MachineInstr.h revision ddfd1377d2e4154d44dc3ad217735adc15af2e3f
1//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the MachineInstr class, which is the
11// basic representation for all target dependent machine instructions used by
12// the back end.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_MACHINEINSTR_H
17#define LLVM_CODEGEN_MACHINEINSTR_H
18
19#include "llvm/CodeGen/MachineOperand.h"
20#include "llvm/MC/MCInstrDesc.h"
21#include "llvm/Target/TargetOpcodes.h"
22#include "llvm/ADT/ilist.h"
23#include "llvm/ADT/ilist_node.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/DenseMapInfo.h"
27#include "llvm/Support/DebugLoc.h"
28#include <vector>
29
30namespace llvm {
31
32template <typename T> class SmallVectorImpl;
33class AliasAnalysis;
34class TargetInstrInfo;
35class TargetRegisterClass;
36class TargetRegisterInfo;
37class MachineFunction;
38class MachineMemOperand;
39
40//===----------------------------------------------------------------------===//
41/// MachineInstr - Representation of each machine instruction.
42///
43class MachineInstr : public ilist_node<MachineInstr> {
44public:
45  typedef MachineMemOperand **mmo_iterator;
46
47  /// Flags to specify different kinds of comments to output in
48  /// assembly code.  These flags carry semantic information not
49  /// otherwise easily derivable from the IR text.
50  ///
51  enum CommentFlag {
52    ReloadReuse = 0x1
53  };
54
55  enum MIFlag {
56    NoFlags      = 0,
57    FrameSetup   = 1 << 0,              // Instruction is used as a part of
58                                        // function frame setup code.
59    InsideBundle = 1 << 1               // Instruction is inside a bundle (not
60                                        // the first MI in a bundle)
61  };
62private:
63  const MCInstrDesc *MCID;              // Instruction descriptor.
64
65  uint8_t Flags;                        // Various bits of additional
66                                        // information about machine
67                                        // instruction.
68
69  uint8_t AsmPrinterFlags;              // Various bits of information used by
70                                        // the AsmPrinter to emit helpful
71                                        // comments.  This is *not* semantic
72                                        // information.  Do not use this for
73                                        // anything other than to convey comment
74                                        // information to AsmPrinter.
75
76  std::vector<MachineOperand> Operands; // the operands
77  mmo_iterator MemRefs;                 // information on memory references
78  mmo_iterator MemRefsEnd;
79  MachineBasicBlock *Parent;            // Pointer to the owning basic block.
80  DebugLoc debugLoc;                    // Source line information.
81
82  MachineInstr(const MachineInstr&);   // DO NOT IMPLEMENT
83  void operator=(const MachineInstr&); // DO NOT IMPLEMENT
84
85  // Intrusive list support
86  friend struct ilist_traits<MachineInstr>;
87  friend struct ilist_traits<MachineBasicBlock>;
88  void setParent(MachineBasicBlock *P) { Parent = P; }
89
90  /// MachineInstr ctor - This constructor creates a copy of the given
91  /// MachineInstr in the given MachineFunction.
92  MachineInstr(MachineFunction &, const MachineInstr &);
93
94  /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
95  /// MCID NULL and no operands.
96  MachineInstr();
97
98  // The next two constructors have DebugLoc and non-DebugLoc versions;
99  // over time, the non-DebugLoc versions should be phased out and eventually
100  // removed.
101
102  /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
103  /// implicit operands.  It reserves space for the number of operands specified
104  /// by the MCInstrDesc.  The version with a DebugLoc should be preferred.
105  explicit MachineInstr(const MCInstrDesc &MCID, bool NoImp = false);
106
107  /// MachineInstr ctor - Work exactly the same as the ctor above, except that
108  /// the MachineInstr is created and added to the end of the specified basic
109  /// block.  The version with a DebugLoc should be preferred.
110  MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &MCID);
111
112  /// MachineInstr ctor - This constructor create a MachineInstr and add the
113  /// implicit operands.  It reserves space for number of operands specified by
114  /// MCInstrDesc.  An explicit DebugLoc is supplied.
115  explicit MachineInstr(const MCInstrDesc &MCID, const DebugLoc dl,
116                        bool NoImp = false);
117
118  /// MachineInstr ctor - Work exactly the same as the ctor above, except that
119  /// the MachineInstr is created and added to the end of the specified basic
120  /// block.
121  MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
122               const MCInstrDesc &MCID);
123
124  ~MachineInstr();
125
126  // MachineInstrs are pool-allocated and owned by MachineFunction.
127  friend class MachineFunction;
128
129public:
130  const MachineBasicBlock* getParent() const { return Parent; }
131  MachineBasicBlock* getParent() { return Parent; }
132
133  /// getAsmPrinterFlags - Return the asm printer flags bitvector.
134  ///
135  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
136
137  /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
138  ///
139  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
140
141  /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
142  ///
143  bool getAsmPrinterFlag(CommentFlag Flag) const {
144    return AsmPrinterFlags & Flag;
145  }
146
147  /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
148  ///
149  void setAsmPrinterFlag(CommentFlag Flag) {
150    AsmPrinterFlags |= (uint8_t)Flag;
151  }
152
153  /// clearAsmPrinterFlag - clear specific AsmPrinter flags
154  ///
155  void clearAsmPrinterFlag(CommentFlag Flag) {
156    AsmPrinterFlags &= ~Flag;
157  }
158
159  /// getFlags - Return the MI flags bitvector.
160  uint8_t getFlags() const {
161    return Flags;
162  }
163
164  /// getFlag - Return whether an MI flag is set.
165  bool getFlag(MIFlag Flag) const {
166    return Flags & Flag;
167  }
168
169  /// setFlag - Set a MI flag.
170  void setFlag(MIFlag Flag) {
171    Flags |= (uint8_t)Flag;
172  }
173
174  void setFlags(unsigned flags) {
175    Flags = flags;
176  }
177
178  /// clearFlag - Clear a MI flag.
179  void clearFlag(MIFlag Flag) {
180    Flags &= ~((uint8_t)Flag);
181  }
182
183  /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
184  /// in a bundle).
185  ///
186  /// A bundle looks like this before it's finalized:
187  ///   ----------------
188  ///   |      MI      |
189  ///   ----------------
190  ///          |
191  ///   ----------------
192  ///   |      MI    * |
193  ///   ----------------
194  ///          |
195  ///   ----------------
196  ///   |      MI    * |
197  ///   ----------------
198  /// In this case, the first MI starts a bundle but is not inside a bundle, the
199  /// next 2 MIs are considered "inside" the bundle.
200  ///
201  /// After a bundle is finalized, it looks like this:
202  ///   ----------------
203  ///   |    Bundle    |
204  ///   ----------------
205  ///          |
206  ///   ----------------
207  ///   |      MI    * |
208  ///   ----------------
209  ///          |
210  ///   ----------------
211  ///   |      MI    * |
212  ///   ----------------
213  ///          |
214  ///   ----------------
215  ///   |      MI    * |
216  ///   ----------------
217  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
218  /// a bundle, but the next three MIs are.
219  bool isInsideBundle() const {
220    return getFlag(InsideBundle);
221  }
222
223  /// setIsInsideBundle - Set InsideBundle bit.
224  ///
225  void setIsInsideBundle(bool Val = true) {
226    if (Val)
227      setFlag(InsideBundle);
228    else
229      clearFlag(InsideBundle);
230  }
231
232  /// getDebugLoc - Returns the debug location id of this MachineInstr.
233  ///
234  DebugLoc getDebugLoc() const { return debugLoc; }
235
236  /// emitError - Emit an error referring to the source location of this
237  /// instruction. This should only be used for inline assembly that is somehow
238  /// impossible to compile. Other errors should have been handled much
239  /// earlier.
240  ///
241  /// If this method returns, the caller should try to recover from the error.
242  ///
243  void emitError(StringRef Msg) const;
244
245  /// getDesc - Returns the target instruction descriptor of this
246  /// MachineInstr.
247  const MCInstrDesc &getDesc() const { return *MCID; }
248
249  /// getOpcode - Returns the opcode of this MachineInstr.
250  ///
251  int getOpcode() const { return MCID->Opcode; }
252
253  /// Access to explicit operands of the instruction.
254  ///
255  unsigned getNumOperands() const { return (unsigned)Operands.size(); }
256
257  const MachineOperand& getOperand(unsigned i) const {
258    assert(i < getNumOperands() && "getOperand() out of range!");
259    return Operands[i];
260  }
261  MachineOperand& getOperand(unsigned i) {
262    assert(i < getNumOperands() && "getOperand() out of range!");
263    return Operands[i];
264  }
265
266  /// getNumExplicitOperands - Returns the number of non-implicit operands.
267  ///
268  unsigned getNumExplicitOperands() const;
269
270  /// iterator/begin/end - Iterate over all operands of a machine instruction.
271  typedef std::vector<MachineOperand>::iterator mop_iterator;
272  typedef std::vector<MachineOperand>::const_iterator const_mop_iterator;
273
274  mop_iterator operands_begin() { return Operands.begin(); }
275  mop_iterator operands_end() { return Operands.end(); }
276
277  const_mop_iterator operands_begin() const { return Operands.begin(); }
278  const_mop_iterator operands_end() const { return Operands.end(); }
279
280  /// Access to memory operands of the instruction
281  mmo_iterator memoperands_begin() const { return MemRefs; }
282  mmo_iterator memoperands_end() const { return MemRefsEnd; }
283  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
284
285  /// hasOneMemOperand - Return true if this instruction has exactly one
286  /// MachineMemOperand.
287  bool hasOneMemOperand() const {
288    return MemRefsEnd - MemRefs == 1;
289  }
290
291  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
292  /// queries but they are bundle aware.
293
294  enum QueryType {
295    IgnoreBundle,    // Ignore bundles
296    AnyInBundle,     // Return true if any instruction in bundle has property
297    AllInBundle      // Return true if all instructions in bundle have property
298  };
299
300  /// hasProperty - Return true if the instruction (or in the case of a bundle,
301  /// the instructions inside the bundle) has the specified property.
302  /// The first argument is the property being queried.
303  /// The second argument indicates whether the query should look inside
304  /// instruction bundles.
305  /// If the third argument is true, than the query can return true when *any*
306  /// of the bundled instructions has the queried property. If it's false, then
307  /// this can return true iff *all* of the instructions have the property.
308  bool hasProperty(unsigned Flag, QueryType Type = AnyInBundle) const;
309
310  /// isVariadic - Return true if this instruction can have a variable number of
311  /// operands.  In this case, the variable operands will be after the normal
312  /// operands but before the implicit definitions and uses (if any are
313  /// present).
314  bool isVariadic(QueryType Type = IgnoreBundle) const {
315    return hasProperty(MCID::Variadic, Type);
316  }
317
318  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
319  /// ARM instructions which can set condition code if 's' bit is set.
320  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
321    return hasProperty(MCID::HasOptionalDef, Type);
322  }
323
324  /// isPseudo - Return true if this is a pseudo instruction that doesn't
325  /// correspond to a real machine instruction.
326  ///
327  bool isPseudo(QueryType Type = IgnoreBundle) const {
328    return hasProperty(MCID::Pseudo, Type);
329  }
330
331  bool isReturn(QueryType Type = AnyInBundle) const {
332    return hasProperty(MCID::Return, Type);
333  }
334
335  bool isCall(QueryType Type = AnyInBundle) const {
336    return hasProperty(MCID::Call, Type);
337  }
338
339  /// isBarrier - Returns true if the specified instruction stops control flow
340  /// from executing the instruction immediately following it.  Examples include
341  /// unconditional branches and return instructions.
342  bool isBarrier(QueryType Type = AnyInBundle) const {
343    return hasProperty(MCID::Barrier, Type);
344  }
345
346  /// isTerminator - Returns true if this instruction part of the terminator for
347  /// a basic block.  Typically this is things like return and branch
348  /// instructions.
349  ///
350  /// Various passes use this to insert code into the bottom of a basic block,
351  /// but before control flow occurs.
352  bool isTerminator(QueryType Type = AnyInBundle) const {
353    return hasProperty(MCID::Terminator, Type);
354  }
355
356  /// isBranch - Returns true if this is a conditional, unconditional, or
357  /// indirect branch.  Predicates below can be used to discriminate between
358  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
359  /// get more information.
360  bool isBranch(QueryType Type = AnyInBundle) const {
361    return hasProperty(MCID::Branch, Type);
362  }
363
364  /// isIndirectBranch - Return true if this is an indirect branch, such as a
365  /// branch through a register.
366  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
367    return hasProperty(MCID::IndirectBranch, Type);
368  }
369
370  /// isConditionalBranch - Return true if this is a branch which may fall
371  /// through to the next instruction or may transfer control flow to some other
372  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
373  /// information about this branch.
374  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
375    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
376  }
377
378  /// isUnconditionalBranch - Return true if this is a branch which always
379  /// transfers control flow to some other block.  The
380  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
381  /// about this branch.
382  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
383    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
384  }
385
386  // isPredicable - Return true if this instruction has a predicate operand that
387  // controls execution.  It may be set to 'always', or may be set to other
388  /// values.   There are various methods in TargetInstrInfo that can be used to
389  /// control and modify the predicate in this instruction.
390  bool isPredicable(QueryType Type = AllInBundle) const {
391    // If it's a bundle than all bundled instructions must be predicable for this
392    // to return true.
393    return hasProperty(MCID::Predicable, Type);
394  }
395
396  /// isCompare - Return true if this instruction is a comparison.
397  bool isCompare(QueryType Type = IgnoreBundle) const {
398    return hasProperty(MCID::Compare, Type);
399  }
400
401  /// isMoveImmediate - Return true if this instruction is a move immediate
402  /// (including conditional moves) instruction.
403  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
404    return hasProperty(MCID::MoveImm, Type);
405  }
406
407  /// isBitcast - Return true if this instruction is a bitcast instruction.
408  ///
409  bool isBitcast(QueryType Type = IgnoreBundle) const {
410    return hasProperty(MCID::Bitcast, Type);
411  }
412
413  /// isNotDuplicable - Return true if this instruction cannot be safely
414  /// duplicated.  For example, if the instruction has a unique labels attached
415  /// to it, duplicating it would cause multiple definition errors.
416  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
417    return hasProperty(MCID::NotDuplicable, Type);
418  }
419
420  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
421  /// which must be filled by the code generator.
422  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
423    return hasProperty(MCID::DelaySlot, Type);
424  }
425
426  /// canFoldAsLoad - Return true for instructions that can be folded as
427  /// memory operands in other instructions. The most common use for this
428  /// is instructions that are simple loads from memory that don't modify
429  /// the loaded value in any way, but it can also be used for instructions
430  /// that can be expressed as constant-pool loads, such as V_SETALLONES
431  /// on x86, to allow them to be folded when it is beneficial.
432  /// This should only be set on instructions that return a value in their
433  /// only virtual register definition.
434  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
435    return hasProperty(MCID::FoldableAsLoad, Type);
436  }
437
438  //===--------------------------------------------------------------------===//
439  // Side Effect Analysis
440  //===--------------------------------------------------------------------===//
441
442  /// mayLoad - Return true if this instruction could possibly read memory.
443  /// Instructions with this flag set are not necessarily simple load
444  /// instructions, they may load a value and modify it, for example.
445  bool mayLoad(QueryType Type = AnyInBundle) const {
446    return hasProperty(MCID::MayLoad, Type);
447  }
448
449
450  /// mayStore - Return true if this instruction could possibly modify memory.
451  /// Instructions with this flag set are not necessarily simple store
452  /// instructions, they may store a modified value based on their operands, or
453  /// may not actually modify anything, for example.
454  bool mayStore(QueryType Type = AnyInBundle) const {
455    return hasProperty(MCID::MayStore, Type);
456  }
457
458  //===--------------------------------------------------------------------===//
459  // Flags that indicate whether an instruction can be modified by a method.
460  //===--------------------------------------------------------------------===//
461
462  /// isCommutable - Return true if this may be a 2- or 3-address
463  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
464  /// result if Y and Z are exchanged.  If this flag is set, then the
465  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
466  /// instruction.
467  ///
468  /// Note that this flag may be set on instructions that are only commutable
469  /// sometimes.  In these cases, the call to commuteInstruction will fail.
470  /// Also note that some instructions require non-trivial modification to
471  /// commute them.
472  bool isCommutable(QueryType Type = IgnoreBundle) const {
473    return hasProperty(MCID::Commutable, Type);
474  }
475
476  /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
477  /// which can be changed into a 3-address instruction if needed.  Doing this
478  /// transformation can be profitable in the register allocator, because it
479  /// means that the instruction can use a 2-address form if possible, but
480  /// degrade into a less efficient form if the source and dest register cannot
481  /// be assigned to the same register.  For example, this allows the x86
482  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
483  /// is the same speed as the shift but has bigger code size.
484  ///
485  /// If this returns true, then the target must implement the
486  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
487  /// is allowed to fail if the transformation isn't valid for this specific
488  /// instruction (e.g. shl reg, 4 on x86).
489  ///
490  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
491    return hasProperty(MCID::ConvertibleTo3Addr, Type);
492  }
493
494  /// usesCustomInsertionHook - Return true if this instruction requires
495  /// custom insertion support when the DAG scheduler is inserting it into a
496  /// machine basic block.  If this is true for the instruction, it basically
497  /// means that it is a pseudo instruction used at SelectionDAG time that is
498  /// expanded out into magic code by the target when MachineInstrs are formed.
499  ///
500  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
501  /// is used to insert this into the MachineBasicBlock.
502  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
503    return hasProperty(MCID::UsesCustomInserter, Type);
504  }
505
506  /// hasPostISelHook - Return true if this instruction requires *adjustment*
507  /// after instruction selection by calling a target hook. For example, this
508  /// can be used to fill in ARM 's' optional operand depending on whether
509  /// the conditional flag register is used.
510  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
511    return hasProperty(MCID::HasPostISelHook, Type);
512  }
513
514  /// isRematerializable - Returns true if this instruction is a candidate for
515  /// remat.  This flag is deprecated, please don't use it anymore.  If this
516  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
517  /// verify the instruction is really rematable.
518  bool isRematerializable(QueryType Type = AllInBundle) const {
519    // It's only possible to re-mat a bundle if all bundled instructions are
520    // re-materializable.
521    return hasProperty(MCID::Rematerializable, Type);
522  }
523
524  /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
525  /// less) than a move instruction. This is useful during certain types of
526  /// optimizations (e.g., remat during two-address conversion or machine licm)
527  /// where we would like to remat or hoist the instruction, but not if it costs
528  /// more than moving the instruction into the appropriate register. Note, we
529  /// are not marking copies from and to the same register class with this flag.
530  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
531    // Only returns true for a bundle if all bundled instructions are cheap.
532    // FIXME: This probably requires a target hook.
533    return hasProperty(MCID::CheapAsAMove, Type);
534  }
535
536  /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
537  /// have special register allocation requirements that are not captured by the
538  /// operand register classes. e.g. ARM::STRD's two source registers must be an
539  /// even / odd pair, ARM::STM registers have to be in ascending order.
540  /// Post-register allocation passes should not attempt to change allocations
541  /// for sources of instructions with this flag.
542  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
543    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
544  }
545
546  /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
547  /// have special register allocation requirements that are not captured by the
548  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
549  /// even / odd pair, ARM::LDM registers have to be in ascending order.
550  /// Post-register allocation passes should not attempt to change allocations
551  /// for definitions of instructions with this flag.
552  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
553    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
554  }
555
556
557  enum MICheckType {
558    CheckDefs,      // Check all operands for equality
559    CheckKillDead,  // Check all operands including kill / dead markers
560    IgnoreDefs,     // Ignore all definitions
561    IgnoreVRegDefs  // Ignore virtual register definitions
562  };
563
564  /// isIdenticalTo - Return true if this instruction is identical to (same
565  /// opcode and same operands as) the specified instruction.
566  bool isIdenticalTo(const MachineInstr *Other,
567                     MICheckType Check = CheckDefs) const;
568
569  /// removeFromParent - This method unlinks 'this' from the containing basic
570  /// block, and returns it, but does not delete it.
571  MachineInstr *removeFromParent();
572
573  /// eraseFromParent - This method unlinks 'this' from the containing basic
574  /// block and deletes it.
575  void eraseFromParent();
576
577  /// isLabel - Returns true if the MachineInstr represents a label.
578  ///
579  bool isLabel() const {
580    return getOpcode() == TargetOpcode::PROLOG_LABEL ||
581           getOpcode() == TargetOpcode::EH_LABEL ||
582           getOpcode() == TargetOpcode::GC_LABEL;
583  }
584
585  bool isPrologLabel() const {
586    return getOpcode() == TargetOpcode::PROLOG_LABEL;
587  }
588  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
589  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
590  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
591
592  bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
593  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
594  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
595  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
596  bool isStackAligningInlineAsm() const;
597  bool isInsertSubreg() const {
598    return getOpcode() == TargetOpcode::INSERT_SUBREG;
599  }
600  bool isSubregToReg() const {
601    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
602  }
603  bool isRegSequence() const {
604    return getOpcode() == TargetOpcode::REG_SEQUENCE;
605  }
606  bool isBundle() const {
607    return getOpcode() == TargetOpcode::BUNDLE;
608  }
609  bool isCopy() const {
610    return getOpcode() == TargetOpcode::COPY;
611  }
612  bool isFullCopy() const {
613    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
614  }
615
616  /// isCopyLike - Return true if the instruction behaves like a copy.
617  /// This does not include native copy instructions.
618  bool isCopyLike() const {
619    return isCopy() || isSubregToReg();
620  }
621
622  /// isIdentityCopy - Return true is the instruction is an identity copy.
623  bool isIdentityCopy() const {
624    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
625      getOperand(0).getSubReg() == getOperand(1).getSubReg();
626  }
627
628  /// getBundleSize - Return the number of instructions inside the MI bundle.
629  unsigned getBundleSize() const;
630
631  /// readsRegister - Return true if the MachineInstr reads the specified
632  /// register. If TargetRegisterInfo is passed, then it also checks if there
633  /// is a read of a super-register.
634  /// This does not count partial redefines of virtual registers as reads:
635  ///   %reg1024:6 = OP.
636  bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
637    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
638  }
639
640  /// readsVirtualRegister - Return true if the MachineInstr reads the specified
641  /// virtual register. Take into account that a partial define is a
642  /// read-modify-write operation.
643  bool readsVirtualRegister(unsigned Reg) const {
644    return readsWritesVirtualRegister(Reg).first;
645  }
646
647  /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
648  /// indicating if this instruction reads or writes Reg. This also considers
649  /// partial defines.
650  /// If Ops is not null, all operand indices for Reg are added.
651  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
652                                      SmallVectorImpl<unsigned> *Ops = 0) const;
653
654  /// killsRegister - Return true if the MachineInstr kills the specified
655  /// register. If TargetRegisterInfo is passed, then it also checks if there is
656  /// a kill of a super-register.
657  bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
658    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
659  }
660
661  /// definesRegister - Return true if the MachineInstr fully defines the
662  /// specified register. If TargetRegisterInfo is passed, then it also checks
663  /// if there is a def of a super-register.
664  /// NOTE: It's ignoring subreg indices on virtual registers.
665  bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
666    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
667  }
668
669  /// modifiesRegister - Return true if the MachineInstr modifies (fully define
670  /// or partially define) the specified register.
671  /// NOTE: It's ignoring subreg indices on virtual registers.
672  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
673    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
674  }
675
676  /// registerDefIsDead - Returns true if the register is dead in this machine
677  /// instruction. If TargetRegisterInfo is passed, then it also checks
678  /// if there is a dead def of a super-register.
679  bool registerDefIsDead(unsigned Reg,
680                         const TargetRegisterInfo *TRI = NULL) const {
681    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
682  }
683
684  /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
685  /// the specific register or -1 if it is not found. It further tightens
686  /// the search criteria to a use that kills the register if isKill is true.
687  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
688                                const TargetRegisterInfo *TRI = NULL) const;
689
690  /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
691  /// a pointer to the MachineOperand rather than an index.
692  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
693                                         const TargetRegisterInfo *TRI = NULL) {
694    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
695    return (Idx == -1) ? NULL : &getOperand(Idx);
696  }
697
698  /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
699  /// the specified register or -1 if it is not found. If isDead is true, defs
700  /// that are not dead are skipped. If Overlap is true, then it also looks for
701  /// defs that merely overlap the specified register. If TargetRegisterInfo is
702  /// non-null, then it also checks if there is a def of a super-register.
703  int findRegisterDefOperandIdx(unsigned Reg,
704                                bool isDead = false, bool Overlap = false,
705                                const TargetRegisterInfo *TRI = NULL) const;
706
707  /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
708  /// a pointer to the MachineOperand rather than an index.
709  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
710                                         const TargetRegisterInfo *TRI = NULL) {
711    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
712    return (Idx == -1) ? NULL : &getOperand(Idx);
713  }
714
715  /// findFirstPredOperandIdx() - Find the index of the first operand in the
716  /// operand list that is used to represent the predicate. It returns -1 if
717  /// none is found.
718  int findFirstPredOperandIdx() const;
719
720  /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
721  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
722  /// getOperand(OpIdx) does not belong to an inline asm operand group.
723  ///
724  /// If GroupNo is not NULL, it will receive the number of the operand group
725  /// containing OpIdx.
726  ///
727  /// The flag operand is an immediate that can be decoded with methods like
728  /// InlineAsm::hasRegClassConstraint().
729  ///
730  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
731
732  /// getRegClassConstraint - Compute the static register class constraint for
733  /// operand OpIdx.  For normal instructions, this is derived from the
734  /// MCInstrDesc.  For inline assembly it is derived from the flag words.
735  ///
736  /// Returns NULL if the static register classs constraint cannot be
737  /// determined.
738  ///
739  const TargetRegisterClass*
740  getRegClassConstraint(unsigned OpIdx,
741                        const TargetInstrInfo *TII,
742                        const TargetRegisterInfo *TRI) const;
743
744  /// isRegTiedToUseOperand - Given the index of a register def operand,
745  /// check if the register def is tied to a source operand, due to either
746  /// two-address elimination or inline assembly constraints. Returns the
747  /// first tied use operand index by reference is UseOpIdx is not null.
748  bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const;
749
750  /// isRegTiedToDefOperand - Return true if the use operand of the specified
751  /// index is tied to an def operand. It also returns the def operand index by
752  /// reference if DefOpIdx is not null.
753  bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const;
754
755  /// clearKillInfo - Clears kill flags on all operands.
756  ///
757  void clearKillInfo();
758
759  /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
760  ///
761  void copyKillDeadInfo(const MachineInstr *MI);
762
763  /// copyPredicates - Copies predicate operand(s) from MI.
764  void copyPredicates(const MachineInstr *MI);
765
766  /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
767  /// properly composing subreg indices where necessary.
768  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
769                          const TargetRegisterInfo &RegInfo);
770
771  /// addRegisterKilled - We have determined MI kills a register. Look for the
772  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
773  /// add a implicit operand if it's not found. Returns true if the operand
774  /// exists / is added.
775  bool addRegisterKilled(unsigned IncomingReg,
776                         const TargetRegisterInfo *RegInfo,
777                         bool AddIfNotFound = false);
778
779  /// addRegisterDead - We have determined MI defined a register without a use.
780  /// Look for the operand that defines it and mark it as IsDead. If
781  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
782  /// true if the operand exists / is added.
783  bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
784                       bool AddIfNotFound = false);
785
786  /// addRegisterDefined - We have determined MI defines a register. Make sure
787  /// there is an operand defining Reg.
788  void addRegisterDefined(unsigned IncomingReg,
789                          const TargetRegisterInfo *RegInfo = 0);
790
791  /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
792  /// dead except those in the UsedRegs list.
793  void setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
794                             const TargetRegisterInfo &TRI);
795
796  /// isSafeToMove - Return true if it is safe to move this instruction. If
797  /// SawStore is set to true, it means that there is a store (or call) between
798  /// the instruction's location and its intended destination.
799  bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
800                    bool &SawStore) const;
801
802  /// isSafeToReMat - Return true if it's safe to rematerialize the specified
803  /// instruction which defined the specified register instead of copying it.
804  bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
805                     unsigned DstReg) const;
806
807  /// hasVolatileMemoryRef - Return true if this instruction may have a
808  /// volatile memory reference, or if the information describing the
809  /// memory reference is not available. Return false if it is known to
810  /// have no volatile memory references.
811  bool hasVolatileMemoryRef() const;
812
813  /// isInvariantLoad - Return true if this instruction is loading from a
814  /// location whose value is invariant across the function.  For example,
815  /// loading a value from the constant pool or from the argument area of
816  /// a function if it does not change.  This should only return true of *all*
817  /// loads the instruction does are invariant (if it does multiple loads).
818  bool isInvariantLoad(AliasAnalysis *AA) const;
819
820  /// isConstantValuePHI - If the specified instruction is a PHI that always
821  /// merges together the same virtual register, return the register, otherwise
822  /// return 0.
823  unsigned isConstantValuePHI() const;
824
825  /// hasUnmodeledSideEffects - Return true if this instruction has side
826  /// effects that are not modeled by mayLoad / mayStore, etc.
827  /// For all instructions, the property is encoded in MCInstrDesc::Flags
828  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
829  /// INLINEASM instruction, in which case the side effect property is encoded
830  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
831  ///
832  bool hasUnmodeledSideEffects() const;
833
834  /// allDefsAreDead - Return true if all the defs of this instruction are dead.
835  ///
836  bool allDefsAreDead() const;
837
838  /// copyImplicitOps - Copy implicit register operands from specified
839  /// instruction to this instruction.
840  void copyImplicitOps(const MachineInstr *MI);
841
842  //
843  // Debugging support
844  //
845  void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
846  void dump() const;
847
848  //===--------------------------------------------------------------------===//
849  // Accessors used to build up machine instructions.
850
851  /// addOperand - Add the specified operand to the instruction.  If it is an
852  /// implicit operand, it is added to the end of the operand list.  If it is
853  /// an explicit operand it is added at the end of the explicit operand list
854  /// (before the first implicit operand).
855  void addOperand(const MachineOperand &Op);
856
857  /// setDesc - Replace the instruction descriptor (thus opcode) of
858  /// the current instruction with a new one.
859  ///
860  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
861
862  /// setDebugLoc - Replace current source information with new such.
863  /// Avoid using this, the constructor argument is preferable.
864  ///
865  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
866
867  /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
868  /// fewer operand than it started with.
869  ///
870  void RemoveOperand(unsigned i);
871
872  /// addMemOperand - Add a MachineMemOperand to the machine instruction.
873  /// This function should be used only occasionally. The setMemRefs function
874  /// is the primary method for setting up a MachineInstr's MemRefs list.
875  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
876
877  /// setMemRefs - Assign this MachineInstr's memory reference descriptor
878  /// list. This does not transfer ownership.
879  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
880    MemRefs = NewMemRefs;
881    MemRefsEnd = NewMemRefsEnd;
882  }
883
884private:
885  /// getRegInfo - If this instruction is embedded into a MachineFunction,
886  /// return the MachineRegisterInfo object for the current function, otherwise
887  /// return null.
888  MachineRegisterInfo *getRegInfo();
889
890  /// addImplicitDefUseOperands - Add all implicit def and use operands to
891  /// this instruction.
892  void addImplicitDefUseOperands();
893
894  /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
895  /// this instruction from their respective use lists.  This requires that the
896  /// operands already be on their use lists.
897  void RemoveRegOperandsFromUseLists();
898
899  /// AddRegOperandsToUseLists - Add all of the register operands in
900  /// this instruction from their respective use lists.  This requires that the
901  /// operands not be on their use lists yet.
902  void AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo);
903};
904
905/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
906/// MachineInstr* by *value* of the instruction rather than by pointer value.
907/// The hashing and equality testing functions ignore definitions so this is
908/// useful for CSE, etc.
909struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
910  static inline MachineInstr *getEmptyKey() {
911    return 0;
912  }
913
914  static inline MachineInstr *getTombstoneKey() {
915    return reinterpret_cast<MachineInstr*>(-1);
916  }
917
918  static unsigned getHashValue(const MachineInstr* const &MI);
919
920  static bool isEqual(const MachineInstr* const &LHS,
921                      const MachineInstr* const &RHS) {
922    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
923        LHS == getEmptyKey() || LHS == getTombstoneKey())
924      return LHS == RHS;
925    return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
926  }
927};
928
929//===----------------------------------------------------------------------===//
930// Debugging Support
931
932inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
933  MI.print(OS);
934  return OS;
935}
936
937} // End llvm namespace
938
939#endif
940