, int> Int2IntMap;
262//
263// Int2IntMap myMap;
264// Int2IntMap::iterator where;
265// bool inserted;
266// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
267//
268// if (inserted)
269//   // do stuff
270// else
271//   // do other stuff
272
273namespace
274{
275  template <typename T1, typename T2>
276  struct tier {
277    typedef T1 &first_type;
278    typedef T2 &second_type;
279
280    first_type first;
281    second_type second;
282
283    tier(first_type f, second_type s) : first(f), second(s) { }
284    tier& operator=(const std::pair<T1, T2>& p) {
285      first = p.first;
286      second = p.second;
287      return *this;
288    }
289  };
290}
291
292template <typename T1, typename T2>
293inline tier<T1, T2> tie(T1& f, T2& s) {
294  return tier<T1, T2>(f, s);
295}
296
297} // End llvm namespace
298
299#endif
300