LoopInfo.h revision d91cbf352a5f25d602667445bcbb132705da286a
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/Constants.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Streams.h"
43#include <algorithm>
44#include <ostream>
45
46template<typename T>
47static void RemoveFromVector(std::vector<T*> &V, T *N) {
48  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
49  assert(I != V.end() && "N is not in this list!");
50  V.erase(I);
51}
52
53namespace llvm {
54
55class DominatorTree;
56class LoopInfo;
57class PHINode;
58class Instruction;
59template<class N> class LoopInfoBase;
60
61//===----------------------------------------------------------------------===//
62/// LoopBase class - Instances of this class are used to represent loops that are
63/// detected in the flow graph
64///
65template<class BlockT>
66class LoopBase {
67  LoopBase<BlockT> *ParentLoop;
68  std::vector<LoopBase<BlockT>*> SubLoops;       // Loops contained entirely within this one
69  std::vector<BlockT*> Blocks;   // First entry is the header node
70
71  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
72  const LoopBase<BlockT> &operator=(const LoopBase<BlockT> &); // DO NOT IMPLEMENT
73public:
74  /// Loop ctor - This creates an empty loop.
75  LoopBase() : ParentLoop(0) {}
76  ~LoopBase() {
77    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
78      delete SubLoops[i];
79  }
80
81  unsigned getLoopDepth() const {
82    unsigned D = 0;
83    for (const LoopBase<BlockT> *CurLoop = this; CurLoop;
84         CurLoop = CurLoop->ParentLoop)
85      ++D;
86    return D;
87  }
88  BlockT *getHeader() const { return Blocks.front(); }
89  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
90
91  /// contains - Return true of the specified basic block is in this loop
92  ///
93  bool contains(const BlockT *BB) const {
94    return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
95  }
96
97  /// iterator/begin/end - Return the loops contained entirely within this loop.
98  ///
99  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
100  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
101  iterator begin() const { return SubLoops.begin(); }
102  iterator end() const { return SubLoops.end(); }
103  bool empty() const { return SubLoops.empty(); }
104
105  /// getBlocks - Get a list of the basic blocks which make up this loop.
106  ///
107  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
108  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
109  block_iterator block_begin() const { return Blocks.begin(); }
110  block_iterator block_end() const { return Blocks.end(); }
111
112  /// isLoopExit - True if terminator in the block can branch to another block
113  /// that is outside of the current loop.
114  ///
115  bool isLoopExit(const BlockT *BB) const {
116    for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
117         SI != SE; ++SI) {
118      if (!contains(*SI))
119        return true;
120    }
121    return false;
122  }
123
124  /// getNumBackEdges - Calculate the number of back edges to the loop header
125  ///
126  unsigned getNumBackEdges() const {
127    unsigned NumBackEdges = 0;
128    BlockT *H = getHeader();
129
130    for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I)
131      if (contains(*I))
132        ++NumBackEdges;
133
134    return NumBackEdges;
135  }
136
137  /// isLoopInvariant - Return true if the specified value is loop invariant
138  ///
139  bool isLoopInvariant(Value *V) const {
140    if (Instruction *I = dyn_cast<Instruction>(V))
141      return !contains(I->getParent());
142    return true;  // All non-instructions are loop invariant
143  }
144
145  //===--------------------------------------------------------------------===//
146  // APIs for simple analysis of the loop.
147  //
148  // Note that all of these methods can fail on general loops (ie, there may not
149  // be a preheader, etc).  For best success, the loop simplification and
150  // induction variable canonicalization pass should be used to normalize loops
151  // for easy analysis.  These methods assume canonical loops.
152
153  /// getExitingBlocks - Return all blocks inside the loop that have successors
154  /// outside of the loop.  These are the blocks _inside of the current loop_
155  /// which branch out.  The returned list is always unique.
156  ///
157  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
158    // Sort the blocks vector so that we can use binary search to do quick
159    // lookups.
160    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
161    std::sort(LoopBBs.begin(), LoopBBs.end());
162
163    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
164         BE = Blocks.end(); BI != BE; ++BI)
165      for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
166        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
167          // Not in current loop? It must be an exit block.
168          ExitingBlocks.push_back(*BI);
169          break;
170        }
171  }
172
173  /// getExitBlocks - Return all of the successor blocks of this loop.  These
174  /// are the blocks _outside of the current loop_ which are branched to.
175  ///
176  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
177    // Sort the blocks vector so that we can use binary search to do quick
178    // lookups.
179    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
180    std::sort(LoopBBs.begin(), LoopBBs.end());
181
182    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
183         BE = Blocks.end(); BI != BE; ++BI)
184      for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
185        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
186          // Not in current loop? It must be an exit block.
187          ExitBlocks.push_back(*I);
188  }
189
190  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
191  /// These are the blocks _outside of the current loop_ which are branched to.
192  /// This assumes that loop is in canonical form.
193  ///
194  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
195    // Sort the blocks vector so that we can use binary search to do quick
196    // lookups.
197    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
198    std::sort(LoopBBs.begin(), LoopBBs.end());
199
200    std::vector<BlockT*> switchExitBlocks;
201
202    for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
203         BE = Blocks.end(); BI != BE; ++BI) {
204
205      BlockT *current = *BI;
206      switchExitBlocks.clear();
207
208      for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
209        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
210      // If block is inside the loop then it is not a exit block.
211          continue;
212
213        pred_iterator PI = pred_begin(*I);
214        BlockT *firstPred = *PI;
215
216        // If current basic block is this exit block's first predecessor
217        // then only insert exit block in to the output ExitBlocks vector.
218        // This ensures that same exit block is not inserted twice into
219        // ExitBlocks vector.
220        if (current != firstPred)
221          continue;
222
223        // If a terminator has more then two successors, for example SwitchInst,
224        // then it is possible that there are multiple edges from current block
225        // to one exit block.
226        if (current->getTerminator()->getNumSuccessors() <= 2) {
227          ExitBlocks.push_back(*I);
228          continue;
229        }
230
231        // In case of multiple edges from current block to exit block, collect
232        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
233        // duplicate edges.
234        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
235            == switchExitBlocks.end()) {
236          switchExitBlocks.push_back(*I);
237          ExitBlocks.push_back(*I);
238        }
239      }
240    }
241  }
242
243  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
244  /// loop has a preheader if there is only one edge to the header of the loop
245  /// from outside of the loop.  If this is the case, the block branching to the
246  /// header of the loop is the preheader node.
247  ///
248  /// This method returns null if there is no preheader for the loop.
249  ///
250  BlockT *getLoopPreheader() const {
251    // Keep track of nodes outside the loop branching to the header...
252    BlockT *Out = 0;
253
254    // Loop over the predecessors of the header node...
255    BlockT *Header = getHeader();
256    for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
257         PI != PE; ++PI)
258      if (!contains(*PI)) {     // If the block is not in the loop...
259        if (Out && Out != *PI)
260          return 0;             // Multiple predecessors outside the loop
261        Out = *PI;
262      }
263
264    // Make sure there is only one exit out of the preheader.
265    assert(Out && "Header of loop has no predecessors from outside loop?");
266    succ_iterator SI = succ_begin(Out);
267    ++SI;
268    if (SI != succ_end(Out))
269      return 0;  // Multiple exits from the block, must not be a preheader.
270
271    // If there is exactly one preheader, return it.  If there was zero, then Out
272    // is still null.
273    return Out;
274  }
275
276  /// getLoopLatch - If there is a latch block for this loop, return it.  A
277  /// latch block is the canonical backedge for a loop.  A loop header in normal
278  /// form has two edges into it: one from a preheader and one from a latch
279  /// block.
280  BlockT *getLoopLatch() const {
281    BlockT *Header = getHeader();
282    pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
283    if (PI == PE) return 0;  // no preds?
284
285    BlockT *Latch = 0;
286    if (contains(*PI))
287      Latch = *PI;
288    ++PI;
289    if (PI == PE) return 0;  // only one pred?
290
291    if (contains(*PI)) {
292      if (Latch) return 0;  // multiple backedges
293      Latch = *PI;
294    }
295    ++PI;
296    if (PI != PE) return 0;  // more than two preds
297
298    return Latch;
299  }
300
301  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
302  /// induction variable: an integer recurrence that starts at 0 and increments
303  /// by one each time through the loop.  If so, return the phi node that
304  /// corresponds to it.
305  ///
306  PHINode *getCanonicalInductionVariable() const {
307    BlockT *H = getHeader();
308
309    BlockT *Incoming = 0, *Backedge = 0;
310    pred_iterator PI = pred_begin(H);
311    assert(PI != pred_end(H) && "Loop must have at least one backedge!");
312    Backedge = *PI++;
313    if (PI == pred_end(H)) return 0;  // dead loop
314    Incoming = *PI++;
315    if (PI != pred_end(H)) return 0;  // multiple backedges?
316
317    if (contains(Incoming)) {
318      if (contains(Backedge))
319        return 0;
320      std::swap(Incoming, Backedge);
321    } else if (!contains(Backedge))
322      return 0;
323
324    // Loop over all of the PHI nodes, looking for a canonical indvar.
325    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
326      PHINode *PN = cast<PHINode>(I);
327      if (Instruction *Inc =
328          dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
329        if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
330          if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
331            if (CI->equalsInt(1))
332              return PN;
333    }
334    return 0;
335  }
336
337  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
338  /// the canonical induction variable value for the "next" iteration of the
339  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
340  ///
341  Instruction *getCanonicalInductionVariableIncrement() const {
342    if (PHINode *PN = getCanonicalInductionVariable()) {
343      bool P1InLoop = contains(PN->getIncomingBlock(1));
344      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
345    }
346    return 0;
347  }
348
349  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
350  /// times the loop will be executed.  Note that this means that the backedge
351  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
352  /// this returns null.
353  ///
354  Value *getTripCount() const {
355    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
356    // canonical induction variable and V is the trip count of the loop.
357    Instruction *Inc = getCanonicalInductionVariableIncrement();
358    if (Inc == 0) return 0;
359    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
360
361    BlockT *BackedgeBlock =
362            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
363
364    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
365      if (BI->isConditional()) {
366        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
367          if (ICI->getOperand(0) == Inc)
368            if (BI->getSuccessor(0) == getHeader()) {
369              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
370                return ICI->getOperand(1);
371            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
372              return ICI->getOperand(1);
373            }
374        }
375      }
376
377    return 0;
378  }
379
380  /// isLCSSAForm - Return true if the Loop is in LCSSA form
381  bool isLCSSAForm() const {
382    // Sort the blocks vector so that we can use binary search to do quick
383    // lookups.
384    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
385
386    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
387      BlockT *BB = *BI;
388      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
389        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
390             ++UI) {
391          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
392          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
393            unsigned OperandNo = UI.getOperandNo();
394            UserBB = P->getIncomingBlock(OperandNo/2);
395          }
396
397          // Check the current block, as a fast-path.  Most values are used in the
398          // same block they are defined in.
399          if (UserBB != BB && !LoopBBs.count(UserBB))
400            return false;
401        }
402    }
403
404    return true;
405  }
406
407  //===--------------------------------------------------------------------===//
408  // APIs for updating loop information after changing the CFG
409  //
410
411  /// addBasicBlockToLoop - This method is used by other analyses to update loop
412  /// information.  NewBB is set to be a new member of the current loop.
413  /// Because of this, it is added as a member of all parent loops, and is added
414  /// to the specified LoopInfo object as being in the current basic block.  It
415  /// is not valid to replace the loop header with this method.
416  ///
417  void addBasicBlockToLoop(BlockT *NewBB, LoopInfo &LI);
418
419  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
420  /// the OldChild entry in our children list with NewChild, and updates the
421  /// parent pointer of OldChild to be null and the NewChild to be this loop.
422  /// This updates the loop depth of the new child.
423  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
424                            LoopBase<BlockT> *NewChild) {
425    assert(OldChild->ParentLoop == this && "This loop is already broken!");
426    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
427    typename std::vector<LoopBase<BlockT>*>::iterator I =
428                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
429    assert(I != SubLoops.end() && "OldChild not in loop!");
430    *I = NewChild;
431    OldChild->ParentLoop = 0;
432    NewChild->ParentLoop = this;
433  }
434
435  /// addChildLoop - Add the specified loop to be a child of this loop.  This
436  /// updates the loop depth of the new child.
437  ///
438  void addChildLoop(LoopBase<BlockT> *NewChild) {
439    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
440    NewChild->ParentLoop = this;
441    SubLoops.push_back(NewChild);
442  }
443
444  /// removeChildLoop - This removes the specified child from being a subloop of
445  /// this loop.  The loop is not deleted, as it will presumably be inserted
446  /// into another loop.
447  LoopBase<BlockT> *removeChildLoop(iterator I) {
448    assert(I != SubLoops.end() && "Cannot remove end iterator!");
449    LoopBase<BlockT> *Child = *I;
450    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
451    SubLoops.erase(SubLoops.begin()+(I-begin()));
452    Child->ParentLoop = 0;
453    return Child;
454  }
455
456  /// addBlockEntry - This adds a basic block directly to the basic block list.
457  /// This should only be used by transformations that create new loops.  Other
458  /// transformations should use addBasicBlockToLoop.
459  void addBlockEntry(BlockT *BB) {
460    Blocks.push_back(BB);
461  }
462
463  /// moveToHeader - This method is used to move BB (which must be part of this
464  /// loop) to be the loop header of the loop (the block that dominates all
465  /// others).
466  void moveToHeader(BlockT *BB) {
467    if (Blocks[0] == BB) return;
468    for (unsigned i = 0; ; ++i) {
469      assert(i != Blocks.size() && "Loop does not contain BB!");
470      if (Blocks[i] == BB) {
471        Blocks[i] = Blocks[0];
472        Blocks[0] = BB;
473        return;
474      }
475    }
476  }
477
478  /// removeBlockFromLoop - This removes the specified basic block from the
479  /// current loop, updating the Blocks as appropriate.  This does not update
480  /// the mapping in the LoopInfo class.
481  void removeBlockFromLoop(BlockT *BB) {
482    RemoveFromVector(Blocks, BB);
483  }
484
485  /// verifyLoop - Verify loop structure
486  void verifyLoop() const {
487#ifndef NDEBUG
488    assert (getHeader() && "Loop header is missing");
489    assert (getLoopPreheader() && "Loop preheader is missing");
490    assert (getLoopLatch() && "Loop latch is missing");
491    for (typename std::vector<LoopBase<BlockT>*>::const_iterator I =
492         SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
493      (*I)->verifyLoop();
494#endif
495  }
496
497  void print(std::ostream &OS, unsigned Depth = 0) const {
498    OS << std::string(Depth*2, ' ') << "Loop Containing: ";
499
500    for (unsigned i = 0; i < getBlocks().size(); ++i) {
501      if (i) OS << ",";
502      WriteAsOperand(OS, getBlocks()[i], false);
503    }
504    OS << "\n";
505
506    for (iterator I = begin(), E = end(); I != E; ++I)
507      (*I)->print(OS, Depth+2);
508  }
509
510  void print(std::ostream *O, unsigned Depth = 0) const {
511    if (O) print(*O, Depth);
512  }
513
514  void dump() const {
515    print(cerr);
516  }
517
518private:
519  friend class LoopInfoBase<BlockT>;
520  LoopBase(BlockT *BB) : ParentLoop(0) {
521    Blocks.push_back(BB);
522  }
523};
524
525typedef LoopBase<BasicBlock> Loop;
526
527
528//===----------------------------------------------------------------------===//
529/// LoopInfo - This class builds and contains all of the top level loop
530/// structures in the specified function.
531///
532
533template<class BlockT>
534class LoopInfoBase {
535  // BBMap - Mapping of basic blocks to the inner most loop they occur in
536  std::map<BlockT*, Loop*> BBMap;
537  std::vector<LoopBase<BlockT>*> TopLevelLoops;
538  friend class LoopBase<BlockT>;
539
540public:
541  LoopInfoBase() { }
542  ~LoopInfoBase() { releaseMemory(); }
543
544  void releaseMemory() {
545    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
546         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
547      delete *I;   // Delete all of the loops...
548
549    BBMap.clear();                             // Reset internal state of analysis
550    TopLevelLoops.clear();
551  }
552
553  /// iterator/begin/end - The interface to the top-level loops in the current
554  /// function.
555  ///
556  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
557  iterator begin() const { return TopLevelLoops.begin(); }
558  iterator end() const { return TopLevelLoops.end(); }
559
560  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
561  /// block is in no loop (for example the entry node), null is returned.
562  ///
563  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
564    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
565      BBMap.find(const_cast<BasicBlock*>(BB));
566    return I != BBMap.end() ? I->second : 0;
567  }
568
569  /// operator[] - same as getLoopFor...
570  ///
571  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
572    return getLoopFor(BB);
573  }
574
575  /// getLoopDepth - Return the loop nesting level of the specified block...
576  ///
577  unsigned getLoopDepth(const BlockT *BB) const {
578    const Loop *L = getLoopFor(BB);
579    return L ? L->getLoopDepth() : 0;
580  }
581
582  // isLoopHeader - True if the block is a loop header node
583  bool isLoopHeader(BlockT *BB) const {
584    const Loop *L = getLoopFor(BB);
585    return L && L->getHeader() == BB;
586  }
587
588  /// removeLoop - This removes the specified top-level loop from this loop info
589  /// object.  The loop is not deleted, as it will presumably be inserted into
590  /// another loop.
591  LoopBase<BlockT> *removeLoop(iterator I) {
592    assert(I != end() && "Cannot remove end iterator!");
593    LoopBase<BlockT> *L = *I;
594    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
595    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
596    return L;
597  }
598
599  /// changeLoopFor - Change the top-level loop that contains BB to the
600  /// specified loop.  This should be used by transformations that restructure
601  /// the loop hierarchy tree.
602  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
603    LoopBase<BlockT> *&OldLoop = BBMap[BB];
604    assert(OldLoop && "Block not in a loop yet!");
605    OldLoop = L;
606  }
607
608  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
609  /// list with the indicated loop.
610  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
611                          LoopBase<BlockT> *NewLoop) {
612    typename std::vector<LoopBase<BlockT>*>::iterator I =
613                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
614    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
615    *I = NewLoop;
616    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
617           "Loops already embedded into a subloop!");
618  }
619
620  /// addTopLevelLoop - This adds the specified loop to the collection of
621  /// top-level loops.
622  void addTopLevelLoop(LoopBase<BlockT> *New) {
623    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
624    TopLevelLoops.push_back(New);
625  }
626
627  /// removeBlock - This method completely removes BB from all data structures,
628  /// including all of the Loop objects it is nested in and our mapping from
629  /// BasicBlocks to loops.
630  void removeBlock(BlockT *BB) {
631    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
632    if (I != BBMap.end()) {
633      for (Loop *L = I->second; L; L = L->getParentLoop())
634        L->removeBlockFromLoop(BB);
635
636      BBMap.erase(I);
637    }
638  }
639
640  // Internals
641
642  static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
643    if (SubLoop == 0) return true;
644    if (SubLoop == ParentLoop) return false;
645    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
646  }
647
648  void Calculate(DominatorTree &DT) {
649    BlockT *RootNode = DT.getRootNode()->getBlock();
650
651    for (df_iterator<BlockT*> NI = df_begin(RootNode),
652           NE = df_end(RootNode); NI != NE; ++NI)
653      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
654        TopLevelLoops.push_back(L);
655  }
656
657  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTree &DT) {
658    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
659
660    std::vector<BlockT *> TodoStack;
661
662    // Scan the predecessors of BB, checking to see if BB dominates any of
663    // them.  This identifies backedges which target this node...
664    for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
665      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
666        TodoStack.push_back(*I);
667
668    if (TodoStack.empty()) return 0;  // No backedges to this block...
669
670    // Create a new loop to represent this basic block...
671    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
672    BBMap[BB] = L;
673
674    BlockT *EntryBlock = &BB->getParent()->getEntryBlock();
675
676    while (!TodoStack.empty()) {  // Process all the nodes in the loop
677      BlockT *X = TodoStack.back();
678      TodoStack.pop_back();
679
680      if (!L->contains(X) &&         // As of yet unprocessed??
681          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
682        // Check to see if this block already belongs to a loop.  If this occurs
683        // then we have a case where a loop that is supposed to be a child of the
684        // current loop was processed before the current loop.  When this occurs,
685        // this child loop gets added to a part of the current loop, making it a
686        // sibling to the current loop.  We have to reparent this loop.
687        if (LoopBase<BlockT> *SubLoop =
688            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
689          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
690            // Remove the subloop from it's current parent...
691            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
692            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
693            typename std::vector<LoopBase<BlockT>*>::iterator I =
694              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
695            assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
696            SLP->SubLoops.erase(I);   // Remove from parent...
697
698            // Add the subloop to THIS loop...
699            SubLoop->ParentLoop = L;
700            L->SubLoops.push_back(SubLoop);
701          }
702
703        // Normal case, add the block to our loop...
704        L->Blocks.push_back(X);
705
706        // Add all of the predecessors of X to the end of the work stack...
707        TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
708      }
709    }
710
711    // If there are any loops nested within this loop, create them now!
712    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
713         E = L->Blocks.end(); I != E; ++I)
714      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
715        L->SubLoops.push_back(NewLoop);
716        NewLoop->ParentLoop = L;
717      }
718
719    // Add the basic blocks that comprise this loop to the BBMap so that this
720    // loop can be found for them.
721    //
722    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
723           E = L->Blocks.end(); I != E; ++I) {
724      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
725                                                          BBMap.lower_bound(*I);
726      if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet...
727        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
728    }
729
730    // Now that we have a list of all of the child loops of this loop, check to
731    // see if any of them should actually be nested inside of each other.  We can
732    // accidentally pull loops our of their parents, so we must make sure to
733    // organize the loop nests correctly now.
734    {
735      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
736      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
737        LoopBase<BlockT> *Child = L->SubLoops[i];
738        assert(Child->getParentLoop() == L && "Not proper child loop?");
739
740        if (LoopBase<BlockT> *ContainingLoop =
741                                          ContainingLoops[Child->getHeader()]) {
742          // If there is already a loop which contains this loop, move this loop
743          // into the containing loop.
744          MoveSiblingLoopInto(Child, ContainingLoop);
745          --i;  // The loop got removed from the SubLoops list.
746        } else {
747          // This is currently considered to be a top-level loop.  Check to see if
748          // any of the contained blocks are loop headers for subloops we have
749          // already processed.
750          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
751            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
752            if (BlockLoop == 0) {   // Child block not processed yet...
753              BlockLoop = Child;
754            } else if (BlockLoop != Child) {
755              LoopBase<BlockT> *SubLoop = BlockLoop;
756              // Reparent all of the blocks which used to belong to BlockLoops
757              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
758                ContainingLoops[SubLoop->Blocks[j]] = Child;
759
760              // There is already a loop which contains this block, that means
761              // that we should reparent the loop which the block is currently
762              // considered to belong to to be a child of this loop.
763              MoveSiblingLoopInto(SubLoop, Child);
764              --i;  // We just shrunk the SubLoops list.
765            }
766          }
767        }
768      }
769    }
770
771    return L;
772  }
773
774  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
775  /// the NewParent Loop, instead of being a sibling of it.
776  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
777                           LoopBase<BlockT> *NewParent) {
778    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
779    assert(OldParent && OldParent == NewParent->getParentLoop() &&
780           NewChild != NewParent && "Not sibling loops!");
781
782    // Remove NewChild from being a child of OldParent
783    typename std::vector<LoopBase<BlockT>*>::iterator I =
784      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
785    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
786    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
787    NewChild->ParentLoop = 0;
788
789    InsertLoopInto(NewChild, NewParent);
790  }
791
792  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If the
793  /// parent loop contains a loop which should contain L, the loop gets inserted
794  /// into L instead.
795  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
796    BlockT *LHeader = L->getHeader();
797    assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
798
799    // Check to see if it belongs in a child loop...
800    for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
801      if (Parent->SubLoops[i]->contains(LHeader)) {
802        InsertLoopInto(L, Parent->SubLoops[i]);
803        return;
804      }
805
806    // If not, insert it here!
807    Parent->SubLoops.push_back(L);
808    L->ParentLoop = Parent;
809  }
810
811  // Debugging
812
813  void print(std::ostream &OS, const Module* ) const {
814    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
815      TopLevelLoops[i]->print(OS);
816  #if 0
817    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
818           E = BBMap.end(); I != E; ++I)
819      OS << "BB '" << I->first->getName() << "' level = "
820         << I->second->getLoopDepth() << "\n";
821  #endif
822  }
823};
824
825class LoopInfo : public FunctionPass {
826  LoopInfoBase<BasicBlock>* LI;
827  friend class LoopBase<BasicBlock>;
828
829  LoopInfoBase<BasicBlock>& getBase() { return *LI; }
830public:
831  static char ID; // Pass identification, replacement for typeid
832
833  LoopInfo() : FunctionPass(intptr_t(&ID)) {
834    LI = new LoopInfoBase<BasicBlock>();
835  }
836
837  ~LoopInfo() { delete LI; }
838
839  /// iterator/begin/end - The interface to the top-level loops in the current
840  /// function.
841  ///
842  typedef std::vector<Loop*>::const_iterator iterator;
843  inline iterator begin() const { return LI->begin(); }
844  inline iterator end() const { return LI->end(); }
845
846  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
847  /// block is in no loop (for example the entry node), null is returned.
848  ///
849  inline Loop *getLoopFor(const BasicBlock *BB) const {
850    return LI->getLoopFor(BB);
851  }
852
853  /// operator[] - same as getLoopFor...
854  ///
855  inline const Loop *operator[](const BasicBlock *BB) const {
856    return LI->getLoopFor(BB);
857  }
858
859  /// getLoopDepth - Return the loop nesting level of the specified block...
860  ///
861  inline unsigned getLoopDepth(const BasicBlock *BB) const {
862    return LI->getLoopDepth(BB);
863  }
864
865  // isLoopHeader - True if the block is a loop header node
866  inline bool isLoopHeader(BasicBlock *BB) const {
867    return LI->isLoopHeader(BB);
868  }
869
870  /// runOnFunction - Calculate the natural loop information.
871  ///
872  virtual bool runOnFunction(Function &F);
873
874  virtual void releaseMemory() { LI->releaseMemory(); }
875
876  virtual void print(std::ostream &O, const Module* M = 0) const {
877    if (O) LI->print(O, M);
878  }
879
880  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
881
882  /// removeLoop - This removes the specified top-level loop from this loop info
883  /// object.  The loop is not deleted, as it will presumably be inserted into
884  /// another loop.
885  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
886
887  /// changeLoopFor - Change the top-level loop that contains BB to the
888  /// specified loop.  This should be used by transformations that restructure
889  /// the loop hierarchy tree.
890  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
891    LI->changeLoopFor(BB, L);
892  }
893
894  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
895  /// list with the indicated loop.
896  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
897    LI->changeTopLevelLoop(OldLoop, NewLoop);
898  }
899
900  /// addTopLevelLoop - This adds the specified loop to the collection of
901  /// top-level loops.
902  inline void addTopLevelLoop(Loop *New) {
903    LI->addTopLevelLoop(New);
904  }
905
906  /// removeBlock - This method completely removes BB from all data structures,
907  /// including all of the Loop objects it is nested in and our mapping from
908  /// BasicBlocks to loops.
909  void removeBlock(BasicBlock *BB) {
910    LI->removeBlock(BB);
911  }
912};
913
914
915// Allow clients to walk the list of nested loops...
916template <> struct GraphTraits<const Loop*> {
917  typedef const Loop NodeType;
918  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
919
920  static NodeType *getEntryNode(const Loop *L) { return L; }
921  static inline ChildIteratorType child_begin(NodeType *N) {
922    return N->begin();
923  }
924  static inline ChildIteratorType child_end(NodeType *N) {
925    return N->end();
926  }
927};
928
929template <> struct GraphTraits<Loop*> {
930  typedef Loop NodeType;
931  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
932
933  static NodeType *getEntryNode(Loop *L) { return L; }
934  static inline ChildIteratorType child_begin(NodeType *N) {
935    return N->begin();
936  }
937  static inline ChildIteratorType child_end(NodeType *N) {
938    return N->end();
939  }
940};
941
942template<class BlockT>
943void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
944                                           LoopInfo &LI) {
945  assert((Blocks.empty() || LI[getHeader()] == this) &&
946         "Incorrect LI specified for this loop!");
947  assert(NewBB && "Cannot add a null basic block to the loop!");
948  assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
949
950  LoopInfoBase<BasicBlock>& LIB = LI.getBase();
951
952  // Add the loop mapping to the LoopInfo object...
953  LIB.BBMap[NewBB] = this;
954
955  // Add the basic block to this loop and all parent loops...
956  LoopBase<BlockT> *L = this;
957  while (L) {
958    L->Blocks.push_back(NewBB);
959    L = L->getParentLoop();
960  }
961}
962
963} // End llvm namespace
964
965// Make sure that any clients of this file link in LoopInfo.cpp
966FORCE_DEFINING_FILE_TO_BE_LINKED(LoopInfo)
967
968#endif
969