LoopInfo.h revision be5918c079c208af24fa3501f883ecceb6e6ae02
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/Constants.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Streams.h"
43#include <algorithm>
44#include <ostream>
45
46template<typename T>
47static void RemoveFromVector(std::vector<T*> &V, T *N) {
48  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
49  assert(I != V.end() && "N is not in this list!");
50  V.erase(I);
51}
52
53namespace llvm {
54
55class DominatorTree;
56class LoopInfo;
57class PHINode;
58class Instruction;
59template<class N> class LoopInfoBase;
60template<class N> class LoopBase;
61
62typedef LoopBase<BasicBlock> Loop;
63
64//===----------------------------------------------------------------------===//
65/// LoopBase class - Instances of this class are used to represent loops that
66/// are detected in the flow graph
67///
68template<class BlockT>
69class LoopBase {
70  LoopBase<BlockT> *ParentLoop;
71  // SubLoops - Loops contained entirely within this one.
72  std::vector<LoopBase<BlockT>*> SubLoops;
73
74  // Blocks - The list of blocks in this loop.  First entry is the header node.
75  std::vector<BlockT*> Blocks;
76
77  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
78  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
79public:
80  /// Loop ctor - This creates an empty loop.
81  LoopBase() : ParentLoop(0) {}
82  ~LoopBase() {
83    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
84      delete SubLoops[i];
85  }
86
87  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
88  /// loop has depth 1, for consistency with loop depth values used for basic
89  /// blocks, where depth 0 is used for blocks not inside any loops.
90  unsigned getLoopDepth() const {
91    unsigned D = 1;
92    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
93         CurLoop = CurLoop->ParentLoop)
94      ++D;
95    return D;
96  }
97  BlockT *getHeader() const { return Blocks.front(); }
98  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
99
100  /// contains - Return true if the specified basic block is in this loop
101  ///
102  bool contains(const BlockT *BB) const {
103    return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
104  }
105
106  /// iterator/begin/end - Return the loops contained entirely within this loop.
107  ///
108  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
109  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
110  iterator begin() const { return SubLoops.begin(); }
111  iterator end() const { return SubLoops.end(); }
112  bool empty() const { return SubLoops.empty(); }
113
114  /// getBlocks - Get a list of the basic blocks which make up this loop.
115  ///
116  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
117  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
118  block_iterator block_begin() const { return Blocks.begin(); }
119  block_iterator block_end() const { return Blocks.end(); }
120
121  /// isLoopExit - True if terminator in the block can branch to another block
122  /// that is outside of the current loop.
123  ///
124  bool isLoopExit(const BlockT *BB) const {
125    typedef GraphTraits<BlockT*> BlockTraits;
126    for (typename BlockTraits::ChildIteratorType SI =
127         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
128         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
129      if (!contains(*SI))
130        return true;
131    }
132    return false;
133  }
134
135  /// getNumBackEdges - Calculate the number of back edges to the loop header
136  ///
137  unsigned getNumBackEdges() const {
138    unsigned NumBackEdges = 0;
139    BlockT *H = getHeader();
140
141    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
142    for (typename InvBlockTraits::ChildIteratorType I =
143         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
144         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
145      if (contains(*I))
146        ++NumBackEdges;
147
148    return NumBackEdges;
149  }
150
151  /// isLoopInvariant - Return true if the specified value is loop invariant
152  ///
153  inline bool isLoopInvariant(Value *V) const {
154    if (Instruction *I = dyn_cast<Instruction>(V))
155      return !contains(I->getParent());
156    return true;  // All non-instructions are loop invariant
157  }
158
159  //===--------------------------------------------------------------------===//
160  // APIs for simple analysis of the loop.
161  //
162  // Note that all of these methods can fail on general loops (ie, there may not
163  // be a preheader, etc).  For best success, the loop simplification and
164  // induction variable canonicalization pass should be used to normalize loops
165  // for easy analysis.  These methods assume canonical loops.
166
167  /// getExitingBlocks - Return all blocks inside the loop that have successors
168  /// outside of the loop.  These are the blocks _inside of the current loop_
169  /// which branch out.  The returned list is always unique.
170  ///
171  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
172    // Sort the blocks vector so that we can use binary search to do quick
173    // lookups.
174    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
175    std::sort(LoopBBs.begin(), LoopBBs.end());
176
177    typedef GraphTraits<BlockT*> BlockTraits;
178    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
179         BE = Blocks.end(); BI != BE; ++BI)
180      for (typename BlockTraits::ChildIteratorType I =
181          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
182          I != E; ++I)
183        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
184          // Not in current loop? It must be an exit block.
185          ExitingBlocks.push_back(*BI);
186          break;
187        }
188  }
189
190  /// getExitBlocks - Return all of the successor blocks of this loop.  These
191  /// are the blocks _outside of the current loop_ which are branched to.
192  ///
193  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
194    // Sort the blocks vector so that we can use binary search to do quick
195    // lookups.
196    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
197    std::sort(LoopBBs.begin(), LoopBBs.end());
198
199    typedef GraphTraits<BlockT*> BlockTraits;
200    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
201         BE = Blocks.end(); BI != BE; ++BI)
202      for (typename BlockTraits::ChildIteratorType I =
203           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
204           I != E; ++I)
205        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
206          // Not in current loop? It must be an exit block.
207          ExitBlocks.push_back(*I);
208  }
209
210  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
211  /// These are the blocks _outside of the current loop_ which are branched to.
212  /// This assumes that loop is in canonical form.
213  ///
214  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
215    // Sort the blocks vector so that we can use binary search to do quick
216    // lookups.
217    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
218    std::sort(LoopBBs.begin(), LoopBBs.end());
219
220    std::vector<BlockT*> switchExitBlocks;
221
222    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
223         BE = Blocks.end(); BI != BE; ++BI) {
224
225      BlockT *current = *BI;
226      switchExitBlocks.clear();
227
228      typedef GraphTraits<BlockT*> BlockTraits;
229      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
230      for (typename BlockTraits::ChildIteratorType I =
231           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
232           I != E; ++I) {
233        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
234      // If block is inside the loop then it is not a exit block.
235          continue;
236
237        typename InvBlockTraits::ChildIteratorType PI =
238                                                InvBlockTraits::child_begin(*I);
239        BlockT *firstPred = *PI;
240
241        // If current basic block is this exit block's first predecessor
242        // then only insert exit block in to the output ExitBlocks vector.
243        // This ensures that same exit block is not inserted twice into
244        // ExitBlocks vector.
245        if (current != firstPred)
246          continue;
247
248        // If a terminator has more then two successors, for example SwitchInst,
249        // then it is possible that there are multiple edges from current block
250        // to one exit block.
251        if (std::distance(BlockTraits::child_begin(current),
252                          BlockTraits::child_end(current)) <= 2) {
253          ExitBlocks.push_back(*I);
254          continue;
255        }
256
257        // In case of multiple edges from current block to exit block, collect
258        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
259        // duplicate edges.
260        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
261            == switchExitBlocks.end()) {
262          switchExitBlocks.push_back(*I);
263          ExitBlocks.push_back(*I);
264        }
265      }
266    }
267  }
268
269  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
270  /// loop has a preheader if there is only one edge to the header of the loop
271  /// from outside of the loop.  If this is the case, the block branching to the
272  /// header of the loop is the preheader node.
273  ///
274  /// This method returns null if there is no preheader for the loop.
275  ///
276  BlockT *getLoopPreheader() const {
277    // Keep track of nodes outside the loop branching to the header...
278    BlockT *Out = 0;
279
280    // Loop over the predecessors of the header node...
281    BlockT *Header = getHeader();
282    typedef GraphTraits<BlockT*> BlockTraits;
283    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
284    for (typename InvBlockTraits::ChildIteratorType PI =
285         InvBlockTraits::child_begin(Header),
286         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
287      if (!contains(*PI)) {     // If the block is not in the loop...
288        if (Out && Out != *PI)
289          return 0;             // Multiple predecessors outside the loop
290        Out = *PI;
291      }
292
293    // Make sure there is only one exit out of the preheader.
294    assert(Out && "Header of loop has no predecessors from outside loop?");
295    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
296    ++SI;
297    if (SI != BlockTraits::child_end(Out))
298      return 0;  // Multiple exits from the block, must not be a preheader.
299
300    // If there is exactly one preheader, return it.  If there was zero, then
301    // Out is still null.
302    return Out;
303  }
304
305  /// getLoopLatch - If there is a latch block for this loop, return it.  A
306  /// latch block is the canonical backedge for a loop.  A loop header in normal
307  /// form has two edges into it: one from a preheader and one from a latch
308  /// block.
309  BlockT *getLoopLatch() const {
310    BlockT *Header = getHeader();
311    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
312    typename InvBlockTraits::ChildIteratorType PI =
313                                            InvBlockTraits::child_begin(Header);
314    typename InvBlockTraits::ChildIteratorType PE =
315                                              InvBlockTraits::child_end(Header);
316    if (PI == PE) return 0;  // no preds?
317
318    BlockT *Latch = 0;
319    if (contains(*PI))
320      Latch = *PI;
321    ++PI;
322    if (PI == PE) return 0;  // only one pred?
323
324    if (contains(*PI)) {
325      if (Latch) return 0;  // multiple backedges
326      Latch = *PI;
327    }
328    ++PI;
329    if (PI != PE) return 0;  // more than two preds
330
331    return Latch;
332  }
333
334  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
335  /// induction variable: an integer recurrence that starts at 0 and increments
336  /// by one each time through the loop.  If so, return the phi node that
337  /// corresponds to it.
338  ///
339  inline PHINode *getCanonicalInductionVariable() const {
340    BlockT *H = getHeader();
341
342    BlockT *Incoming = 0, *Backedge = 0;
343    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
344    typename InvBlockTraits::ChildIteratorType PI =
345                                                 InvBlockTraits::child_begin(H);
346    assert(PI != InvBlockTraits::child_end(H) &&
347           "Loop must have at least one backedge!");
348    Backedge = *PI++;
349    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
350    Incoming = *PI++;
351    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
352
353    if (contains(Incoming)) {
354      if (contains(Backedge))
355        return 0;
356      std::swap(Incoming, Backedge);
357    } else if (!contains(Backedge))
358      return 0;
359
360    // Loop over all of the PHI nodes, looking for a canonical indvar.
361    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
362      PHINode *PN = cast<PHINode>(I);
363      if (ConstantInt *CI =
364          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
365        if (CI->isNullValue())
366          if (Instruction *Inc =
367              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
368            if (Inc->getOpcode() == Instruction::Add &&
369                Inc->getOperand(0) == PN)
370              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
371                if (CI->equalsInt(1))
372                  return PN;
373    }
374    return 0;
375  }
376
377  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
378  /// the canonical induction variable value for the "next" iteration of the
379  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
380  ///
381  inline Instruction *getCanonicalInductionVariableIncrement() const {
382    if (PHINode *PN = getCanonicalInductionVariable()) {
383      bool P1InLoop = contains(PN->getIncomingBlock(1));
384      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
385    }
386    return 0;
387  }
388
389  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
390  /// times the loop will be executed.  Note that this means that the backedge
391  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
392  /// this returns null.
393  ///
394  inline Value *getTripCount() const {
395    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
396    // canonical induction variable and V is the trip count of the loop.
397    Instruction *Inc = getCanonicalInductionVariableIncrement();
398    if (Inc == 0) return 0;
399    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
400
401    BlockT *BackedgeBlock =
402            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
403
404    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
405      if (BI->isConditional()) {
406        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
407          if (ICI->getOperand(0) == Inc) {
408            if (BI->getSuccessor(0) == getHeader()) {
409              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
410                return ICI->getOperand(1);
411            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
412              return ICI->getOperand(1);
413            }
414          }
415        }
416      }
417
418    return 0;
419  }
420
421  /// isLCSSAForm - Return true if the Loop is in LCSSA form
422  inline bool isLCSSAForm() const {
423    // Sort the blocks vector so that we can use binary search to do quick
424    // lookups.
425    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
426
427    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
428      BlockT *BB = *BI;
429      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
430        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
431             ++UI) {
432          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
433          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
434            unsigned OperandNo = UI.getOperandNo();
435            UserBB = P->getIncomingBlock(OperandNo/2);
436          }
437
438          // Check the current block, as a fast-path.  Most values are used in
439          // the same block they are defined in.
440          if (UserBB != BB && !LoopBBs.count(UserBB))
441            return false;
442        }
443    }
444
445    return true;
446  }
447
448  //===--------------------------------------------------------------------===//
449  // APIs for updating loop information after changing the CFG
450  //
451
452  /// addBasicBlockToLoop - This method is used by other analyses to update loop
453  /// information.  NewBB is set to be a new member of the current loop.
454  /// Because of this, it is added as a member of all parent loops, and is added
455  /// to the specified LoopInfo object as being in the current basic block.  It
456  /// is not valid to replace the loop header with this method.
457  ///
458  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
459
460  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
461  /// the OldChild entry in our children list with NewChild, and updates the
462  /// parent pointer of OldChild to be null and the NewChild to be this loop.
463  /// This updates the loop depth of the new child.
464  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
465                            LoopBase<BlockT> *NewChild) {
466    assert(OldChild->ParentLoop == this && "This loop is already broken!");
467    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
468    typename std::vector<LoopBase<BlockT>*>::iterator I =
469                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
470    assert(I != SubLoops.end() && "OldChild not in loop!");
471    *I = NewChild;
472    OldChild->ParentLoop = 0;
473    NewChild->ParentLoop = this;
474  }
475
476  /// addChildLoop - Add the specified loop to be a child of this loop.  This
477  /// updates the loop depth of the new child.
478  ///
479  void addChildLoop(LoopBase<BlockT> *NewChild) {
480    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
481    NewChild->ParentLoop = this;
482    SubLoops.push_back(NewChild);
483  }
484
485  /// removeChildLoop - This removes the specified child from being a subloop of
486  /// this loop.  The loop is not deleted, as it will presumably be inserted
487  /// into another loop.
488  LoopBase<BlockT> *removeChildLoop(iterator I) {
489    assert(I != SubLoops.end() && "Cannot remove end iterator!");
490    LoopBase<BlockT> *Child = *I;
491    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
492    SubLoops.erase(SubLoops.begin()+(I-begin()));
493    Child->ParentLoop = 0;
494    return Child;
495  }
496
497  /// addBlockEntry - This adds a basic block directly to the basic block list.
498  /// This should only be used by transformations that create new loops.  Other
499  /// transformations should use addBasicBlockToLoop.
500  void addBlockEntry(BlockT *BB) {
501    Blocks.push_back(BB);
502  }
503
504  /// moveToHeader - This method is used to move BB (which must be part of this
505  /// loop) to be the loop header of the loop (the block that dominates all
506  /// others).
507  void moveToHeader(BlockT *BB) {
508    if (Blocks[0] == BB) return;
509    for (unsigned i = 0; ; ++i) {
510      assert(i != Blocks.size() && "Loop does not contain BB!");
511      if (Blocks[i] == BB) {
512        Blocks[i] = Blocks[0];
513        Blocks[0] = BB;
514        return;
515      }
516    }
517  }
518
519  /// removeBlockFromLoop - This removes the specified basic block from the
520  /// current loop, updating the Blocks as appropriate.  This does not update
521  /// the mapping in the LoopInfo class.
522  void removeBlockFromLoop(BlockT *BB) {
523    RemoveFromVector(Blocks, BB);
524  }
525
526  /// verifyLoop - Verify loop structure
527  void verifyLoop() const {
528#ifndef NDEBUG
529    assert (getHeader() && "Loop header is missing");
530    assert (getLoopPreheader() && "Loop preheader is missing");
531    assert (getLoopLatch() && "Loop latch is missing");
532    for (typename std::vector<LoopBase<BlockT>*>::const_iterator I =
533         SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
534      (*I)->verifyLoop();
535#endif
536  }
537
538  void print(std::ostream &OS, unsigned Depth = 0) const {
539    OS << std::string(Depth*2, ' ') << "Loop Containing: ";
540
541    for (unsigned i = 0; i < getBlocks().size(); ++i) {
542      if (i) OS << ",";
543      WriteAsOperand(OS, getBlocks()[i], false);
544    }
545    OS << "\n";
546
547    for (iterator I = begin(), E = end(); I != E; ++I)
548      (*I)->print(OS, Depth+2);
549  }
550
551  void print(std::ostream *O, unsigned Depth = 0) const {
552    if (O) print(*O, Depth);
553  }
554
555  void dump() const {
556    print(cerr);
557  }
558
559private:
560  friend class LoopInfoBase<BlockT>;
561  LoopBase(BlockT *BB) : ParentLoop(0) {
562    Blocks.push_back(BB);
563  }
564};
565
566
567//===----------------------------------------------------------------------===//
568/// LoopInfo - This class builds and contains all of the top level loop
569/// structures in the specified function.
570///
571
572template<class BlockT>
573class LoopInfoBase {
574  // BBMap - Mapping of basic blocks to the inner most loop they occur in
575  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
576  std::vector<LoopBase<BlockT>*> TopLevelLoops;
577  friend class LoopBase<BlockT>;
578
579public:
580  LoopInfoBase() { }
581  ~LoopInfoBase() { releaseMemory(); }
582
583  void releaseMemory() {
584    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
585         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
586      delete *I;   // Delete all of the loops...
587
588    BBMap.clear();                           // Reset internal state of analysis
589    TopLevelLoops.clear();
590  }
591
592  /// iterator/begin/end - The interface to the top-level loops in the current
593  /// function.
594  ///
595  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
596  iterator begin() const { return TopLevelLoops.begin(); }
597  iterator end() const { return TopLevelLoops.end(); }
598
599  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
600  /// block is in no loop (for example the entry node), null is returned.
601  ///
602  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
603    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
604      BBMap.find(const_cast<BlockT*>(BB));
605    return I != BBMap.end() ? I->second : 0;
606  }
607
608  /// operator[] - same as getLoopFor...
609  ///
610  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
611    return getLoopFor(BB);
612  }
613
614  /// getLoopDepth - Return the loop nesting level of the specified block.  A
615  /// depth of 0 means the block is not inside any loop.
616  ///
617  unsigned getLoopDepth(const BlockT *BB) const {
618    const LoopBase<BlockT> *L = getLoopFor(BB);
619    return L ? L->getLoopDepth() : 0;
620  }
621
622  // isLoopHeader - True if the block is a loop header node
623  bool isLoopHeader(BlockT *BB) const {
624    const LoopBase<BlockT> *L = getLoopFor(BB);
625    return L && L->getHeader() == BB;
626  }
627
628  /// removeLoop - This removes the specified top-level loop from this loop info
629  /// object.  The loop is not deleted, as it will presumably be inserted into
630  /// another loop.
631  LoopBase<BlockT> *removeLoop(iterator I) {
632    assert(I != end() && "Cannot remove end iterator!");
633    LoopBase<BlockT> *L = *I;
634    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
635    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
636    return L;
637  }
638
639  /// changeLoopFor - Change the top-level loop that contains BB to the
640  /// specified loop.  This should be used by transformations that restructure
641  /// the loop hierarchy tree.
642  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
643    LoopBase<BlockT> *&OldLoop = BBMap[BB];
644    assert(OldLoop && "Block not in a loop yet!");
645    OldLoop = L;
646  }
647
648  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
649  /// list with the indicated loop.
650  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
651                          LoopBase<BlockT> *NewLoop) {
652    typename std::vector<LoopBase<BlockT>*>::iterator I =
653                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
654    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
655    *I = NewLoop;
656    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
657           "Loops already embedded into a subloop!");
658  }
659
660  /// addTopLevelLoop - This adds the specified loop to the collection of
661  /// top-level loops.
662  void addTopLevelLoop(LoopBase<BlockT> *New) {
663    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
664    TopLevelLoops.push_back(New);
665  }
666
667  /// removeBlock - This method completely removes BB from all data structures,
668  /// including all of the Loop objects it is nested in and our mapping from
669  /// BasicBlocks to loops.
670  void removeBlock(BlockT *BB) {
671    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
672    if (I != BBMap.end()) {
673      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
674        L->removeBlockFromLoop(BB);
675
676      BBMap.erase(I);
677    }
678  }
679
680  // Internals
681
682  static bool isNotAlreadyContainedIn(LoopBase<BlockT> *SubLoop,
683                                      LoopBase<BlockT> *ParentLoop) {
684    if (SubLoop == 0) return true;
685    if (SubLoop == ParentLoop) return false;
686    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
687  }
688
689  void Calculate(DominatorTreeBase<BlockT> &DT) {
690    BlockT *RootNode = DT.getRootNode()->getBlock();
691
692    for (df_iterator<BlockT*> NI = df_begin(RootNode),
693           NE = df_end(RootNode); NI != NE; ++NI)
694      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
695        TopLevelLoops.push_back(L);
696  }
697
698  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
699    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
700
701    std::vector<BlockT *> TodoStack;
702
703    // Scan the predecessors of BB, checking to see if BB dominates any of
704    // them.  This identifies backedges which target this node...
705    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
706    for (typename InvBlockTraits::ChildIteratorType I =
707         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
708         I != E; ++I)
709      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
710        TodoStack.push_back(*I);
711
712    if (TodoStack.empty()) return 0;  // No backedges to this block...
713
714    // Create a new loop to represent this basic block...
715    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
716    BBMap[BB] = L;
717
718    BlockT *EntryBlock = BB->getParent()->begin();
719
720    while (!TodoStack.empty()) {  // Process all the nodes in the loop
721      BlockT *X = TodoStack.back();
722      TodoStack.pop_back();
723
724      if (!L->contains(X) &&         // As of yet unprocessed??
725          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
726        // Check to see if this block already belongs to a loop.  If this occurs
727        // then we have a case where a loop that is supposed to be a child of
728        // the current loop was processed before the current loop.  When this
729        // occurs, this child loop gets added to a part of the current loop,
730        // making it a sibling to the current loop.  We have to reparent this
731        // loop.
732        if (LoopBase<BlockT> *SubLoop =
733            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
734          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
735            // Remove the subloop from it's current parent...
736            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
737            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
738            typename std::vector<LoopBase<BlockT>*>::iterator I =
739              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
740            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
741            SLP->SubLoops.erase(I);   // Remove from parent...
742
743            // Add the subloop to THIS loop...
744            SubLoop->ParentLoop = L;
745            L->SubLoops.push_back(SubLoop);
746          }
747
748        // Normal case, add the block to our loop...
749        L->Blocks.push_back(X);
750
751        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
752
753        // Add all of the predecessors of X to the end of the work stack...
754        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
755                         InvBlockTraits::child_end(X));
756      }
757    }
758
759    // If there are any loops nested within this loop, create them now!
760    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
761         E = L->Blocks.end(); I != E; ++I)
762      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
763        L->SubLoops.push_back(NewLoop);
764        NewLoop->ParentLoop = L;
765      }
766
767    // Add the basic blocks that comprise this loop to the BBMap so that this
768    // loop can be found for them.
769    //
770    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
771           E = L->Blocks.end(); I != E; ++I) {
772      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
773                                                          BBMap.lower_bound(*I);
774      if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet...
775        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
776    }
777
778    // Now that we have a list of all of the child loops of this loop, check to
779    // see if any of them should actually be nested inside of each other.  We
780    // can accidentally pull loops our of their parents, so we must make sure to
781    // organize the loop nests correctly now.
782    {
783      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
784      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
785        LoopBase<BlockT> *Child = L->SubLoops[i];
786        assert(Child->getParentLoop() == L && "Not proper child loop?");
787
788        if (LoopBase<BlockT> *ContainingLoop =
789                                          ContainingLoops[Child->getHeader()]) {
790          // If there is already a loop which contains this loop, move this loop
791          // into the containing loop.
792          MoveSiblingLoopInto(Child, ContainingLoop);
793          --i;  // The loop got removed from the SubLoops list.
794        } else {
795          // This is currently considered to be a top-level loop.  Check to see
796          // if any of the contained blocks are loop headers for subloops we
797          // have already processed.
798          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
799            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
800            if (BlockLoop == 0) {   // Child block not processed yet...
801              BlockLoop = Child;
802            } else if (BlockLoop != Child) {
803              LoopBase<BlockT> *SubLoop = BlockLoop;
804              // Reparent all of the blocks which used to belong to BlockLoops
805              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
806                ContainingLoops[SubLoop->Blocks[j]] = Child;
807
808              // There is already a loop which contains this block, that means
809              // that we should reparent the loop which the block is currently
810              // considered to belong to to be a child of this loop.
811              MoveSiblingLoopInto(SubLoop, Child);
812              --i;  // We just shrunk the SubLoops list.
813            }
814          }
815        }
816      }
817    }
818
819    return L;
820  }
821
822  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
823  /// of the NewParent Loop, instead of being a sibling of it.
824  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
825                           LoopBase<BlockT> *NewParent) {
826    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
827    assert(OldParent && OldParent == NewParent->getParentLoop() &&
828           NewChild != NewParent && "Not sibling loops!");
829
830    // Remove NewChild from being a child of OldParent
831    typename std::vector<LoopBase<BlockT>*>::iterator I =
832      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
833                NewChild);
834    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
835    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
836    NewChild->ParentLoop = 0;
837
838    InsertLoopInto(NewChild, NewParent);
839  }
840
841  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
842  /// the parent loop contains a loop which should contain L, the loop gets
843  /// inserted into L instead.
844  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
845    BlockT *LHeader = L->getHeader();
846    assert(Parent->contains(LHeader) &&
847           "This loop should not be inserted here!");
848
849    // Check to see if it belongs in a child loop...
850    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
851         i != e; ++i)
852      if (Parent->SubLoops[i]->contains(LHeader)) {
853        InsertLoopInto(L, Parent->SubLoops[i]);
854        return;
855      }
856
857    // If not, insert it here!
858    Parent->SubLoops.push_back(L);
859    L->ParentLoop = Parent;
860  }
861
862  // Debugging
863
864  void print(std::ostream &OS, const Module* ) const {
865    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
866      TopLevelLoops[i]->print(OS);
867  #if 0
868    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
869           E = BBMap.end(); I != E; ++I)
870      OS << "BB '" << I->first->getName() << "' level = "
871         << I->second->getLoopDepth() << "\n";
872  #endif
873  }
874};
875
876class LoopInfo : public FunctionPass {
877  LoopInfoBase<BasicBlock>* LI;
878  friend class LoopBase<BasicBlock>;
879
880public:
881  static char ID; // Pass identification, replacement for typeid
882
883  LoopInfo() : FunctionPass(intptr_t(&ID)) {
884    LI = new LoopInfoBase<BasicBlock>();
885  }
886
887  ~LoopInfo() { delete LI; }
888
889  LoopInfoBase<BasicBlock>& getBase() { return *LI; }
890
891  /// iterator/begin/end - The interface to the top-level loops in the current
892  /// function.
893  ///
894  typedef std::vector<Loop*>::const_iterator iterator;
895  inline iterator begin() const { return LI->begin(); }
896  inline iterator end() const { return LI->end(); }
897
898  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
899  /// block is in no loop (for example the entry node), null is returned.
900  ///
901  inline Loop *getLoopFor(const BasicBlock *BB) const {
902    return LI->getLoopFor(BB);
903  }
904
905  /// operator[] - same as getLoopFor...
906  ///
907  inline const Loop *operator[](const BasicBlock *BB) const {
908    return LI->getLoopFor(BB);
909  }
910
911  /// getLoopDepth - Return the loop nesting level of the specified block.  A
912  /// depth of 0 means the block is not inside any loop.
913  ///
914  inline unsigned getLoopDepth(const BasicBlock *BB) const {
915    return LI->getLoopDepth(BB);
916  }
917
918  // isLoopHeader - True if the block is a loop header node
919  inline bool isLoopHeader(BasicBlock *BB) const {
920    return LI->isLoopHeader(BB);
921  }
922
923  /// runOnFunction - Calculate the natural loop information.
924  ///
925  virtual bool runOnFunction(Function &F);
926
927  virtual void releaseMemory() { LI->releaseMemory(); }
928
929  virtual void print(std::ostream &O, const Module* M = 0) const {
930    if (O) LI->print(O, M);
931  }
932
933  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
934
935  /// removeLoop - This removes the specified top-level loop from this loop info
936  /// object.  The loop is not deleted, as it will presumably be inserted into
937  /// another loop.
938  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
939
940  /// changeLoopFor - Change the top-level loop that contains BB to the
941  /// specified loop.  This should be used by transformations that restructure
942  /// the loop hierarchy tree.
943  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
944    LI->changeLoopFor(BB, L);
945  }
946
947  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
948  /// list with the indicated loop.
949  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
950    LI->changeTopLevelLoop(OldLoop, NewLoop);
951  }
952
953  /// addTopLevelLoop - This adds the specified loop to the collection of
954  /// top-level loops.
955  inline void addTopLevelLoop(Loop *New) {
956    LI->addTopLevelLoop(New);
957  }
958
959  /// removeBlock - This method completely removes BB from all data structures,
960  /// including all of the Loop objects it is nested in and our mapping from
961  /// BasicBlocks to loops.
962  void removeBlock(BasicBlock *BB) {
963    LI->removeBlock(BB);
964  }
965};
966
967
968// Allow clients to walk the list of nested loops...
969template <> struct GraphTraits<const Loop*> {
970  typedef const Loop NodeType;
971  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
972
973  static NodeType *getEntryNode(const Loop *L) { return L; }
974  static inline ChildIteratorType child_begin(NodeType *N) {
975    return N->begin();
976  }
977  static inline ChildIteratorType child_end(NodeType *N) {
978    return N->end();
979  }
980};
981
982template <> struct GraphTraits<Loop*> {
983  typedef Loop NodeType;
984  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
985
986  static NodeType *getEntryNode(Loop *L) { return L; }
987  static inline ChildIteratorType child_begin(NodeType *N) {
988    return N->begin();
989  }
990  static inline ChildIteratorType child_end(NodeType *N) {
991    return N->end();
992  }
993};
994
995template<class BlockT>
996void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
997                                           LoopInfoBase<BlockT> &LIB) {
998  assert((Blocks.empty() || LIB[getHeader()] == this) &&
999         "Incorrect LI specified for this loop!");
1000  assert(NewBB && "Cannot add a null basic block to the loop!");
1001  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1002
1003  // Add the loop mapping to the LoopInfo object...
1004  LIB.BBMap[NewBB] = this;
1005
1006  // Add the basic block to this loop and all parent loops...
1007  LoopBase<BlockT> *L = this;
1008  while (L) {
1009    L->Blocks.push_back(NewBB);
1010    L = L->getParentLoop();
1011  }
1012}
1013
1014} // End llvm namespace
1015
1016// Make sure that any clients of this file link in LoopInfo.cpp
1017FORCE_DEFINING_FILE_TO_BE_LINKED(LoopInfo)
1018
1019#endif
1020