LoopInfo.h revision a36791da41cf4f635e50077b290676b873836bda
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/Constants.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Streams.h"
43#include <algorithm>
44#include <ostream>
45
46namespace llvm {
47
48template<typename T>
49static void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57template<class N> class LoopInfoBase;
58template<class N> class LoopBase;
59
60typedef LoopBase<BasicBlock> Loop;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT>
67class LoopBase {
68  LoopBase<BlockT> *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopBase<BlockT>*> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
76  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
77public:
78  /// Loop ctor - This creates an empty loop.
79  LoopBase() : ParentLoop(0) {}
80  ~LoopBase() {
81    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
82      delete SubLoops[i];
83  }
84
85  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
86  /// loop has depth 1, for consistency with loop depth values used for basic
87  /// blocks, where depth 0 is used for blocks not inside any loops.
88  unsigned getLoopDepth() const {
89    unsigned D = 1;
90    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
91         CurLoop = CurLoop->ParentLoop)
92      ++D;
93    return D;
94  }
95  BlockT *getHeader() const { return Blocks.front(); }
96  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
97
98  /// contains - Return true if the specified basic block is in this loop
99  ///
100  bool contains(const BlockT *BB) const {
101    return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
102  }
103
104  /// iterator/begin/end - Return the loops contained entirely within this loop.
105  ///
106  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
107  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
108  iterator begin() const { return SubLoops.begin(); }
109  iterator end() const { return SubLoops.end(); }
110  bool empty() const { return SubLoops.empty(); }
111
112  /// getBlocks - Get a list of the basic blocks which make up this loop.
113  ///
114  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
115  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
116  block_iterator block_begin() const { return Blocks.begin(); }
117  block_iterator block_end() const { return Blocks.end(); }
118
119  /// isLoopExit - True if terminator in the block can branch to another block
120  /// that is outside of the current loop.
121  ///
122  bool isLoopExit(const BlockT *BB) const {
123    typedef GraphTraits<BlockT*> BlockTraits;
124    for (typename BlockTraits::ChildIteratorType SI =
125         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
126         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
127      if (!contains(*SI))
128        return true;
129    }
130    return false;
131  }
132
133  /// getNumBackEdges - Calculate the number of back edges to the loop header
134  ///
135  unsigned getNumBackEdges() const {
136    unsigned NumBackEdges = 0;
137    BlockT *H = getHeader();
138
139    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
140    for (typename InvBlockTraits::ChildIteratorType I =
141         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
142         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
143      if (contains(*I))
144        ++NumBackEdges;
145
146    return NumBackEdges;
147  }
148
149  /// isLoopInvariant - Return true if the specified value is loop invariant
150  ///
151  inline bool isLoopInvariant(Value *V) const {
152    if (Instruction *I = dyn_cast<Instruction>(V))
153      return !contains(I->getParent());
154    return true;  // All non-instructions are loop invariant
155  }
156
157  //===--------------------------------------------------------------------===//
158  // APIs for simple analysis of the loop.
159  //
160  // Note that all of these methods can fail on general loops (ie, there may not
161  // be a preheader, etc).  For best success, the loop simplification and
162  // induction variable canonicalization pass should be used to normalize loops
163  // for easy analysis.  These methods assume canonical loops.
164
165  /// getExitingBlocks - Return all blocks inside the loop that have successors
166  /// outside of the loop.  These are the blocks _inside of the current loop_
167  /// which branch out.  The returned list is always unique.
168  ///
169  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
170    // Sort the blocks vector so that we can use binary search to do quick
171    // lookups.
172    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
173    std::sort(LoopBBs.begin(), LoopBBs.end());
174
175    typedef GraphTraits<BlockT*> BlockTraits;
176    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
177         BE = Blocks.end(); BI != BE; ++BI)
178      for (typename BlockTraits::ChildIteratorType I =
179          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
180          I != E; ++I)
181        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
182          // Not in current loop? It must be an exit block.
183          ExitingBlocks.push_back(*BI);
184          break;
185        }
186  }
187
188  /// getExitBlocks - Return all of the successor blocks of this loop.  These
189  /// are the blocks _outside of the current loop_ which are branched to.
190  ///
191  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
192    // Sort the blocks vector so that we can use binary search to do quick
193    // lookups.
194    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
195    std::sort(LoopBBs.begin(), LoopBBs.end());
196
197    typedef GraphTraits<BlockT*> BlockTraits;
198    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
199         BE = Blocks.end(); BI != BE; ++BI)
200      for (typename BlockTraits::ChildIteratorType I =
201           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
202           I != E; ++I)
203        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
204          // Not in current loop? It must be an exit block.
205          ExitBlocks.push_back(*I);
206  }
207
208  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
209  /// These are the blocks _outside of the current loop_ which are branched to.
210  /// This assumes that loop is in canonical form.
211  ///
212  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
213    // Sort the blocks vector so that we can use binary search to do quick
214    // lookups.
215    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
216    std::sort(LoopBBs.begin(), LoopBBs.end());
217
218    std::vector<BlockT*> switchExitBlocks;
219
220    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
221         BE = Blocks.end(); BI != BE; ++BI) {
222
223      BlockT *current = *BI;
224      switchExitBlocks.clear();
225
226      typedef GraphTraits<BlockT*> BlockTraits;
227      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
228      for (typename BlockTraits::ChildIteratorType I =
229           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
230           I != E; ++I) {
231        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
232      // If block is inside the loop then it is not a exit block.
233          continue;
234
235        typename InvBlockTraits::ChildIteratorType PI =
236                                                InvBlockTraits::child_begin(*I);
237        BlockT *firstPred = *PI;
238
239        // If current basic block is this exit block's first predecessor
240        // then only insert exit block in to the output ExitBlocks vector.
241        // This ensures that same exit block is not inserted twice into
242        // ExitBlocks vector.
243        if (current != firstPred)
244          continue;
245
246        // If a terminator has more then two successors, for example SwitchInst,
247        // then it is possible that there are multiple edges from current block
248        // to one exit block.
249        if (std::distance(BlockTraits::child_begin(current),
250                          BlockTraits::child_end(current)) <= 2) {
251          ExitBlocks.push_back(*I);
252          continue;
253        }
254
255        // In case of multiple edges from current block to exit block, collect
256        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
257        // duplicate edges.
258        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
259            == switchExitBlocks.end()) {
260          switchExitBlocks.push_back(*I);
261          ExitBlocks.push_back(*I);
262        }
263      }
264    }
265  }
266
267  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
268  /// loop has a preheader if there is only one edge to the header of the loop
269  /// from outside of the loop.  If this is the case, the block branching to the
270  /// header of the loop is the preheader node.
271  ///
272  /// This method returns null if there is no preheader for the loop.
273  ///
274  BlockT *getLoopPreheader() const {
275    // Keep track of nodes outside the loop branching to the header...
276    BlockT *Out = 0;
277
278    // Loop over the predecessors of the header node...
279    BlockT *Header = getHeader();
280    typedef GraphTraits<BlockT*> BlockTraits;
281    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
282    for (typename InvBlockTraits::ChildIteratorType PI =
283         InvBlockTraits::child_begin(Header),
284         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
285      if (!contains(*PI)) {     // If the block is not in the loop...
286        if (Out && Out != *PI)
287          return 0;             // Multiple predecessors outside the loop
288        Out = *PI;
289      }
290
291    // Make sure there is only one exit out of the preheader.
292    assert(Out && "Header of loop has no predecessors from outside loop?");
293    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
294    ++SI;
295    if (SI != BlockTraits::child_end(Out))
296      return 0;  // Multiple exits from the block, must not be a preheader.
297
298    // If there is exactly one preheader, return it.  If there was zero, then
299    // Out is still null.
300    return Out;
301  }
302
303  /// getLoopLatch - If there is a latch block for this loop, return it.  A
304  /// latch block is the canonical backedge for a loop.  A loop header in normal
305  /// form has two edges into it: one from a preheader and one from a latch
306  /// block.
307  BlockT *getLoopLatch() const {
308    BlockT *Header = getHeader();
309    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
310    typename InvBlockTraits::ChildIteratorType PI =
311                                            InvBlockTraits::child_begin(Header);
312    typename InvBlockTraits::ChildIteratorType PE =
313                                              InvBlockTraits::child_end(Header);
314    if (PI == PE) return 0;  // no preds?
315
316    BlockT *Latch = 0;
317    if (contains(*PI))
318      Latch = *PI;
319    ++PI;
320    if (PI == PE) return 0;  // only one pred?
321
322    if (contains(*PI)) {
323      if (Latch) return 0;  // multiple backedges
324      Latch = *PI;
325    }
326    ++PI;
327    if (PI != PE) return 0;  // more than two preds
328
329    return Latch;
330  }
331
332  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
333  /// induction variable: an integer recurrence that starts at 0 and increments
334  /// by one each time through the loop.  If so, return the phi node that
335  /// corresponds to it.
336  ///
337  inline PHINode *getCanonicalInductionVariable() const {
338    BlockT *H = getHeader();
339
340    BlockT *Incoming = 0, *Backedge = 0;
341    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
342    typename InvBlockTraits::ChildIteratorType PI =
343                                                 InvBlockTraits::child_begin(H);
344    assert(PI != InvBlockTraits::child_end(H) &&
345           "Loop must have at least one backedge!");
346    Backedge = *PI++;
347    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
348    Incoming = *PI++;
349    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
350
351    if (contains(Incoming)) {
352      if (contains(Backedge))
353        return 0;
354      std::swap(Incoming, Backedge);
355    } else if (!contains(Backedge))
356      return 0;
357
358    // Loop over all of the PHI nodes, looking for a canonical indvar.
359    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
360      PHINode *PN = cast<PHINode>(I);
361      if (ConstantInt *CI =
362          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
363        if (CI->isNullValue())
364          if (Instruction *Inc =
365              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
366            if (Inc->getOpcode() == Instruction::Add &&
367                Inc->getOperand(0) == PN)
368              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
369                if (CI->equalsInt(1))
370                  return PN;
371    }
372    return 0;
373  }
374
375  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
376  /// the canonical induction variable value for the "next" iteration of the
377  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
378  ///
379  inline Instruction *getCanonicalInductionVariableIncrement() const {
380    if (PHINode *PN = getCanonicalInductionVariable()) {
381      bool P1InLoop = contains(PN->getIncomingBlock(1));
382      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
383    }
384    return 0;
385  }
386
387  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
388  /// times the loop will be executed.  Note that this means that the backedge
389  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
390  /// this returns null.
391  ///
392  inline Value *getTripCount() const {
393    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
394    // canonical induction variable and V is the trip count of the loop.
395    Instruction *Inc = getCanonicalInductionVariableIncrement();
396    if (Inc == 0) return 0;
397    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
398
399    BlockT *BackedgeBlock =
400            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
401
402    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
403      if (BI->isConditional()) {
404        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
405          if (ICI->getOperand(0) == Inc) {
406            if (BI->getSuccessor(0) == getHeader()) {
407              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
408                return ICI->getOperand(1);
409            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
410              return ICI->getOperand(1);
411            }
412          }
413        }
414      }
415
416    return 0;
417  }
418
419  /// getSmallConstantTripCount - Returns the trip count of this loop as a
420  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
421  /// of not constant. Will also return 0 if the trip count is very large
422  /// (>= 2^32)
423  inline unsigned getSmallConstantTripCount() const {
424    Value* TripCount = this->getTripCount();
425    if (TripCount) {
426      if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
427        // Guard against huge trip counts.
428        if (TripCountC->getValue().getActiveBits() <= 32) {
429          return (unsigned)TripCountC->getZExtValue();
430        }
431      }
432    }
433    return 0;
434  }
435
436  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
437  /// trip count of this loop as a normal unsigned value, if possible. This
438  /// means that the actual trip count is always a multiple of the returned
439  /// value (don't forget the trip count could very well be zero as well!).
440  ///
441  /// Returns 1 if the trip count is unknown or not guaranteed to be the
442  /// multiple of a constant (which is also the case if the trip count is simply
443  /// constant, use getSmallConstantTripCount for that case), Will also return 1
444  /// if the trip count is very large (>= 2^32).
445  inline unsigned getSmallConstantTripMultiple() const {
446    Value* TripCount = this->getTripCount();
447    // This will hold the ConstantInt result, if any
448    ConstantInt *Result = NULL;
449    if (TripCount) {
450      // See if the trip count is constant itself
451      Result = dyn_cast<ConstantInt>(TripCount);
452      // if not, see if it is a multiplication
453      if (!Result)
454        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
455          switch (BO->getOpcode()) {
456          case BinaryOperator::Mul:
457            Result = dyn_cast<ConstantInt>(BO->getOperand(1));
458            break;
459          default:
460            break;
461          }
462        }
463    }
464    // Guard against huge trip counts.
465    if (Result && Result->getValue().getActiveBits() <= 32) {
466      return (unsigned)Result->getZExtValue();
467    } else {
468      return 1;
469    }
470  }
471
472  /// isLCSSAForm - Return true if the Loop is in LCSSA form
473  inline bool isLCSSAForm() const {
474    // Sort the blocks vector so that we can use binary search to do quick
475    // lookups.
476    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
477
478    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
479      BlockT *BB = *BI;
480      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
481        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
482             ++UI) {
483          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
484          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
485            UserBB = P->getIncomingBlock(UI);
486          }
487
488          // Check the current block, as a fast-path.  Most values are used in
489          // the same block they are defined in.
490          if (UserBB != BB && !LoopBBs.count(UserBB))
491            return false;
492        }
493    }
494
495    return true;
496  }
497
498  //===--------------------------------------------------------------------===//
499  // APIs for updating loop information after changing the CFG
500  //
501
502  /// addBasicBlockToLoop - This method is used by other analyses to update loop
503  /// information.  NewBB is set to be a new member of the current loop.
504  /// Because of this, it is added as a member of all parent loops, and is added
505  /// to the specified LoopInfo object as being in the current basic block.  It
506  /// is not valid to replace the loop header with this method.
507  ///
508  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
509
510  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
511  /// the OldChild entry in our children list with NewChild, and updates the
512  /// parent pointer of OldChild to be null and the NewChild to be this loop.
513  /// This updates the loop depth of the new child.
514  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
515                            LoopBase<BlockT> *NewChild) {
516    assert(OldChild->ParentLoop == this && "This loop is already broken!");
517    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
518    typename std::vector<LoopBase<BlockT>*>::iterator I =
519                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
520    assert(I != SubLoops.end() && "OldChild not in loop!");
521    *I = NewChild;
522    OldChild->ParentLoop = 0;
523    NewChild->ParentLoop = this;
524  }
525
526  /// addChildLoop - Add the specified loop to be a child of this loop.  This
527  /// updates the loop depth of the new child.
528  ///
529  void addChildLoop(LoopBase<BlockT> *NewChild) {
530    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
531    NewChild->ParentLoop = this;
532    SubLoops.push_back(NewChild);
533  }
534
535  /// removeChildLoop - This removes the specified child from being a subloop of
536  /// this loop.  The loop is not deleted, as it will presumably be inserted
537  /// into another loop.
538  LoopBase<BlockT> *removeChildLoop(iterator I) {
539    assert(I != SubLoops.end() && "Cannot remove end iterator!");
540    LoopBase<BlockT> *Child = *I;
541    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
542    SubLoops.erase(SubLoops.begin()+(I-begin()));
543    Child->ParentLoop = 0;
544    return Child;
545  }
546
547  /// addBlockEntry - This adds a basic block directly to the basic block list.
548  /// This should only be used by transformations that create new loops.  Other
549  /// transformations should use addBasicBlockToLoop.
550  void addBlockEntry(BlockT *BB) {
551    Blocks.push_back(BB);
552  }
553
554  /// moveToHeader - This method is used to move BB (which must be part of this
555  /// loop) to be the loop header of the loop (the block that dominates all
556  /// others).
557  void moveToHeader(BlockT *BB) {
558    if (Blocks[0] == BB) return;
559    for (unsigned i = 0; ; ++i) {
560      assert(i != Blocks.size() && "Loop does not contain BB!");
561      if (Blocks[i] == BB) {
562        Blocks[i] = Blocks[0];
563        Blocks[0] = BB;
564        return;
565      }
566    }
567  }
568
569  /// removeBlockFromLoop - This removes the specified basic block from the
570  /// current loop, updating the Blocks as appropriate.  This does not update
571  /// the mapping in the LoopInfo class.
572  void removeBlockFromLoop(BlockT *BB) {
573    RemoveFromVector(Blocks, BB);
574  }
575
576  /// verifyLoop - Verify loop structure
577  void verifyLoop() const {
578#ifndef NDEBUG
579    assert (getHeader() && "Loop header is missing");
580    assert (getLoopPreheader() && "Loop preheader is missing");
581    assert (getLoopLatch() && "Loop latch is missing");
582    for (typename std::vector<LoopBase<BlockT>*>::const_iterator I =
583         SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
584      (*I)->verifyLoop();
585#endif
586  }
587
588  void print(std::ostream &OS, unsigned Depth = 0) const {
589    OS << std::string(Depth*2, ' ') << "Loop Containing: ";
590
591    for (unsigned i = 0; i < getBlocks().size(); ++i) {
592      if (i) OS << ",";
593      WriteAsOperand(OS, getBlocks()[i], false);
594    }
595    OS << "\n";
596
597    for (iterator I = begin(), E = end(); I != E; ++I)
598      (*I)->print(OS, Depth+2);
599  }
600
601  void print(std::ostream *O, unsigned Depth = 0) const {
602    if (O) print(*O, Depth);
603  }
604
605  void dump() const {
606    print(cerr);
607  }
608
609private:
610  friend class LoopInfoBase<BlockT>;
611  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
612    Blocks.push_back(BB);
613  }
614};
615
616
617//===----------------------------------------------------------------------===//
618/// LoopInfo - This class builds and contains all of the top level loop
619/// structures in the specified function.
620///
621
622template<class BlockT>
623class LoopInfoBase {
624  // BBMap - Mapping of basic blocks to the inner most loop they occur in
625  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
626  std::vector<LoopBase<BlockT>*> TopLevelLoops;
627  friend class LoopBase<BlockT>;
628
629public:
630  LoopInfoBase() { }
631  ~LoopInfoBase() { releaseMemory(); }
632
633  void releaseMemory() {
634    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
635         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
636      delete *I;   // Delete all of the loops...
637
638    BBMap.clear();                           // Reset internal state of analysis
639    TopLevelLoops.clear();
640  }
641
642  /// iterator/begin/end - The interface to the top-level loops in the current
643  /// function.
644  ///
645  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
646  iterator begin() const { return TopLevelLoops.begin(); }
647  iterator end() const { return TopLevelLoops.end(); }
648  bool empty() const { return TopLevelLoops.empty(); }
649
650  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
651  /// block is in no loop (for example the entry node), null is returned.
652  ///
653  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
654    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
655      BBMap.find(const_cast<BlockT*>(BB));
656    return I != BBMap.end() ? I->second : 0;
657  }
658
659  /// operator[] - same as getLoopFor...
660  ///
661  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
662    return getLoopFor(BB);
663  }
664
665  /// getLoopDepth - Return the loop nesting level of the specified block.  A
666  /// depth of 0 means the block is not inside any loop.
667  ///
668  unsigned getLoopDepth(const BlockT *BB) const {
669    const LoopBase<BlockT> *L = getLoopFor(BB);
670    return L ? L->getLoopDepth() : 0;
671  }
672
673  // isLoopHeader - True if the block is a loop header node
674  bool isLoopHeader(BlockT *BB) const {
675    const LoopBase<BlockT> *L = getLoopFor(BB);
676    return L && L->getHeader() == BB;
677  }
678
679  /// removeLoop - This removes the specified top-level loop from this loop info
680  /// object.  The loop is not deleted, as it will presumably be inserted into
681  /// another loop.
682  LoopBase<BlockT> *removeLoop(iterator I) {
683    assert(I != end() && "Cannot remove end iterator!");
684    LoopBase<BlockT> *L = *I;
685    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
686    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
687    return L;
688  }
689
690  /// changeLoopFor - Change the top-level loop that contains BB to the
691  /// specified loop.  This should be used by transformations that restructure
692  /// the loop hierarchy tree.
693  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
694    LoopBase<BlockT> *&OldLoop = BBMap[BB];
695    assert(OldLoop && "Block not in a loop yet!");
696    OldLoop = L;
697  }
698
699  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
700  /// list with the indicated loop.
701  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
702                          LoopBase<BlockT> *NewLoop) {
703    typename std::vector<LoopBase<BlockT>*>::iterator I =
704                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
705    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
706    *I = NewLoop;
707    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
708           "Loops already embedded into a subloop!");
709  }
710
711  /// addTopLevelLoop - This adds the specified loop to the collection of
712  /// top-level loops.
713  void addTopLevelLoop(LoopBase<BlockT> *New) {
714    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
715    TopLevelLoops.push_back(New);
716  }
717
718  /// removeBlock - This method completely removes BB from all data structures,
719  /// including all of the Loop objects it is nested in and our mapping from
720  /// BasicBlocks to loops.
721  void removeBlock(BlockT *BB) {
722    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
723    if (I != BBMap.end()) {
724      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
725        L->removeBlockFromLoop(BB);
726
727      BBMap.erase(I);
728    }
729  }
730
731  // Internals
732
733  static bool isNotAlreadyContainedIn(const LoopBase<BlockT> *SubLoop,
734                                      const LoopBase<BlockT> *ParentLoop) {
735    if (SubLoop == 0) return true;
736    if (SubLoop == ParentLoop) return false;
737    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
738  }
739
740  void Calculate(DominatorTreeBase<BlockT> &DT) {
741    BlockT *RootNode = DT.getRootNode()->getBlock();
742
743    for (df_iterator<BlockT*> NI = df_begin(RootNode),
744           NE = df_end(RootNode); NI != NE; ++NI)
745      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
746        TopLevelLoops.push_back(L);
747  }
748
749  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
750    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
751
752    std::vector<BlockT *> TodoStack;
753
754    // Scan the predecessors of BB, checking to see if BB dominates any of
755    // them.  This identifies backedges which target this node...
756    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
757    for (typename InvBlockTraits::ChildIteratorType I =
758         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
759         I != E; ++I)
760      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
761        TodoStack.push_back(*I);
762
763    if (TodoStack.empty()) return 0;  // No backedges to this block...
764
765    // Create a new loop to represent this basic block...
766    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
767    BBMap[BB] = L;
768
769    BlockT *EntryBlock = BB->getParent()->begin();
770
771    while (!TodoStack.empty()) {  // Process all the nodes in the loop
772      BlockT *X = TodoStack.back();
773      TodoStack.pop_back();
774
775      if (!L->contains(X) &&         // As of yet unprocessed??
776          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
777        // Check to see if this block already belongs to a loop.  If this occurs
778        // then we have a case where a loop that is supposed to be a child of
779        // the current loop was processed before the current loop.  When this
780        // occurs, this child loop gets added to a part of the current loop,
781        // making it a sibling to the current loop.  We have to reparent this
782        // loop.
783        if (LoopBase<BlockT> *SubLoop =
784            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
785          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
786            // Remove the subloop from it's current parent...
787            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
788            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
789            typename std::vector<LoopBase<BlockT>*>::iterator I =
790              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
791            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
792            SLP->SubLoops.erase(I);   // Remove from parent...
793
794            // Add the subloop to THIS loop...
795            SubLoop->ParentLoop = L;
796            L->SubLoops.push_back(SubLoop);
797          }
798
799        // Normal case, add the block to our loop...
800        L->Blocks.push_back(X);
801
802        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
803
804        // Add all of the predecessors of X to the end of the work stack...
805        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
806                         InvBlockTraits::child_end(X));
807      }
808    }
809
810    // If there are any loops nested within this loop, create them now!
811    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
812         E = L->Blocks.end(); I != E; ++I)
813      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
814        L->SubLoops.push_back(NewLoop);
815        NewLoop->ParentLoop = L;
816      }
817
818    // Add the basic blocks that comprise this loop to the BBMap so that this
819    // loop can be found for them.
820    //
821    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
822           E = L->Blocks.end(); I != E; ++I) {
823      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
824                                                          BBMap.find(*I);
825      if (BBMI == BBMap.end())                       // Not in map yet...
826        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
827    }
828
829    // Now that we have a list of all of the child loops of this loop, check to
830    // see if any of them should actually be nested inside of each other.  We
831    // can accidentally pull loops our of their parents, so we must make sure to
832    // organize the loop nests correctly now.
833    {
834      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
835      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
836        LoopBase<BlockT> *Child = L->SubLoops[i];
837        assert(Child->getParentLoop() == L && "Not proper child loop?");
838
839        if (LoopBase<BlockT> *ContainingLoop =
840                                          ContainingLoops[Child->getHeader()]) {
841          // If there is already a loop which contains this loop, move this loop
842          // into the containing loop.
843          MoveSiblingLoopInto(Child, ContainingLoop);
844          --i;  // The loop got removed from the SubLoops list.
845        } else {
846          // This is currently considered to be a top-level loop.  Check to see
847          // if any of the contained blocks are loop headers for subloops we
848          // have already processed.
849          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
850            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
851            if (BlockLoop == 0) {   // Child block not processed yet...
852              BlockLoop = Child;
853            } else if (BlockLoop != Child) {
854              LoopBase<BlockT> *SubLoop = BlockLoop;
855              // Reparent all of the blocks which used to belong to BlockLoops
856              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
857                ContainingLoops[SubLoop->Blocks[j]] = Child;
858
859              // There is already a loop which contains this block, that means
860              // that we should reparent the loop which the block is currently
861              // considered to belong to to be a child of this loop.
862              MoveSiblingLoopInto(SubLoop, Child);
863              --i;  // We just shrunk the SubLoops list.
864            }
865          }
866        }
867      }
868    }
869
870    return L;
871  }
872
873  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
874  /// of the NewParent Loop, instead of being a sibling of it.
875  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
876                           LoopBase<BlockT> *NewParent) {
877    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
878    assert(OldParent && OldParent == NewParent->getParentLoop() &&
879           NewChild != NewParent && "Not sibling loops!");
880
881    // Remove NewChild from being a child of OldParent
882    typename std::vector<LoopBase<BlockT>*>::iterator I =
883      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
884                NewChild);
885    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
886    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
887    NewChild->ParentLoop = 0;
888
889    InsertLoopInto(NewChild, NewParent);
890  }
891
892  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
893  /// the parent loop contains a loop which should contain L, the loop gets
894  /// inserted into L instead.
895  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
896    BlockT *LHeader = L->getHeader();
897    assert(Parent->contains(LHeader) &&
898           "This loop should not be inserted here!");
899
900    // Check to see if it belongs in a child loop...
901    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
902         i != e; ++i)
903      if (Parent->SubLoops[i]->contains(LHeader)) {
904        InsertLoopInto(L, Parent->SubLoops[i]);
905        return;
906      }
907
908    // If not, insert it here!
909    Parent->SubLoops.push_back(L);
910    L->ParentLoop = Parent;
911  }
912
913  // Debugging
914
915  void print(std::ostream &OS, const Module* ) const {
916    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
917      TopLevelLoops[i]->print(OS);
918  #if 0
919    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
920           E = BBMap.end(); I != E; ++I)
921      OS << "BB '" << I->first->getName() << "' level = "
922         << I->second->getLoopDepth() << "\n";
923  #endif
924  }
925};
926
927class LoopInfo : public FunctionPass {
928  LoopInfoBase<BasicBlock>* LI;
929  friend class LoopBase<BasicBlock>;
930
931public:
932  static char ID; // Pass identification, replacement for typeid
933
934  LoopInfo() : FunctionPass(intptr_t(&ID)) {
935    LI = new LoopInfoBase<BasicBlock>();
936  }
937
938  ~LoopInfo() { delete LI; }
939
940  LoopInfoBase<BasicBlock>& getBase() { return *LI; }
941
942  /// iterator/begin/end - The interface to the top-level loops in the current
943  /// function.
944  ///
945  typedef std::vector<Loop*>::const_iterator iterator;
946  inline iterator begin() const { return LI->begin(); }
947  inline iterator end() const { return LI->end(); }
948  bool empty() const { return LI->empty(); }
949
950  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
951  /// block is in no loop (for example the entry node), null is returned.
952  ///
953  inline Loop *getLoopFor(const BasicBlock *BB) const {
954    return LI->getLoopFor(BB);
955  }
956
957  /// operator[] - same as getLoopFor...
958  ///
959  inline const Loop *operator[](const BasicBlock *BB) const {
960    return LI->getLoopFor(BB);
961  }
962
963  /// getLoopDepth - Return the loop nesting level of the specified block.  A
964  /// depth of 0 means the block is not inside any loop.
965  ///
966  inline unsigned getLoopDepth(const BasicBlock *BB) const {
967    return LI->getLoopDepth(BB);
968  }
969
970  // isLoopHeader - True if the block is a loop header node
971  inline bool isLoopHeader(BasicBlock *BB) const {
972    return LI->isLoopHeader(BB);
973  }
974
975  /// runOnFunction - Calculate the natural loop information.
976  ///
977  virtual bool runOnFunction(Function &F);
978
979  virtual void releaseMemory() { LI->releaseMemory(); }
980
981  virtual void print(std::ostream &O, const Module* M = 0) const {
982    if (O) LI->print(O, M);
983  }
984
985  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
986
987  /// removeLoop - This removes the specified top-level loop from this loop info
988  /// object.  The loop is not deleted, as it will presumably be inserted into
989  /// another loop.
990  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
991
992  /// changeLoopFor - Change the top-level loop that contains BB to the
993  /// specified loop.  This should be used by transformations that restructure
994  /// the loop hierarchy tree.
995  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
996    LI->changeLoopFor(BB, L);
997  }
998
999  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1000  /// list with the indicated loop.
1001  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1002    LI->changeTopLevelLoop(OldLoop, NewLoop);
1003  }
1004
1005  /// addTopLevelLoop - This adds the specified loop to the collection of
1006  /// top-level loops.
1007  inline void addTopLevelLoop(Loop *New) {
1008    LI->addTopLevelLoop(New);
1009  }
1010
1011  /// removeBlock - This method completely removes BB from all data structures,
1012  /// including all of the Loop objects it is nested in and our mapping from
1013  /// BasicBlocks to loops.
1014  void removeBlock(BasicBlock *BB) {
1015    LI->removeBlock(BB);
1016  }
1017};
1018
1019
1020// Allow clients to walk the list of nested loops...
1021template <> struct GraphTraits<const Loop*> {
1022  typedef const Loop NodeType;
1023  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
1024
1025  static NodeType *getEntryNode(const Loop *L) { return L; }
1026  static inline ChildIteratorType child_begin(NodeType *N) {
1027    return N->begin();
1028  }
1029  static inline ChildIteratorType child_end(NodeType *N) {
1030    return N->end();
1031  }
1032};
1033
1034template <> struct GraphTraits<Loop*> {
1035  typedef Loop NodeType;
1036  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
1037
1038  static NodeType *getEntryNode(Loop *L) { return L; }
1039  static inline ChildIteratorType child_begin(NodeType *N) {
1040    return N->begin();
1041  }
1042  static inline ChildIteratorType child_end(NodeType *N) {
1043    return N->end();
1044  }
1045};
1046
1047template<class BlockT>
1048void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
1049                                           LoopInfoBase<BlockT> &LIB) {
1050  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1051         "Incorrect LI specified for this loop!");
1052  assert(NewBB && "Cannot add a null basic block to the loop!");
1053  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1054
1055  // Add the loop mapping to the LoopInfo object...
1056  LIB.BBMap[NewBB] = this;
1057
1058  // Add the basic block to this loop and all parent loops...
1059  LoopBase<BlockT> *L = this;
1060  while (L) {
1061    L->Blocks.push_back(NewBB);
1062    L = L->getParentLoop();
1063  }
1064}
1065
1066} // End llvm namespace
1067
1068#endif
1069