LoopInfo.h revision 9d59d9f8495b0361c9ffd1dc82888d8e7ba5070e
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/Constants.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Streams.h"
43#include <algorithm>
44#include <ostream>
45
46namespace llvm {
47
48template<typename T>
49static void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57template<class N> class LoopInfoBase;
58template<class N> class LoopBase;
59
60typedef LoopBase<BasicBlock> Loop;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT>
67class LoopBase {
68  LoopBase<BlockT> *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopBase<BlockT>*> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
76  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
77public:
78  /// Loop ctor - This creates an empty loop.
79  LoopBase() : ParentLoop(0) {}
80  ~LoopBase() {
81    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
82      delete SubLoops[i];
83  }
84
85  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
86  /// loop has depth 1, for consistency with loop depth values used for basic
87  /// blocks, where depth 0 is used for blocks not inside any loops.
88  unsigned getLoopDepth() const {
89    unsigned D = 1;
90    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
91         CurLoop = CurLoop->ParentLoop)
92      ++D;
93    return D;
94  }
95  BlockT *getHeader() const { return Blocks.front(); }
96  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
97
98  /// contains - Return true if the specified basic block is in this loop
99  ///
100  bool contains(const BlockT *BB) const {
101    return std::find(block_begin(), block_end(), BB) != block_end();
102  }
103
104  /// iterator/begin/end - Return the loops contained entirely within this loop.
105  ///
106  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
107  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
108  iterator begin() const { return SubLoops.begin(); }
109  iterator end() const { return SubLoops.end(); }
110  bool empty() const { return SubLoops.empty(); }
111
112  /// getBlocks - Get a list of the basic blocks which make up this loop.
113  ///
114  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
115  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
116  block_iterator block_begin() const { return Blocks.begin(); }
117  block_iterator block_end() const { return Blocks.end(); }
118
119  /// isLoopExit - True if terminator in the block can branch to another block
120  /// that is outside of the current loop.
121  ///
122  bool isLoopExit(const BlockT *BB) const {
123    typedef GraphTraits<BlockT*> BlockTraits;
124    for (typename BlockTraits::ChildIteratorType SI =
125         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
126         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
127      if (!contains(*SI))
128        return true;
129    }
130    return false;
131  }
132
133  /// getNumBackEdges - Calculate the number of back edges to the loop header
134  ///
135  unsigned getNumBackEdges() const {
136    unsigned NumBackEdges = 0;
137    BlockT *H = getHeader();
138
139    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
140    for (typename InvBlockTraits::ChildIteratorType I =
141         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
142         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
143      if (contains(*I))
144        ++NumBackEdges;
145
146    return NumBackEdges;
147  }
148
149  /// isLoopInvariant - Return true if the specified value is loop invariant
150  ///
151  inline bool isLoopInvariant(Value *V) const {
152    if (Instruction *I = dyn_cast<Instruction>(V))
153      return !contains(I->getParent());
154    return true;  // All non-instructions are loop invariant
155  }
156
157  //===--------------------------------------------------------------------===//
158  // APIs for simple analysis of the loop.
159  //
160  // Note that all of these methods can fail on general loops (ie, there may not
161  // be a preheader, etc).  For best success, the loop simplification and
162  // induction variable canonicalization pass should be used to normalize loops
163  // for easy analysis.  These methods assume canonical loops.
164
165  /// getExitingBlocks - Return all blocks inside the loop that have successors
166  /// outside of the loop.  These are the blocks _inside of the current loop_
167  /// which branch out.  The returned list is always unique.
168  ///
169  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
170    // Sort the blocks vector so that we can use binary search to do quick
171    // lookups.
172    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
173    std::sort(LoopBBs.begin(), LoopBBs.end());
174
175    typedef GraphTraits<BlockT*> BlockTraits;
176    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
177      for (typename BlockTraits::ChildIteratorType I =
178          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
179          I != E; ++I)
180        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
181          // Not in current loop? It must be an exit block.
182          ExitingBlocks.push_back(*BI);
183          break;
184        }
185  }
186
187  /// getExitingBlock - If getExitingBlocks would return exactly one block,
188  /// return that block. Otherwise return null.
189  BlockT *getExitingBlock() const {
190    SmallVector<BlockT*, 8> ExitingBlocks;
191    getExitingBlocks(ExitingBlocks);
192    if (ExitingBlocks.size() == 1)
193      return ExitingBlocks[0];
194    return 0;
195  }
196
197  /// getExitBlocks - Return all of the successor blocks of this loop.  These
198  /// are the blocks _outside of the current loop_ which are branched to.
199  ///
200  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
201    // Sort the blocks vector so that we can use binary search to do quick
202    // lookups.
203    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
204    std::sort(LoopBBs.begin(), LoopBBs.end());
205
206    typedef GraphTraits<BlockT*> BlockTraits;
207    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
208      for (typename BlockTraits::ChildIteratorType I =
209           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
210           I != E; ++I)
211        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
212          // Not in current loop? It must be an exit block.
213          ExitBlocks.push_back(*I);
214  }
215
216  /// getExitBlock - If getExitBlocks would return exactly one block,
217  /// return that block. Otherwise return null.
218  BlockT *getExitBlock() const {
219    SmallVector<BlockT*, 8> ExitBlocks;
220    getExitBlocks(ExitBlocks);
221    if (ExitBlocks.size() == 1)
222      return ExitBlocks[0];
223    return 0;
224  }
225
226  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
227  /// These are the blocks _outside of the current loop_ which are branched to.
228  /// This assumes that loop is in canonical form.
229  ///
230  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
231    // Sort the blocks vector so that we can use binary search to do quick
232    // lookups.
233    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
234    std::sort(LoopBBs.begin(), LoopBBs.end());
235
236    std::vector<BlockT*> switchExitBlocks;
237
238    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
239
240      BlockT *current = *BI;
241      switchExitBlocks.clear();
242
243      typedef GraphTraits<BlockT*> BlockTraits;
244      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
245      for (typename BlockTraits::ChildIteratorType I =
246           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
247           I != E; ++I) {
248        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
249      // If block is inside the loop then it is not a exit block.
250          continue;
251
252        typename InvBlockTraits::ChildIteratorType PI =
253                                                InvBlockTraits::child_begin(*I);
254        BlockT *firstPred = *PI;
255
256        // If current basic block is this exit block's first predecessor
257        // then only insert exit block in to the output ExitBlocks vector.
258        // This ensures that same exit block is not inserted twice into
259        // ExitBlocks vector.
260        if (current != firstPred)
261          continue;
262
263        // If a terminator has more then two successors, for example SwitchInst,
264        // then it is possible that there are multiple edges from current block
265        // to one exit block.
266        if (std::distance(BlockTraits::child_begin(current),
267                          BlockTraits::child_end(current)) <= 2) {
268          ExitBlocks.push_back(*I);
269          continue;
270        }
271
272        // In case of multiple edges from current block to exit block, collect
273        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
274        // duplicate edges.
275        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
276            == switchExitBlocks.end()) {
277          switchExitBlocks.push_back(*I);
278          ExitBlocks.push_back(*I);
279        }
280      }
281    }
282  }
283
284  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
285  /// block, return that block. Otherwise return null.
286  BlockT *getUniqueExitBlock() const {
287    SmallVector<BlockT*, 8> UniqueExitBlocks;
288    getUniqueExitBlocks(UniqueExitBlocks);
289    if (UniqueExitBlocks.size() == 1)
290      return UniqueExitBlocks[0];
291    return 0;
292  }
293
294  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
295  /// loop has a preheader if there is only one edge to the header of the loop
296  /// from outside of the loop.  If this is the case, the block branching to the
297  /// header of the loop is the preheader node.
298  ///
299  /// This method returns null if there is no preheader for the loop.
300  ///
301  BlockT *getLoopPreheader() const {
302    // Keep track of nodes outside the loop branching to the header...
303    BlockT *Out = 0;
304
305    // Loop over the predecessors of the header node...
306    BlockT *Header = getHeader();
307    typedef GraphTraits<BlockT*> BlockTraits;
308    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
309    for (typename InvBlockTraits::ChildIteratorType PI =
310         InvBlockTraits::child_begin(Header),
311         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
312      if (!contains(*PI)) {     // If the block is not in the loop...
313        if (Out && Out != *PI)
314          return 0;             // Multiple predecessors outside the loop
315        Out = *PI;
316      }
317
318    // Make sure there is only one exit out of the preheader.
319    assert(Out && "Header of loop has no predecessors from outside loop?");
320    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
321    ++SI;
322    if (SI != BlockTraits::child_end(Out))
323      return 0;  // Multiple exits from the block, must not be a preheader.
324
325    // If there is exactly one preheader, return it.  If there was zero, then
326    // Out is still null.
327    return Out;
328  }
329
330  /// getLoopLatch - If there is a single latch block for this loop, return it.
331  /// A latch block is a block that contains a branch back to the header.
332  /// A loop header in normal form has two edges into it: one from a preheader
333  /// and one from a latch block.
334  BlockT *getLoopLatch() const {
335    BlockT *Header = getHeader();
336    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
337    typename InvBlockTraits::ChildIteratorType PI =
338                                            InvBlockTraits::child_begin(Header);
339    typename InvBlockTraits::ChildIteratorType PE =
340                                              InvBlockTraits::child_end(Header);
341    if (PI == PE) return 0;  // no preds?
342
343    BlockT *Latch = 0;
344    if (contains(*PI))
345      Latch = *PI;
346    ++PI;
347    if (PI == PE) return 0;  // only one pred?
348
349    if (contains(*PI)) {
350      if (Latch) return 0;  // multiple backedges
351      Latch = *PI;
352    }
353    ++PI;
354    if (PI != PE) return 0;  // more than two preds
355
356    return Latch;
357  }
358
359  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
360  /// induction variable: an integer recurrence that starts at 0 and increments
361  /// by one each time through the loop.  If so, return the phi node that
362  /// corresponds to it.
363  ///
364  /// The IndVarSimplify pass transforms loops to have a canonical induction
365  /// variable.
366  ///
367  inline PHINode *getCanonicalInductionVariable() const {
368    BlockT *H = getHeader();
369
370    BlockT *Incoming = 0, *Backedge = 0;
371    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
372    typename InvBlockTraits::ChildIteratorType PI =
373                                                 InvBlockTraits::child_begin(H);
374    assert(PI != InvBlockTraits::child_end(H) &&
375           "Loop must have at least one backedge!");
376    Backedge = *PI++;
377    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
378    Incoming = *PI++;
379    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
380
381    if (contains(Incoming)) {
382      if (contains(Backedge))
383        return 0;
384      std::swap(Incoming, Backedge);
385    } else if (!contains(Backedge))
386      return 0;
387
388    // Loop over all of the PHI nodes, looking for a canonical indvar.
389    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
390      PHINode *PN = cast<PHINode>(I);
391      if (ConstantInt *CI =
392          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
393        if (CI->isNullValue())
394          if (Instruction *Inc =
395              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
396            if (Inc->getOpcode() == Instruction::Add &&
397                Inc->getOperand(0) == PN)
398              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
399                if (CI->equalsInt(1))
400                  return PN;
401    }
402    return 0;
403  }
404
405  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
406  /// the canonical induction variable value for the "next" iteration of the
407  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
408  ///
409  inline Instruction *getCanonicalInductionVariableIncrement() const {
410    if (PHINode *PN = getCanonicalInductionVariable()) {
411      bool P1InLoop = contains(PN->getIncomingBlock(1));
412      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
413    }
414    return 0;
415  }
416
417  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
418  /// times the loop will be executed.  Note that this means that the backedge
419  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
420  /// this returns null.
421  ///
422  /// The IndVarSimplify pass transforms loops to have a form that this
423  /// function easily understands.
424  ///
425  inline Value *getTripCount() const {
426    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
427    // canonical induction variable and V is the trip count of the loop.
428    Instruction *Inc = getCanonicalInductionVariableIncrement();
429    if (Inc == 0) return 0;
430    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
431
432    BlockT *BackedgeBlock =
433            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
434
435    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
436      if (BI->isConditional()) {
437        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
438          if (ICI->getOperand(0) == Inc) {
439            if (BI->getSuccessor(0) == getHeader()) {
440              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
441                return ICI->getOperand(1);
442            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
443              return ICI->getOperand(1);
444            }
445          }
446        }
447      }
448
449    return 0;
450  }
451
452  /// getSmallConstantTripCount - Returns the trip count of this loop as a
453  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
454  /// of not constant. Will also return 0 if the trip count is very large
455  /// (>= 2^32)
456  inline unsigned getSmallConstantTripCount() const {
457    Value* TripCount = this->getTripCount();
458    if (TripCount) {
459      if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
460        // Guard against huge trip counts.
461        if (TripCountC->getValue().getActiveBits() <= 32) {
462          return (unsigned)TripCountC->getZExtValue();
463        }
464      }
465    }
466    return 0;
467  }
468
469  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
470  /// trip count of this loop as a normal unsigned value, if possible. This
471  /// means that the actual trip count is always a multiple of the returned
472  /// value (don't forget the trip count could very well be zero as well!).
473  ///
474  /// Returns 1 if the trip count is unknown or not guaranteed to be the
475  /// multiple of a constant (which is also the case if the trip count is simply
476  /// constant, use getSmallConstantTripCount for that case), Will also return 1
477  /// if the trip count is very large (>= 2^32).
478  inline unsigned getSmallConstantTripMultiple() const {
479    Value* TripCount = this->getTripCount();
480    // This will hold the ConstantInt result, if any
481    ConstantInt *Result = NULL;
482    if (TripCount) {
483      // See if the trip count is constant itself
484      Result = dyn_cast<ConstantInt>(TripCount);
485      // if not, see if it is a multiplication
486      if (!Result)
487        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
488          switch (BO->getOpcode()) {
489          case BinaryOperator::Mul:
490            Result = dyn_cast<ConstantInt>(BO->getOperand(1));
491            break;
492          default:
493            break;
494          }
495        }
496    }
497    // Guard against huge trip counts.
498    if (Result && Result->getValue().getActiveBits() <= 32) {
499      return (unsigned)Result->getZExtValue();
500    } else {
501      return 1;
502    }
503  }
504
505  /// isLCSSAForm - Return true if the Loop is in LCSSA form
506  inline bool isLCSSAForm() const {
507    // Sort the blocks vector so that we can use binary search to do quick
508    // lookups.
509    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
510
511    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
512      BlockT *BB = *BI;
513      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
514        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
515             ++UI) {
516          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
517          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
518            UserBB = P->getIncomingBlock(UI);
519          }
520
521          // Check the current block, as a fast-path.  Most values are used in
522          // the same block they are defined in.
523          if (UserBB != BB && !LoopBBs.count(UserBB))
524            return false;
525        }
526    }
527
528    return true;
529  }
530
531  //===--------------------------------------------------------------------===//
532  // APIs for updating loop information after changing the CFG
533  //
534
535  /// addBasicBlockToLoop - This method is used by other analyses to update loop
536  /// information.  NewBB is set to be a new member of the current loop.
537  /// Because of this, it is added as a member of all parent loops, and is added
538  /// to the specified LoopInfo object as being in the current basic block.  It
539  /// is not valid to replace the loop header with this method.
540  ///
541  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
542
543  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
544  /// the OldChild entry in our children list with NewChild, and updates the
545  /// parent pointer of OldChild to be null and the NewChild to be this loop.
546  /// This updates the loop depth of the new child.
547  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
548                            LoopBase<BlockT> *NewChild) {
549    assert(OldChild->ParentLoop == this && "This loop is already broken!");
550    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
551    typename std::vector<LoopBase<BlockT>*>::iterator I =
552                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
553    assert(I != SubLoops.end() && "OldChild not in loop!");
554    *I = NewChild;
555    OldChild->ParentLoop = 0;
556    NewChild->ParentLoop = this;
557  }
558
559  /// addChildLoop - Add the specified loop to be a child of this loop.  This
560  /// updates the loop depth of the new child.
561  ///
562  void addChildLoop(LoopBase<BlockT> *NewChild) {
563    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
564    NewChild->ParentLoop = this;
565    SubLoops.push_back(NewChild);
566  }
567
568  /// removeChildLoop - This removes the specified child from being a subloop of
569  /// this loop.  The loop is not deleted, as it will presumably be inserted
570  /// into another loop.
571  LoopBase<BlockT> *removeChildLoop(iterator I) {
572    assert(I != SubLoops.end() && "Cannot remove end iterator!");
573    LoopBase<BlockT> *Child = *I;
574    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
575    SubLoops.erase(SubLoops.begin()+(I-begin()));
576    Child->ParentLoop = 0;
577    return Child;
578  }
579
580  /// addBlockEntry - This adds a basic block directly to the basic block list.
581  /// This should only be used by transformations that create new loops.  Other
582  /// transformations should use addBasicBlockToLoop.
583  void addBlockEntry(BlockT *BB) {
584    Blocks.push_back(BB);
585  }
586
587  /// moveToHeader - This method is used to move BB (which must be part of this
588  /// loop) to be the loop header of the loop (the block that dominates all
589  /// others).
590  void moveToHeader(BlockT *BB) {
591    if (Blocks[0] == BB) return;
592    for (unsigned i = 0; ; ++i) {
593      assert(i != Blocks.size() && "Loop does not contain BB!");
594      if (Blocks[i] == BB) {
595        Blocks[i] = Blocks[0];
596        Blocks[0] = BB;
597        return;
598      }
599    }
600  }
601
602  /// removeBlockFromLoop - This removes the specified basic block from the
603  /// current loop, updating the Blocks as appropriate.  This does not update
604  /// the mapping in the LoopInfo class.
605  void removeBlockFromLoop(BlockT *BB) {
606    RemoveFromVector(Blocks, BB);
607  }
608
609  /// verifyLoop - Verify loop structure
610  void verifyLoop() const {
611#ifndef NDEBUG
612    assert (getHeader() && "Loop header is missing");
613    assert (getLoopPreheader() && "Loop preheader is missing");
614    assert (getLoopLatch() && "Loop latch is missing");
615    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
616      (*I)->verifyLoop();
617#endif
618  }
619
620  void print(std::ostream &OS, unsigned Depth = 0) const {
621    OS << std::string(Depth*2, ' ') << "Loop at depth " << getLoopDepth()
622       << " containing: ";
623
624    for (unsigned i = 0; i < getBlocks().size(); ++i) {
625      if (i) OS << ",";
626      BlockT *BB = getBlocks()[i];
627      WriteAsOperand(OS, BB, false);
628      if (BB == getHeader())    OS << "<header>";
629      if (BB == getLoopLatch()) OS << "<latch>";
630      if (isLoopExit(BB))       OS << "<exit>";
631    }
632    OS << "\n";
633
634    for (iterator I = begin(), E = end(); I != E; ++I)
635      (*I)->print(OS, Depth+2);
636  }
637
638  void print(std::ostream *O, unsigned Depth = 0) const {
639    if (O) print(*O, Depth);
640  }
641
642  void dump() const {
643    print(cerr);
644  }
645
646private:
647  friend class LoopInfoBase<BlockT>;
648  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
649    Blocks.push_back(BB);
650  }
651};
652
653
654//===----------------------------------------------------------------------===//
655/// LoopInfo - This class builds and contains all of the top level loop
656/// structures in the specified function.
657///
658
659template<class BlockT>
660class LoopInfoBase {
661  // BBMap - Mapping of basic blocks to the inner most loop they occur in
662  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
663  std::vector<LoopBase<BlockT>*> TopLevelLoops;
664  friend class LoopBase<BlockT>;
665
666  void operator=(const LoopInfoBase &); // do not implement
667  LoopInfoBase(const LoopInfo &);       // do not implement
668public:
669  LoopInfoBase() { }
670  ~LoopInfoBase() { releaseMemory(); }
671
672  void releaseMemory() {
673    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
674         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
675      delete *I;   // Delete all of the loops...
676
677    BBMap.clear();                           // Reset internal state of analysis
678    TopLevelLoops.clear();
679  }
680
681  /// iterator/begin/end - The interface to the top-level loops in the current
682  /// function.
683  ///
684  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
685  iterator begin() const { return TopLevelLoops.begin(); }
686  iterator end() const { return TopLevelLoops.end(); }
687  bool empty() const { return TopLevelLoops.empty(); }
688
689  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
690  /// block is in no loop (for example the entry node), null is returned.
691  ///
692  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
693    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
694      BBMap.find(const_cast<BlockT*>(BB));
695    return I != BBMap.end() ? I->second : 0;
696  }
697
698  /// operator[] - same as getLoopFor...
699  ///
700  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
701    return getLoopFor(BB);
702  }
703
704  /// getLoopDepth - Return the loop nesting level of the specified block.  A
705  /// depth of 0 means the block is not inside any loop.
706  ///
707  unsigned getLoopDepth(const BlockT *BB) const {
708    const LoopBase<BlockT> *L = getLoopFor(BB);
709    return L ? L->getLoopDepth() : 0;
710  }
711
712  // isLoopHeader - True if the block is a loop header node
713  bool isLoopHeader(BlockT *BB) const {
714    const LoopBase<BlockT> *L = getLoopFor(BB);
715    return L && L->getHeader() == BB;
716  }
717
718  /// removeLoop - This removes the specified top-level loop from this loop info
719  /// object.  The loop is not deleted, as it will presumably be inserted into
720  /// another loop.
721  LoopBase<BlockT> *removeLoop(iterator I) {
722    assert(I != end() && "Cannot remove end iterator!");
723    LoopBase<BlockT> *L = *I;
724    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
725    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
726    return L;
727  }
728
729  /// changeLoopFor - Change the top-level loop that contains BB to the
730  /// specified loop.  This should be used by transformations that restructure
731  /// the loop hierarchy tree.
732  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
733    LoopBase<BlockT> *&OldLoop = BBMap[BB];
734    assert(OldLoop && "Block not in a loop yet!");
735    OldLoop = L;
736  }
737
738  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
739  /// list with the indicated loop.
740  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
741                          LoopBase<BlockT> *NewLoop) {
742    typename std::vector<LoopBase<BlockT>*>::iterator I =
743                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
744    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
745    *I = NewLoop;
746    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
747           "Loops already embedded into a subloop!");
748  }
749
750  /// addTopLevelLoop - This adds the specified loop to the collection of
751  /// top-level loops.
752  void addTopLevelLoop(LoopBase<BlockT> *New) {
753    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
754    TopLevelLoops.push_back(New);
755  }
756
757  /// removeBlock - This method completely removes BB from all data structures,
758  /// including all of the Loop objects it is nested in and our mapping from
759  /// BasicBlocks to loops.
760  void removeBlock(BlockT *BB) {
761    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
762    if (I != BBMap.end()) {
763      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
764        L->removeBlockFromLoop(BB);
765
766      BBMap.erase(I);
767    }
768  }
769
770  // Internals
771
772  static bool isNotAlreadyContainedIn(const LoopBase<BlockT> *SubLoop,
773                                      const LoopBase<BlockT> *ParentLoop) {
774    if (SubLoop == 0) return true;
775    if (SubLoop == ParentLoop) return false;
776    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
777  }
778
779  void Calculate(DominatorTreeBase<BlockT> &DT) {
780    BlockT *RootNode = DT.getRootNode()->getBlock();
781
782    for (df_iterator<BlockT*> NI = df_begin(RootNode),
783           NE = df_end(RootNode); NI != NE; ++NI)
784      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
785        TopLevelLoops.push_back(L);
786  }
787
788  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
789    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
790
791    std::vector<BlockT *> TodoStack;
792
793    // Scan the predecessors of BB, checking to see if BB dominates any of
794    // them.  This identifies backedges which target this node...
795    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
796    for (typename InvBlockTraits::ChildIteratorType I =
797         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
798         I != E; ++I)
799      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
800        TodoStack.push_back(*I);
801
802    if (TodoStack.empty()) return 0;  // No backedges to this block...
803
804    // Create a new loop to represent this basic block...
805    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
806    BBMap[BB] = L;
807
808    BlockT *EntryBlock = BB->getParent()->begin();
809
810    while (!TodoStack.empty()) {  // Process all the nodes in the loop
811      BlockT *X = TodoStack.back();
812      TodoStack.pop_back();
813
814      if (!L->contains(X) &&         // As of yet unprocessed??
815          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
816        // Check to see if this block already belongs to a loop.  If this occurs
817        // then we have a case where a loop that is supposed to be a child of
818        // the current loop was processed before the current loop.  When this
819        // occurs, this child loop gets added to a part of the current loop,
820        // making it a sibling to the current loop.  We have to reparent this
821        // loop.
822        if (LoopBase<BlockT> *SubLoop =
823            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
824          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
825            // Remove the subloop from it's current parent...
826            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
827            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
828            typename std::vector<LoopBase<BlockT>*>::iterator I =
829              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
830            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
831            SLP->SubLoops.erase(I);   // Remove from parent...
832
833            // Add the subloop to THIS loop...
834            SubLoop->ParentLoop = L;
835            L->SubLoops.push_back(SubLoop);
836          }
837
838        // Normal case, add the block to our loop...
839        L->Blocks.push_back(X);
840
841        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
842
843        // Add all of the predecessors of X to the end of the work stack...
844        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
845                         InvBlockTraits::child_end(X));
846      }
847    }
848
849    // If there are any loops nested within this loop, create them now!
850    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
851         E = L->Blocks.end(); I != E; ++I)
852      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
853        L->SubLoops.push_back(NewLoop);
854        NewLoop->ParentLoop = L;
855      }
856
857    // Add the basic blocks that comprise this loop to the BBMap so that this
858    // loop can be found for them.
859    //
860    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
861           E = L->Blocks.end(); I != E; ++I) {
862      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
863                                                          BBMap.find(*I);
864      if (BBMI == BBMap.end())                       // Not in map yet...
865        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
866    }
867
868    // Now that we have a list of all of the child loops of this loop, check to
869    // see if any of them should actually be nested inside of each other.  We
870    // can accidentally pull loops our of their parents, so we must make sure to
871    // organize the loop nests correctly now.
872    {
873      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
874      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
875        LoopBase<BlockT> *Child = L->SubLoops[i];
876        assert(Child->getParentLoop() == L && "Not proper child loop?");
877
878        if (LoopBase<BlockT> *ContainingLoop =
879                                          ContainingLoops[Child->getHeader()]) {
880          // If there is already a loop which contains this loop, move this loop
881          // into the containing loop.
882          MoveSiblingLoopInto(Child, ContainingLoop);
883          --i;  // The loop got removed from the SubLoops list.
884        } else {
885          // This is currently considered to be a top-level loop.  Check to see
886          // if any of the contained blocks are loop headers for subloops we
887          // have already processed.
888          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
889            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
890            if (BlockLoop == 0) {   // Child block not processed yet...
891              BlockLoop = Child;
892            } else if (BlockLoop != Child) {
893              LoopBase<BlockT> *SubLoop = BlockLoop;
894              // Reparent all of the blocks which used to belong to BlockLoops
895              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
896                ContainingLoops[SubLoop->Blocks[j]] = Child;
897
898              // There is already a loop which contains this block, that means
899              // that we should reparent the loop which the block is currently
900              // considered to belong to to be a child of this loop.
901              MoveSiblingLoopInto(SubLoop, Child);
902              --i;  // We just shrunk the SubLoops list.
903            }
904          }
905        }
906      }
907    }
908
909    return L;
910  }
911
912  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
913  /// of the NewParent Loop, instead of being a sibling of it.
914  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
915                           LoopBase<BlockT> *NewParent) {
916    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
917    assert(OldParent && OldParent == NewParent->getParentLoop() &&
918           NewChild != NewParent && "Not sibling loops!");
919
920    // Remove NewChild from being a child of OldParent
921    typename std::vector<LoopBase<BlockT>*>::iterator I =
922      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
923                NewChild);
924    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
925    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
926    NewChild->ParentLoop = 0;
927
928    InsertLoopInto(NewChild, NewParent);
929  }
930
931  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
932  /// the parent loop contains a loop which should contain L, the loop gets
933  /// inserted into L instead.
934  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
935    BlockT *LHeader = L->getHeader();
936    assert(Parent->contains(LHeader) &&
937           "This loop should not be inserted here!");
938
939    // Check to see if it belongs in a child loop...
940    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
941         i != e; ++i)
942      if (Parent->SubLoops[i]->contains(LHeader)) {
943        InsertLoopInto(L, Parent->SubLoops[i]);
944        return;
945      }
946
947    // If not, insert it here!
948    Parent->SubLoops.push_back(L);
949    L->ParentLoop = Parent;
950  }
951
952  // Debugging
953
954  void print(std::ostream &OS, const Module* ) const {
955    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
956      TopLevelLoops[i]->print(OS);
957  #if 0
958    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
959           E = BBMap.end(); I != E; ++I)
960      OS << "BB '" << I->first->getName() << "' level = "
961         << I->second->getLoopDepth() << "\n";
962  #endif
963  }
964};
965
966class LoopInfo : public FunctionPass {
967  LoopInfoBase<BasicBlock> LI;
968  friend class LoopBase<BasicBlock>;
969
970  void operator=(const LoopInfo &); // do not implement
971  LoopInfo(const LoopInfo &);       // do not implement
972public:
973  static char ID; // Pass identification, replacement for typeid
974
975  LoopInfo() : FunctionPass(&ID) {}
976
977  LoopInfoBase<BasicBlock>& getBase() { return LI; }
978
979  /// iterator/begin/end - The interface to the top-level loops in the current
980  /// function.
981  ///
982  typedef LoopInfoBase<BasicBlock>::iterator iterator;
983  inline iterator begin() const { return LI.begin(); }
984  inline iterator end() const { return LI.end(); }
985  bool empty() const { return LI.empty(); }
986
987  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
988  /// block is in no loop (for example the entry node), null is returned.
989  ///
990  inline Loop *getLoopFor(const BasicBlock *BB) const {
991    return LI.getLoopFor(BB);
992  }
993
994  /// operator[] - same as getLoopFor...
995  ///
996  inline const Loop *operator[](const BasicBlock *BB) const {
997    return LI.getLoopFor(BB);
998  }
999
1000  /// getLoopDepth - Return the loop nesting level of the specified block.  A
1001  /// depth of 0 means the block is not inside any loop.
1002  ///
1003  inline unsigned getLoopDepth(const BasicBlock *BB) const {
1004    return LI.getLoopDepth(BB);
1005  }
1006
1007  // isLoopHeader - True if the block is a loop header node
1008  inline bool isLoopHeader(BasicBlock *BB) const {
1009    return LI.isLoopHeader(BB);
1010  }
1011
1012  /// runOnFunction - Calculate the natural loop information.
1013  ///
1014  virtual bool runOnFunction(Function &F);
1015
1016  virtual void releaseMemory() { LI.releaseMemory(); }
1017
1018  virtual void print(std::ostream &O, const Module* M = 0) const {
1019    LI.print(O, M);
1020  }
1021
1022  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1023
1024  /// removeLoop - This removes the specified top-level loop from this loop info
1025  /// object.  The loop is not deleted, as it will presumably be inserted into
1026  /// another loop.
1027  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
1028
1029  /// changeLoopFor - Change the top-level loop that contains BB to the
1030  /// specified loop.  This should be used by transformations that restructure
1031  /// the loop hierarchy tree.
1032  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1033    LI.changeLoopFor(BB, L);
1034  }
1035
1036  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1037  /// list with the indicated loop.
1038  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1039    LI.changeTopLevelLoop(OldLoop, NewLoop);
1040  }
1041
1042  /// addTopLevelLoop - This adds the specified loop to the collection of
1043  /// top-level loops.
1044  inline void addTopLevelLoop(Loop *New) {
1045    LI.addTopLevelLoop(New);
1046  }
1047
1048  /// removeBlock - This method completely removes BB from all data structures,
1049  /// including all of the Loop objects it is nested in and our mapping from
1050  /// BasicBlocks to loops.
1051  void removeBlock(BasicBlock *BB) {
1052    LI.removeBlock(BB);
1053  }
1054};
1055
1056
1057// Allow clients to walk the list of nested loops...
1058template <> struct GraphTraits<const Loop*> {
1059  typedef const Loop NodeType;
1060  typedef LoopInfo::iterator ChildIteratorType;
1061
1062  static NodeType *getEntryNode(const Loop *L) { return L; }
1063  static inline ChildIteratorType child_begin(NodeType *N) {
1064    return N->begin();
1065  }
1066  static inline ChildIteratorType child_end(NodeType *N) {
1067    return N->end();
1068  }
1069};
1070
1071template <> struct GraphTraits<Loop*> {
1072  typedef Loop NodeType;
1073  typedef LoopInfo::iterator ChildIteratorType;
1074
1075  static NodeType *getEntryNode(Loop *L) { return L; }
1076  static inline ChildIteratorType child_begin(NodeType *N) {
1077    return N->begin();
1078  }
1079  static inline ChildIteratorType child_end(NodeType *N) {
1080    return N->end();
1081  }
1082};
1083
1084template<class BlockT>
1085void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
1086                                           LoopInfoBase<BlockT> &LIB) {
1087  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1088         "Incorrect LI specified for this loop!");
1089  assert(NewBB && "Cannot add a null basic block to the loop!");
1090  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1091
1092  // Add the loop mapping to the LoopInfo object...
1093  LIB.BBMap[NewBB] = this;
1094
1095  // Add the basic block to this loop and all parent loops...
1096  LoopBase<BlockT> *L = this;
1097  while (L) {
1098    L->Blocks.push_back(NewBB);
1099    L = L->getParentLoop();
1100  }
1101}
1102
1103} // End llvm namespace
1104
1105#endif
1106