LoopInfo.h revision c75cd159cd5e428c9b0c8fb761b83c86844cd287
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/raw_ostream.h"
40#include <algorithm>
41
42namespace llvm {
43
44template<typename T>
45static void RemoveFromVector(std::vector<T*> &V, T *N) {
46  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
47  assert(I != V.end() && "N is not in this list!");
48  V.erase(I);
49}
50
51class DominatorTree;
52class LoopInfo;
53class Loop;
54template<class N, class M> class LoopInfoBase;
55template<class N, class M> class LoopBase;
56
57//===----------------------------------------------------------------------===//
58/// LoopBase class - Instances of this class are used to represent loops that
59/// are detected in the flow graph
60///
61template<class BlockT, class LoopT>
62class LoopBase {
63  LoopT *ParentLoop;
64  // SubLoops - Loops contained entirely within this one.
65  std::vector<LoopT *> SubLoops;
66
67  // Blocks - The list of blocks in this loop.  First entry is the header node.
68  std::vector<BlockT*> Blocks;
69
70  // DO NOT IMPLEMENT
71  LoopBase(const LoopBase<BlockT, LoopT> &);
72  // DO NOT IMPLEMENT
73  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
74public:
75  /// Loop ctor - This creates an empty loop.
76  LoopBase() : ParentLoop(0) {}
77  ~LoopBase() {
78    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
79      delete SubLoops[i];
80  }
81
82  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
83  /// loop has depth 1, for consistency with loop depth values used for basic
84  /// blocks, where depth 0 is used for blocks not inside any loops.
85  unsigned getLoopDepth() const {
86    unsigned D = 1;
87    for (const LoopT *CurLoop = ParentLoop; CurLoop;
88         CurLoop = CurLoop->ParentLoop)
89      ++D;
90    return D;
91  }
92  BlockT *getHeader() const { return Blocks.front(); }
93  LoopT *getParentLoop() const { return ParentLoop; }
94
95  /// contains - Return true if the specified basic block is in this loop
96  ///
97  bool contains(const BlockT *BB) const {
98    return std::find(block_begin(), block_end(), BB) != block_end();
99  }
100
101  /// iterator/begin/end - Return the loops contained entirely within this loop.
102  ///
103  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
104  typedef typename std::vector<LoopT *>::const_iterator iterator;
105  iterator begin() const { return SubLoops.begin(); }
106  iterator end() const { return SubLoops.end(); }
107  bool empty() const { return SubLoops.empty(); }
108
109  /// getBlocks - Get a list of the basic blocks which make up this loop.
110  ///
111  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
112  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
113  block_iterator block_begin() const { return Blocks.begin(); }
114  block_iterator block_end() const { return Blocks.end(); }
115
116  /// isLoopExit - True if terminator in the block can branch to another block
117  /// that is outside of the current loop.
118  ///
119  bool isLoopExit(const BlockT *BB) const {
120    typedef GraphTraits<BlockT*> BlockTraits;
121    for (typename BlockTraits::ChildIteratorType SI =
122         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
123         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
124      if (!contains(*SI))
125        return true;
126    }
127    return false;
128  }
129
130  /// getNumBackEdges - Calculate the number of back edges to the loop header
131  ///
132  unsigned getNumBackEdges() const {
133    unsigned NumBackEdges = 0;
134    BlockT *H = getHeader();
135
136    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
137    for (typename InvBlockTraits::ChildIteratorType I =
138         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
139         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
140      if (contains(*I))
141        ++NumBackEdges;
142
143    return NumBackEdges;
144  }
145
146  //===--------------------------------------------------------------------===//
147  // APIs for simple analysis of the loop.
148  //
149  // Note that all of these methods can fail on general loops (ie, there may not
150  // be a preheader, etc).  For best success, the loop simplification and
151  // induction variable canonicalization pass should be used to normalize loops
152  // for easy analysis.  These methods assume canonical loops.
153
154  /// getExitingBlocks - Return all blocks inside the loop that have successors
155  /// outside of the loop.  These are the blocks _inside of the current loop_
156  /// which branch out.  The returned list is always unique.
157  ///
158  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
159    // Sort the blocks vector so that we can use binary search to do quick
160    // lookups.
161    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
162    std::sort(LoopBBs.begin(), LoopBBs.end());
163
164    typedef GraphTraits<BlockT*> BlockTraits;
165    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
166      for (typename BlockTraits::ChildIteratorType I =
167          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
168          I != E; ++I)
169        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
170          // Not in current loop? It must be an exit block.
171          ExitingBlocks.push_back(*BI);
172          break;
173        }
174  }
175
176  /// getExitingBlock - If getExitingBlocks would return exactly one block,
177  /// return that block. Otherwise return null.
178  BlockT *getExitingBlock() const {
179    SmallVector<BlockT*, 8> ExitingBlocks;
180    getExitingBlocks(ExitingBlocks);
181    if (ExitingBlocks.size() == 1)
182      return ExitingBlocks[0];
183    return 0;
184  }
185
186  /// getExitBlocks - Return all of the successor blocks of this loop.  These
187  /// are the blocks _outside of the current loop_ which are branched to.
188  ///
189  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
190    // Sort the blocks vector so that we can use binary search to do quick
191    // lookups.
192    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
193    std::sort(LoopBBs.begin(), LoopBBs.end());
194
195    typedef GraphTraits<BlockT*> BlockTraits;
196    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
197      for (typename BlockTraits::ChildIteratorType I =
198           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
199           I != E; ++I)
200        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
201          // Not in current loop? It must be an exit block.
202          ExitBlocks.push_back(*I);
203  }
204
205  /// getExitBlock - If getExitBlocks would return exactly one block,
206  /// return that block. Otherwise return null.
207  BlockT *getExitBlock() const {
208    SmallVector<BlockT*, 8> ExitBlocks;
209    getExitBlocks(ExitBlocks);
210    if (ExitBlocks.size() == 1)
211      return ExitBlocks[0];
212    return 0;
213  }
214
215  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
216  typedef std::pair<const BlockT*,const BlockT*> Edge;
217  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
218    // Sort the blocks vector so that we can use binary search to do quick
219    // lookups.
220    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
221    std::sort(LoopBBs.begin(), LoopBBs.end());
222
223    typedef GraphTraits<BlockT*> BlockTraits;
224    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
225      for (typename BlockTraits::ChildIteratorType I =
226           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
227           I != E; ++I)
228        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
229          // Not in current loop? It must be an exit block.
230          ExitEdges.push_back(std::make_pair(*BI, *I));
231  }
232
233  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
234  /// These are the blocks _outside of the current loop_ which are branched to.
235  /// This assumes that loop is in canonical form.
236  ///
237  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
238    // Sort the blocks vector so that we can use binary search to do quick
239    // lookups.
240    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
241    std::sort(LoopBBs.begin(), LoopBBs.end());
242
243    std::vector<BlockT*> switchExitBlocks;
244
245    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
246
247      BlockT *current = *BI;
248      switchExitBlocks.clear();
249
250      typedef GraphTraits<BlockT*> BlockTraits;
251      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
252      for (typename BlockTraits::ChildIteratorType I =
253           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
254           I != E; ++I) {
255        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
256      // If block is inside the loop then it is not a exit block.
257          continue;
258
259        typename InvBlockTraits::ChildIteratorType PI =
260                                                InvBlockTraits::child_begin(*I);
261        BlockT *firstPred = *PI;
262
263        // If current basic block is this exit block's first predecessor
264        // then only insert exit block in to the output ExitBlocks vector.
265        // This ensures that same exit block is not inserted twice into
266        // ExitBlocks vector.
267        if (current != firstPred)
268          continue;
269
270        // If a terminator has more then two successors, for example SwitchInst,
271        // then it is possible that there are multiple edges from current block
272        // to one exit block.
273        if (std::distance(BlockTraits::child_begin(current),
274                          BlockTraits::child_end(current)) <= 2) {
275          ExitBlocks.push_back(*I);
276          continue;
277        }
278
279        // In case of multiple edges from current block to exit block, collect
280        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
281        // duplicate edges.
282        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
283            == switchExitBlocks.end()) {
284          switchExitBlocks.push_back(*I);
285          ExitBlocks.push_back(*I);
286        }
287      }
288    }
289  }
290
291  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
292  /// block, return that block. Otherwise return null.
293  BlockT *getUniqueExitBlock() const {
294    SmallVector<BlockT*, 8> UniqueExitBlocks;
295    getUniqueExitBlocks(UniqueExitBlocks);
296    if (UniqueExitBlocks.size() == 1)
297      return UniqueExitBlocks[0];
298    return 0;
299  }
300
301  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
302  /// loop has a preheader if there is only one edge to the header of the loop
303  /// from outside of the loop.  If this is the case, the block branching to the
304  /// header of the loop is the preheader node.
305  ///
306  /// This method returns null if there is no preheader for the loop.
307  ///
308  BlockT *getLoopPreheader() const {
309    // Keep track of nodes outside the loop branching to the header...
310    BlockT *Out = 0;
311
312    // Loop over the predecessors of the header node...
313    BlockT *Header = getHeader();
314    typedef GraphTraits<BlockT*> BlockTraits;
315    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
316    for (typename InvBlockTraits::ChildIteratorType PI =
317         InvBlockTraits::child_begin(Header),
318         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
319      if (!contains(*PI)) {     // If the block is not in the loop...
320        if (Out && Out != *PI)
321          return 0;             // Multiple predecessors outside the loop
322        Out = *PI;
323      }
324
325    // Make sure there is only one exit out of the preheader.
326    assert(Out && "Header of loop has no predecessors from outside loop?");
327    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
328    ++SI;
329    if (SI != BlockTraits::child_end(Out))
330      return 0;  // Multiple exits from the block, must not be a preheader.
331
332    // If there is exactly one preheader, return it.  If there was zero, then
333    // Out is still null.
334    return Out;
335  }
336
337  /// getLoopLatch - If there is a single latch block for this loop, return it.
338  /// A latch block is a block that contains a branch back to the header.
339  /// A loop header in normal form has two edges into it: one from a preheader
340  /// and one from a latch block.
341  BlockT *getLoopLatch() const {
342    BlockT *Header = getHeader();
343    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
344    typename InvBlockTraits::ChildIteratorType PI =
345                                            InvBlockTraits::child_begin(Header);
346    typename InvBlockTraits::ChildIteratorType PE =
347                                              InvBlockTraits::child_end(Header);
348    if (PI == PE) return 0;  // no preds?
349
350    BlockT *Latch = 0;
351    if (contains(*PI))
352      Latch = *PI;
353    ++PI;
354    if (PI == PE) return 0;  // only one pred?
355
356    if (contains(*PI)) {
357      if (Latch) return 0;  // multiple backedges
358      Latch = *PI;
359    }
360    ++PI;
361    if (PI != PE) return 0;  // more than two preds
362
363    return Latch;
364  }
365
366  //===--------------------------------------------------------------------===//
367  // APIs for updating loop information after changing the CFG
368  //
369
370  /// addBasicBlockToLoop - This method is used by other analyses to update loop
371  /// information.  NewBB is set to be a new member of the current loop.
372  /// Because of this, it is added as a member of all parent loops, and is added
373  /// to the specified LoopInfo object as being in the current basic block.  It
374  /// is not valid to replace the loop header with this method.
375  ///
376  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
377
378  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
379  /// the OldChild entry in our children list with NewChild, and updates the
380  /// parent pointer of OldChild to be null and the NewChild to be this loop.
381  /// This updates the loop depth of the new child.
382  void replaceChildLoopWith(LoopT *OldChild,
383                            LoopT *NewChild) {
384    assert(OldChild->ParentLoop == this && "This loop is already broken!");
385    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
386    typename std::vector<LoopT *>::iterator I =
387                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
388    assert(I != SubLoops.end() && "OldChild not in loop!");
389    *I = NewChild;
390    OldChild->ParentLoop = 0;
391    NewChild->ParentLoop = static_cast<LoopT *>(this);
392  }
393
394  /// addChildLoop - Add the specified loop to be a child of this loop.  This
395  /// updates the loop depth of the new child.
396  ///
397  void addChildLoop(LoopT *NewChild) {
398    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
399    NewChild->ParentLoop = static_cast<LoopT *>(this);
400    SubLoops.push_back(NewChild);
401  }
402
403  /// removeChildLoop - This removes the specified child from being a subloop of
404  /// this loop.  The loop is not deleted, as it will presumably be inserted
405  /// into another loop.
406  LoopT *removeChildLoop(iterator I) {
407    assert(I != SubLoops.end() && "Cannot remove end iterator!");
408    LoopT *Child = *I;
409    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
410    SubLoops.erase(SubLoops.begin()+(I-begin()));
411    Child->ParentLoop = 0;
412    return Child;
413  }
414
415  /// addBlockEntry - This adds a basic block directly to the basic block list.
416  /// This should only be used by transformations that create new loops.  Other
417  /// transformations should use addBasicBlockToLoop.
418  void addBlockEntry(BlockT *BB) {
419    Blocks.push_back(BB);
420  }
421
422  /// moveToHeader - This method is used to move BB (which must be part of this
423  /// loop) to be the loop header of the loop (the block that dominates all
424  /// others).
425  void moveToHeader(BlockT *BB) {
426    if (Blocks[0] == BB) return;
427    for (unsigned i = 0; ; ++i) {
428      assert(i != Blocks.size() && "Loop does not contain BB!");
429      if (Blocks[i] == BB) {
430        Blocks[i] = Blocks[0];
431        Blocks[0] = BB;
432        return;
433      }
434    }
435  }
436
437  /// removeBlockFromLoop - This removes the specified basic block from the
438  /// current loop, updating the Blocks as appropriate.  This does not update
439  /// the mapping in the LoopInfo class.
440  void removeBlockFromLoop(BlockT *BB) {
441    RemoveFromVector(Blocks, BB);
442  }
443
444  /// verifyLoop - Verify loop structure
445  void verifyLoop() const {
446#ifndef NDEBUG
447    assert (getHeader() && "Loop header is missing");
448    assert (getLoopPreheader() && "Loop preheader is missing");
449    assert (getLoopLatch() && "Loop latch is missing");
450    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
451      (*I)->verifyLoop();
452#endif
453  }
454
455  void print(raw_ostream &OS, unsigned Depth = 0) const {
456    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
457       << " containing: ";
458
459    for (unsigned i = 0; i < getBlocks().size(); ++i) {
460      if (i) OS << ",";
461      BlockT *BB = getBlocks()[i];
462      WriteAsOperand(OS, BB, false);
463      if (BB == getHeader())    OS << "<header>";
464      if (BB == getLoopLatch()) OS << "<latch>";
465      if (isLoopExit(BB))       OS << "<exit>";
466    }
467    OS << "\n";
468
469    for (iterator I = begin(), E = end(); I != E; ++I)
470      (*I)->print(OS, Depth+2);
471  }
472
473  void dump() const {
474    print(errs());
475  }
476
477protected:
478  friend class LoopInfoBase<BlockT, LoopT>;
479  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
480    Blocks.push_back(BB);
481  }
482};
483
484class Loop : public LoopBase<BasicBlock, Loop> {
485public:
486  Loop() {}
487
488  /// isLoopInvariant - Return true if the specified value is loop invariant
489  ///
490  bool isLoopInvariant(Value *V) const;
491
492  /// isLoopInvariant - Return true if the specified instruction is
493  /// loop-invariant.
494  ///
495  bool isLoopInvariant(Instruction *I) const;
496
497  /// makeLoopInvariant - If the given value is an instruction inside of the
498  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
499  /// Return true if the value after any hoisting is loop invariant. This
500  /// function can be used as a slightly more aggressive replacement for
501  /// isLoopInvariant.
502  ///
503  /// If InsertPt is specified, it is the point to hoist instructions to.
504  /// If null, the terminator of the loop preheader is used.
505  ///
506  bool makeLoopInvariant(Value *V, bool &Changed,
507                         Instruction *InsertPt = 0) const;
508
509  /// makeLoopInvariant - If the given instruction is inside of the
510  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
511  /// Return true if the instruction after any hoisting is loop invariant. This
512  /// function can be used as a slightly more aggressive replacement for
513  /// isLoopInvariant.
514  ///
515  /// If InsertPt is specified, it is the point to hoist instructions to.
516  /// If null, the terminator of the loop preheader is used.
517  ///
518  bool makeLoopInvariant(Instruction *I, bool &Changed,
519                         Instruction *InsertPt = 0) const;
520
521  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
522  /// induction variable: an integer recurrence that starts at 0 and increments
523  /// by one each time through the loop.  If so, return the phi node that
524  /// corresponds to it.
525  ///
526  /// The IndVarSimplify pass transforms loops to have a canonical induction
527  /// variable.
528  ///
529  PHINode *getCanonicalInductionVariable() const;
530
531  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
532  /// the canonical induction variable value for the "next" iteration of the
533  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
534  ///
535  Instruction *getCanonicalInductionVariableIncrement() const;
536
537  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
538  /// times the loop will be executed.  Note that this means that the backedge
539  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
540  /// this returns null.
541  ///
542  /// The IndVarSimplify pass transforms loops to have a form that this
543  /// function easily understands.
544  ///
545  Value *getTripCount() const;
546
547  /// getSmallConstantTripCount - Returns the trip count of this loop as a
548  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
549  /// of not constant. Will also return 0 if the trip count is very large
550  /// (>= 2^32)
551  unsigned getSmallConstantTripCount() const;
552
553  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
554  /// trip count of this loop as a normal unsigned value, if possible. This
555  /// means that the actual trip count is always a multiple of the returned
556  /// value (don't forget the trip count could very well be zero as well!).
557  ///
558  /// Returns 1 if the trip count is unknown or not guaranteed to be the
559  /// multiple of a constant (which is also the case if the trip count is simply
560  /// constant, use getSmallConstantTripCount for that case), Will also return 1
561  /// if the trip count is very large (>= 2^32).
562  unsigned getSmallConstantTripMultiple() const;
563
564  /// isLCSSAForm - Return true if the Loop is in LCSSA form
565  bool isLCSSAForm() const;
566
567  /// isLoopSimplifyForm - Return true if the Loop is in the form that
568  /// the LoopSimplify form transforms loops to, which is sometimes called
569  /// normal form.
570  bool isLoopSimplifyForm() const;
571
572private:
573  friend class LoopInfoBase<BasicBlock, Loop>;
574  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
575};
576
577//===----------------------------------------------------------------------===//
578/// LoopInfo - This class builds and contains all of the top level loop
579/// structures in the specified function.
580///
581
582template<class BlockT, class LoopT>
583class LoopInfoBase {
584  // BBMap - Mapping of basic blocks to the inner most loop they occur in
585  std::map<BlockT *, LoopT *> BBMap;
586  std::vector<LoopT *> TopLevelLoops;
587  friend class LoopBase<BlockT, LoopT>;
588
589  void operator=(const LoopInfoBase &); // do not implement
590  LoopInfoBase(const LoopInfo &);       // do not implement
591public:
592  LoopInfoBase() { }
593  ~LoopInfoBase() { releaseMemory(); }
594
595  void releaseMemory() {
596    for (typename std::vector<LoopT *>::iterator I =
597         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
598      delete *I;   // Delete all of the loops...
599
600    BBMap.clear();                           // Reset internal state of analysis
601    TopLevelLoops.clear();
602  }
603
604  /// iterator/begin/end - The interface to the top-level loops in the current
605  /// function.
606  ///
607  typedef typename std::vector<LoopT *>::const_iterator iterator;
608  iterator begin() const { return TopLevelLoops.begin(); }
609  iterator end() const { return TopLevelLoops.end(); }
610  bool empty() const { return TopLevelLoops.empty(); }
611
612  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
613  /// block is in no loop (for example the entry node), null is returned.
614  ///
615  LoopT *getLoopFor(const BlockT *BB) const {
616    typename std::map<BlockT *, LoopT *>::const_iterator I=
617      BBMap.find(const_cast<BlockT*>(BB));
618    return I != BBMap.end() ? I->second : 0;
619  }
620
621  /// operator[] - same as getLoopFor...
622  ///
623  const LoopT *operator[](const BlockT *BB) const {
624    return getLoopFor(BB);
625  }
626
627  /// getLoopDepth - Return the loop nesting level of the specified block.  A
628  /// depth of 0 means the block is not inside any loop.
629  ///
630  unsigned getLoopDepth(const BlockT *BB) const {
631    const LoopT *L = getLoopFor(BB);
632    return L ? L->getLoopDepth() : 0;
633  }
634
635  // isLoopHeader - True if the block is a loop header node
636  bool isLoopHeader(BlockT *BB) const {
637    const LoopT *L = getLoopFor(BB);
638    return L && L->getHeader() == BB;
639  }
640
641  /// removeLoop - This removes the specified top-level loop from this loop info
642  /// object.  The loop is not deleted, as it will presumably be inserted into
643  /// another loop.
644  LoopT *removeLoop(iterator I) {
645    assert(I != end() && "Cannot remove end iterator!");
646    LoopT *L = *I;
647    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
648    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
649    return L;
650  }
651
652  /// changeLoopFor - Change the top-level loop that contains BB to the
653  /// specified loop.  This should be used by transformations that restructure
654  /// the loop hierarchy tree.
655  void changeLoopFor(BlockT *BB, LoopT *L) {
656    LoopT *&OldLoop = BBMap[BB];
657    assert(OldLoop && "Block not in a loop yet!");
658    OldLoop = L;
659  }
660
661  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
662  /// list with the indicated loop.
663  void changeTopLevelLoop(LoopT *OldLoop,
664                          LoopT *NewLoop) {
665    typename std::vector<LoopT *>::iterator I =
666                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
667    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
668    *I = NewLoop;
669    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
670           "Loops already embedded into a subloop!");
671  }
672
673  /// addTopLevelLoop - This adds the specified loop to the collection of
674  /// top-level loops.
675  void addTopLevelLoop(LoopT *New) {
676    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
677    TopLevelLoops.push_back(New);
678  }
679
680  /// removeBlock - This method completely removes BB from all data structures,
681  /// including all of the Loop objects it is nested in and our mapping from
682  /// BasicBlocks to loops.
683  void removeBlock(BlockT *BB) {
684    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
685    if (I != BBMap.end()) {
686      for (LoopT *L = I->second; L; L = L->getParentLoop())
687        L->removeBlockFromLoop(BB);
688
689      BBMap.erase(I);
690    }
691  }
692
693  // Internals
694
695  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
696                                      const LoopT *ParentLoop) {
697    if (SubLoop == 0) return true;
698    if (SubLoop == ParentLoop) return false;
699    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
700  }
701
702  void Calculate(DominatorTreeBase<BlockT> &DT) {
703    BlockT *RootNode = DT.getRootNode()->getBlock();
704
705    for (df_iterator<BlockT*> NI = df_begin(RootNode),
706           NE = df_end(RootNode); NI != NE; ++NI)
707      if (LoopT *L = ConsiderForLoop(*NI, DT))
708        TopLevelLoops.push_back(L);
709  }
710
711  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
712    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
713
714    std::vector<BlockT *> TodoStack;
715
716    // Scan the predecessors of BB, checking to see if BB dominates any of
717    // them.  This identifies backedges which target this node...
718    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
719    for (typename InvBlockTraits::ChildIteratorType I =
720         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
721         I != E; ++I)
722      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
723        TodoStack.push_back(*I);
724
725    if (TodoStack.empty()) return 0;  // No backedges to this block...
726
727    // Create a new loop to represent this basic block...
728    LoopT *L = new LoopT(BB);
729    BBMap[BB] = L;
730
731    BlockT *EntryBlock = BB->getParent()->begin();
732
733    while (!TodoStack.empty()) {  // Process all the nodes in the loop
734      BlockT *X = TodoStack.back();
735      TodoStack.pop_back();
736
737      if (!L->contains(X) &&         // As of yet unprocessed??
738          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
739        // Check to see if this block already belongs to a loop.  If this occurs
740        // then we have a case where a loop that is supposed to be a child of
741        // the current loop was processed before the current loop.  When this
742        // occurs, this child loop gets added to a part of the current loop,
743        // making it a sibling to the current loop.  We have to reparent this
744        // loop.
745        if (LoopT *SubLoop =
746            const_cast<LoopT *>(getLoopFor(X)))
747          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
748            // Remove the subloop from it's current parent...
749            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
750            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
751            typename std::vector<LoopT *>::iterator I =
752              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
753            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
754            SLP->SubLoops.erase(I);   // Remove from parent...
755
756            // Add the subloop to THIS loop...
757            SubLoop->ParentLoop = L;
758            L->SubLoops.push_back(SubLoop);
759          }
760
761        // Normal case, add the block to our loop...
762        L->Blocks.push_back(X);
763
764        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
765
766        // Add all of the predecessors of X to the end of the work stack...
767        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
768                         InvBlockTraits::child_end(X));
769      }
770    }
771
772    // If there are any loops nested within this loop, create them now!
773    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
774         E = L->Blocks.end(); I != E; ++I)
775      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
776        L->SubLoops.push_back(NewLoop);
777        NewLoop->ParentLoop = L;
778      }
779
780    // Add the basic blocks that comprise this loop to the BBMap so that this
781    // loop can be found for them.
782    //
783    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
784           E = L->Blocks.end(); I != E; ++I)
785      BBMap.insert(std::make_pair(*I, L));
786
787    // Now that we have a list of all of the child loops of this loop, check to
788    // see if any of them should actually be nested inside of each other.  We
789    // can accidentally pull loops our of their parents, so we must make sure to
790    // organize the loop nests correctly now.
791    {
792      std::map<BlockT *, LoopT *> ContainingLoops;
793      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
794        LoopT *Child = L->SubLoops[i];
795        assert(Child->getParentLoop() == L && "Not proper child loop?");
796
797        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
798          // If there is already a loop which contains this loop, move this loop
799          // into the containing loop.
800          MoveSiblingLoopInto(Child, ContainingLoop);
801          --i;  // The loop got removed from the SubLoops list.
802        } else {
803          // This is currently considered to be a top-level loop.  Check to see
804          // if any of the contained blocks are loop headers for subloops we
805          // have already processed.
806          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
807            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
808            if (BlockLoop == 0) {   // Child block not processed yet...
809              BlockLoop = Child;
810            } else if (BlockLoop != Child) {
811              LoopT *SubLoop = BlockLoop;
812              // Reparent all of the blocks which used to belong to BlockLoops
813              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
814                ContainingLoops[SubLoop->Blocks[j]] = Child;
815
816              // There is already a loop which contains this block, that means
817              // that we should reparent the loop which the block is currently
818              // considered to belong to to be a child of this loop.
819              MoveSiblingLoopInto(SubLoop, Child);
820              --i;  // We just shrunk the SubLoops list.
821            }
822          }
823        }
824      }
825    }
826
827    return L;
828  }
829
830  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
831  /// of the NewParent Loop, instead of being a sibling of it.
832  void MoveSiblingLoopInto(LoopT *NewChild,
833                           LoopT *NewParent) {
834    LoopT *OldParent = NewChild->getParentLoop();
835    assert(OldParent && OldParent == NewParent->getParentLoop() &&
836           NewChild != NewParent && "Not sibling loops!");
837
838    // Remove NewChild from being a child of OldParent
839    typename std::vector<LoopT *>::iterator I =
840      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
841                NewChild);
842    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
843    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
844    NewChild->ParentLoop = 0;
845
846    InsertLoopInto(NewChild, NewParent);
847  }
848
849  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
850  /// the parent loop contains a loop which should contain L, the loop gets
851  /// inserted into L instead.
852  void InsertLoopInto(LoopT *L, LoopT *Parent) {
853    BlockT *LHeader = L->getHeader();
854    assert(Parent->contains(LHeader) &&
855           "This loop should not be inserted here!");
856
857    // Check to see if it belongs in a child loop...
858    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
859         i != e; ++i)
860      if (Parent->SubLoops[i]->contains(LHeader)) {
861        InsertLoopInto(L, Parent->SubLoops[i]);
862        return;
863      }
864
865    // If not, insert it here!
866    Parent->SubLoops.push_back(L);
867    L->ParentLoop = Parent;
868  }
869
870  // Debugging
871
872  void print(raw_ostream &OS) const {
873    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
874      TopLevelLoops[i]->print(OS);
875  #if 0
876    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
877           E = BBMap.end(); I != E; ++I)
878      OS << "BB '" << I->first->getName() << "' level = "
879         << I->second->getLoopDepth() << "\n";
880  #endif
881  }
882};
883
884class LoopInfo : public FunctionPass {
885  LoopInfoBase<BasicBlock, Loop> LI;
886  friend class LoopBase<BasicBlock, Loop>;
887
888  void operator=(const LoopInfo &); // do not implement
889  LoopInfo(const LoopInfo &);       // do not implement
890public:
891  static char ID; // Pass identification, replacement for typeid
892
893  LoopInfo() : FunctionPass(&ID) {}
894
895  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
896
897  /// iterator/begin/end - The interface to the top-level loops in the current
898  /// function.
899  ///
900  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
901  inline iterator begin() const { return LI.begin(); }
902  inline iterator end() const { return LI.end(); }
903  bool empty() const { return LI.empty(); }
904
905  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
906  /// block is in no loop (for example the entry node), null is returned.
907  ///
908  inline Loop *getLoopFor(const BasicBlock *BB) const {
909    return LI.getLoopFor(BB);
910  }
911
912  /// operator[] - same as getLoopFor...
913  ///
914  inline const Loop *operator[](const BasicBlock *BB) const {
915    return LI.getLoopFor(BB);
916  }
917
918  /// getLoopDepth - Return the loop nesting level of the specified block.  A
919  /// depth of 0 means the block is not inside any loop.
920  ///
921  inline unsigned getLoopDepth(const BasicBlock *BB) const {
922    return LI.getLoopDepth(BB);
923  }
924
925  // isLoopHeader - True if the block is a loop header node
926  inline bool isLoopHeader(BasicBlock *BB) const {
927    return LI.isLoopHeader(BB);
928  }
929
930  /// runOnFunction - Calculate the natural loop information.
931  ///
932  virtual bool runOnFunction(Function &F);
933
934  virtual void releaseMemory() { LI.releaseMemory(); }
935
936  virtual void print(raw_ostream &O, const Module* M = 0) const;
937
938  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
939
940  /// removeLoop - This removes the specified top-level loop from this loop info
941  /// object.  The loop is not deleted, as it will presumably be inserted into
942  /// another loop.
943  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
944
945  /// changeLoopFor - Change the top-level loop that contains BB to the
946  /// specified loop.  This should be used by transformations that restructure
947  /// the loop hierarchy tree.
948  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
949    LI.changeLoopFor(BB, L);
950  }
951
952  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
953  /// list with the indicated loop.
954  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
955    LI.changeTopLevelLoop(OldLoop, NewLoop);
956  }
957
958  /// addTopLevelLoop - This adds the specified loop to the collection of
959  /// top-level loops.
960  inline void addTopLevelLoop(Loop *New) {
961    LI.addTopLevelLoop(New);
962  }
963
964  /// removeBlock - This method completely removes BB from all data structures,
965  /// including all of the Loop objects it is nested in and our mapping from
966  /// BasicBlocks to loops.
967  void removeBlock(BasicBlock *BB) {
968    LI.removeBlock(BB);
969  }
970
971  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
972                                      const Loop *ParentLoop) {
973    return
974      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
975                                                              ParentLoop);
976  }
977};
978
979
980// Allow clients to walk the list of nested loops...
981template <> struct GraphTraits<const Loop*> {
982  typedef const Loop NodeType;
983  typedef LoopInfo::iterator ChildIteratorType;
984
985  static NodeType *getEntryNode(const Loop *L) { return L; }
986  static inline ChildIteratorType child_begin(NodeType *N) {
987    return N->begin();
988  }
989  static inline ChildIteratorType child_end(NodeType *N) {
990    return N->end();
991  }
992};
993
994template <> struct GraphTraits<Loop*> {
995  typedef Loop NodeType;
996  typedef LoopInfo::iterator ChildIteratorType;
997
998  static NodeType *getEntryNode(Loop *L) { return L; }
999  static inline ChildIteratorType child_begin(NodeType *N) {
1000    return N->begin();
1001  }
1002  static inline ChildIteratorType child_end(NodeType *N) {
1003    return N->end();
1004  }
1005};
1006
1007template<class BlockT, class LoopT>
1008void
1009LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1010                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1011  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1012         "Incorrect LI specified for this loop!");
1013  assert(NewBB && "Cannot add a null basic block to the loop!");
1014  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1015
1016  LoopT *L = static_cast<LoopT *>(this);
1017
1018  // Add the loop mapping to the LoopInfo object...
1019  LIB.BBMap[NewBB] = L;
1020
1021  // Add the basic block to this loop and all parent loops...
1022  while (L) {
1023    L->Blocks.push_back(NewBB);
1024    L = L->getParentLoop();
1025  }
1026}
1027
1028} // End llvm namespace
1029
1030#endif
1031