LoopInfo.h revision c418bf3dd593b5b2fe2f978930f6d0d6b17e344e
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/Constants.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Streams.h"
43#include <algorithm>
44#include <ostream>
45
46namespace llvm {
47
48template<typename T>
49static void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57class PHINode;
58class Instruction;
59template<class N> class LoopInfoBase;
60template<class N> class LoopBase;
61
62typedef LoopBase<BasicBlock> Loop;
63
64//===----------------------------------------------------------------------===//
65/// LoopBase class - Instances of this class are used to represent loops that
66/// are detected in the flow graph
67///
68template<class BlockT>
69class LoopBase {
70  LoopBase<BlockT> *ParentLoop;
71  // SubLoops - Loops contained entirely within this one.
72  std::vector<LoopBase<BlockT>*> SubLoops;
73
74  // Blocks - The list of blocks in this loop.  First entry is the header node.
75  std::vector<BlockT*> Blocks;
76
77  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
78  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
79public:
80  /// Loop ctor - This creates an empty loop.
81  LoopBase() : ParentLoop(0) {}
82  ~LoopBase() {
83    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
84      delete SubLoops[i];
85  }
86
87  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
88  /// loop has depth 1, for consistency with loop depth values used for basic
89  /// blocks, where depth 0 is used for blocks not inside any loops.
90  unsigned getLoopDepth() const {
91    unsigned D = 1;
92    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
93         CurLoop = CurLoop->ParentLoop)
94      ++D;
95    return D;
96  }
97  BlockT *getHeader() const { return Blocks.front(); }
98  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
99
100  /// contains - Return true if the specified basic block is in this loop
101  ///
102  bool contains(const BlockT *BB) const {
103    return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
104  }
105
106  /// iterator/begin/end - Return the loops contained entirely within this loop.
107  ///
108  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
109  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
110  iterator begin() const { return SubLoops.begin(); }
111  iterator end() const { return SubLoops.end(); }
112  bool empty() const { return SubLoops.empty(); }
113
114  /// getBlocks - Get a list of the basic blocks which make up this loop.
115  ///
116  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
117  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
118  block_iterator block_begin() const { return Blocks.begin(); }
119  block_iterator block_end() const { return Blocks.end(); }
120
121  /// isLoopExit - True if terminator in the block can branch to another block
122  /// that is outside of the current loop.
123  ///
124  bool isLoopExit(const BlockT *BB) const {
125    typedef GraphTraits<BlockT*> BlockTraits;
126    for (typename BlockTraits::ChildIteratorType SI =
127         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
128         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
129      if (!contains(*SI))
130        return true;
131    }
132    return false;
133  }
134
135  /// getNumBackEdges - Calculate the number of back edges to the loop header
136  ///
137  unsigned getNumBackEdges() const {
138    unsigned NumBackEdges = 0;
139    BlockT *H = getHeader();
140
141    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
142    for (typename InvBlockTraits::ChildIteratorType I =
143         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
144         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
145      if (contains(*I))
146        ++NumBackEdges;
147
148    return NumBackEdges;
149  }
150
151  /// isLoopInvariant - Return true if the specified value is loop invariant
152  ///
153  inline bool isLoopInvariant(Value *V) const {
154    if (Instruction *I = dyn_cast<Instruction>(V))
155      return !contains(I->getParent());
156    return true;  // All non-instructions are loop invariant
157  }
158
159  //===--------------------------------------------------------------------===//
160  // APIs for simple analysis of the loop.
161  //
162  // Note that all of these methods can fail on general loops (ie, there may not
163  // be a preheader, etc).  For best success, the loop simplification and
164  // induction variable canonicalization pass should be used to normalize loops
165  // for easy analysis.  These methods assume canonical loops.
166
167  /// getExitingBlocks - Return all blocks inside the loop that have successors
168  /// outside of the loop.  These are the blocks _inside of the current loop_
169  /// which branch out.  The returned list is always unique.
170  ///
171  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
172    // Sort the blocks vector so that we can use binary search to do quick
173    // lookups.
174    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
175    std::sort(LoopBBs.begin(), LoopBBs.end());
176
177    typedef GraphTraits<BlockT*> BlockTraits;
178    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
179         BE = Blocks.end(); BI != BE; ++BI)
180      for (typename BlockTraits::ChildIteratorType I =
181          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
182          I != E; ++I)
183        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
184          // Not in current loop? It must be an exit block.
185          ExitingBlocks.push_back(*BI);
186          break;
187        }
188  }
189
190  /// getExitBlocks - Return all of the successor blocks of this loop.  These
191  /// are the blocks _outside of the current loop_ which are branched to.
192  ///
193  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
194    // Sort the blocks vector so that we can use binary search to do quick
195    // lookups.
196    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
197    std::sort(LoopBBs.begin(), LoopBBs.end());
198
199    typedef GraphTraits<BlockT*> BlockTraits;
200    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
201         BE = Blocks.end(); BI != BE; ++BI)
202      for (typename BlockTraits::ChildIteratorType I =
203           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
204           I != E; ++I)
205        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
206          // Not in current loop? It must be an exit block.
207          ExitBlocks.push_back(*I);
208  }
209
210  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
211  /// These are the blocks _outside of the current loop_ which are branched to.
212  /// This assumes that loop is in canonical form.
213  ///
214  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
215    // Sort the blocks vector so that we can use binary search to do quick
216    // lookups.
217    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
218    std::sort(LoopBBs.begin(), LoopBBs.end());
219
220    std::vector<BlockT*> switchExitBlocks;
221
222    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
223         BE = Blocks.end(); BI != BE; ++BI) {
224
225      BlockT *current = *BI;
226      switchExitBlocks.clear();
227
228      typedef GraphTraits<BlockT*> BlockTraits;
229      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
230      for (typename BlockTraits::ChildIteratorType I =
231           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
232           I != E; ++I) {
233        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
234      // If block is inside the loop then it is not a exit block.
235          continue;
236
237        typename InvBlockTraits::ChildIteratorType PI =
238                                                InvBlockTraits::child_begin(*I);
239        BlockT *firstPred = *PI;
240
241        // If current basic block is this exit block's first predecessor
242        // then only insert exit block in to the output ExitBlocks vector.
243        // This ensures that same exit block is not inserted twice into
244        // ExitBlocks vector.
245        if (current != firstPred)
246          continue;
247
248        // If a terminator has more then two successors, for example SwitchInst,
249        // then it is possible that there are multiple edges from current block
250        // to one exit block.
251        if (std::distance(BlockTraits::child_begin(current),
252                          BlockTraits::child_end(current)) <= 2) {
253          ExitBlocks.push_back(*I);
254          continue;
255        }
256
257        // In case of multiple edges from current block to exit block, collect
258        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
259        // duplicate edges.
260        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
261            == switchExitBlocks.end()) {
262          switchExitBlocks.push_back(*I);
263          ExitBlocks.push_back(*I);
264        }
265      }
266    }
267  }
268
269  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
270  /// loop has a preheader if there is only one edge to the header of the loop
271  /// from outside of the loop.  If this is the case, the block branching to the
272  /// header of the loop is the preheader node.
273  ///
274  /// This method returns null if there is no preheader for the loop.
275  ///
276  BlockT *getLoopPreheader() const {
277    // Keep track of nodes outside the loop branching to the header...
278    BlockT *Out = 0;
279
280    // Loop over the predecessors of the header node...
281    BlockT *Header = getHeader();
282    typedef GraphTraits<BlockT*> BlockTraits;
283    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
284    for (typename InvBlockTraits::ChildIteratorType PI =
285         InvBlockTraits::child_begin(Header),
286         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
287      if (!contains(*PI)) {     // If the block is not in the loop...
288        if (Out && Out != *PI)
289          return 0;             // Multiple predecessors outside the loop
290        Out = *PI;
291      }
292
293    // Make sure there is only one exit out of the preheader.
294    assert(Out && "Header of loop has no predecessors from outside loop?");
295    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
296    ++SI;
297    if (SI != BlockTraits::child_end(Out))
298      return 0;  // Multiple exits from the block, must not be a preheader.
299
300    // If there is exactly one preheader, return it.  If there was zero, then
301    // Out is still null.
302    return Out;
303  }
304
305  /// getLoopLatch - If there is a latch block for this loop, return it.  A
306  /// latch block is the canonical backedge for a loop.  A loop header in normal
307  /// form has two edges into it: one from a preheader and one from a latch
308  /// block.
309  BlockT *getLoopLatch() const {
310    BlockT *Header = getHeader();
311    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
312    typename InvBlockTraits::ChildIteratorType PI =
313                                            InvBlockTraits::child_begin(Header);
314    typename InvBlockTraits::ChildIteratorType PE =
315                                              InvBlockTraits::child_end(Header);
316    if (PI == PE) return 0;  // no preds?
317
318    BlockT *Latch = 0;
319    if (contains(*PI))
320      Latch = *PI;
321    ++PI;
322    if (PI == PE) return 0;  // only one pred?
323
324    if (contains(*PI)) {
325      if (Latch) return 0;  // multiple backedges
326      Latch = *PI;
327    }
328    ++PI;
329    if (PI != PE) return 0;  // more than two preds
330
331    return Latch;
332  }
333
334  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
335  /// induction variable: an integer recurrence that starts at 0 and increments
336  /// by one each time through the loop.  If so, return the phi node that
337  /// corresponds to it.
338  ///
339  inline PHINode *getCanonicalInductionVariable() const {
340    BlockT *H = getHeader();
341
342    BlockT *Incoming = 0, *Backedge = 0;
343    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
344    typename InvBlockTraits::ChildIteratorType PI =
345                                                 InvBlockTraits::child_begin(H);
346    assert(PI != InvBlockTraits::child_end(H) &&
347           "Loop must have at least one backedge!");
348    Backedge = *PI++;
349    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
350    Incoming = *PI++;
351    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
352
353    if (contains(Incoming)) {
354      if (contains(Backedge))
355        return 0;
356      std::swap(Incoming, Backedge);
357    } else if (!contains(Backedge))
358      return 0;
359
360    // Loop over all of the PHI nodes, looking for a canonical indvar.
361    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
362      PHINode *PN = cast<PHINode>(I);
363      if (ConstantInt *CI =
364          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
365        if (CI->isNullValue())
366          if (Instruction *Inc =
367              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
368            if (Inc->getOpcode() == Instruction::Add &&
369                Inc->getOperand(0) == PN)
370              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
371                if (CI->equalsInt(1))
372                  return PN;
373    }
374    return 0;
375  }
376
377  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
378  /// the canonical induction variable value for the "next" iteration of the
379  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
380  ///
381  inline Instruction *getCanonicalInductionVariableIncrement() const {
382    if (PHINode *PN = getCanonicalInductionVariable()) {
383      bool P1InLoop = contains(PN->getIncomingBlock(1));
384      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
385    }
386    return 0;
387  }
388
389  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
390  /// times the loop will be executed.  Note that this means that the backedge
391  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
392  /// this returns null.
393  ///
394  inline Value *getTripCount() const {
395    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
396    // canonical induction variable and V is the trip count of the loop.
397    Instruction *Inc = getCanonicalInductionVariableIncrement();
398    if (Inc == 0) return 0;
399    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
400
401    BlockT *BackedgeBlock =
402            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
403
404    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
405      if (BI->isConditional()) {
406        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
407          if (ICI->getOperand(0) == Inc) {
408            if (BI->getSuccessor(0) == getHeader()) {
409              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
410                return ICI->getOperand(1);
411            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
412              return ICI->getOperand(1);
413            }
414          }
415        }
416      }
417
418    return 0;
419  }
420
421  /// getSmallConstantTripCount - Returns the trip count of this loop as a
422  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
423  /// of not constant. Will also return 0 if the trip count is very large
424  /// (>= 2^32)
425  inline unsigned getSmallConstantTripCount() const {
426    Value* TripCount = this->getTripCount();
427    if (TripCount) {
428      if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
429        // Guard against huge trip counts.
430        if (TripCountC->getValue().getActiveBits() <= 32) {
431          return (unsigned)TripCountC->getZExtValue();
432        }
433      }
434    }
435    return 0;
436  }
437
438  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
439  /// trip count of this loop as a normal unsigned value, if possible. This
440  /// means that the actual trip count is always a multiple of the returned
441  /// value (don't forget the trip count could very well be zero as well!).
442  ///
443  /// Returns 1 if the trip count is unknown or not guaranteed to be the
444  /// multiple of a constant (which is also the case if the trip count is simply
445  /// constant, use getSmallConstantTripCount for that case), Will also return 1
446  /// if the trip count is very large (>= 2^32).
447  inline unsigned getSmallConstantTripMultiple() const {
448    Value* TripCount = this->getTripCount();
449    // This will hold the ConstantInt result, if any
450    ConstantInt *Result = NULL;
451    if (TripCount) {
452      // See if the trip count is constant itself
453      Result = dyn_cast<ConstantInt>(TripCount);
454      // if not, see if it is a multiplication
455      if (!Result)
456        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
457          switch (BO->getOpcode()) {
458          case BinaryOperator::Mul:
459            Result = dyn_cast<ConstantInt>(BO->getOperand(1));
460            break;
461          default:
462            break;
463          }
464        }
465    }
466    // Guard against huge trip counts.
467    if (Result && Result->getValue().getActiveBits() <= 32) {
468      return (unsigned)Result->getZExtValue();
469    } else {
470      return 1;
471    }
472  }
473
474  /// isLCSSAForm - Return true if the Loop is in LCSSA form
475  inline bool isLCSSAForm() const {
476    // Sort the blocks vector so that we can use binary search to do quick
477    // lookups.
478    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
479
480    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
481      BlockT *BB = *BI;
482      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
483        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
484             ++UI) {
485          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
486          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
487            unsigned OperandNo = UI.getOperandNo();
488            UserBB = P->getIncomingBlock(OperandNo/2);
489          }
490
491          // Check the current block, as a fast-path.  Most values are used in
492          // the same block they are defined in.
493          if (UserBB != BB && !LoopBBs.count(UserBB))
494            return false;
495        }
496    }
497
498    return true;
499  }
500
501  //===--------------------------------------------------------------------===//
502  // APIs for updating loop information after changing the CFG
503  //
504
505  /// addBasicBlockToLoop - This method is used by other analyses to update loop
506  /// information.  NewBB is set to be a new member of the current loop.
507  /// Because of this, it is added as a member of all parent loops, and is added
508  /// to the specified LoopInfo object as being in the current basic block.  It
509  /// is not valid to replace the loop header with this method.
510  ///
511  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
512
513  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
514  /// the OldChild entry in our children list with NewChild, and updates the
515  /// parent pointer of OldChild to be null and the NewChild to be this loop.
516  /// This updates the loop depth of the new child.
517  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
518                            LoopBase<BlockT> *NewChild) {
519    assert(OldChild->ParentLoop == this && "This loop is already broken!");
520    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
521    typename std::vector<LoopBase<BlockT>*>::iterator I =
522                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
523    assert(I != SubLoops.end() && "OldChild not in loop!");
524    *I = NewChild;
525    OldChild->ParentLoop = 0;
526    NewChild->ParentLoop = this;
527  }
528
529  /// addChildLoop - Add the specified loop to be a child of this loop.  This
530  /// updates the loop depth of the new child.
531  ///
532  void addChildLoop(LoopBase<BlockT> *NewChild) {
533    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
534    NewChild->ParentLoop = this;
535    SubLoops.push_back(NewChild);
536  }
537
538  /// removeChildLoop - This removes the specified child from being a subloop of
539  /// this loop.  The loop is not deleted, as it will presumably be inserted
540  /// into another loop.
541  LoopBase<BlockT> *removeChildLoop(iterator I) {
542    assert(I != SubLoops.end() && "Cannot remove end iterator!");
543    LoopBase<BlockT> *Child = *I;
544    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
545    SubLoops.erase(SubLoops.begin()+(I-begin()));
546    Child->ParentLoop = 0;
547    return Child;
548  }
549
550  /// addBlockEntry - This adds a basic block directly to the basic block list.
551  /// This should only be used by transformations that create new loops.  Other
552  /// transformations should use addBasicBlockToLoop.
553  void addBlockEntry(BlockT *BB) {
554    Blocks.push_back(BB);
555  }
556
557  /// moveToHeader - This method is used to move BB (which must be part of this
558  /// loop) to be the loop header of the loop (the block that dominates all
559  /// others).
560  void moveToHeader(BlockT *BB) {
561    if (Blocks[0] == BB) return;
562    for (unsigned i = 0; ; ++i) {
563      assert(i != Blocks.size() && "Loop does not contain BB!");
564      if (Blocks[i] == BB) {
565        Blocks[i] = Blocks[0];
566        Blocks[0] = BB;
567        return;
568      }
569    }
570  }
571
572  /// removeBlockFromLoop - This removes the specified basic block from the
573  /// current loop, updating the Blocks as appropriate.  This does not update
574  /// the mapping in the LoopInfo class.
575  void removeBlockFromLoop(BlockT *BB) {
576    RemoveFromVector(Blocks, BB);
577  }
578
579  /// verifyLoop - Verify loop structure
580  void verifyLoop() const {
581#ifndef NDEBUG
582    assert (getHeader() && "Loop header is missing");
583    assert (getLoopPreheader() && "Loop preheader is missing");
584    assert (getLoopLatch() && "Loop latch is missing");
585    for (typename std::vector<LoopBase<BlockT>*>::const_iterator I =
586         SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
587      (*I)->verifyLoop();
588#endif
589  }
590
591  void print(std::ostream &OS, unsigned Depth = 0) const {
592    OS << std::string(Depth*2, ' ') << "Loop Containing: ";
593
594    for (unsigned i = 0; i < getBlocks().size(); ++i) {
595      if (i) OS << ",";
596      WriteAsOperand(OS, getBlocks()[i], false);
597    }
598    OS << "\n";
599
600    for (iterator I = begin(), E = end(); I != E; ++I)
601      (*I)->print(OS, Depth+2);
602  }
603
604  void print(std::ostream *O, unsigned Depth = 0) const {
605    if (O) print(*O, Depth);
606  }
607
608  void dump() const {
609    print(cerr);
610  }
611
612private:
613  friend class LoopInfoBase<BlockT>;
614  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
615    Blocks.push_back(BB);
616  }
617};
618
619
620//===----------------------------------------------------------------------===//
621/// LoopInfo - This class builds and contains all of the top level loop
622/// structures in the specified function.
623///
624
625template<class BlockT>
626class LoopInfoBase {
627  // BBMap - Mapping of basic blocks to the inner most loop they occur in
628  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
629  std::vector<LoopBase<BlockT>*> TopLevelLoops;
630  friend class LoopBase<BlockT>;
631
632public:
633  LoopInfoBase() { }
634  ~LoopInfoBase() { releaseMemory(); }
635
636  void releaseMemory() {
637    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
638         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
639      delete *I;   // Delete all of the loops...
640
641    BBMap.clear();                           // Reset internal state of analysis
642    TopLevelLoops.clear();
643  }
644
645  /// iterator/begin/end - The interface to the top-level loops in the current
646  /// function.
647  ///
648  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
649  iterator begin() const { return TopLevelLoops.begin(); }
650  iterator end() const { return TopLevelLoops.end(); }
651
652  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
653  /// block is in no loop (for example the entry node), null is returned.
654  ///
655  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
656    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
657      BBMap.find(const_cast<BlockT*>(BB));
658    return I != BBMap.end() ? I->second : 0;
659  }
660
661  /// operator[] - same as getLoopFor...
662  ///
663  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
664    return getLoopFor(BB);
665  }
666
667  /// getLoopDepth - Return the loop nesting level of the specified block.  A
668  /// depth of 0 means the block is not inside any loop.
669  ///
670  unsigned getLoopDepth(const BlockT *BB) const {
671    const LoopBase<BlockT> *L = getLoopFor(BB);
672    return L ? L->getLoopDepth() : 0;
673  }
674
675  // isLoopHeader - True if the block is a loop header node
676  bool isLoopHeader(BlockT *BB) const {
677    const LoopBase<BlockT> *L = getLoopFor(BB);
678    return L && L->getHeader() == BB;
679  }
680
681  /// removeLoop - This removes the specified top-level loop from this loop info
682  /// object.  The loop is not deleted, as it will presumably be inserted into
683  /// another loop.
684  LoopBase<BlockT> *removeLoop(iterator I) {
685    assert(I != end() && "Cannot remove end iterator!");
686    LoopBase<BlockT> *L = *I;
687    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
688    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
689    return L;
690  }
691
692  /// changeLoopFor - Change the top-level loop that contains BB to the
693  /// specified loop.  This should be used by transformations that restructure
694  /// the loop hierarchy tree.
695  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
696    LoopBase<BlockT> *&OldLoop = BBMap[BB];
697    assert(OldLoop && "Block not in a loop yet!");
698    OldLoop = L;
699  }
700
701  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
702  /// list with the indicated loop.
703  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
704                          LoopBase<BlockT> *NewLoop) {
705    typename std::vector<LoopBase<BlockT>*>::iterator I =
706                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
707    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
708    *I = NewLoop;
709    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
710           "Loops already embedded into a subloop!");
711  }
712
713  /// addTopLevelLoop - This adds the specified loop to the collection of
714  /// top-level loops.
715  void addTopLevelLoop(LoopBase<BlockT> *New) {
716    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
717    TopLevelLoops.push_back(New);
718  }
719
720  /// removeBlock - This method completely removes BB from all data structures,
721  /// including all of the Loop objects it is nested in and our mapping from
722  /// BasicBlocks to loops.
723  void removeBlock(BlockT *BB) {
724    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
725    if (I != BBMap.end()) {
726      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
727        L->removeBlockFromLoop(BB);
728
729      BBMap.erase(I);
730    }
731  }
732
733  // Internals
734
735  static bool isNotAlreadyContainedIn(LoopBase<BlockT> *SubLoop,
736                                      LoopBase<BlockT> *ParentLoop) {
737    if (SubLoop == 0) return true;
738    if (SubLoop == ParentLoop) return false;
739    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
740  }
741
742  void Calculate(DominatorTreeBase<BlockT> &DT) {
743    BlockT *RootNode = DT.getRootNode()->getBlock();
744
745    for (df_iterator<BlockT*> NI = df_begin(RootNode),
746           NE = df_end(RootNode); NI != NE; ++NI)
747      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
748        TopLevelLoops.push_back(L);
749  }
750
751  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
752    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
753
754    std::vector<BlockT *> TodoStack;
755
756    // Scan the predecessors of BB, checking to see if BB dominates any of
757    // them.  This identifies backedges which target this node...
758    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
759    for (typename InvBlockTraits::ChildIteratorType I =
760         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
761         I != E; ++I)
762      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
763        TodoStack.push_back(*I);
764
765    if (TodoStack.empty()) return 0;  // No backedges to this block...
766
767    // Create a new loop to represent this basic block...
768    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
769    BBMap[BB] = L;
770
771    BlockT *EntryBlock = BB->getParent()->begin();
772
773    while (!TodoStack.empty()) {  // Process all the nodes in the loop
774      BlockT *X = TodoStack.back();
775      TodoStack.pop_back();
776
777      if (!L->contains(X) &&         // As of yet unprocessed??
778          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
779        // Check to see if this block already belongs to a loop.  If this occurs
780        // then we have a case where a loop that is supposed to be a child of
781        // the current loop was processed before the current loop.  When this
782        // occurs, this child loop gets added to a part of the current loop,
783        // making it a sibling to the current loop.  We have to reparent this
784        // loop.
785        if (LoopBase<BlockT> *SubLoop =
786            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
787          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
788            // Remove the subloop from it's current parent...
789            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
790            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
791            typename std::vector<LoopBase<BlockT>*>::iterator I =
792              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
793            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
794            SLP->SubLoops.erase(I);   // Remove from parent...
795
796            // Add the subloop to THIS loop...
797            SubLoop->ParentLoop = L;
798            L->SubLoops.push_back(SubLoop);
799          }
800
801        // Normal case, add the block to our loop...
802        L->Blocks.push_back(X);
803
804        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
805
806        // Add all of the predecessors of X to the end of the work stack...
807        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
808                         InvBlockTraits::child_end(X));
809      }
810    }
811
812    // If there are any loops nested within this loop, create them now!
813    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
814         E = L->Blocks.end(); I != E; ++I)
815      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
816        L->SubLoops.push_back(NewLoop);
817        NewLoop->ParentLoop = L;
818      }
819
820    // Add the basic blocks that comprise this loop to the BBMap so that this
821    // loop can be found for them.
822    //
823    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
824           E = L->Blocks.end(); I != E; ++I) {
825      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
826                                                          BBMap.find(*I);
827      if (BBMI == BBMap.end())                       // Not in map yet...
828        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
829    }
830
831    // Now that we have a list of all of the child loops of this loop, check to
832    // see if any of them should actually be nested inside of each other.  We
833    // can accidentally pull loops our of their parents, so we must make sure to
834    // organize the loop nests correctly now.
835    {
836      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
837      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
838        LoopBase<BlockT> *Child = L->SubLoops[i];
839        assert(Child->getParentLoop() == L && "Not proper child loop?");
840
841        if (LoopBase<BlockT> *ContainingLoop =
842                                          ContainingLoops[Child->getHeader()]) {
843          // If there is already a loop which contains this loop, move this loop
844          // into the containing loop.
845          MoveSiblingLoopInto(Child, ContainingLoop);
846          --i;  // The loop got removed from the SubLoops list.
847        } else {
848          // This is currently considered to be a top-level loop.  Check to see
849          // if any of the contained blocks are loop headers for subloops we
850          // have already processed.
851          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
852            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
853            if (BlockLoop == 0) {   // Child block not processed yet...
854              BlockLoop = Child;
855            } else if (BlockLoop != Child) {
856              LoopBase<BlockT> *SubLoop = BlockLoop;
857              // Reparent all of the blocks which used to belong to BlockLoops
858              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
859                ContainingLoops[SubLoop->Blocks[j]] = Child;
860
861              // There is already a loop which contains this block, that means
862              // that we should reparent the loop which the block is currently
863              // considered to belong to to be a child of this loop.
864              MoveSiblingLoopInto(SubLoop, Child);
865              --i;  // We just shrunk the SubLoops list.
866            }
867          }
868        }
869      }
870    }
871
872    return L;
873  }
874
875  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
876  /// of the NewParent Loop, instead of being a sibling of it.
877  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
878                           LoopBase<BlockT> *NewParent) {
879    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
880    assert(OldParent && OldParent == NewParent->getParentLoop() &&
881           NewChild != NewParent && "Not sibling loops!");
882
883    // Remove NewChild from being a child of OldParent
884    typename std::vector<LoopBase<BlockT>*>::iterator I =
885      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
886                NewChild);
887    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
888    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
889    NewChild->ParentLoop = 0;
890
891    InsertLoopInto(NewChild, NewParent);
892  }
893
894  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
895  /// the parent loop contains a loop which should contain L, the loop gets
896  /// inserted into L instead.
897  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
898    BlockT *LHeader = L->getHeader();
899    assert(Parent->contains(LHeader) &&
900           "This loop should not be inserted here!");
901
902    // Check to see if it belongs in a child loop...
903    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
904         i != e; ++i)
905      if (Parent->SubLoops[i]->contains(LHeader)) {
906        InsertLoopInto(L, Parent->SubLoops[i]);
907        return;
908      }
909
910    // If not, insert it here!
911    Parent->SubLoops.push_back(L);
912    L->ParentLoop = Parent;
913  }
914
915  // Debugging
916
917  void print(std::ostream &OS, const Module* ) const {
918    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
919      TopLevelLoops[i]->print(OS);
920  #if 0
921    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
922           E = BBMap.end(); I != E; ++I)
923      OS << "BB '" << I->first->getName() << "' level = "
924         << I->second->getLoopDepth() << "\n";
925  #endif
926  }
927};
928
929class LoopInfo : public FunctionPass {
930  LoopInfoBase<BasicBlock>* LI;
931  friend class LoopBase<BasicBlock>;
932
933public:
934  static char ID; // Pass identification, replacement for typeid
935
936  LoopInfo() : FunctionPass(intptr_t(&ID)) {
937    LI = new LoopInfoBase<BasicBlock>();
938  }
939
940  ~LoopInfo() { delete LI; }
941
942  LoopInfoBase<BasicBlock>& getBase() { return *LI; }
943
944  /// iterator/begin/end - The interface to the top-level loops in the current
945  /// function.
946  ///
947  typedef std::vector<Loop*>::const_iterator iterator;
948  inline iterator begin() const { return LI->begin(); }
949  inline iterator end() const { return LI->end(); }
950
951  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
952  /// block is in no loop (for example the entry node), null is returned.
953  ///
954  inline Loop *getLoopFor(const BasicBlock *BB) const {
955    return LI->getLoopFor(BB);
956  }
957
958  /// operator[] - same as getLoopFor...
959  ///
960  inline const Loop *operator[](const BasicBlock *BB) const {
961    return LI->getLoopFor(BB);
962  }
963
964  /// getLoopDepth - Return the loop nesting level of the specified block.  A
965  /// depth of 0 means the block is not inside any loop.
966  ///
967  inline unsigned getLoopDepth(const BasicBlock *BB) const {
968    return LI->getLoopDepth(BB);
969  }
970
971  // isLoopHeader - True if the block is a loop header node
972  inline bool isLoopHeader(BasicBlock *BB) const {
973    return LI->isLoopHeader(BB);
974  }
975
976  /// runOnFunction - Calculate the natural loop information.
977  ///
978  virtual bool runOnFunction(Function &F);
979
980  virtual void releaseMemory() { LI->releaseMemory(); }
981
982  virtual void print(std::ostream &O, const Module* M = 0) const {
983    if (O) LI->print(O, M);
984  }
985
986  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
987
988  /// removeLoop - This removes the specified top-level loop from this loop info
989  /// object.  The loop is not deleted, as it will presumably be inserted into
990  /// another loop.
991  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
992
993  /// changeLoopFor - Change the top-level loop that contains BB to the
994  /// specified loop.  This should be used by transformations that restructure
995  /// the loop hierarchy tree.
996  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
997    LI->changeLoopFor(BB, L);
998  }
999
1000  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1001  /// list with the indicated loop.
1002  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1003    LI->changeTopLevelLoop(OldLoop, NewLoop);
1004  }
1005
1006  /// addTopLevelLoop - This adds the specified loop to the collection of
1007  /// top-level loops.
1008  inline void addTopLevelLoop(Loop *New) {
1009    LI->addTopLevelLoop(New);
1010  }
1011
1012  /// removeBlock - This method completely removes BB from all data structures,
1013  /// including all of the Loop objects it is nested in and our mapping from
1014  /// BasicBlocks to loops.
1015  void removeBlock(BasicBlock *BB) {
1016    LI->removeBlock(BB);
1017  }
1018};
1019
1020
1021// Allow clients to walk the list of nested loops...
1022template <> struct GraphTraits<const Loop*> {
1023  typedef const Loop NodeType;
1024  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
1025
1026  static NodeType *getEntryNode(const Loop *L) { return L; }
1027  static inline ChildIteratorType child_begin(NodeType *N) {
1028    return N->begin();
1029  }
1030  static inline ChildIteratorType child_end(NodeType *N) {
1031    return N->end();
1032  }
1033};
1034
1035template <> struct GraphTraits<Loop*> {
1036  typedef Loop NodeType;
1037  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
1038
1039  static NodeType *getEntryNode(Loop *L) { return L; }
1040  static inline ChildIteratorType child_begin(NodeType *N) {
1041    return N->begin();
1042  }
1043  static inline ChildIteratorType child_end(NodeType *N) {
1044    return N->end();
1045  }
1046};
1047
1048template<class BlockT>
1049void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
1050                                           LoopInfoBase<BlockT> &LIB) {
1051  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1052         "Incorrect LI specified for this loop!");
1053  assert(NewBB && "Cannot add a null basic block to the loop!");
1054  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1055
1056  // Add the loop mapping to the LoopInfo object...
1057  LIB.BBMap[NewBB] = this;
1058
1059  // Add the basic block to this loop and all parent loops...
1060  LoopBase<BlockT> *L = this;
1061  while (L) {
1062    L->Blocks.push_back(NewBB);
1063    L = L->getParentLoop();
1064  }
1065}
1066
1067} // End llvm namespace
1068
1069#endif
1070