LiveVariables.h revision 6326b0d0f862090c288fc3412b51101800288ac6
1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using a sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30#define LLVM_CODEGEN_LIVEVARIABLES_H
31
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include <map>
37
38namespace llvm {
39
40class MRegisterInfo;
41
42class LiveVariables : public MachineFunctionPass {
43public:
44  static char ID; // Pass identification, replacement for typeid
45  LiveVariables() : MachineFunctionPass((intptr_t)&ID) {}
46
47  /// VarInfo - This represents the regions where a virtual register is live in
48  /// the program.  We represent this with three different pieces of
49  /// information: the instruction that uniquely defines the value, the set of
50  /// blocks the instruction is live into and live out of, and the set of
51  /// non-phi instructions that are the last users of the value.
52  ///
53  /// In the common case where a value is defined and killed in the same block,
54  /// DefInst is the defining inst, there is one killing instruction, and
55  /// AliveBlocks is empty.
56  ///
57  /// Otherwise, the value is live out of the block.  If the value is live
58  /// across any blocks, these blocks are listed in AliveBlocks.  Blocks where
59  /// the liveness range ends are not included in AliveBlocks, instead being
60  /// captured by the Kills set.  In these blocks, the value is live into the
61  /// block (unless the value is defined and killed in the same block) and lives
62  /// until the specified instruction.  Note that there cannot ever be a value
63  /// whose Kills set contains two instructions from the same basic block.
64  ///
65  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
66  /// value in one of its predecessor blocks, it is not listed in the kills set,
67  /// but does include the predecessor block in the AliveBlocks set (unless that
68  /// block also defines the value).  This leads to the (perfectly sensical)
69  /// situation where a value is defined in a block, and the last use is a phi
70  /// node in the successor.  In this case, DefInst will be the defining
71  /// instruction, AliveBlocks is empty (the value is not live across any
72  /// blocks) and Kills is empty (phi nodes are not included).  This is sensical
73  /// because the value must be live to the end of the block, but is not live in
74  /// any successor blocks.
75  struct VarInfo {
76    /// DefInst - The machine instruction that defines this register.
77    ///
78    MachineInstr *DefInst;
79
80    /// AliveBlocks - Set of blocks of which this value is alive completely
81    /// through.  This is a bit set which uses the basic block number as an
82    /// index.
83    ///
84    BitVector AliveBlocks;
85
86    /// UsedBlocks - Set of blocks of which this value is actually used. This
87    /// is a bit set which uses the basic block number as an index.
88    BitVector UsedBlocks;
89
90    /// NumUses - Number of uses of this register across the entire function.
91    ///
92    unsigned NumUses;
93
94    /// Kills - List of MachineInstruction's which are the last use of this
95    /// virtual register (kill it) in their basic block.
96    ///
97    std::vector<MachineInstr*> Kills;
98
99    VarInfo() : DefInst(0), NumUses(0) {}
100
101    /// removeKill - Delete a kill corresponding to the specified
102    /// machine instruction. Returns true if there was a kill
103    /// corresponding to this instruction, false otherwise.
104    bool removeKill(MachineInstr *MI) {
105      for (std::vector<MachineInstr*>::iterator i = Kills.begin(),
106             e = Kills.end(); i != e; ++i)
107        if (*i == MI) {
108          Kills.erase(i);
109          return true;
110        }
111      return false;
112    }
113
114    void dump() const;
115  };
116
117private:
118  /// VirtRegInfo - This list is a mapping from virtual register number to
119  /// variable information.  FirstVirtualRegister is subtracted from the virtual
120  /// register number before indexing into this list.
121  ///
122  std::vector<VarInfo> VirtRegInfo;
123
124  /// ReservedRegisters - This vector keeps track of which registers
125  /// are reserved register which are not allocatable by the target machine.
126  /// We can not track liveness for values that are in this set.
127  ///
128  BitVector ReservedRegisters;
129
130private:   // Intermediate data structures
131  MachineFunction *MF;
132
133  const MRegisterInfo *RegInfo;
134
135  // PhysRegInfo - Keep track of which instruction was the last def/use of a
136  // physical register. This is a purely local property, because all physical
137  // register references as presumed dead across basic blocks.
138  MachineInstr **PhysRegInfo;
139
140  // PhysRegUsed - Keep track whether the physical register has been used after
141  // its last definition. This is local property.
142  bool          *PhysRegUsed;
143
144  // PhysRegPartUse - Keep track of which instruction was the last partial use
145  // of a physical register (e.g. on X86 a def of EAX followed by a use of AX).
146  // This is a purely local property.
147  MachineInstr **PhysRegPartUse;
148
149  // PhysRegPartDef - Keep track of a list of instructions which "partially"
150  // defined the physical register (e.g. on X86 AX partially defines EAX).
151  // These are turned into use/mod/write if there is a use of the register
152  // later in the same block. This is local property.
153  SmallVector<MachineInstr*, 4> *PhysRegPartDef;
154
155  SmallVector<unsigned, 4> *PHIVarInfo;
156
157  void addRegisterKills(unsigned Reg, MachineInstr *MI,
158                        SmallSet<unsigned, 4> &SubKills);
159
160  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
161  /// uses. Pay special attention to the sub-register uses which may come below
162  /// the last use of the whole register.
163  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI,
164                         SmallSet<unsigned, 4> &SubKills);
165  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
166  void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
167  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI);
168
169  /// analyzePHINodes - Gather information about the PHI nodes in here. In
170  /// particular, we want to map the variable information of a virtual
171  /// register which is used in a PHI node. We map that to the BB the vreg
172  /// is coming from.
173  void analyzePHINodes(const MachineFunction& Fn);
174public:
175
176  virtual bool runOnMachineFunction(MachineFunction &MF);
177
178  /// KillsRegister - Return true if the specified instruction kills the
179  /// specified register.
180  bool KillsRegister(MachineInstr *MI, unsigned Reg) const;
181
182  /// RegisterDefIsDead - Return true if the specified instruction defines the
183  /// specified register, but that definition is dead.
184  bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
185
186  /// ModifiesRegister - Return true if the specified instruction modifies the
187  /// specified register.
188  bool ModifiesRegister(MachineInstr *MI, unsigned Reg) const;
189
190  //===--------------------------------------------------------------------===//
191  //  API to update live variable information
192
193  /// instructionChanged - When the address of an instruction changes, this
194  /// method should be called so that live variables can update its internal
195  /// data structures.  This removes the records for OldMI, transfering them to
196  /// the records for NewMI.
197  void instructionChanged(MachineInstr *OldMI, MachineInstr *NewMI);
198
199  /// addVirtualRegisterKilled - Add information about the fact that the
200  /// specified register is killed after being used by the specified
201  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
202  /// not found.
203  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
204                                bool AddIfNotFound = false) {
205    if (MI->addRegisterKilled(IncomingReg, RegInfo, AddIfNotFound))
206      getVarInfo(IncomingReg).Kills.push_back(MI);
207  }
208
209  /// removeVirtualRegisterKilled - Remove the specified virtual
210  /// register from the live variable information. Returns true if the
211  /// variable was marked as killed by the specified instruction,
212  /// false otherwise.
213  bool removeVirtualRegisterKilled(unsigned reg,
214                                   MachineBasicBlock *MBB,
215                                   MachineInstr *MI) {
216    if (!getVarInfo(reg).removeKill(MI))
217      return false;
218
219    bool Removed = false;
220    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
221      MachineOperand &MO = MI->getOperand(i);
222      if (MO.isRegister() && MO.isKill() && MO.getReg() == reg) {
223        MO.setIsKill(false);
224        Removed = true;
225        break;
226      }
227    }
228
229    assert(Removed && "Register is not used by this instruction!");
230    return true;
231  }
232
233  /// removeVirtualRegistersKilled - Remove all killed info for the specified
234  /// instruction.
235  void removeVirtualRegistersKilled(MachineInstr *MI);
236
237  /// addVirtualRegisterDead - Add information about the fact that the specified
238  /// register is dead after being used by the specified instruction. If
239  /// AddIfNotFound is true, add a implicit operand if it's not found.
240  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
241                              bool AddIfNotFound = false) {
242    if (MI->addRegisterDead(IncomingReg, RegInfo, AddIfNotFound))
243        getVarInfo(IncomingReg).Kills.push_back(MI);
244  }
245
246  /// removeVirtualRegisterDead - Remove the specified virtual
247  /// register from the live variable information. Returns true if the
248  /// variable was marked dead at the specified instruction, false
249  /// otherwise.
250  bool removeVirtualRegisterDead(unsigned reg,
251                                 MachineBasicBlock *MBB,
252                                 MachineInstr *MI) {
253    if (!getVarInfo(reg).removeKill(MI))
254      return false;
255
256    bool Removed = false;
257    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
258      MachineOperand &MO = MI->getOperand(i);
259      if (MO.isRegister() && MO.isDef() && MO.getReg() == reg) {
260        MO.setIsDead(false);
261        Removed = true;
262        break;
263      }
264    }
265    assert(Removed && "Register is not defined by this instruction!");
266    return true;
267  }
268
269  /// removeVirtualRegistersDead - Remove all of the dead registers for the
270  /// specified instruction from the live variable information.
271  void removeVirtualRegistersDead(MachineInstr *MI);
272
273  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
274    AU.setPreservesAll();
275  }
276
277  virtual void releaseMemory() {
278    VirtRegInfo.clear();
279  }
280
281  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
282  /// register.
283  VarInfo &getVarInfo(unsigned RegIdx);
284
285  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
286                               MachineBasicBlock *BB);
287  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
288                               MachineBasicBlock *BB,
289                               std::vector<MachineBasicBlock*> &WorkList);
290  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
291                        MachineInstr *MI);
292};
293
294} // End llvm namespace
295
296#endif
297