LiveVariables.h revision 51d6e76ff4cf950b759be389d23e9383a29b1dc9
1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30#define LLVM_CODEGEN_LIVEVARIABLES_H
31
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include <map>
34
35namespace llvm {
36
37class MRegisterInfo;
38
39class LiveVariables : public MachineFunctionPass {
40public:
41  /// VarInfo - This represents the regions where a virtual register is live in
42  /// the program.  We represent this with three difference pieces of
43  /// information: the instruction that uniquely defines the value, the set of
44  /// blocks the instruction is live into and live out of, and the set of
45  /// non-phi instructions that are the last users of the value.
46  ///
47  /// In the common case where a value is defined and killed in the same block,
48  /// DefInst is the defining inst, there is one killing instruction, and
49  /// AliveBlocks is empty.
50  ///
51  /// Otherwise, the value is live out of the block.  If the value is live
52  /// across any blocks, these blocks are listed in AliveBlocks.  Blocks where
53  /// the liveness range ends are not included in AliveBlocks, instead being
54  /// captured by the Kills set.  In these blocks, the value is live into the
55  /// block (unless the value is defined and killed in the same block) and lives
56  /// until the specified instruction.  Note that there cannot ever be a value
57  /// whose Kills set contains two instructions from the same basic block.
58  ///
59  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
60  /// value in one of its predecessor blocks, it is not listed in the kills set,
61  /// but does include the predecessor block in the AliveBlocks set (unless that
62  /// block also defines the value).  This leads to the (perfectly sensical)
63  /// situation where a value is defined in a block, and the last use is a phi
64  /// node in the successor.  In this case, DefInst will be the defining
65  /// instruction, AliveBlocks is empty (the value is not live across any
66  /// blocks) and Kills is empty (phi nodes are not included).  This is sensical
67  /// because the value must be live to the end of the block, but is not live in
68  /// any successor blocks.
69  struct VarInfo {
70    /// DefInst - The machine instruction that defines this register.
71    ///
72    MachineInstr *DefInst;
73
74    /// AliveBlocks - Set of blocks of which this value is alive completely
75    /// through.  This is a bit set which uses the basic block number as an
76    /// index.
77    ///
78    std::vector<bool> AliveBlocks;
79
80    /// Kills - List of MachineInstruction's which are the last use of this
81    /// virtual register (kill it) in their basic block.
82    ///
83    std::vector<MachineInstr*> Kills;
84
85    VarInfo() : DefInst(0) {}
86
87    /// removeKill - Delete a kill corresponding to the specified
88    /// machine instruction. Returns true if there was a kill
89    /// corresponding to this instruction, false otherwise.
90    bool removeKill(MachineInstr *MI) {
91      for (std::vector<MachineInstr*>::iterator i = Kills.begin(),
92             e = Kills.end(); i != e; ++i)
93        if (*i == MI) {
94          Kills.erase(i);
95          return true;
96        }
97      return false;
98    }
99
100    void dump() const;
101  };
102
103private:
104  /// VirtRegInfo - This list is a mapping from virtual register number to
105  /// variable information.  FirstVirtualRegister is subtracted from the virtual
106  /// register number before indexing into this list.
107  ///
108  std::vector<VarInfo> VirtRegInfo;
109
110  /// RegistersKilled - This map keeps track of all of the registers that
111  /// are dead immediately after an instruction reads its operands.  If an
112  /// instruction does not have an entry in this map, it kills no registers.
113  ///
114  std::map<MachineInstr*, std::vector<unsigned> > RegistersKilled;
115
116  /// RegistersDead - This map keeps track of all of the registers that are
117  /// dead immediately after an instruction executes, which are not dead after
118  /// the operands are evaluated.  In practice, this only contains registers
119  /// which are defined by an instruction, but never used.
120  ///
121  std::map<MachineInstr*, std::vector<unsigned> > RegistersDead;
122
123  /// Dummy - An always empty vector used for instructions without dead or
124  /// killed operands.
125  std::vector<unsigned> Dummy;
126
127  /// AllocatablePhysicalRegisters - This vector keeps track of which registers
128  /// are actually register allocatable by the target machine.  We can not track
129  /// liveness for values that are not in this set.
130  ///
131  std::vector<bool> AllocatablePhysicalRegisters;
132
133private:   // Intermediate data structures
134  const MRegisterInfo *RegInfo;
135
136  MachineInstr **PhysRegInfo;
137  bool          *PhysRegUsed;
138
139  void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
140  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI);
141
142public:
143
144  virtual bool runOnMachineFunction(MachineFunction &MF);
145
146  /// killed_iterator - Iterate over registers killed by a machine instruction
147  ///
148  typedef std::vector<unsigned>::iterator killed_iterator;
149
150  std::vector<unsigned> &getKillsVector(MachineInstr *MI) {
151    std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
152      RegistersKilled.find(MI);
153    return I != RegistersKilled.end() ? I->second : Dummy;
154  }
155  std::vector<unsigned> &getDeadDefsVector(MachineInstr *MI) {
156    std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
157      RegistersDead.find(MI);
158    return I != RegistersDead.end() ? I->second : Dummy;
159  }
160
161
162  /// killed_begin/end - Get access to the range of registers killed by a
163  /// machine instruction.
164  killed_iterator killed_begin(MachineInstr *MI) {
165    return getKillsVector(MI).begin();
166  }
167  killed_iterator killed_end(MachineInstr *MI) {
168    return getKillsVector(MI).end();
169  }
170  std::pair<killed_iterator, killed_iterator>
171  killed_range(MachineInstr *MI) {
172    std::vector<unsigned> &V = getKillsVector(MI);
173    return std::make_pair(V.begin(), V.end());
174  }
175
176  /// KillsRegister - Return true if the specified instruction kills the
177  /// specified register.
178  bool KillsRegister(MachineInstr *MI, unsigned Reg) const;
179
180  killed_iterator dead_begin(MachineInstr *MI) {
181    return getDeadDefsVector(MI).begin();
182  }
183  killed_iterator dead_end(MachineInstr *MI) {
184    return getDeadDefsVector(MI).end();
185  }
186  std::pair<killed_iterator, killed_iterator>
187  dead_range(MachineInstr *MI) {
188    std::vector<unsigned> &V = getDeadDefsVector(MI);
189    return std::make_pair(V.begin(), V.end());
190  }
191
192  /// RegisterDefIsDead - Return true if the specified instruction defines the
193  /// specified register, but that definition is dead.
194  bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
195
196  //===--------------------------------------------------------------------===//
197  //  API to update live variable information
198
199  /// instructionChanged - When the address of an instruction changes, this
200  /// method should be called so that live variables can update its internal
201  /// data structures.  This removes the records for OldMI, transfering them to
202  /// the records for NewMI.
203  void instructionChanged(MachineInstr *OldMI, MachineInstr *NewMI);
204
205  /// addVirtualRegisterKilled - Add information about the fact that the
206  /// specified register is killed after being used by the specified
207  /// instruction.
208  ///
209  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI) {
210    std::vector<unsigned> &V = RegistersKilled[MI];
211    // Insert in a sorted order.
212    if (V.empty() || IncomingReg > V.back()) {
213      V.push_back(IncomingReg);
214    } else {
215      std::vector<unsigned>::iterator I = V.begin();
216      for (; *I < IncomingReg; ++I)
217        /*empty*/;
218      if (*I != IncomingReg)   // Don't insert duplicates.
219        V.insert(I, IncomingReg);
220    }
221    getVarInfo(IncomingReg).Kills.push_back(MI);
222  }
223
224  /// removeVirtualRegisterKilled - Remove the specified virtual
225  /// register from the live variable information. Returns true if the
226  /// variable was marked as killed by the specified instruction,
227  /// false otherwise.
228  bool removeVirtualRegisterKilled(unsigned reg,
229                                   MachineBasicBlock *MBB,
230                                   MachineInstr *MI) {
231    if (!getVarInfo(reg).removeKill(MI))
232      return false;
233
234    std::vector<unsigned> &V = getKillsVector(MI);
235    for (unsigned i = 0, e = V.size(); i != e; ++i)
236      if (V[i] == reg) {
237        V.erase(V.begin()+i);
238        return true;
239      }
240    return true;
241  }
242
243  /// removeVirtualRegistersKilled - Remove all killed info for the specified
244  /// instruction.
245  void removeVirtualRegistersKilled(MachineInstr *MI) {
246    std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
247      RegistersKilled.find(MI);
248    if (I != RegistersKilled.end()) {
249      std::vector<unsigned> &Regs = I->second;
250      for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
251        bool removed = getVarInfo(Regs[i]).removeKill(MI);
252        assert(removed && "kill not in register's VarInfo?");
253      }
254      RegistersKilled.erase(I);
255    }
256  }
257
258  /// addVirtualRegisterDead - Add information about the fact that the specified
259  /// register is dead after being used by the specified instruction.
260  ///
261  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI) {
262    std::vector<unsigned> &V = RegistersDead[MI];
263    // Insert in a sorted order.
264    if (V.empty() || IncomingReg > V.back()) {
265      V.push_back(IncomingReg);
266    } else {
267      std::vector<unsigned>::iterator I = V.begin();
268      for (; *I < IncomingReg; ++I)
269        /*empty*/;
270      if (*I != IncomingReg)   // Don't insert duplicates.
271        V.insert(I, IncomingReg);
272    }
273    getVarInfo(IncomingReg).Kills.push_back(MI);
274  }
275
276  /// removeVirtualRegisterDead - Remove the specified virtual
277  /// register from the live variable information. Returns true if the
278  /// variable was marked dead at the specified instruction, false
279  /// otherwise.
280  bool removeVirtualRegisterDead(unsigned reg,
281                                 MachineBasicBlock *MBB,
282                                 MachineInstr *MI) {
283    if (!getVarInfo(reg).removeKill(MI))
284      return false;
285
286    std::vector<unsigned> &V = getDeadDefsVector(MI);
287    for (unsigned i = 0, e = V.size(); i != e; ++i)
288      if (V[i] == reg) {
289        V.erase(V.begin()+i);
290        return true;
291      }
292    return true;
293  }
294
295  /// removeVirtualRegistersDead - Remove all of the specified dead
296  /// registers from the live variable information.
297  void removeVirtualRegistersDead(MachineInstr *MI) {
298    std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
299      RegistersDead.find(MI);
300    if (I != RegistersDead.end()) {
301      std::vector<unsigned> &Regs = I->second;
302      for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
303        bool removed = getVarInfo(Regs[i]).removeKill(MI);
304        assert(removed && "kill not in register's VarInfo?");
305      }
306      RegistersDead.erase(I);
307    }
308  }
309
310  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
311    AU.setPreservesAll();
312  }
313
314  virtual void releaseMemory() {
315    VirtRegInfo.clear();
316    RegistersKilled.clear();
317    RegistersDead.clear();
318  }
319
320  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
321  /// register.
322  VarInfo &getVarInfo(unsigned RegIdx);
323
324  void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *BB);
325  void HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
326                        MachineInstr *MI);
327};
328
329} // End llvm namespace
330
331#endif
332