LoopInfo.h revision b7532e254810aba26da9b65ee2c65788695f8c30
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified basic block is in this loop
97  ///
98  bool contains(const BlockT *BB) const {
99    return std::find(block_begin(), block_end(), BB) != block_end();
100  }
101
102  /// iterator/begin/end - Return the loops contained entirely within this loop.
103  ///
104  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
105  typedef typename std::vector<LoopT *>::const_iterator iterator;
106  iterator begin() const { return SubLoops.begin(); }
107  iterator end() const { return SubLoops.end(); }
108  bool empty() const { return SubLoops.empty(); }
109
110  /// getBlocks - Get a list of the basic blocks which make up this loop.
111  ///
112  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
113  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
114  block_iterator block_begin() const { return Blocks.begin(); }
115  block_iterator block_end() const { return Blocks.end(); }
116
117  /// isLoopExit - True if terminator in the block can branch to another block
118  /// that is outside of the current loop.
119  ///
120  bool isLoopExit(const BlockT *BB) const {
121    typedef GraphTraits<BlockT*> BlockTraits;
122    for (typename BlockTraits::ChildIteratorType SI =
123         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
124         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
125      if (!contains(*SI))
126        return true;
127    }
128    return false;
129  }
130
131  /// getNumBackEdges - Calculate the number of back edges to the loop header
132  ///
133  unsigned getNumBackEdges() const {
134    unsigned NumBackEdges = 0;
135    BlockT *H = getHeader();
136
137    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
138    for (typename InvBlockTraits::ChildIteratorType I =
139         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
140         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
141      if (contains(*I))
142        ++NumBackEdges;
143
144    return NumBackEdges;
145  }
146
147  //===--------------------------------------------------------------------===//
148  // APIs for simple analysis of the loop.
149  //
150  // Note that all of these methods can fail on general loops (ie, there may not
151  // be a preheader, etc).  For best success, the loop simplification and
152  // induction variable canonicalization pass should be used to normalize loops
153  // for easy analysis.  These methods assume canonical loops.
154
155  /// getExitingBlocks - Return all blocks inside the loop that have successors
156  /// outside of the loop.  These are the blocks _inside of the current loop_
157  /// which branch out.  The returned list is always unique.
158  ///
159  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
160    // Sort the blocks vector so that we can use binary search to do quick
161    // lookups.
162    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
163    std::sort(LoopBBs.begin(), LoopBBs.end());
164
165    typedef GraphTraits<BlockT*> BlockTraits;
166    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
167      for (typename BlockTraits::ChildIteratorType I =
168          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
169          I != E; ++I)
170        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
171          // Not in current loop? It must be an exit block.
172          ExitingBlocks.push_back(*BI);
173          break;
174        }
175  }
176
177  /// getExitingBlock - If getExitingBlocks would return exactly one block,
178  /// return that block. Otherwise return null.
179  BlockT *getExitingBlock() const {
180    SmallVector<BlockT*, 8> ExitingBlocks;
181    getExitingBlocks(ExitingBlocks);
182    if (ExitingBlocks.size() == 1)
183      return ExitingBlocks[0];
184    return 0;
185  }
186
187  /// getExitBlocks - Return all of the successor blocks of this loop.  These
188  /// are the blocks _outside of the current loop_ which are branched to.
189  ///
190  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
191    // Sort the blocks vector so that we can use binary search to do quick
192    // lookups.
193    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
194    std::sort(LoopBBs.begin(), LoopBBs.end());
195
196    typedef GraphTraits<BlockT*> BlockTraits;
197    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
198      for (typename BlockTraits::ChildIteratorType I =
199           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
200           I != E; ++I)
201        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
202          // Not in current loop? It must be an exit block.
203          ExitBlocks.push_back(*I);
204  }
205
206  /// getExitBlock - If getExitBlocks would return exactly one block,
207  /// return that block. Otherwise return null.
208  BlockT *getExitBlock() const {
209    SmallVector<BlockT*, 8> ExitBlocks;
210    getExitBlocks(ExitBlocks);
211    if (ExitBlocks.size() == 1)
212      return ExitBlocks[0];
213    return 0;
214  }
215
216  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
217  typedef std::pair<const BlockT*,const BlockT*> Edge;
218  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
219    // Sort the blocks vector so that we can use binary search to do quick
220    // lookups.
221    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
222    std::sort(LoopBBs.begin(), LoopBBs.end());
223
224    typedef GraphTraits<BlockT*> BlockTraits;
225    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
226      for (typename BlockTraits::ChildIteratorType I =
227           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
228           I != E; ++I)
229        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
230          // Not in current loop? It must be an exit block.
231          ExitEdges.push_back(std::make_pair(*BI, *I));
232  }
233
234  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
235  /// loop has a preheader if there is only one edge to the header of the loop
236  /// from outside of the loop.  If this is the case, the block branching to the
237  /// header of the loop is the preheader node.
238  ///
239  /// This method returns null if there is no preheader for the loop.
240  ///
241  BlockT *getLoopPreheader() const {
242    // Keep track of nodes outside the loop branching to the header...
243    BlockT *Out = 0;
244
245    // Loop over the predecessors of the header node...
246    BlockT *Header = getHeader();
247    typedef GraphTraits<BlockT*> BlockTraits;
248    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
249    for (typename InvBlockTraits::ChildIteratorType PI =
250         InvBlockTraits::child_begin(Header),
251         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
252      if (!contains(*PI)) {     // If the block is not in the loop...
253        if (Out && Out != *PI)
254          return 0;             // Multiple predecessors outside the loop
255        Out = *PI;
256      }
257
258    // Make sure there is only one exit out of the preheader.
259    assert(Out && "Header of loop has no predecessors from outside loop?");
260    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
261    ++SI;
262    if (SI != BlockTraits::child_end(Out))
263      return 0;  // Multiple exits from the block, must not be a preheader.
264
265    // If there is exactly one preheader, return it.  If there was zero, then
266    // Out is still null.
267    return Out;
268  }
269
270  /// getLoopLatch - If there is a single latch block for this loop, return it.
271  /// A latch block is a block that contains a branch back to the header.
272  /// A loop header in normal form has two edges into it: one from a preheader
273  /// and one from a latch block.
274  BlockT *getLoopLatch() const {
275    BlockT *Header = getHeader();
276    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
277    typename InvBlockTraits::ChildIteratorType PI =
278                                            InvBlockTraits::child_begin(Header);
279    typename InvBlockTraits::ChildIteratorType PE =
280                                              InvBlockTraits::child_end(Header);
281    if (PI == PE) return 0;  // no preds?
282
283    BlockT *Latch = 0;
284    if (contains(*PI))
285      Latch = *PI;
286    ++PI;
287    if (PI == PE) return 0;  // only one pred?
288
289    if (contains(*PI)) {
290      if (Latch) return 0;  // multiple backedges
291      Latch = *PI;
292    }
293    ++PI;
294    if (PI != PE) return 0;  // more than two preds
295
296    return Latch;
297  }
298
299  //===--------------------------------------------------------------------===//
300  // APIs for updating loop information after changing the CFG
301  //
302
303  /// addBasicBlockToLoop - This method is used by other analyses to update loop
304  /// information.  NewBB is set to be a new member of the current loop.
305  /// Because of this, it is added as a member of all parent loops, and is added
306  /// to the specified LoopInfo object as being in the current basic block.  It
307  /// is not valid to replace the loop header with this method.
308  ///
309  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
310
311  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
312  /// the OldChild entry in our children list with NewChild, and updates the
313  /// parent pointer of OldChild to be null and the NewChild to be this loop.
314  /// This updates the loop depth of the new child.
315  void replaceChildLoopWith(LoopT *OldChild,
316                            LoopT *NewChild) {
317    assert(OldChild->ParentLoop == this && "This loop is already broken!");
318    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
319    typename std::vector<LoopT *>::iterator I =
320                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
321    assert(I != SubLoops.end() && "OldChild not in loop!");
322    *I = NewChild;
323    OldChild->ParentLoop = 0;
324    NewChild->ParentLoop = static_cast<LoopT *>(this);
325  }
326
327  /// addChildLoop - Add the specified loop to be a child of this loop.  This
328  /// updates the loop depth of the new child.
329  ///
330  void addChildLoop(LoopT *NewChild) {
331    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
332    NewChild->ParentLoop = static_cast<LoopT *>(this);
333    SubLoops.push_back(NewChild);
334  }
335
336  /// removeChildLoop - This removes the specified child from being a subloop of
337  /// this loop.  The loop is not deleted, as it will presumably be inserted
338  /// into another loop.
339  LoopT *removeChildLoop(iterator I) {
340    assert(I != SubLoops.end() && "Cannot remove end iterator!");
341    LoopT *Child = *I;
342    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
343    SubLoops.erase(SubLoops.begin()+(I-begin()));
344    Child->ParentLoop = 0;
345    return Child;
346  }
347
348  /// addBlockEntry - This adds a basic block directly to the basic block list.
349  /// This should only be used by transformations that create new loops.  Other
350  /// transformations should use addBasicBlockToLoop.
351  void addBlockEntry(BlockT *BB) {
352    Blocks.push_back(BB);
353  }
354
355  /// moveToHeader - This method is used to move BB (which must be part of this
356  /// loop) to be the loop header of the loop (the block that dominates all
357  /// others).
358  void moveToHeader(BlockT *BB) {
359    if (Blocks[0] == BB) return;
360    for (unsigned i = 0; ; ++i) {
361      assert(i != Blocks.size() && "Loop does not contain BB!");
362      if (Blocks[i] == BB) {
363        Blocks[i] = Blocks[0];
364        Blocks[0] = BB;
365        return;
366      }
367    }
368  }
369
370  /// removeBlockFromLoop - This removes the specified basic block from the
371  /// current loop, updating the Blocks as appropriate.  This does not update
372  /// the mapping in the LoopInfo class.
373  void removeBlockFromLoop(BlockT *BB) {
374    RemoveFromVector(Blocks, BB);
375  }
376
377  /// verifyLoop - Verify loop structure
378  void verifyLoop() const {
379#ifndef NDEBUG
380    assert(!Blocks.empty() && "Loop header is missing");
381    assert(getHeader() && "Loop header is missing");
382
383    // Sort the blocks vector so that we can use binary search to do quick
384    // lookups.
385    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
386    std::sort(LoopBBs.begin(), LoopBBs.end());
387
388    // Check the individual blocks.
389    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
390      BlockT *BB = *I;
391      bool HasInsideLoopSuccs = false;
392      bool HasInsideLoopPreds = false;
393      SmallVector<BlockT *, 2> OutsideLoopPreds;
394
395      typedef GraphTraits<BlockT*> BlockTraits;
396      for (typename BlockTraits::ChildIteratorType SI =
397           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
398           SI != SE; ++SI)
399        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
400          HasInsideLoopSuccs = true;
401          break;
402        }
403      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
404      for (typename InvBlockTraits::ChildIteratorType PI =
405           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
406           PI != PE; ++PI) {
407        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *PI))
408          HasInsideLoopPreds = true;
409        else
410          OutsideLoopPreds.push_back(*PI);
411      }
412
413      if (BB == getHeader()) {
414        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
415      } else if (!OutsideLoopPreds.empty()) {
416        // A non-header loop shouldn't be reachable from outside the loop,
417        // though it is permitted if the predecessor is not itself actually
418        // reachable.
419        BlockT *EntryBB = BB->getParent()->begin();
420        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
421             NE = df_end(EntryBB); NI != NE; ++NI)
422          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
423            assert(*NI != OutsideLoopPreds[i] &&
424                   "Loop has multiple entry points!");
425      }
426      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
427      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
428      assert(BB != getHeader()->getParent()->begin() &&
429             "Loop contains function entry block!");
430    }
431
432    // Check the subloops.
433    for (iterator I = begin(), E = end(); I != E; ++I)
434      // Each block in each subloop should be contained within this loop.
435      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
436           BI != BE; ++BI) {
437        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
438               "Loop does not contain all the blocks of a subloop!");
439      }
440
441    // Check the parent loop pointer.
442    if (ParentLoop) {
443      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
444               ParentLoop->end() &&
445             "Loop is not a subloop of its parent!");
446    }
447#endif
448  }
449
450  /// verifyLoop - Verify loop structure of this loop and all nested loops.
451  void verifyLoopNest() const {
452    // Verify this loop.
453    verifyLoop();
454    // Verify the subloops.
455    for (iterator I = begin(), E = end(); I != E; ++I)
456      (*I)->verifyLoopNest();
457  }
458
459  void print(raw_ostream &OS, unsigned Depth = 0) const {
460    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
461       << " containing: ";
462
463    for (unsigned i = 0; i < getBlocks().size(); ++i) {
464      if (i) OS << ",";
465      BlockT *BB = getBlocks()[i];
466      WriteAsOperand(OS, BB, false);
467      if (BB == getHeader())    OS << "<header>";
468      if (BB == getLoopLatch()) OS << "<latch>";
469      if (isLoopExit(BB))       OS << "<exit>";
470    }
471    OS << "\n";
472
473    for (iterator I = begin(), E = end(); I != E; ++I)
474      (*I)->print(OS, Depth+2);
475  }
476
477  void dump() const {
478    print(errs());
479  }
480
481protected:
482  friend class LoopInfoBase<BlockT, LoopT>;
483  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
484    Blocks.push_back(BB);
485  }
486};
487
488class Loop : public LoopBase<BasicBlock, Loop> {
489public:
490  Loop() {}
491
492  /// isLoopInvariant - Return true if the specified value is loop invariant
493  ///
494  bool isLoopInvariant(Value *V) const;
495
496  /// isLoopInvariant - Return true if the specified instruction is
497  /// loop-invariant.
498  ///
499  bool isLoopInvariant(Instruction *I) const;
500
501  /// makeLoopInvariant - If the given value is an instruction inside of the
502  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
503  /// Return true if the value after any hoisting is loop invariant. This
504  /// function can be used as a slightly more aggressive replacement for
505  /// isLoopInvariant.
506  ///
507  /// If InsertPt is specified, it is the point to hoist instructions to.
508  /// If null, the terminator of the loop preheader is used.
509  ///
510  bool makeLoopInvariant(Value *V, bool &Changed,
511                         Instruction *InsertPt = 0) const;
512
513  /// makeLoopInvariant - If the given instruction is inside of the
514  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
515  /// Return true if the instruction after any hoisting is loop invariant. This
516  /// function can be used as a slightly more aggressive replacement for
517  /// isLoopInvariant.
518  ///
519  /// If InsertPt is specified, it is the point to hoist instructions to.
520  /// If null, the terminator of the loop preheader is used.
521  ///
522  bool makeLoopInvariant(Instruction *I, bool &Changed,
523                         Instruction *InsertPt = 0) const;
524
525  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
526  /// induction variable: an integer recurrence that starts at 0 and increments
527  /// by one each time through the loop.  If so, return the phi node that
528  /// corresponds to it.
529  ///
530  /// The IndVarSimplify pass transforms loops to have a canonical induction
531  /// variable.
532  ///
533  PHINode *getCanonicalInductionVariable() const;
534
535  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
536  /// the canonical induction variable value for the "next" iteration of the
537  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
538  ///
539  Instruction *getCanonicalInductionVariableIncrement() const;
540
541  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
542  /// times the loop will be executed.  Note that this means that the backedge
543  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
544  /// this returns null.
545  ///
546  /// The IndVarSimplify pass transforms loops to have a form that this
547  /// function easily understands.
548  ///
549  Value *getTripCount() const;
550
551  /// getSmallConstantTripCount - Returns the trip count of this loop as a
552  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
553  /// of not constant. Will also return 0 if the trip count is very large
554  /// (>= 2^32)
555  unsigned getSmallConstantTripCount() const;
556
557  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
558  /// trip count of this loop as a normal unsigned value, if possible. This
559  /// means that the actual trip count is always a multiple of the returned
560  /// value (don't forget the trip count could very well be zero as well!).
561  ///
562  /// Returns 1 if the trip count is unknown or not guaranteed to be the
563  /// multiple of a constant (which is also the case if the trip count is simply
564  /// constant, use getSmallConstantTripCount for that case), Will also return 1
565  /// if the trip count is very large (>= 2^32).
566  unsigned getSmallConstantTripMultiple() const;
567
568  /// isLCSSAForm - Return true if the Loop is in LCSSA form
569  bool isLCSSAForm() const;
570
571  /// isLoopSimplifyForm - Return true if the Loop is in the form that
572  /// the LoopSimplify form transforms loops to, which is sometimes called
573  /// normal form.
574  bool isLoopSimplifyForm() const;
575
576  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
577  /// These are the blocks _outside of the current loop_ which are branched to.
578  /// This assumes that loop is in canonical form.
579  ///
580  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
581
582  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
583  /// block, return that block. Otherwise return null.
584  BasicBlock *getUniqueExitBlock() const;
585
586private:
587  friend class LoopInfoBase<BasicBlock, Loop>;
588  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
589};
590
591//===----------------------------------------------------------------------===//
592/// LoopInfo - This class builds and contains all of the top level loop
593/// structures in the specified function.
594///
595
596template<class BlockT, class LoopT>
597class LoopInfoBase {
598  // BBMap - Mapping of basic blocks to the inner most loop they occur in
599  std::map<BlockT *, LoopT *> BBMap;
600  std::vector<LoopT *> TopLevelLoops;
601  friend class LoopBase<BlockT, LoopT>;
602
603  void operator=(const LoopInfoBase &); // do not implement
604  LoopInfoBase(const LoopInfo &);       // do not implement
605public:
606  LoopInfoBase() { }
607  ~LoopInfoBase() { releaseMemory(); }
608
609  void releaseMemory() {
610    for (typename std::vector<LoopT *>::iterator I =
611         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
612      delete *I;   // Delete all of the loops...
613
614    BBMap.clear();                           // Reset internal state of analysis
615    TopLevelLoops.clear();
616  }
617
618  /// iterator/begin/end - The interface to the top-level loops in the current
619  /// function.
620  ///
621  typedef typename std::vector<LoopT *>::const_iterator iterator;
622  iterator begin() const { return TopLevelLoops.begin(); }
623  iterator end() const { return TopLevelLoops.end(); }
624  bool empty() const { return TopLevelLoops.empty(); }
625
626  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
627  /// block is in no loop (for example the entry node), null is returned.
628  ///
629  LoopT *getLoopFor(const BlockT *BB) const {
630    typename std::map<BlockT *, LoopT *>::const_iterator I=
631      BBMap.find(const_cast<BlockT*>(BB));
632    return I != BBMap.end() ? I->second : 0;
633  }
634
635  /// operator[] - same as getLoopFor...
636  ///
637  const LoopT *operator[](const BlockT *BB) const {
638    return getLoopFor(BB);
639  }
640
641  /// getLoopDepth - Return the loop nesting level of the specified block.  A
642  /// depth of 0 means the block is not inside any loop.
643  ///
644  unsigned getLoopDepth(const BlockT *BB) const {
645    const LoopT *L = getLoopFor(BB);
646    return L ? L->getLoopDepth() : 0;
647  }
648
649  // isLoopHeader - True if the block is a loop header node
650  bool isLoopHeader(BlockT *BB) const {
651    const LoopT *L = getLoopFor(BB);
652    return L && L->getHeader() == BB;
653  }
654
655  /// removeLoop - This removes the specified top-level loop from this loop info
656  /// object.  The loop is not deleted, as it will presumably be inserted into
657  /// another loop.
658  LoopT *removeLoop(iterator I) {
659    assert(I != end() && "Cannot remove end iterator!");
660    LoopT *L = *I;
661    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
662    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
663    return L;
664  }
665
666  /// changeLoopFor - Change the top-level loop that contains BB to the
667  /// specified loop.  This should be used by transformations that restructure
668  /// the loop hierarchy tree.
669  void changeLoopFor(BlockT *BB, LoopT *L) {
670    LoopT *&OldLoop = BBMap[BB];
671    assert(OldLoop && "Block not in a loop yet!");
672    OldLoop = L;
673  }
674
675  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
676  /// list with the indicated loop.
677  void changeTopLevelLoop(LoopT *OldLoop,
678                          LoopT *NewLoop) {
679    typename std::vector<LoopT *>::iterator I =
680                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
681    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
682    *I = NewLoop;
683    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
684           "Loops already embedded into a subloop!");
685  }
686
687  /// addTopLevelLoop - This adds the specified loop to the collection of
688  /// top-level loops.
689  void addTopLevelLoop(LoopT *New) {
690    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
691    TopLevelLoops.push_back(New);
692  }
693
694  /// removeBlock - This method completely removes BB from all data structures,
695  /// including all of the Loop objects it is nested in and our mapping from
696  /// BasicBlocks to loops.
697  void removeBlock(BlockT *BB) {
698    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
699    if (I != BBMap.end()) {
700      for (LoopT *L = I->second; L; L = L->getParentLoop())
701        L->removeBlockFromLoop(BB);
702
703      BBMap.erase(I);
704    }
705  }
706
707  // Internals
708
709  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
710                                      const LoopT *ParentLoop) {
711    if (SubLoop == 0) return true;
712    if (SubLoop == ParentLoop) return false;
713    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
714  }
715
716  void Calculate(DominatorTreeBase<BlockT> &DT) {
717    BlockT *RootNode = DT.getRootNode()->getBlock();
718
719    for (df_iterator<BlockT*> NI = df_begin(RootNode),
720           NE = df_end(RootNode); NI != NE; ++NI)
721      if (LoopT *L = ConsiderForLoop(*NI, DT))
722        TopLevelLoops.push_back(L);
723  }
724
725  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
726    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
727
728    std::vector<BlockT *> TodoStack;
729
730    // Scan the predecessors of BB, checking to see if BB dominates any of
731    // them.  This identifies backedges which target this node...
732    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
733    for (typename InvBlockTraits::ChildIteratorType I =
734         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
735         I != E; ++I)
736      if (DT.dominates(BB, *I))   // If BB dominates its predecessor...
737        TodoStack.push_back(*I);
738
739    if (TodoStack.empty()) return 0;  // No backedges to this block...
740
741    // Create a new loop to represent this basic block...
742    LoopT *L = new LoopT(BB);
743    BBMap[BB] = L;
744
745    BlockT *EntryBlock = BB->getParent()->begin();
746
747    while (!TodoStack.empty()) {  // Process all the nodes in the loop
748      BlockT *X = TodoStack.back();
749      TodoStack.pop_back();
750
751      if (!L->contains(X) &&         // As of yet unprocessed??
752          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
753        // Check to see if this block already belongs to a loop.  If this occurs
754        // then we have a case where a loop that is supposed to be a child of
755        // the current loop was processed before the current loop.  When this
756        // occurs, this child loop gets added to a part of the current loop,
757        // making it a sibling to the current loop.  We have to reparent this
758        // loop.
759        if (LoopT *SubLoop =
760            const_cast<LoopT *>(getLoopFor(X)))
761          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
762            // Remove the subloop from its current parent...
763            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
764            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
765            typename std::vector<LoopT *>::iterator I =
766              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
767            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
768            SLP->SubLoops.erase(I);   // Remove from parent...
769
770            // Add the subloop to THIS loop...
771            SubLoop->ParentLoop = L;
772            L->SubLoops.push_back(SubLoop);
773          }
774
775        // Normal case, add the block to our loop...
776        L->Blocks.push_back(X);
777
778        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
779
780        // Add all of the predecessors of X to the end of the work stack...
781        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
782                         InvBlockTraits::child_end(X));
783      }
784    }
785
786    // If there are any loops nested within this loop, create them now!
787    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
788         E = L->Blocks.end(); I != E; ++I)
789      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
790        L->SubLoops.push_back(NewLoop);
791        NewLoop->ParentLoop = L;
792      }
793
794    // Add the basic blocks that comprise this loop to the BBMap so that this
795    // loop can be found for them.
796    //
797    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
798           E = L->Blocks.end(); I != E; ++I)
799      BBMap.insert(std::make_pair(*I, L));
800
801    // Now that we have a list of all of the child loops of this loop, check to
802    // see if any of them should actually be nested inside of each other.  We
803    // can accidentally pull loops our of their parents, so we must make sure to
804    // organize the loop nests correctly now.
805    {
806      std::map<BlockT *, LoopT *> ContainingLoops;
807      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
808        LoopT *Child = L->SubLoops[i];
809        assert(Child->getParentLoop() == L && "Not proper child loop?");
810
811        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
812          // If there is already a loop which contains this loop, move this loop
813          // into the containing loop.
814          MoveSiblingLoopInto(Child, ContainingLoop);
815          --i;  // The loop got removed from the SubLoops list.
816        } else {
817          // This is currently considered to be a top-level loop.  Check to see
818          // if any of the contained blocks are loop headers for subloops we
819          // have already processed.
820          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
821            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
822            if (BlockLoop == 0) {   // Child block not processed yet...
823              BlockLoop = Child;
824            } else if (BlockLoop != Child) {
825              LoopT *SubLoop = BlockLoop;
826              // Reparent all of the blocks which used to belong to BlockLoops
827              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
828                ContainingLoops[SubLoop->Blocks[j]] = Child;
829
830              // There is already a loop which contains this block, that means
831              // that we should reparent the loop which the block is currently
832              // considered to belong to to be a child of this loop.
833              MoveSiblingLoopInto(SubLoop, Child);
834              --i;  // We just shrunk the SubLoops list.
835            }
836          }
837        }
838      }
839    }
840
841    return L;
842  }
843
844  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
845  /// of the NewParent Loop, instead of being a sibling of it.
846  void MoveSiblingLoopInto(LoopT *NewChild,
847                           LoopT *NewParent) {
848    LoopT *OldParent = NewChild->getParentLoop();
849    assert(OldParent && OldParent == NewParent->getParentLoop() &&
850           NewChild != NewParent && "Not sibling loops!");
851
852    // Remove NewChild from being a child of OldParent
853    typename std::vector<LoopT *>::iterator I =
854      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
855                NewChild);
856    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
857    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
858    NewChild->ParentLoop = 0;
859
860    InsertLoopInto(NewChild, NewParent);
861  }
862
863  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
864  /// the parent loop contains a loop which should contain L, the loop gets
865  /// inserted into L instead.
866  void InsertLoopInto(LoopT *L, LoopT *Parent) {
867    BlockT *LHeader = L->getHeader();
868    assert(Parent->contains(LHeader) &&
869           "This loop should not be inserted here!");
870
871    // Check to see if it belongs in a child loop...
872    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
873         i != e; ++i)
874      if (Parent->SubLoops[i]->contains(LHeader)) {
875        InsertLoopInto(L, Parent->SubLoops[i]);
876        return;
877      }
878
879    // If not, insert it here!
880    Parent->SubLoops.push_back(L);
881    L->ParentLoop = Parent;
882  }
883
884  // Debugging
885
886  void print(raw_ostream &OS) const {
887    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
888      TopLevelLoops[i]->print(OS);
889  #if 0
890    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
891           E = BBMap.end(); I != E; ++I)
892      OS << "BB '" << I->first->getName() << "' level = "
893         << I->second->getLoopDepth() << "\n";
894  #endif
895  }
896};
897
898class LoopInfo : public FunctionPass {
899  LoopInfoBase<BasicBlock, Loop> LI;
900  friend class LoopBase<BasicBlock, Loop>;
901
902  void operator=(const LoopInfo &); // do not implement
903  LoopInfo(const LoopInfo &);       // do not implement
904public:
905  static char ID; // Pass identification, replacement for typeid
906
907  LoopInfo() : FunctionPass(&ID) {}
908
909  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
910
911  /// iterator/begin/end - The interface to the top-level loops in the current
912  /// function.
913  ///
914  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
915  inline iterator begin() const { return LI.begin(); }
916  inline iterator end() const { return LI.end(); }
917  bool empty() const { return LI.empty(); }
918
919  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
920  /// block is in no loop (for example the entry node), null is returned.
921  ///
922  inline Loop *getLoopFor(const BasicBlock *BB) const {
923    return LI.getLoopFor(BB);
924  }
925
926  /// operator[] - same as getLoopFor...
927  ///
928  inline const Loop *operator[](const BasicBlock *BB) const {
929    return LI.getLoopFor(BB);
930  }
931
932  /// getLoopDepth - Return the loop nesting level of the specified block.  A
933  /// depth of 0 means the block is not inside any loop.
934  ///
935  inline unsigned getLoopDepth(const BasicBlock *BB) const {
936    return LI.getLoopDepth(BB);
937  }
938
939  // isLoopHeader - True if the block is a loop header node
940  inline bool isLoopHeader(BasicBlock *BB) const {
941    return LI.isLoopHeader(BB);
942  }
943
944  /// runOnFunction - Calculate the natural loop information.
945  ///
946  virtual bool runOnFunction(Function &F);
947
948  virtual void verifyAnalysis() const;
949
950  virtual void releaseMemory() { LI.releaseMemory(); }
951
952  virtual void print(raw_ostream &O, const Module* M = 0) const;
953
954  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
955
956  /// removeLoop - This removes the specified top-level loop from this loop info
957  /// object.  The loop is not deleted, as it will presumably be inserted into
958  /// another loop.
959  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
960
961  /// changeLoopFor - Change the top-level loop that contains BB to the
962  /// specified loop.  This should be used by transformations that restructure
963  /// the loop hierarchy tree.
964  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
965    LI.changeLoopFor(BB, L);
966  }
967
968  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
969  /// list with the indicated loop.
970  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
971    LI.changeTopLevelLoop(OldLoop, NewLoop);
972  }
973
974  /// addTopLevelLoop - This adds the specified loop to the collection of
975  /// top-level loops.
976  inline void addTopLevelLoop(Loop *New) {
977    LI.addTopLevelLoop(New);
978  }
979
980  /// removeBlock - This method completely removes BB from all data structures,
981  /// including all of the Loop objects it is nested in and our mapping from
982  /// BasicBlocks to loops.
983  void removeBlock(BasicBlock *BB) {
984    LI.removeBlock(BB);
985  }
986
987  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
988                                      const Loop *ParentLoop) {
989    return
990      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
991                                                              ParentLoop);
992  }
993};
994
995
996// Allow clients to walk the list of nested loops...
997template <> struct GraphTraits<const Loop*> {
998  typedef const Loop NodeType;
999  typedef LoopInfo::iterator ChildIteratorType;
1000
1001  static NodeType *getEntryNode(const Loop *L) { return L; }
1002  static inline ChildIteratorType child_begin(NodeType *N) {
1003    return N->begin();
1004  }
1005  static inline ChildIteratorType child_end(NodeType *N) {
1006    return N->end();
1007  }
1008};
1009
1010template <> struct GraphTraits<Loop*> {
1011  typedef Loop NodeType;
1012  typedef LoopInfo::iterator ChildIteratorType;
1013
1014  static NodeType *getEntryNode(Loop *L) { return L; }
1015  static inline ChildIteratorType child_begin(NodeType *N) {
1016    return N->begin();
1017  }
1018  static inline ChildIteratorType child_end(NodeType *N) {
1019    return N->end();
1020  }
1021};
1022
1023template<class BlockT, class LoopT>
1024void
1025LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1026                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1027  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1028         "Incorrect LI specified for this loop!");
1029  assert(NewBB && "Cannot add a null basic block to the loop!");
1030  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1031
1032  LoopT *L = static_cast<LoopT *>(this);
1033
1034  // Add the loop mapping to the LoopInfo object...
1035  LIB.BBMap[NewBB] = L;
1036
1037  // Add the basic block to this loop and all parent loops...
1038  while (L) {
1039    L->Blocks.push_back(NewBB);
1040    L = L->getParentLoop();
1041  }
1042}
1043
1044} // End llvm namespace
1045
1046#endif
1047