LoopInfo.h revision 8fe5ccc5850af3248992d182c5b7c079b50120fc
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified loop is contained within in
97  /// this loop.
98  ///
99  bool contains(const LoopT *L) const {
100    if (L == this) return true;
101    if (L == 0)    return false;
102    return contains(L->getParentLoop());
103  }
104
105  /// contains - Return true if the specified basic block is in this loop.
106  ///
107  bool contains(const BlockT *BB) const {
108    return std::find(block_begin(), block_end(), BB) != block_end();
109  }
110
111  /// contains - Return true if the specified instruction is in this loop.
112  ///
113  template<class InstT>
114  bool contains(const InstT *Inst) const {
115    return contains(Inst->getParent());
116  }
117
118  /// iterator/begin/end - Return the loops contained entirely within this loop.
119  ///
120  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
121  typedef typename std::vector<LoopT *>::const_iterator iterator;
122  iterator begin() const { return SubLoops.begin(); }
123  iterator end() const { return SubLoops.end(); }
124  bool empty() const { return SubLoops.empty(); }
125
126  /// getBlocks - Get a list of the basic blocks which make up this loop.
127  ///
128  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
129  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
130  block_iterator block_begin() const { return Blocks.begin(); }
131  block_iterator block_end() const { return Blocks.end(); }
132
133  /// isLoopExiting - True if terminator in the block can branch to another
134  /// block that is outside of the current loop.
135  ///
136  bool isLoopExiting(const BlockT *BB) const {
137    typedef GraphTraits<BlockT*> BlockTraits;
138    for (typename BlockTraits::ChildIteratorType SI =
139         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
140         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
141      if (!contains(*SI))
142        return true;
143    }
144    return false;
145  }
146
147  /// getNumBackEdges - Calculate the number of back edges to the loop header
148  ///
149  unsigned getNumBackEdges() const {
150    unsigned NumBackEdges = 0;
151    BlockT *H = getHeader();
152
153    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
154    for (typename InvBlockTraits::ChildIteratorType I =
155         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
156         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
157      if (contains(*I))
158        ++NumBackEdges;
159
160    return NumBackEdges;
161  }
162
163  //===--------------------------------------------------------------------===//
164  // APIs for simple analysis of the loop.
165  //
166  // Note that all of these methods can fail on general loops (ie, there may not
167  // be a preheader, etc).  For best success, the loop simplification and
168  // induction variable canonicalization pass should be used to normalize loops
169  // for easy analysis.  These methods assume canonical loops.
170
171  /// getExitingBlocks - Return all blocks inside the loop that have successors
172  /// outside of the loop.  These are the blocks _inside of the current loop_
173  /// which branch out.  The returned list is always unique.
174  ///
175  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
176    // Sort the blocks vector so that we can use binary search to do quick
177    // lookups.
178    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
179    std::sort(LoopBBs.begin(), LoopBBs.end());
180
181    typedef GraphTraits<BlockT*> BlockTraits;
182    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
183      for (typename BlockTraits::ChildIteratorType I =
184          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
185          I != E; ++I)
186        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
187          // Not in current loop? It must be an exit block.
188          ExitingBlocks.push_back(*BI);
189          break;
190        }
191  }
192
193  /// getExitingBlock - If getExitingBlocks would return exactly one block,
194  /// return that block. Otherwise return null.
195  BlockT *getExitingBlock() const {
196    SmallVector<BlockT*, 8> ExitingBlocks;
197    getExitingBlocks(ExitingBlocks);
198    if (ExitingBlocks.size() == 1)
199      return ExitingBlocks[0];
200    return 0;
201  }
202
203  /// getExitBlocks - Return all of the successor blocks of this loop.  These
204  /// are the blocks _outside of the current loop_ which are branched to.
205  ///
206  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
207    // Sort the blocks vector so that we can use binary search to do quick
208    // lookups.
209    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
210    std::sort(LoopBBs.begin(), LoopBBs.end());
211
212    typedef GraphTraits<BlockT*> BlockTraits;
213    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
214      for (typename BlockTraits::ChildIteratorType I =
215           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
216           I != E; ++I)
217        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
218          // Not in current loop? It must be an exit block.
219          ExitBlocks.push_back(*I);
220  }
221
222  /// getExitBlock - If getExitBlocks would return exactly one block,
223  /// return that block. Otherwise return null.
224  BlockT *getExitBlock() const {
225    SmallVector<BlockT*, 8> ExitBlocks;
226    getExitBlocks(ExitBlocks);
227    if (ExitBlocks.size() == 1)
228      return ExitBlocks[0];
229    return 0;
230  }
231
232  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
233  typedef std::pair<const BlockT*,const BlockT*> Edge;
234  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
235    // Sort the blocks vector so that we can use binary search to do quick
236    // lookups.
237    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
238    std::sort(LoopBBs.begin(), LoopBBs.end());
239
240    typedef GraphTraits<BlockT*> BlockTraits;
241    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
242      for (typename BlockTraits::ChildIteratorType I =
243           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
244           I != E; ++I)
245        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
246          // Not in current loop? It must be an exit block.
247          ExitEdges.push_back(std::make_pair(*BI, *I));
248  }
249
250  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
251  /// loop has a preheader if there is only one edge to the header of the loop
252  /// from outside of the loop.  If this is the case, the block branching to the
253  /// header of the loop is the preheader node.
254  ///
255  /// This method returns null if there is no preheader for the loop.
256  ///
257  BlockT *getLoopPreheader() const {
258    // Keep track of nodes outside the loop branching to the header...
259    BlockT *Out = getLoopPredecessor();
260    if (!Out) return 0;
261
262    // Make sure there is only one exit out of the preheader.
263    typedef GraphTraits<BlockT*> BlockTraits;
264    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
265    ++SI;
266    if (SI != BlockTraits::child_end(Out))
267      return 0;  // Multiple exits from the block, must not be a preheader.
268
269    // The predecessor has exactly one successor, so it is a preheader.
270    return Out;
271  }
272
273  /// getLoopPredecessor - If the given loop's header has exactly one unique
274  /// predecessor outside the loop, return it. Otherwise return null.
275  /// This is less strict that the loop "preheader" concept, which requires
276  /// the predecessor to have exactly one successor.
277  ///
278  BlockT *getLoopPredecessor() const {
279    // Keep track of nodes outside the loop branching to the header...
280    BlockT *Out = 0;
281
282    // Loop over the predecessors of the header node...
283    BlockT *Header = getHeader();
284    typedef GraphTraits<BlockT*> BlockTraits;
285    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
286    for (typename InvBlockTraits::ChildIteratorType PI =
287         InvBlockTraits::child_begin(Header),
288         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
289      typename InvBlockTraits::NodeType *N = *PI;
290      if (!contains(N)) {     // If the block is not in the loop...
291        if (Out && Out != N)
292          return 0;             // Multiple predecessors outside the loop
293        Out = N;
294      }
295    }
296
297    // Make sure there is only one exit out of the preheader.
298    assert(Out && "Header of loop has no predecessors from outside loop?");
299    return Out;
300  }
301
302  /// getLoopLatch - If there is a single latch block for this loop, return it.
303  /// A latch block is a block that contains a branch back to the header.
304  BlockT *getLoopLatch() const {
305    BlockT *Header = getHeader();
306    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
307    typename InvBlockTraits::ChildIteratorType PI =
308                                            InvBlockTraits::child_begin(Header);
309    typename InvBlockTraits::ChildIteratorType PE =
310                                              InvBlockTraits::child_end(Header);
311    BlockT *Latch = 0;
312    for (; PI != PE; ++PI) {
313      typename InvBlockTraits::NodeType *N = *PI;
314      if (contains(N)) {
315        if (Latch) return 0;
316        Latch = N;
317      }
318    }
319
320    return Latch;
321  }
322
323  //===--------------------------------------------------------------------===//
324  // APIs for updating loop information after changing the CFG
325  //
326
327  /// addBasicBlockToLoop - This method is used by other analyses to update loop
328  /// information.  NewBB is set to be a new member of the current loop.
329  /// Because of this, it is added as a member of all parent loops, and is added
330  /// to the specified LoopInfo object as being in the current basic block.  It
331  /// is not valid to replace the loop header with this method.
332  ///
333  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
334
335  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
336  /// the OldChild entry in our children list with NewChild, and updates the
337  /// parent pointer of OldChild to be null and the NewChild to be this loop.
338  /// This updates the loop depth of the new child.
339  void replaceChildLoopWith(LoopT *OldChild,
340                            LoopT *NewChild) {
341    assert(OldChild->ParentLoop == this && "This loop is already broken!");
342    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
343    typename std::vector<LoopT *>::iterator I =
344                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
345    assert(I != SubLoops.end() && "OldChild not in loop!");
346    *I = NewChild;
347    OldChild->ParentLoop = 0;
348    NewChild->ParentLoop = static_cast<LoopT *>(this);
349  }
350
351  /// addChildLoop - Add the specified loop to be a child of this loop.  This
352  /// updates the loop depth of the new child.
353  ///
354  void addChildLoop(LoopT *NewChild) {
355    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
356    NewChild->ParentLoop = static_cast<LoopT *>(this);
357    SubLoops.push_back(NewChild);
358  }
359
360  /// removeChildLoop - This removes the specified child from being a subloop of
361  /// this loop.  The loop is not deleted, as it will presumably be inserted
362  /// into another loop.
363  LoopT *removeChildLoop(iterator I) {
364    assert(I != SubLoops.end() && "Cannot remove end iterator!");
365    LoopT *Child = *I;
366    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
367    SubLoops.erase(SubLoops.begin()+(I-begin()));
368    Child->ParentLoop = 0;
369    return Child;
370  }
371
372  /// addBlockEntry - This adds a basic block directly to the basic block list.
373  /// This should only be used by transformations that create new loops.  Other
374  /// transformations should use addBasicBlockToLoop.
375  void addBlockEntry(BlockT *BB) {
376    Blocks.push_back(BB);
377  }
378
379  /// moveToHeader - This method is used to move BB (which must be part of this
380  /// loop) to be the loop header of the loop (the block that dominates all
381  /// others).
382  void moveToHeader(BlockT *BB) {
383    if (Blocks[0] == BB) return;
384    for (unsigned i = 0; ; ++i) {
385      assert(i != Blocks.size() && "Loop does not contain BB!");
386      if (Blocks[i] == BB) {
387        Blocks[i] = Blocks[0];
388        Blocks[0] = BB;
389        return;
390      }
391    }
392  }
393
394  /// removeBlockFromLoop - This removes the specified basic block from the
395  /// current loop, updating the Blocks as appropriate.  This does not update
396  /// the mapping in the LoopInfo class.
397  void removeBlockFromLoop(BlockT *BB) {
398    RemoveFromVector(Blocks, BB);
399  }
400
401  /// verifyLoop - Verify loop structure
402  void verifyLoop() const {
403#ifndef NDEBUG
404    assert(!Blocks.empty() && "Loop header is missing");
405
406    // Sort the blocks vector so that we can use binary search to do quick
407    // lookups.
408    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
409    std::sort(LoopBBs.begin(), LoopBBs.end());
410
411    // Check the individual blocks.
412    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
413      BlockT *BB = *I;
414      bool HasInsideLoopSuccs = false;
415      bool HasInsideLoopPreds = false;
416      SmallVector<BlockT *, 2> OutsideLoopPreds;
417
418      typedef GraphTraits<BlockT*> BlockTraits;
419      for (typename BlockTraits::ChildIteratorType SI =
420           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
421           SI != SE; ++SI)
422        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
423          HasInsideLoopSuccs = true;
424          break;
425        }
426      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
427      for (typename InvBlockTraits::ChildIteratorType PI =
428           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
429           PI != PE; ++PI) {
430        typename InvBlockTraits::NodeType *N = *PI;
431        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
432          HasInsideLoopPreds = true;
433        else
434          OutsideLoopPreds.push_back(N);
435      }
436
437      if (BB == getHeader()) {
438        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
439      } else if (!OutsideLoopPreds.empty()) {
440        // A non-header loop shouldn't be reachable from outside the loop,
441        // though it is permitted if the predecessor is not itself actually
442        // reachable.
443        BlockT *EntryBB = BB->getParent()->begin();
444        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
445             NE = df_end(EntryBB); NI != NE; ++NI)
446          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
447            assert(*NI != OutsideLoopPreds[i] &&
448                   "Loop has multiple entry points!");
449      }
450      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
451      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
452      assert(BB != getHeader()->getParent()->begin() &&
453             "Loop contains function entry block!");
454    }
455
456    // Check the subloops.
457    for (iterator I = begin(), E = end(); I != E; ++I)
458      // Each block in each subloop should be contained within this loop.
459      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
460           BI != BE; ++BI) {
461        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
462               "Loop does not contain all the blocks of a subloop!");
463      }
464
465    // Check the parent loop pointer.
466    if (ParentLoop) {
467      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
468               ParentLoop->end() &&
469             "Loop is not a subloop of its parent!");
470    }
471#endif
472  }
473
474  /// verifyLoop - Verify loop structure of this loop and all nested loops.
475  void verifyLoopNest() const {
476    // Verify this loop.
477    verifyLoop();
478    // Verify the subloops.
479    for (iterator I = begin(), E = end(); I != E; ++I)
480      (*I)->verifyLoopNest();
481  }
482
483  void print(raw_ostream &OS, unsigned Depth = 0) const {
484    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
485       << " containing: ";
486
487    for (unsigned i = 0; i < getBlocks().size(); ++i) {
488      if (i) OS << ",";
489      BlockT *BB = getBlocks()[i];
490      WriteAsOperand(OS, BB, false);
491      if (BB == getHeader())    OS << "<header>";
492      if (BB == getLoopLatch()) OS << "<latch>";
493      if (isLoopExiting(BB))    OS << "<exiting>";
494    }
495    OS << "\n";
496
497    for (iterator I = begin(), E = end(); I != E; ++I)
498      (*I)->print(OS, Depth+2);
499  }
500
501protected:
502  friend class LoopInfoBase<BlockT, LoopT>;
503  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
504    Blocks.push_back(BB);
505  }
506};
507
508class Loop : public LoopBase<BasicBlock, Loop> {
509public:
510  Loop() {}
511
512  /// isLoopInvariant - Return true if the specified value is loop invariant
513  ///
514  bool isLoopInvariant(Value *V) const;
515
516  /// isLoopInvariant - Return true if the specified instruction is
517  /// loop-invariant.
518  ///
519  bool isLoopInvariant(Instruction *I) const;
520
521  /// makeLoopInvariant - If the given value is an instruction inside of the
522  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
523  /// Return true if the value after any hoisting is loop invariant. This
524  /// function can be used as a slightly more aggressive replacement for
525  /// isLoopInvariant.
526  ///
527  /// If InsertPt is specified, it is the point to hoist instructions to.
528  /// If null, the terminator of the loop preheader is used.
529  ///
530  bool makeLoopInvariant(Value *V, bool &Changed,
531                         Instruction *InsertPt = 0) const;
532
533  /// makeLoopInvariant - If the given instruction is inside of the
534  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
535  /// Return true if the instruction after any hoisting is loop invariant. This
536  /// function can be used as a slightly more aggressive replacement for
537  /// isLoopInvariant.
538  ///
539  /// If InsertPt is specified, it is the point to hoist instructions to.
540  /// If null, the terminator of the loop preheader is used.
541  ///
542  bool makeLoopInvariant(Instruction *I, bool &Changed,
543                         Instruction *InsertPt = 0) const;
544
545  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
546  /// induction variable: an integer recurrence that starts at 0 and increments
547  /// by one each time through the loop.  If so, return the phi node that
548  /// corresponds to it.
549  ///
550  /// The IndVarSimplify pass transforms loops to have a canonical induction
551  /// variable.
552  ///
553  PHINode *getCanonicalInductionVariable() const;
554
555  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
556  /// the canonical induction variable value for the "next" iteration of the
557  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
558  ///
559  Instruction *getCanonicalInductionVariableIncrement() const;
560
561  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
562  /// times the loop will be executed.  Note that this means that the backedge
563  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
564  /// this returns null.
565  ///
566  /// The IndVarSimplify pass transforms loops to have a form that this
567  /// function easily understands.
568  ///
569  Value *getTripCount() const;
570
571  /// getSmallConstantTripCount - Returns the trip count of this loop as a
572  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
573  /// of not constant. Will also return 0 if the trip count is very large
574  /// (>= 2^32)
575  ///
576  /// The IndVarSimplify pass transforms loops to have a form that this
577  /// function easily understands.
578  ///
579  unsigned getSmallConstantTripCount() const;
580
581  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
582  /// trip count of this loop as a normal unsigned value, if possible. This
583  /// means that the actual trip count is always a multiple of the returned
584  /// value (don't forget the trip count could very well be zero as well!).
585  ///
586  /// Returns 1 if the trip count is unknown or not guaranteed to be the
587  /// multiple of a constant (which is also the case if the trip count is simply
588  /// constant, use getSmallConstantTripCount for that case), Will also return 1
589  /// if the trip count is very large (>= 2^32).
590  unsigned getSmallConstantTripMultiple() const;
591
592  /// isLCSSAForm - Return true if the Loop is in LCSSA form
593  bool isLCSSAForm(DominatorTree &DT) const;
594
595  /// isLoopSimplifyForm - Return true if the Loop is in the form that
596  /// the LoopSimplify form transforms loops to, which is sometimes called
597  /// normal form.
598  bool isLoopSimplifyForm() const;
599
600  /// hasDedicatedExits - Return true if no exit block for the loop
601  /// has a predecessor that is outside the loop.
602  bool hasDedicatedExits() const;
603
604  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
605  /// These are the blocks _outside of the current loop_ which are branched to.
606  /// This assumes that loop exits are in canonical form.
607  ///
608  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
609
610  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
611  /// block, return that block. Otherwise return null.
612  BasicBlock *getUniqueExitBlock() const;
613
614  void dump() const;
615
616private:
617  friend class LoopInfoBase<BasicBlock, Loop>;
618  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
619};
620
621//===----------------------------------------------------------------------===//
622/// LoopInfo - This class builds and contains all of the top level loop
623/// structures in the specified function.
624///
625
626template<class BlockT, class LoopT>
627class LoopInfoBase {
628  // BBMap - Mapping of basic blocks to the inner most loop they occur in
629  std::map<BlockT *, LoopT *> BBMap;
630  std::vector<LoopT *> TopLevelLoops;
631  friend class LoopBase<BlockT, LoopT>;
632
633  void operator=(const LoopInfoBase &); // do not implement
634  LoopInfoBase(const LoopInfo &);       // do not implement
635public:
636  LoopInfoBase() { }
637  ~LoopInfoBase() { releaseMemory(); }
638
639  void releaseMemory() {
640    for (typename std::vector<LoopT *>::iterator I =
641         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
642      delete *I;   // Delete all of the loops...
643
644    BBMap.clear();                           // Reset internal state of analysis
645    TopLevelLoops.clear();
646  }
647
648  /// iterator/begin/end - The interface to the top-level loops in the current
649  /// function.
650  ///
651  typedef typename std::vector<LoopT *>::const_iterator iterator;
652  iterator begin() const { return TopLevelLoops.begin(); }
653  iterator end() const { return TopLevelLoops.end(); }
654  bool empty() const { return TopLevelLoops.empty(); }
655
656  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
657  /// block is in no loop (for example the entry node), null is returned.
658  ///
659  LoopT *getLoopFor(const BlockT *BB) const {
660    typename std::map<BlockT *, LoopT *>::const_iterator I=
661      BBMap.find(const_cast<BlockT*>(BB));
662    return I != BBMap.end() ? I->second : 0;
663  }
664
665  /// operator[] - same as getLoopFor...
666  ///
667  const LoopT *operator[](const BlockT *BB) const {
668    return getLoopFor(BB);
669  }
670
671  /// getLoopDepth - Return the loop nesting level of the specified block.  A
672  /// depth of 0 means the block is not inside any loop.
673  ///
674  unsigned getLoopDepth(const BlockT *BB) const {
675    const LoopT *L = getLoopFor(BB);
676    return L ? L->getLoopDepth() : 0;
677  }
678
679  // isLoopHeader - True if the block is a loop header node
680  bool isLoopHeader(BlockT *BB) const {
681    const LoopT *L = getLoopFor(BB);
682    return L && L->getHeader() == BB;
683  }
684
685  /// removeLoop - This removes the specified top-level loop from this loop info
686  /// object.  The loop is not deleted, as it will presumably be inserted into
687  /// another loop.
688  LoopT *removeLoop(iterator I) {
689    assert(I != end() && "Cannot remove end iterator!");
690    LoopT *L = *I;
691    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
692    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
693    return L;
694  }
695
696  /// changeLoopFor - Change the top-level loop that contains BB to the
697  /// specified loop.  This should be used by transformations that restructure
698  /// the loop hierarchy tree.
699  void changeLoopFor(BlockT *BB, LoopT *L) {
700    LoopT *&OldLoop = BBMap[BB];
701    assert(OldLoop && "Block not in a loop yet!");
702    OldLoop = L;
703  }
704
705  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
706  /// list with the indicated loop.
707  void changeTopLevelLoop(LoopT *OldLoop,
708                          LoopT *NewLoop) {
709    typename std::vector<LoopT *>::iterator I =
710                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
711    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
712    *I = NewLoop;
713    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
714           "Loops already embedded into a subloop!");
715  }
716
717  /// addTopLevelLoop - This adds the specified loop to the collection of
718  /// top-level loops.
719  void addTopLevelLoop(LoopT *New) {
720    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
721    TopLevelLoops.push_back(New);
722  }
723
724  /// removeBlock - This method completely removes BB from all data structures,
725  /// including all of the Loop objects it is nested in and our mapping from
726  /// BasicBlocks to loops.
727  void removeBlock(BlockT *BB) {
728    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
729    if (I != BBMap.end()) {
730      for (LoopT *L = I->second; L; L = L->getParentLoop())
731        L->removeBlockFromLoop(BB);
732
733      BBMap.erase(I);
734    }
735  }
736
737  // Internals
738
739  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
740                                      const LoopT *ParentLoop) {
741    if (SubLoop == 0) return true;
742    if (SubLoop == ParentLoop) return false;
743    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
744  }
745
746  void Calculate(DominatorTreeBase<BlockT> &DT) {
747    BlockT *RootNode = DT.getRootNode()->getBlock();
748
749    for (df_iterator<BlockT*> NI = df_begin(RootNode),
750           NE = df_end(RootNode); NI != NE; ++NI)
751      if (LoopT *L = ConsiderForLoop(*NI, DT))
752        TopLevelLoops.push_back(L);
753  }
754
755  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
756    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
757
758    std::vector<BlockT *> TodoStack;
759
760    // Scan the predecessors of BB, checking to see if BB dominates any of
761    // them.  This identifies backedges which target this node...
762    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
763    for (typename InvBlockTraits::ChildIteratorType I =
764         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
765         I != E; ++I) {
766      typename InvBlockTraits::NodeType *N = *I;
767      if (DT.dominates(BB, N))   // If BB dominates its predecessor...
768          TodoStack.push_back(N);
769    }
770
771    if (TodoStack.empty()) return 0;  // No backedges to this block...
772
773    // Create a new loop to represent this basic block...
774    LoopT *L = new LoopT(BB);
775    BBMap[BB] = L;
776
777    BlockT *EntryBlock = BB->getParent()->begin();
778
779    while (!TodoStack.empty()) {  // Process all the nodes in the loop
780      BlockT *X = TodoStack.back();
781      TodoStack.pop_back();
782
783      if (!L->contains(X) &&         // As of yet unprocessed??
784          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
785        // Check to see if this block already belongs to a loop.  If this occurs
786        // then we have a case where a loop that is supposed to be a child of
787        // the current loop was processed before the current loop.  When this
788        // occurs, this child loop gets added to a part of the current loop,
789        // making it a sibling to the current loop.  We have to reparent this
790        // loop.
791        if (LoopT *SubLoop =
792            const_cast<LoopT *>(getLoopFor(X)))
793          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
794            // Remove the subloop from its current parent...
795            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
796            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
797            typename std::vector<LoopT *>::iterator I =
798              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
799            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
800            SLP->SubLoops.erase(I);   // Remove from parent...
801
802            // Add the subloop to THIS loop...
803            SubLoop->ParentLoop = L;
804            L->SubLoops.push_back(SubLoop);
805          }
806
807        // Normal case, add the block to our loop...
808        L->Blocks.push_back(X);
809
810        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
811
812        // Add all of the predecessors of X to the end of the work stack...
813        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
814                         InvBlockTraits::child_end(X));
815      }
816    }
817
818    // If there are any loops nested within this loop, create them now!
819    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
820         E = L->Blocks.end(); I != E; ++I)
821      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
822        L->SubLoops.push_back(NewLoop);
823        NewLoop->ParentLoop = L;
824      }
825
826    // Add the basic blocks that comprise this loop to the BBMap so that this
827    // loop can be found for them.
828    //
829    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
830           E = L->Blocks.end(); I != E; ++I)
831      BBMap.insert(std::make_pair(*I, L));
832
833    // Now that we have a list of all of the child loops of this loop, check to
834    // see if any of them should actually be nested inside of each other.  We
835    // can accidentally pull loops our of their parents, so we must make sure to
836    // organize the loop nests correctly now.
837    {
838      std::map<BlockT *, LoopT *> ContainingLoops;
839      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
840        LoopT *Child = L->SubLoops[i];
841        assert(Child->getParentLoop() == L && "Not proper child loop?");
842
843        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
844          // If there is already a loop which contains this loop, move this loop
845          // into the containing loop.
846          MoveSiblingLoopInto(Child, ContainingLoop);
847          --i;  // The loop got removed from the SubLoops list.
848        } else {
849          // This is currently considered to be a top-level loop.  Check to see
850          // if any of the contained blocks are loop headers for subloops we
851          // have already processed.
852          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
853            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
854            if (BlockLoop == 0) {   // Child block not processed yet...
855              BlockLoop = Child;
856            } else if (BlockLoop != Child) {
857              LoopT *SubLoop = BlockLoop;
858              // Reparent all of the blocks which used to belong to BlockLoops
859              for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
860                ContainingLoops[SubLoop->Blocks[j]] = Child;
861
862              // There is already a loop which contains this block, that means
863              // that we should reparent the loop which the block is currently
864              // considered to belong to to be a child of this loop.
865              MoveSiblingLoopInto(SubLoop, Child);
866              --i;  // We just shrunk the SubLoops list.
867            }
868          }
869        }
870      }
871    }
872
873    return L;
874  }
875
876  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
877  /// of the NewParent Loop, instead of being a sibling of it.
878  void MoveSiblingLoopInto(LoopT *NewChild,
879                           LoopT *NewParent) {
880    LoopT *OldParent = NewChild->getParentLoop();
881    assert(OldParent && OldParent == NewParent->getParentLoop() &&
882           NewChild != NewParent && "Not sibling loops!");
883
884    // Remove NewChild from being a child of OldParent
885    typename std::vector<LoopT *>::iterator I =
886      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
887                NewChild);
888    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
889    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
890    NewChild->ParentLoop = 0;
891
892    InsertLoopInto(NewChild, NewParent);
893  }
894
895  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
896  /// the parent loop contains a loop which should contain L, the loop gets
897  /// inserted into L instead.
898  void InsertLoopInto(LoopT *L, LoopT *Parent) {
899    BlockT *LHeader = L->getHeader();
900    assert(Parent->contains(LHeader) &&
901           "This loop should not be inserted here!");
902
903    // Check to see if it belongs in a child loop...
904    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
905         i != e; ++i)
906      if (Parent->SubLoops[i]->contains(LHeader)) {
907        InsertLoopInto(L, Parent->SubLoops[i]);
908        return;
909      }
910
911    // If not, insert it here!
912    Parent->SubLoops.push_back(L);
913    L->ParentLoop = Parent;
914  }
915
916  // Debugging
917
918  void print(raw_ostream &OS) const {
919    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
920      TopLevelLoops[i]->print(OS);
921  #if 0
922    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
923           E = BBMap.end(); I != E; ++I)
924      OS << "BB '" << I->first->getName() << "' level = "
925         << I->second->getLoopDepth() << "\n";
926  #endif
927  }
928};
929
930class LoopInfo : public FunctionPass {
931  LoopInfoBase<BasicBlock, Loop> LI;
932  friend class LoopBase<BasicBlock, Loop>;
933
934  void operator=(const LoopInfo &); // do not implement
935  LoopInfo(const LoopInfo &);       // do not implement
936public:
937  static char ID; // Pass identification, replacement for typeid
938
939  LoopInfo() : FunctionPass(&ID) {}
940
941  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
942
943  /// iterator/begin/end - The interface to the top-level loops in the current
944  /// function.
945  ///
946  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
947  inline iterator begin() const { return LI.begin(); }
948  inline iterator end() const { return LI.end(); }
949  bool empty() const { return LI.empty(); }
950
951  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
952  /// block is in no loop (for example the entry node), null is returned.
953  ///
954  inline Loop *getLoopFor(const BasicBlock *BB) const {
955    return LI.getLoopFor(BB);
956  }
957
958  /// operator[] - same as getLoopFor...
959  ///
960  inline const Loop *operator[](const BasicBlock *BB) const {
961    return LI.getLoopFor(BB);
962  }
963
964  /// getLoopDepth - Return the loop nesting level of the specified block.  A
965  /// depth of 0 means the block is not inside any loop.
966  ///
967  inline unsigned getLoopDepth(const BasicBlock *BB) const {
968    return LI.getLoopDepth(BB);
969  }
970
971  // isLoopHeader - True if the block is a loop header node
972  inline bool isLoopHeader(BasicBlock *BB) const {
973    return LI.isLoopHeader(BB);
974  }
975
976  /// runOnFunction - Calculate the natural loop information.
977  ///
978  virtual bool runOnFunction(Function &F);
979
980  virtual void verifyAnalysis() const;
981
982  virtual void releaseMemory() { LI.releaseMemory(); }
983
984  virtual void print(raw_ostream &O, const Module* M = 0) const;
985
986  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
987
988  /// removeLoop - This removes the specified top-level loop from this loop info
989  /// object.  The loop is not deleted, as it will presumably be inserted into
990  /// another loop.
991  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
992
993  /// changeLoopFor - Change the top-level loop that contains BB to the
994  /// specified loop.  This should be used by transformations that restructure
995  /// the loop hierarchy tree.
996  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
997    LI.changeLoopFor(BB, L);
998  }
999
1000  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1001  /// list with the indicated loop.
1002  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1003    LI.changeTopLevelLoop(OldLoop, NewLoop);
1004  }
1005
1006  /// addTopLevelLoop - This adds the specified loop to the collection of
1007  /// top-level loops.
1008  inline void addTopLevelLoop(Loop *New) {
1009    LI.addTopLevelLoop(New);
1010  }
1011
1012  /// removeBlock - This method completely removes BB from all data structures,
1013  /// including all of the Loop objects it is nested in and our mapping from
1014  /// BasicBlocks to loops.
1015  void removeBlock(BasicBlock *BB) {
1016    LI.removeBlock(BB);
1017  }
1018};
1019
1020
1021// Allow clients to walk the list of nested loops...
1022template <> struct GraphTraits<const Loop*> {
1023  typedef const Loop NodeType;
1024  typedef LoopInfo::iterator ChildIteratorType;
1025
1026  static NodeType *getEntryNode(const Loop *L) { return L; }
1027  static inline ChildIteratorType child_begin(NodeType *N) {
1028    return N->begin();
1029  }
1030  static inline ChildIteratorType child_end(NodeType *N) {
1031    return N->end();
1032  }
1033};
1034
1035template <> struct GraphTraits<Loop*> {
1036  typedef Loop NodeType;
1037  typedef LoopInfo::iterator ChildIteratorType;
1038
1039  static NodeType *getEntryNode(Loop *L) { return L; }
1040  static inline ChildIteratorType child_begin(NodeType *N) {
1041    return N->begin();
1042  }
1043  static inline ChildIteratorType child_end(NodeType *N) {
1044    return N->end();
1045  }
1046};
1047
1048template<class BlockT, class LoopT>
1049void
1050LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1051                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1052  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1053         "Incorrect LI specified for this loop!");
1054  assert(NewBB && "Cannot add a null basic block to the loop!");
1055  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1056
1057  LoopT *L = static_cast<LoopT *>(this);
1058
1059  // Add the loop mapping to the LoopInfo object...
1060  LIB.BBMap[NewBB] = L;
1061
1062  // Add the basic block to this loop and all parent loops...
1063  while (L) {
1064    L->Blocks.push_back(NewBB);
1065    L = L->getParentLoop();
1066  }
1067}
1068
1069} // End llvm namespace
1070
1071#endif
1072