LiveVariables.h revision 1f6a329f79b3568d379142f921f59c4143ddaa14
1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariables analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using a sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30#define LLVM_CODEGEN_LIVEVARIABLES_H
31
32#include "llvm/CodeGen/MachineBasicBlock.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineInstr.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/IndexedMap.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/SparseBitVector.h"
42
43namespace llvm {
44
45class MachineRegisterInfo;
46class TargetRegisterInfo;
47
48class LiveVariables : public MachineFunctionPass {
49public:
50  static char ID; // Pass identification, replacement for typeid
51  LiveVariables() : MachineFunctionPass(ID) {
52    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
53  }
54
55  /// VarInfo - This represents the regions where a virtual register is live in
56  /// the program.  We represent this with three different pieces of
57  /// information: the set of blocks in which the instruction is live
58  /// throughout, the set of blocks in which the instruction is actually used,
59  /// and the set of non-phi instructions that are the last users of the value.
60  ///
61  /// In the common case where a value is defined and killed in the same block,
62  /// There is one killing instruction, and AliveBlocks is empty.
63  ///
64  /// Otherwise, the value is live out of the block.  If the value is live
65  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
66  /// where the liveness range ends are not included in AliveBlocks, instead
67  /// being captured by the Kills set.  In these blocks, the value is live into
68  /// the block (unless the value is defined and killed in the same block) and
69  /// lives until the specified instruction.  Note that there cannot ever be a
70  /// value whose Kills set contains two instructions from the same basic block.
71  ///
72  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
73  /// value in one of its predecessor blocks, it is not listed in the kills set,
74  /// but does include the predecessor block in the AliveBlocks set (unless that
75  /// block also defines the value).  This leads to the (perfectly sensical)
76  /// situation where a value is defined in a block, and the last use is a phi
77  /// node in the successor.  In this case, AliveBlocks is empty (the value is
78  /// not live across any  blocks) and Kills is empty (phi nodes are not
79  /// included). This is sensical because the value must be live to the end of
80  /// the block, but is not live in any successor blocks.
81  struct VarInfo {
82    /// AliveBlocks - Set of blocks in which this value is alive completely
83    /// through.  This is a bit set which uses the basic block number as an
84    /// index.
85    ///
86    SparseBitVector<> AliveBlocks;
87
88    /// NumUses - Number of uses of this register across the entire function.
89    ///
90    unsigned NumUses;
91
92    /// Kills - List of MachineInstruction's which are the last use of this
93    /// virtual register (kill it) in their basic block.
94    ///
95    std::vector<MachineInstr*> Kills;
96
97    VarInfo() : NumUses(0) {}
98
99    /// removeKill - Delete a kill corresponding to the specified
100    /// machine instruction. Returns true if there was a kill
101    /// corresponding to this instruction, false otherwise.
102    bool removeKill(MachineInstr *MI) {
103      std::vector<MachineInstr*>::iterator
104        I = std::find(Kills.begin(), Kills.end(), MI);
105      if (I == Kills.end())
106        return false;
107      Kills.erase(I);
108      return true;
109    }
110
111    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
112    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
113
114    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
115    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
116    /// MBB, it is not considered live in.
117    bool isLiveIn(const MachineBasicBlock &MBB,
118                  unsigned Reg,
119                  MachineRegisterInfo &MRI);
120
121    void dump() const;
122  };
123
124private:
125  /// VirtRegInfo - This list is a mapping from virtual register number to
126  /// variable information.
127  ///
128  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
129
130  /// PHIJoins - list of virtual registers that are PHI joins. These registers
131  /// may have multiple definitions, and they require special handling when
132  /// building live intervals.
133  SparseBitVector<> PHIJoins;
134
135  /// ReservedRegisters - This vector keeps track of which registers
136  /// are reserved register which are not allocatable by the target machine.
137  /// We can not track liveness for values that are in this set.
138  ///
139  BitVector ReservedRegisters;
140
141private:   // Intermediate data structures
142  MachineFunction *MF;
143
144  MachineRegisterInfo* MRI;
145
146  const TargetRegisterInfo *TRI;
147
148  // PhysRegInfo - Keep track of which instruction was the last def of a
149  // physical register. This is a purely local property, because all physical
150  // register references are presumed dead across basic blocks.
151  MachineInstr **PhysRegDef;
152
153  // PhysRegInfo - Keep track of which instruction was the last use of a
154  // physical register. This is a purely local property, because all physical
155  // register references are presumed dead across basic blocks.
156  MachineInstr **PhysRegUse;
157
158  SmallVector<unsigned, 4> *PHIVarInfo;
159
160  // DistanceMap - Keep track the distance of a MI from the start of the
161  // current basic block.
162  DenseMap<MachineInstr*, unsigned> DistanceMap;
163
164  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
165  /// uses. Pay special attention to the sub-register uses which may come below
166  /// the last use of the whole register.
167  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
168
169  void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
170  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
171                        SmallVector<unsigned, 4> &Defs);
172  void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs);
173
174  /// FindLastRefOrPartRef - Return the last reference or partial reference of
175  /// the specified register.
176  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
177
178  /// FindLastPartialDef - Return the last partial def of the specified
179  /// register. Also returns the sub-registers that're defined by the
180  /// instruction.
181  MachineInstr *FindLastPartialDef(unsigned Reg,
182                                   SmallSet<unsigned,4> &PartDefRegs);
183
184  /// analyzePHINodes - Gather information about the PHI nodes in here. In
185  /// particular, we want to map the variable information of a virtual
186  /// register which is used in a PHI node. We map that to the BB the vreg
187  /// is coming from.
188  void analyzePHINodes(const MachineFunction& Fn);
189public:
190
191  virtual bool runOnMachineFunction(MachineFunction &MF);
192
193  /// RegisterDefIsDead - Return true if the specified instruction defines the
194  /// specified register, but that definition is dead.
195  bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
196
197  //===--------------------------------------------------------------------===//
198  //  API to update live variable information
199
200  /// replaceKillInstruction - Update register kill info by replacing a kill
201  /// instruction with a new one.
202  void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
203                              MachineInstr *NewMI);
204
205  /// addVirtualRegisterKilled - Add information about the fact that the
206  /// specified register is killed after being used by the specified
207  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
208  /// not found.
209  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
210                                bool AddIfNotFound = false) {
211    if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
212      getVarInfo(IncomingReg).Kills.push_back(MI);
213  }
214
215  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
216  /// register from the live variable information. Returns true if the
217  /// variable was marked as killed by the specified instruction,
218  /// false otherwise.
219  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
220    if (!getVarInfo(reg).removeKill(MI))
221      return false;
222
223    bool Removed = false;
224    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
225      MachineOperand &MO = MI->getOperand(i);
226      if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
227        MO.setIsKill(false);
228        Removed = true;
229        break;
230      }
231    }
232
233    assert(Removed && "Register is not used by this instruction!");
234    (void)Removed;
235    return true;
236  }
237
238  /// removeVirtualRegistersKilled - Remove all killed info for the specified
239  /// instruction.
240  void removeVirtualRegistersKilled(MachineInstr *MI);
241
242  /// addVirtualRegisterDead - Add information about the fact that the specified
243  /// register is dead after being used by the specified instruction. If
244  /// AddIfNotFound is true, add a implicit operand if it's not found.
245  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
246                              bool AddIfNotFound = false) {
247    if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
248      getVarInfo(IncomingReg).Kills.push_back(MI);
249  }
250
251  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
252  /// register from the live variable information. Returns true if the
253  /// variable was marked dead at the specified instruction, false
254  /// otherwise.
255  bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
256    if (!getVarInfo(reg).removeKill(MI))
257      return false;
258
259    bool Removed = false;
260    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
261      MachineOperand &MO = MI->getOperand(i);
262      if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
263        MO.setIsDead(false);
264        Removed = true;
265        break;
266      }
267    }
268    assert(Removed && "Register is not defined by this instruction!");
269    (void)Removed;
270    return true;
271  }
272
273  void getAnalysisUsage(AnalysisUsage &AU) const;
274
275  virtual void releaseMemory() {
276    VirtRegInfo.clear();
277  }
278
279  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
280  /// register.
281  VarInfo &getVarInfo(unsigned RegIdx);
282
283  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
284                               MachineBasicBlock *BB);
285  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
286                               MachineBasicBlock *BB,
287                               std::vector<MachineBasicBlock*> &WorkList);
288  void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
289  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
290                        MachineInstr *MI);
291
292  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
293    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
294  }
295
296  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
297  /// PHI nodes. This means that Reg is either killed by a successor block or
298  /// passed through one.
299  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
300
301  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
302  /// variables that are live out of DomBB and live into SuccBB will be marked
303  /// as passing live through BB. This method assumes that the machine code is
304  /// still in SSA form.
305  void addNewBlock(MachineBasicBlock *BB,
306                   MachineBasicBlock *DomBB,
307                   MachineBasicBlock *SuccBB);
308
309  /// isPHIJoin - Return true if Reg is a phi join register.
310  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
311
312  /// setPHIJoin - Mark Reg as a phi join register.
313  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
314};
315
316} // End llvm namespace
317
318#endif
319