LoopInfo.h revision 45cfe545ec8177262dabc70580ce05feaa1c3880
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Streams.h"
40#include <algorithm>
41#include <ostream>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified basic block is in this loop
97  ///
98  bool contains(const BlockT *BB) const {
99    return std::find(block_begin(), block_end(), BB) != block_end();
100  }
101
102  /// iterator/begin/end - Return the loops contained entirely within this loop.
103  ///
104  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
105  typedef typename std::vector<LoopT *>::const_iterator iterator;
106  iterator begin() const { return SubLoops.begin(); }
107  iterator end() const { return SubLoops.end(); }
108  bool empty() const { return SubLoops.empty(); }
109
110  /// getBlocks - Get a list of the basic blocks which make up this loop.
111  ///
112  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
113  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
114  block_iterator block_begin() const { return Blocks.begin(); }
115  block_iterator block_end() const { return Blocks.end(); }
116
117  /// isLoopExit - True if terminator in the block can branch to another block
118  /// that is outside of the current loop.
119  ///
120  bool isLoopExit(const BlockT *BB) const {
121    typedef GraphTraits<BlockT*> BlockTraits;
122    for (typename BlockTraits::ChildIteratorType SI =
123         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
124         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
125      if (!contains(*SI))
126        return true;
127    }
128    return false;
129  }
130
131  /// getNumBackEdges - Calculate the number of back edges to the loop header
132  ///
133  unsigned getNumBackEdges() const {
134    unsigned NumBackEdges = 0;
135    BlockT *H = getHeader();
136
137    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
138    for (typename InvBlockTraits::ChildIteratorType I =
139         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
140         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
141      if (contains(*I))
142        ++NumBackEdges;
143
144    return NumBackEdges;
145  }
146
147  //===--------------------------------------------------------------------===//
148  // APIs for simple analysis of the loop.
149  //
150  // Note that all of these methods can fail on general loops (ie, there may not
151  // be a preheader, etc).  For best success, the loop simplification and
152  // induction variable canonicalization pass should be used to normalize loops
153  // for easy analysis.  These methods assume canonical loops.
154
155  /// getExitingBlocks - Return all blocks inside the loop that have successors
156  /// outside of the loop.  These are the blocks _inside of the current loop_
157  /// which branch out.  The returned list is always unique.
158  ///
159  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
160    // Sort the blocks vector so that we can use binary search to do quick
161    // lookups.
162    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
163    std::sort(LoopBBs.begin(), LoopBBs.end());
164
165    typedef GraphTraits<BlockT*> BlockTraits;
166    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
167      for (typename BlockTraits::ChildIteratorType I =
168          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
169          I != E; ++I)
170        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
171          // Not in current loop? It must be an exit block.
172          ExitingBlocks.push_back(*BI);
173          break;
174        }
175  }
176
177  /// getExitingBlock - If getExitingBlocks would return exactly one block,
178  /// return that block. Otherwise return null.
179  BlockT *getExitingBlock() const {
180    SmallVector<BlockT*, 8> ExitingBlocks;
181    getExitingBlocks(ExitingBlocks);
182    if (ExitingBlocks.size() == 1)
183      return ExitingBlocks[0];
184    return 0;
185  }
186
187  /// getExitBlocks - Return all of the successor blocks of this loop.  These
188  /// are the blocks _outside of the current loop_ which are branched to.
189  ///
190  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
191    // Sort the blocks vector so that we can use binary search to do quick
192    // lookups.
193    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
194    std::sort(LoopBBs.begin(), LoopBBs.end());
195
196    typedef GraphTraits<BlockT*> BlockTraits;
197    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
198      for (typename BlockTraits::ChildIteratorType I =
199           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
200           I != E; ++I)
201        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
202          // Not in current loop? It must be an exit block.
203          ExitBlocks.push_back(*I);
204  }
205
206  /// getExitBlock - If getExitBlocks would return exactly one block,
207  /// return that block. Otherwise return null.
208  BlockT *getExitBlock() const {
209    SmallVector<BlockT*, 8> ExitBlocks;
210    getExitBlocks(ExitBlocks);
211    if (ExitBlocks.size() == 1)
212      return ExitBlocks[0];
213    return 0;
214  }
215
216  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
217  /// (Modelled after getExitingBlocks().)
218  typedef std::pair<const BlockT*,const BlockT*> Edge;
219  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
220    // Sort the blocks vector so that we can use binary search to do quick
221    // lookups.
222    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
223    std::sort(LoopBBs.begin(), LoopBBs.end());
224
225    typedef GraphTraits<BlockT*> BlockTraits;
226    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
227      for (typename BlockTraits::ChildIteratorType I =
228           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
229           I != E; ++I)
230        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
231          // Not in current loop? It must be an exit block.
232          ExitEdges.push_back(std::make_pair(*BI, *I));
233  }
234
235  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
236  /// These are the blocks _outside of the current loop_ which are branched to.
237  /// This assumes that loop is in canonical form.
238  ///
239  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
240    // Sort the blocks vector so that we can use binary search to do quick
241    // lookups.
242    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
243    std::sort(LoopBBs.begin(), LoopBBs.end());
244
245    std::vector<BlockT*> switchExitBlocks;
246
247    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
248
249      BlockT *current = *BI;
250      switchExitBlocks.clear();
251
252      typedef GraphTraits<BlockT*> BlockTraits;
253      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
254      for (typename BlockTraits::ChildIteratorType I =
255           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
256           I != E; ++I) {
257        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
258      // If block is inside the loop then it is not a exit block.
259          continue;
260
261        typename InvBlockTraits::ChildIteratorType PI =
262                                                InvBlockTraits::child_begin(*I);
263        BlockT *firstPred = *PI;
264
265        // If current basic block is this exit block's first predecessor
266        // then only insert exit block in to the output ExitBlocks vector.
267        // This ensures that same exit block is not inserted twice into
268        // ExitBlocks vector.
269        if (current != firstPred)
270          continue;
271
272        // If a terminator has more then two successors, for example SwitchInst,
273        // then it is possible that there are multiple edges from current block
274        // to one exit block.
275        if (std::distance(BlockTraits::child_begin(current),
276                          BlockTraits::child_end(current)) <= 2) {
277          ExitBlocks.push_back(*I);
278          continue;
279        }
280
281        // In case of multiple edges from current block to exit block, collect
282        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
283        // duplicate edges.
284        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
285            == switchExitBlocks.end()) {
286          switchExitBlocks.push_back(*I);
287          ExitBlocks.push_back(*I);
288        }
289      }
290    }
291  }
292
293  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
294  /// block, return that block. Otherwise return null.
295  BlockT *getUniqueExitBlock() const {
296    SmallVector<BlockT*, 8> UniqueExitBlocks;
297    getUniqueExitBlocks(UniqueExitBlocks);
298    if (UniqueExitBlocks.size() == 1)
299      return UniqueExitBlocks[0];
300    return 0;
301  }
302
303  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
304  /// loop has a preheader if there is only one edge to the header of the loop
305  /// from outside of the loop.  If this is the case, the block branching to the
306  /// header of the loop is the preheader node.
307  ///
308  /// This method returns null if there is no preheader for the loop.
309  ///
310  BlockT *getLoopPreheader() const {
311    // Keep track of nodes outside the loop branching to the header...
312    BlockT *Out = 0;
313
314    // Loop over the predecessors of the header node...
315    BlockT *Header = getHeader();
316    typedef GraphTraits<BlockT*> BlockTraits;
317    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
318    for (typename InvBlockTraits::ChildIteratorType PI =
319         InvBlockTraits::child_begin(Header),
320         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
321      if (!contains(*PI)) {     // If the block is not in the loop...
322        if (Out && Out != *PI)
323          return 0;             // Multiple predecessors outside the loop
324        Out = *PI;
325      }
326
327    // Make sure there is only one exit out of the preheader.
328    assert(Out && "Header of loop has no predecessors from outside loop?");
329    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
330    ++SI;
331    if (SI != BlockTraits::child_end(Out))
332      return 0;  // Multiple exits from the block, must not be a preheader.
333
334    // If there is exactly one preheader, return it.  If there was zero, then
335    // Out is still null.
336    return Out;
337  }
338
339  /// getLoopLatch - If there is a single latch block for this loop, return it.
340  /// A latch block is a block that contains a branch back to the header.
341  /// A loop header in normal form has two edges into it: one from a preheader
342  /// and one from a latch block.
343  BlockT *getLoopLatch() const {
344    BlockT *Header = getHeader();
345    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
346    typename InvBlockTraits::ChildIteratorType PI =
347                                            InvBlockTraits::child_begin(Header);
348    typename InvBlockTraits::ChildIteratorType PE =
349                                              InvBlockTraits::child_end(Header);
350    if (PI == PE) return 0;  // no preds?
351
352    BlockT *Latch = 0;
353    if (contains(*PI))
354      Latch = *PI;
355    ++PI;
356    if (PI == PE) return 0;  // only one pred?
357
358    if (contains(*PI)) {
359      if (Latch) return 0;  // multiple backedges
360      Latch = *PI;
361    }
362    ++PI;
363    if (PI != PE) return 0;  // more than two preds
364
365    return Latch;
366  }
367
368  //===--------------------------------------------------------------------===//
369  // APIs for updating loop information after changing the CFG
370  //
371
372  /// addBasicBlockToLoop - This method is used by other analyses to update loop
373  /// information.  NewBB is set to be a new member of the current loop.
374  /// Because of this, it is added as a member of all parent loops, and is added
375  /// to the specified LoopInfo object as being in the current basic block.  It
376  /// is not valid to replace the loop header with this method.
377  ///
378  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
379
380  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
381  /// the OldChild entry in our children list with NewChild, and updates the
382  /// parent pointer of OldChild to be null and the NewChild to be this loop.
383  /// This updates the loop depth of the new child.
384  void replaceChildLoopWith(LoopT *OldChild,
385                            LoopT *NewChild) {
386    assert(OldChild->ParentLoop == this && "This loop is already broken!");
387    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
388    typename std::vector<LoopT *>::iterator I =
389                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
390    assert(I != SubLoops.end() && "OldChild not in loop!");
391    *I = NewChild;
392    OldChild->ParentLoop = 0;
393    NewChild->ParentLoop = static_cast<LoopT *>(this);
394  }
395
396  /// addChildLoop - Add the specified loop to be a child of this loop.  This
397  /// updates the loop depth of the new child.
398  ///
399  void addChildLoop(LoopT *NewChild) {
400    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
401    NewChild->ParentLoop = static_cast<LoopT *>(this);
402    SubLoops.push_back(NewChild);
403  }
404
405  /// removeChildLoop - This removes the specified child from being a subloop of
406  /// this loop.  The loop is not deleted, as it will presumably be inserted
407  /// into another loop.
408  LoopT *removeChildLoop(iterator I) {
409    assert(I != SubLoops.end() && "Cannot remove end iterator!");
410    LoopT *Child = *I;
411    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
412    SubLoops.erase(SubLoops.begin()+(I-begin()));
413    Child->ParentLoop = 0;
414    return Child;
415  }
416
417  /// addBlockEntry - This adds a basic block directly to the basic block list.
418  /// This should only be used by transformations that create new loops.  Other
419  /// transformations should use addBasicBlockToLoop.
420  void addBlockEntry(BlockT *BB) {
421    Blocks.push_back(BB);
422  }
423
424  /// moveToHeader - This method is used to move BB (which must be part of this
425  /// loop) to be the loop header of the loop (the block that dominates all
426  /// others).
427  void moveToHeader(BlockT *BB) {
428    if (Blocks[0] == BB) return;
429    for (unsigned i = 0; ; ++i) {
430      assert(i != Blocks.size() && "Loop does not contain BB!");
431      if (Blocks[i] == BB) {
432        Blocks[i] = Blocks[0];
433        Blocks[0] = BB;
434        return;
435      }
436    }
437  }
438
439  /// removeBlockFromLoop - This removes the specified basic block from the
440  /// current loop, updating the Blocks as appropriate.  This does not update
441  /// the mapping in the LoopInfo class.
442  void removeBlockFromLoop(BlockT *BB) {
443    RemoveFromVector(Blocks, BB);
444  }
445
446  /// verifyLoop - Verify loop structure
447  void verifyLoop() const {
448#ifndef NDEBUG
449    assert (getHeader() && "Loop header is missing");
450    assert (getLoopPreheader() && "Loop preheader is missing");
451    assert (getLoopLatch() && "Loop latch is missing");
452    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
453      (*I)->verifyLoop();
454#endif
455  }
456
457  void print(raw_ostream &OS, unsigned Depth = 0) const {
458    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
459       << " containing: ";
460
461    for (unsigned i = 0; i < getBlocks().size(); ++i) {
462      if (i) OS << ",";
463      BlockT *BB = getBlocks()[i];
464      WriteAsOperand(OS, BB, false);
465      if (BB == getHeader())    OS << "<header>";
466      if (BB == getLoopLatch()) OS << "<latch>";
467      if (isLoopExit(BB))       OS << "<exit>";
468    }
469    OS << "\n";
470
471    for (iterator I = begin(), E = end(); I != E; ++I)
472      (*I)->print(OS, Depth+2);
473  }
474
475  void dump() const {
476    print(errs());
477  }
478
479protected:
480  friend class LoopInfoBase<BlockT, LoopT>;
481  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
482    Blocks.push_back(BB);
483  }
484};
485
486class Loop : public LoopBase<BasicBlock, Loop> {
487public:
488  Loop() {}
489
490  /// isLoopInvariant - Return true if the specified value is loop invariant
491  ///
492  bool isLoopInvariant(Value *V) const;
493
494  /// isLoopInvariant - Return true if the specified instruction is
495  /// loop-invariant.
496  ///
497  bool isLoopInvariant(Instruction *I) const;
498
499  /// makeLoopInvariant - If the given value is an instruction inside of the
500  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
501  /// Return true if the value after any hoisting is loop invariant. This
502  /// function can be used as a slightly more aggressive replacement for
503  /// isLoopInvariant.
504  ///
505  /// If InsertPt is specified, it is the point to hoist instructions to.
506  /// If null, the terminator of the loop preheader is used.
507  ///
508  bool makeLoopInvariant(Value *V, bool &Changed,
509                         Instruction *InsertPt = 0) const;
510
511  /// makeLoopInvariant - If the given instruction is inside of the
512  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
513  /// Return true if the instruction after any hoisting is loop invariant. This
514  /// function can be used as a slightly more aggressive replacement for
515  /// isLoopInvariant.
516  ///
517  /// If InsertPt is specified, it is the point to hoist instructions to.
518  /// If null, the terminator of the loop preheader is used.
519  ///
520  bool makeLoopInvariant(Instruction *I, bool &Changed,
521                         Instruction *InsertPt = 0) const;
522
523  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
524  /// induction variable: an integer recurrence that starts at 0 and increments
525  /// by one each time through the loop.  If so, return the phi node that
526  /// corresponds to it.
527  ///
528  /// The IndVarSimplify pass transforms loops to have a canonical induction
529  /// variable.
530  ///
531  PHINode *getCanonicalInductionVariable() const;
532
533  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
534  /// the canonical induction variable value for the "next" iteration of the
535  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
536  ///
537  Instruction *getCanonicalInductionVariableIncrement() const;
538
539  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
540  /// times the loop will be executed.  Note that this means that the backedge
541  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
542  /// this returns null.
543  ///
544  /// The IndVarSimplify pass transforms loops to have a form that this
545  /// function easily understands.
546  ///
547  Value *getTripCount() const;
548
549  /// getSmallConstantTripCount - Returns the trip count of this loop as a
550  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
551  /// of not constant. Will also return 0 if the trip count is very large
552  /// (>= 2^32)
553  unsigned getSmallConstantTripCount() const;
554
555  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
556  /// trip count of this loop as a normal unsigned value, if possible. This
557  /// means that the actual trip count is always a multiple of the returned
558  /// value (don't forget the trip count could very well be zero as well!).
559  ///
560  /// Returns 1 if the trip count is unknown or not guaranteed to be the
561  /// multiple of a constant (which is also the case if the trip count is simply
562  /// constant, use getSmallConstantTripCount for that case), Will also return 1
563  /// if the trip count is very large (>= 2^32).
564  unsigned getSmallConstantTripMultiple() const;
565
566  /// isLCSSAForm - Return true if the Loop is in LCSSA form
567  bool isLCSSAForm() const;
568
569  /// isLoopSimplifyForm - Return true if the Loop is in the form that
570  /// the LoopSimplify form transforms loops to, which is sometimes called
571  /// normal form.
572  bool isLoopSimplifyForm() const;
573
574private:
575  friend class LoopInfoBase<BasicBlock, Loop>;
576  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
577};
578
579//===----------------------------------------------------------------------===//
580/// LoopInfo - This class builds and contains all of the top level loop
581/// structures in the specified function.
582///
583
584template<class BlockT, class LoopT>
585class LoopInfoBase {
586  // BBMap - Mapping of basic blocks to the inner most loop they occur in
587  std::map<BlockT *, LoopT *> BBMap;
588  std::vector<LoopT *> TopLevelLoops;
589  friend class LoopBase<BlockT, LoopT>;
590
591  void operator=(const LoopInfoBase &); // do not implement
592  LoopInfoBase(const LoopInfo &);       // do not implement
593public:
594  LoopInfoBase() { }
595  ~LoopInfoBase() { releaseMemory(); }
596
597  void releaseMemory() {
598    for (typename std::vector<LoopT *>::iterator I =
599         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
600      delete *I;   // Delete all of the loops...
601
602    BBMap.clear();                           // Reset internal state of analysis
603    TopLevelLoops.clear();
604  }
605
606  /// iterator/begin/end - The interface to the top-level loops in the current
607  /// function.
608  ///
609  typedef typename std::vector<LoopT *>::const_iterator iterator;
610  iterator begin() const { return TopLevelLoops.begin(); }
611  iterator end() const { return TopLevelLoops.end(); }
612  bool empty() const { return TopLevelLoops.empty(); }
613
614  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
615  /// block is in no loop (for example the entry node), null is returned.
616  ///
617  LoopT *getLoopFor(const BlockT *BB) const {
618    typename std::map<BlockT *, LoopT *>::const_iterator I=
619      BBMap.find(const_cast<BlockT*>(BB));
620    return I != BBMap.end() ? I->second : 0;
621  }
622
623  /// operator[] - same as getLoopFor...
624  ///
625  const LoopT *operator[](const BlockT *BB) const {
626    return getLoopFor(BB);
627  }
628
629  /// getLoopDepth - Return the loop nesting level of the specified block.  A
630  /// depth of 0 means the block is not inside any loop.
631  ///
632  unsigned getLoopDepth(const BlockT *BB) const {
633    const LoopT *L = getLoopFor(BB);
634    return L ? L->getLoopDepth() : 0;
635  }
636
637  // isLoopHeader - True if the block is a loop header node
638  bool isLoopHeader(BlockT *BB) const {
639    const LoopT *L = getLoopFor(BB);
640    return L && L->getHeader() == BB;
641  }
642
643  /// removeLoop - This removes the specified top-level loop from this loop info
644  /// object.  The loop is not deleted, as it will presumably be inserted into
645  /// another loop.
646  LoopT *removeLoop(iterator I) {
647    assert(I != end() && "Cannot remove end iterator!");
648    LoopT *L = *I;
649    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
650    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
651    return L;
652  }
653
654  /// changeLoopFor - Change the top-level loop that contains BB to the
655  /// specified loop.  This should be used by transformations that restructure
656  /// the loop hierarchy tree.
657  void changeLoopFor(BlockT *BB, LoopT *L) {
658    LoopT *&OldLoop = BBMap[BB];
659    assert(OldLoop && "Block not in a loop yet!");
660    OldLoop = L;
661  }
662
663  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
664  /// list with the indicated loop.
665  void changeTopLevelLoop(LoopT *OldLoop,
666                          LoopT *NewLoop) {
667    typename std::vector<LoopT *>::iterator I =
668                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
669    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
670    *I = NewLoop;
671    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
672           "Loops already embedded into a subloop!");
673  }
674
675  /// addTopLevelLoop - This adds the specified loop to the collection of
676  /// top-level loops.
677  void addTopLevelLoop(LoopT *New) {
678    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
679    TopLevelLoops.push_back(New);
680  }
681
682  /// removeBlock - This method completely removes BB from all data structures,
683  /// including all of the Loop objects it is nested in and our mapping from
684  /// BasicBlocks to loops.
685  void removeBlock(BlockT *BB) {
686    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
687    if (I != BBMap.end()) {
688      for (LoopT *L = I->second; L; L = L->getParentLoop())
689        L->removeBlockFromLoop(BB);
690
691      BBMap.erase(I);
692    }
693  }
694
695  // Internals
696
697  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
698                                      const LoopT *ParentLoop) {
699    if (SubLoop == 0) return true;
700    if (SubLoop == ParentLoop) return false;
701    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
702  }
703
704  void Calculate(DominatorTreeBase<BlockT> &DT) {
705    BlockT *RootNode = DT.getRootNode()->getBlock();
706
707    for (df_iterator<BlockT*> NI = df_begin(RootNode),
708           NE = df_end(RootNode); NI != NE; ++NI)
709      if (LoopT *L = ConsiderForLoop(*NI, DT))
710        TopLevelLoops.push_back(L);
711  }
712
713  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
714    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
715
716    std::vector<BlockT *> TodoStack;
717
718    // Scan the predecessors of BB, checking to see if BB dominates any of
719    // them.  This identifies backedges which target this node...
720    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
721    for (typename InvBlockTraits::ChildIteratorType I =
722         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
723         I != E; ++I)
724      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
725        TodoStack.push_back(*I);
726
727    if (TodoStack.empty()) return 0;  // No backedges to this block...
728
729    // Create a new loop to represent this basic block...
730    LoopT *L = new LoopT(BB);
731    BBMap[BB] = L;
732
733    BlockT *EntryBlock = BB->getParent()->begin();
734
735    while (!TodoStack.empty()) {  // Process all the nodes in the loop
736      BlockT *X = TodoStack.back();
737      TodoStack.pop_back();
738
739      if (!L->contains(X) &&         // As of yet unprocessed??
740          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
741        // Check to see if this block already belongs to a loop.  If this occurs
742        // then we have a case where a loop that is supposed to be a child of
743        // the current loop was processed before the current loop.  When this
744        // occurs, this child loop gets added to a part of the current loop,
745        // making it a sibling to the current loop.  We have to reparent this
746        // loop.
747        if (LoopT *SubLoop =
748            const_cast<LoopT *>(getLoopFor(X)))
749          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
750            // Remove the subloop from it's current parent...
751            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
752            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
753            typename std::vector<LoopT *>::iterator I =
754              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
755            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
756            SLP->SubLoops.erase(I);   // Remove from parent...
757
758            // Add the subloop to THIS loop...
759            SubLoop->ParentLoop = L;
760            L->SubLoops.push_back(SubLoop);
761          }
762
763        // Normal case, add the block to our loop...
764        L->Blocks.push_back(X);
765
766        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
767
768        // Add all of the predecessors of X to the end of the work stack...
769        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
770                         InvBlockTraits::child_end(X));
771      }
772    }
773
774    // If there are any loops nested within this loop, create them now!
775    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
776         E = L->Blocks.end(); I != E; ++I)
777      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
778        L->SubLoops.push_back(NewLoop);
779        NewLoop->ParentLoop = L;
780      }
781
782    // Add the basic blocks that comprise this loop to the BBMap so that this
783    // loop can be found for them.
784    //
785    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
786           E = L->Blocks.end(); I != E; ++I) {
787      typename std::map<BlockT*, LoopT *>::iterator BBMI = BBMap.find(*I);
788      if (BBMI == BBMap.end())                       // Not in map yet...
789        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
790    }
791
792    // Now that we have a list of all of the child loops of this loop, check to
793    // see if any of them should actually be nested inside of each other.  We
794    // can accidentally pull loops our of their parents, so we must make sure to
795    // organize the loop nests correctly now.
796    {
797      std::map<BlockT *, LoopT *> ContainingLoops;
798      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
799        LoopT *Child = L->SubLoops[i];
800        assert(Child->getParentLoop() == L && "Not proper child loop?");
801
802        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
803          // If there is already a loop which contains this loop, move this loop
804          // into the containing loop.
805          MoveSiblingLoopInto(Child, ContainingLoop);
806          --i;  // The loop got removed from the SubLoops list.
807        } else {
808          // This is currently considered to be a top-level loop.  Check to see
809          // if any of the contained blocks are loop headers for subloops we
810          // have already processed.
811          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
812            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
813            if (BlockLoop == 0) {   // Child block not processed yet...
814              BlockLoop = Child;
815            } else if (BlockLoop != Child) {
816              LoopT *SubLoop = BlockLoop;
817              // Reparent all of the blocks which used to belong to BlockLoops
818              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
819                ContainingLoops[SubLoop->Blocks[j]] = Child;
820
821              // There is already a loop which contains this block, that means
822              // that we should reparent the loop which the block is currently
823              // considered to belong to to be a child of this loop.
824              MoveSiblingLoopInto(SubLoop, Child);
825              --i;  // We just shrunk the SubLoops list.
826            }
827          }
828        }
829      }
830    }
831
832    return L;
833  }
834
835  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
836  /// of the NewParent Loop, instead of being a sibling of it.
837  void MoveSiblingLoopInto(LoopT *NewChild,
838                           LoopT *NewParent) {
839    LoopT *OldParent = NewChild->getParentLoop();
840    assert(OldParent && OldParent == NewParent->getParentLoop() &&
841           NewChild != NewParent && "Not sibling loops!");
842
843    // Remove NewChild from being a child of OldParent
844    typename std::vector<LoopT *>::iterator I =
845      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
846                NewChild);
847    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
848    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
849    NewChild->ParentLoop = 0;
850
851    InsertLoopInto(NewChild, NewParent);
852  }
853
854  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
855  /// the parent loop contains a loop which should contain L, the loop gets
856  /// inserted into L instead.
857  void InsertLoopInto(LoopT *L, LoopT *Parent) {
858    BlockT *LHeader = L->getHeader();
859    assert(Parent->contains(LHeader) &&
860           "This loop should not be inserted here!");
861
862    // Check to see if it belongs in a child loop...
863    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
864         i != e; ++i)
865      if (Parent->SubLoops[i]->contains(LHeader)) {
866        InsertLoopInto(L, Parent->SubLoops[i]);
867        return;
868      }
869
870    // If not, insert it here!
871    Parent->SubLoops.push_back(L);
872    L->ParentLoop = Parent;
873  }
874
875  // Debugging
876
877  void print(raw_ostream &OS) const {
878    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
879      TopLevelLoops[i]->print(OS);
880  #if 0
881    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
882           E = BBMap.end(); I != E; ++I)
883      OS << "BB '" << I->first->getName() << "' level = "
884         << I->second->getLoopDepth() << "\n";
885  #endif
886  }
887};
888
889class LoopInfo : public FunctionPass {
890  LoopInfoBase<BasicBlock, Loop> LI;
891  friend class LoopBase<BasicBlock, Loop>;
892
893  void operator=(const LoopInfo &); // do not implement
894  LoopInfo(const LoopInfo &);       // do not implement
895public:
896  static char ID; // Pass identification, replacement for typeid
897
898  LoopInfo() : FunctionPass(&ID) {}
899
900  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
901
902  /// iterator/begin/end - The interface to the top-level loops in the current
903  /// function.
904  ///
905  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
906  inline iterator begin() const { return LI.begin(); }
907  inline iterator end() const { return LI.end(); }
908  bool empty() const { return LI.empty(); }
909
910  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
911  /// block is in no loop (for example the entry node), null is returned.
912  ///
913  inline Loop *getLoopFor(const BasicBlock *BB) const {
914    return LI.getLoopFor(BB);
915  }
916
917  /// operator[] - same as getLoopFor...
918  ///
919  inline const Loop *operator[](const BasicBlock *BB) const {
920    return LI.getLoopFor(BB);
921  }
922
923  /// getLoopDepth - Return the loop nesting level of the specified block.  A
924  /// depth of 0 means the block is not inside any loop.
925  ///
926  inline unsigned getLoopDepth(const BasicBlock *BB) const {
927    return LI.getLoopDepth(BB);
928  }
929
930  // isLoopHeader - True if the block is a loop header node
931  inline bool isLoopHeader(BasicBlock *BB) const {
932    return LI.isLoopHeader(BB);
933  }
934
935  /// runOnFunction - Calculate the natural loop information.
936  ///
937  virtual bool runOnFunction(Function &F);
938
939  virtual void releaseMemory() { LI.releaseMemory(); }
940
941  virtual void print(raw_ostream &O, const Module* M = 0) const;
942
943  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
944
945  /// removeLoop - This removes the specified top-level loop from this loop info
946  /// object.  The loop is not deleted, as it will presumably be inserted into
947  /// another loop.
948  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
949
950  /// changeLoopFor - Change the top-level loop that contains BB to the
951  /// specified loop.  This should be used by transformations that restructure
952  /// the loop hierarchy tree.
953  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
954    LI.changeLoopFor(BB, L);
955  }
956
957  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
958  /// list with the indicated loop.
959  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
960    LI.changeTopLevelLoop(OldLoop, NewLoop);
961  }
962
963  /// addTopLevelLoop - This adds the specified loop to the collection of
964  /// top-level loops.
965  inline void addTopLevelLoop(Loop *New) {
966    LI.addTopLevelLoop(New);
967  }
968
969  /// removeBlock - This method completely removes BB from all data structures,
970  /// including all of the Loop objects it is nested in and our mapping from
971  /// BasicBlocks to loops.
972  void removeBlock(BasicBlock *BB) {
973    LI.removeBlock(BB);
974  }
975
976  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
977                                      const Loop *ParentLoop) {
978    return
979      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
980                                                              ParentLoop);
981  }
982};
983
984
985// Allow clients to walk the list of nested loops...
986template <> struct GraphTraits<const Loop*> {
987  typedef const Loop NodeType;
988  typedef LoopInfo::iterator ChildIteratorType;
989
990  static NodeType *getEntryNode(const Loop *L) { return L; }
991  static inline ChildIteratorType child_begin(NodeType *N) {
992    return N->begin();
993  }
994  static inline ChildIteratorType child_end(NodeType *N) {
995    return N->end();
996  }
997};
998
999template <> struct GraphTraits<Loop*> {
1000  typedef Loop NodeType;
1001  typedef LoopInfo::iterator ChildIteratorType;
1002
1003  static NodeType *getEntryNode(Loop *L) { return L; }
1004  static inline ChildIteratorType child_begin(NodeType *N) {
1005    return N->begin();
1006  }
1007  static inline ChildIteratorType child_end(NodeType *N) {
1008    return N->end();
1009  }
1010};
1011
1012template<class BlockT, class LoopT>
1013void
1014LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1015                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1016  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1017         "Incorrect LI specified for this loop!");
1018  assert(NewBB && "Cannot add a null basic block to the loop!");
1019  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1020
1021  LoopT *L = static_cast<LoopT *>(this);
1022
1023  // Add the loop mapping to the LoopInfo object...
1024  LIB.BBMap[NewBB] = L;
1025
1026  // Add the basic block to this loop and all parent loops...
1027  while (L) {
1028    L->Blocks.push_back(NewBB);
1029    L = L->getParentLoop();
1030  }
1031}
1032
1033} // End llvm namespace
1034
1035#endif
1036