1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFObjectFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/PointerIntPair.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <limits>
31#include <utility>
32
33#include <ctype.h>
34
35namespace llvm {
36namespace object {
37
38// Subclasses of ELFObjectFile may need this for template instantiation
39inline std::pair<unsigned char, unsigned char>
40getElfArchType(MemoryBuffer *Object) {
41  if (Object->getBufferSize() < ELF::EI_NIDENT)
42    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
43  return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
44                       , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
45}
46
47// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
48template<support::endianness target_endianness>
49struct ELFDataTypeTypedefHelperCommon {
50  typedef support::detail::packed_endian_specific_integral
51    <uint16_t, target_endianness, support::aligned> Elf_Half;
52  typedef support::detail::packed_endian_specific_integral
53    <uint32_t, target_endianness, support::aligned> Elf_Word;
54  typedef support::detail::packed_endian_specific_integral
55    <int32_t, target_endianness, support::aligned> Elf_Sword;
56  typedef support::detail::packed_endian_specific_integral
57    <uint64_t, target_endianness, support::aligned> Elf_Xword;
58  typedef support::detail::packed_endian_specific_integral
59    <int64_t, target_endianness, support::aligned> Elf_Sxword;
60};
61
62template<support::endianness target_endianness, bool is64Bits>
63struct ELFDataTypeTypedefHelper;
64
65/// ELF 32bit types.
66template<support::endianness target_endianness>
67struct ELFDataTypeTypedefHelper<target_endianness, false>
68  : ELFDataTypeTypedefHelperCommon<target_endianness> {
69  typedef uint32_t value_type;
70  typedef support::detail::packed_endian_specific_integral
71    <value_type, target_endianness, support::aligned> Elf_Addr;
72  typedef support::detail::packed_endian_specific_integral
73    <value_type, target_endianness, support::aligned> Elf_Off;
74};
75
76/// ELF 64bit types.
77template<support::endianness target_endianness>
78struct ELFDataTypeTypedefHelper<target_endianness, true>
79  : ELFDataTypeTypedefHelperCommon<target_endianness>{
80  typedef uint64_t value_type;
81  typedef support::detail::packed_endian_specific_integral
82    <value_type, target_endianness, support::aligned> Elf_Addr;
83  typedef support::detail::packed_endian_specific_integral
84    <value_type, target_endianness, support::aligned> Elf_Off;
85};
86
87// I really don't like doing this, but the alternative is copypasta.
88#define LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits) \
89typedef typename \
90  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Addr Elf_Addr; \
91typedef typename \
92  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Off Elf_Off; \
93typedef typename \
94  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Half Elf_Half; \
95typedef typename \
96  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Word Elf_Word; \
97typedef typename \
98  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sword Elf_Sword; \
99typedef typename \
100  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Xword Elf_Xword; \
101typedef typename \
102  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sxword Elf_Sxword;
103
104  // Section header.
105template<support::endianness target_endianness, bool is64Bits>
106struct Elf_Shdr_Base;
107
108template<support::endianness target_endianness>
109struct Elf_Shdr_Base<target_endianness, false> {
110  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
111  Elf_Word sh_name;     // Section name (index into string table)
112  Elf_Word sh_type;     // Section type (SHT_*)
113  Elf_Word sh_flags;    // Section flags (SHF_*)
114  Elf_Addr sh_addr;     // Address where section is to be loaded
115  Elf_Off  sh_offset;   // File offset of section data, in bytes
116  Elf_Word sh_size;     // Size of section, in bytes
117  Elf_Word sh_link;     // Section type-specific header table index link
118  Elf_Word sh_info;     // Section type-specific extra information
119  Elf_Word sh_addralign;// Section address alignment
120  Elf_Word sh_entsize;  // Size of records contained within the section
121};
122
123template<support::endianness target_endianness>
124struct Elf_Shdr_Base<target_endianness, true> {
125  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
126  Elf_Word  sh_name;     // Section name (index into string table)
127  Elf_Word  sh_type;     // Section type (SHT_*)
128  Elf_Xword sh_flags;    // Section flags (SHF_*)
129  Elf_Addr  sh_addr;     // Address where section is to be loaded
130  Elf_Off   sh_offset;   // File offset of section data, in bytes
131  Elf_Xword sh_size;     // Size of section, in bytes
132  Elf_Word  sh_link;     // Section type-specific header table index link
133  Elf_Word  sh_info;     // Section type-specific extra information
134  Elf_Xword sh_addralign;// Section address alignment
135  Elf_Xword sh_entsize;  // Size of records contained within the section
136};
137
138template<support::endianness target_endianness, bool is64Bits>
139struct Elf_Shdr_Impl : Elf_Shdr_Base<target_endianness, is64Bits> {
140  using Elf_Shdr_Base<target_endianness, is64Bits>::sh_entsize;
141  using Elf_Shdr_Base<target_endianness, is64Bits>::sh_size;
142
143  /// @brief Get the number of entities this section contains if it has any.
144  unsigned getEntityCount() const {
145    if (sh_entsize == 0)
146      return 0;
147    return sh_size / sh_entsize;
148  }
149};
150
151template<support::endianness target_endianness, bool is64Bits>
152struct Elf_Sym_Base;
153
154template<support::endianness target_endianness>
155struct Elf_Sym_Base<target_endianness, false> {
156  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
157  Elf_Word      st_name;  // Symbol name (index into string table)
158  Elf_Addr      st_value; // Value or address associated with the symbol
159  Elf_Word      st_size;  // Size of the symbol
160  unsigned char st_info;  // Symbol's type and binding attributes
161  unsigned char st_other; // Must be zero; reserved
162  Elf_Half      st_shndx; // Which section (header table index) it's defined in
163};
164
165template<support::endianness target_endianness>
166struct Elf_Sym_Base<target_endianness, true> {
167  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
168  Elf_Word      st_name;  // Symbol name (index into string table)
169  unsigned char st_info;  // Symbol's type and binding attributes
170  unsigned char st_other; // Must be zero; reserved
171  Elf_Half      st_shndx; // Which section (header table index) it's defined in
172  Elf_Addr      st_value; // Value or address associated with the symbol
173  Elf_Xword     st_size;  // Size of the symbol
174};
175
176template<support::endianness target_endianness, bool is64Bits>
177struct Elf_Sym_Impl : Elf_Sym_Base<target_endianness, is64Bits> {
178  using Elf_Sym_Base<target_endianness, is64Bits>::st_info;
179
180  // These accessors and mutators correspond to the ELF32_ST_BIND,
181  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
182  unsigned char getBinding() const { return st_info >> 4; }
183  unsigned char getType() const { return st_info & 0x0f; }
184  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
185  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
186  void setBindingAndType(unsigned char b, unsigned char t) {
187    st_info = (b << 4) + (t & 0x0f);
188  }
189};
190
191/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
192/// (.gnu.version). This structure is identical for ELF32 and ELF64.
193template<support::endianness target_endianness, bool is64Bits>
194struct Elf_Versym_Impl {
195  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
196  Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
197};
198
199template<support::endianness target_endianness, bool is64Bits>
200struct Elf_Verdaux_Impl;
201
202/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
203/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
204template<support::endianness target_endianness, bool is64Bits>
205struct Elf_Verdef_Impl {
206  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
207  typedef Elf_Verdaux_Impl<target_endianness, is64Bits> Elf_Verdaux;
208  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
209  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
210  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
211  Elf_Half vd_cnt;     // Number of Verdaux entries
212  Elf_Word vd_hash;    // Hash of name
213  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
214  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
215
216  /// Get the first Verdaux entry for this Verdef.
217  const Elf_Verdaux *getAux() const {
218    return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
219  }
220};
221
222/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
223/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
224template<support::endianness target_endianness, bool is64Bits>
225struct Elf_Verdaux_Impl {
226  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
227  Elf_Word vda_name; // Version name (offset in string table)
228  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
229};
230
231/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
232/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
233template<support::endianness target_endianness, bool is64Bits>
234struct Elf_Verneed_Impl {
235  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
236  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
237  Elf_Half vn_cnt;     // Number of associated Vernaux entries
238  Elf_Word vn_file;    // Library name (string table offset)
239  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
240  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
241};
242
243/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
244/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
245template<support::endianness target_endianness, bool is64Bits>
246struct Elf_Vernaux_Impl {
247  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
248  Elf_Word vna_hash;  // Hash of dependency name
249  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
250  Elf_Half vna_other; // Version index, used in .gnu.version entries
251  Elf_Word vna_name;  // Dependency name
252  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
253};
254
255/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
256///               table section (.dynamic) look like.
257template<support::endianness target_endianness, bool is64Bits>
258struct Elf_Dyn_Base;
259
260template<support::endianness target_endianness>
261struct Elf_Dyn_Base<target_endianness, false> {
262  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
263  Elf_Sword d_tag;
264  union {
265    Elf_Word d_val;
266    Elf_Addr d_ptr;
267  } d_un;
268};
269
270template<support::endianness target_endianness>
271struct Elf_Dyn_Base<target_endianness, true> {
272  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
273  Elf_Sxword d_tag;
274  union {
275    Elf_Xword d_val;
276    Elf_Addr d_ptr;
277  } d_un;
278};
279
280/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
281template<support::endianness target_endianness, bool is64Bits>
282struct Elf_Dyn_Impl : Elf_Dyn_Base<target_endianness, is64Bits> {
283  using Elf_Dyn_Base<target_endianness, is64Bits>::d_tag;
284  using Elf_Dyn_Base<target_endianness, is64Bits>::d_un;
285  int64_t getTag() const { return d_tag; }
286  uint64_t getVal() const { return d_un.d_val; }
287  uint64_t getPtr() const { return d_un.ptr; }
288};
289
290template<support::endianness target_endianness, bool is64Bits>
291class ELFObjectFile;
292
293// DynRefImpl: Reference to an entry in the dynamic table
294// This is an ELF-specific interface.
295template<support::endianness target_endianness, bool is64Bits>
296class DynRefImpl {
297  typedef Elf_Dyn_Impl<target_endianness, is64Bits> Elf_Dyn;
298  typedef ELFObjectFile<target_endianness, is64Bits> OwningType;
299
300  DataRefImpl DynPimpl;
301  const OwningType *OwningObject;
302
303public:
304  DynRefImpl() : OwningObject(NULL) { }
305
306  DynRefImpl(DataRefImpl DynP, const OwningType *Owner);
307
308  bool operator==(const DynRefImpl &Other) const;
309  bool operator <(const DynRefImpl &Other) const;
310
311  error_code getNext(DynRefImpl &Result) const;
312  int64_t getTag() const;
313  uint64_t getVal() const;
314  uint64_t getPtr() const;
315
316  DataRefImpl getRawDataRefImpl() const;
317};
318
319// Elf_Rel: Elf Relocation
320template<support::endianness target_endianness, bool is64Bits, bool isRela>
321struct Elf_Rel_Base;
322
323template<support::endianness target_endianness>
324struct Elf_Rel_Base<target_endianness, false, false> {
325  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
326  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
327  Elf_Word      r_info;  // Symbol table index and type of relocation to apply
328};
329
330template<support::endianness target_endianness>
331struct Elf_Rel_Base<target_endianness, true, false> {
332  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
333  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
334  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
335};
336
337template<support::endianness target_endianness>
338struct Elf_Rel_Base<target_endianness, false, true> {
339  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
340  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
341  Elf_Word      r_info;   // Symbol table index and type of relocation to apply
342  Elf_Sword     r_addend; // Compute value for relocatable field by adding this
343};
344
345template<support::endianness target_endianness>
346struct Elf_Rel_Base<target_endianness, true, true> {
347  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
348  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
349  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
350  Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
351};
352
353template<support::endianness target_endianness, bool is64Bits, bool isRela>
354struct Elf_Rel_Impl;
355
356template<support::endianness target_endianness, bool isRela>
357struct Elf_Rel_Impl<target_endianness, true, isRela>
358       : Elf_Rel_Base<target_endianness, true, isRela> {
359  using Elf_Rel_Base<target_endianness, true, isRela>::r_info;
360  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
361
362  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
363  // and ELF64_R_INFO macros defined in the ELF specification:
364  uint64_t getSymbol() const { return (r_info >> 32); }
365  unsigned char getType() const {
366    return (unsigned char) (r_info & 0xffffffffL);
367  }
368  void setSymbol(uint64_t s) { setSymbolAndType(s, getType()); }
369  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
370  void setSymbolAndType(uint64_t s, unsigned char t) {
371    r_info = (s << 32) + (t&0xffffffffL);
372  }
373};
374
375template<support::endianness target_endianness, bool isRela>
376struct Elf_Rel_Impl<target_endianness, false, isRela>
377       : Elf_Rel_Base<target_endianness, false, isRela> {
378  using Elf_Rel_Base<target_endianness, false, isRela>::r_info;
379  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
380
381  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
382  // and ELF32_R_INFO macros defined in the ELF specification:
383  uint32_t getSymbol() const { return (r_info >> 8); }
384  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
385  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
386  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
387  void setSymbolAndType(uint32_t s, unsigned char t) {
388    r_info = (s << 8) + t;
389  }
390};
391
392template<support::endianness target_endianness, bool is64Bits>
393struct Elf_Ehdr_Impl {
394  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
395  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
396  Elf_Half e_type;     // Type of file (see ET_*)
397  Elf_Half e_machine;  // Required architecture for this file (see EM_*)
398  Elf_Word e_version;  // Must be equal to 1
399  Elf_Addr e_entry;    // Address to jump to in order to start program
400  Elf_Off  e_phoff;    // Program header table's file offset, in bytes
401  Elf_Off  e_shoff;    // Section header table's file offset, in bytes
402  Elf_Word e_flags;    // Processor-specific flags
403  Elf_Half e_ehsize;   // Size of ELF header, in bytes
404  Elf_Half e_phentsize;// Size of an entry in the program header table
405  Elf_Half e_phnum;    // Number of entries in the program header table
406  Elf_Half e_shentsize;// Size of an entry in the section header table
407  Elf_Half e_shnum;    // Number of entries in the section header table
408  Elf_Half e_shstrndx; // Section header table index of section name
409                                 // string table
410  bool checkMagic() const {
411    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
412  }
413   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
414   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
415};
416
417template<support::endianness target_endianness, bool is64Bits>
418class ELFObjectFile : public ObjectFile {
419  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
420
421  typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;
422  typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
423  typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
424  typedef Elf_Dyn_Impl<target_endianness, is64Bits> Elf_Dyn;
425  typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
426  typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
427  typedef Elf_Verdef_Impl<target_endianness, is64Bits> Elf_Verdef;
428  typedef Elf_Verdaux_Impl<target_endianness, is64Bits> Elf_Verdaux;
429  typedef Elf_Verneed_Impl<target_endianness, is64Bits> Elf_Verneed;
430  typedef Elf_Vernaux_Impl<target_endianness, is64Bits> Elf_Vernaux;
431  typedef Elf_Versym_Impl<target_endianness, is64Bits> Elf_Versym;
432  typedef DynRefImpl<target_endianness, is64Bits> DynRef;
433  typedef content_iterator<DynRef> dyn_iterator;
434
435protected:
436  // This flag is used for classof, to distinguish ELFObjectFile from
437  // its subclass. If more subclasses will be created, this flag will
438  // have to become an enum.
439  bool isDyldELFObject;
440
441private:
442  typedef SmallVector<const Elf_Shdr*, 1> Sections_t;
443  typedef DenseMap<unsigned, unsigned> IndexMap_t;
444  typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
445
446  const Elf_Ehdr *Header;
447  const Elf_Shdr *SectionHeaderTable;
448  const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
449  const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
450  const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
451
452  // SymbolTableSections[0] always points to the dynamic string table section
453  // header, or NULL if there is no dynamic string table.
454  Sections_t SymbolTableSections;
455  IndexMap_t SymbolTableSectionsIndexMap;
456  DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
457
458  const Elf_Shdr *dot_dynamic_sec;       // .dynamic
459  const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
460  const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
461  const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
462
463  // Pointer to SONAME entry in dynamic string table
464  // This is set the first time getLoadName is called.
465  mutable const char *dt_soname;
466
467  // Records for each version index the corresponding Verdef or Vernaux entry.
468  // This is filled the first time LoadVersionMap() is called.
469  class VersionMapEntry : public PointerIntPair<const void*, 1> {
470    public:
471    // If the integer is 0, this is an Elf_Verdef*.
472    // If the integer is 1, this is an Elf_Vernaux*.
473    VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
474    VersionMapEntry(const Elf_Verdef *verdef)
475        : PointerIntPair<const void*, 1>(verdef, 0) { }
476    VersionMapEntry(const Elf_Vernaux *vernaux)
477        : PointerIntPair<const void*, 1>(vernaux, 1) { }
478    bool isNull() const { return getPointer() == NULL; }
479    bool isVerdef() const { return !isNull() && getInt() == 0; }
480    bool isVernaux() const { return !isNull() && getInt() == 1; }
481    const Elf_Verdef *getVerdef() const {
482      return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
483    }
484    const Elf_Vernaux *getVernaux() const {
485      return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
486    }
487  };
488  mutable SmallVector<VersionMapEntry, 16> VersionMap;
489  void LoadVersionDefs(const Elf_Shdr *sec) const;
490  void LoadVersionNeeds(const Elf_Shdr *ec) const;
491  void LoadVersionMap() const;
492
493  /// @brief Map sections to an array of relocation sections that reference
494  ///        them sorted by section index.
495  RelocMap_t SectionRelocMap;
496
497  /// @brief Get the relocation section that contains \a Rel.
498  const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
499    return getSection(Rel.w.b);
500  }
501
502  bool            isRelocationHasAddend(DataRefImpl Rel) const;
503  template<typename T>
504  const T        *getEntry(uint16_t Section, uint32_t Entry) const;
505  template<typename T>
506  const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
507  const Elf_Shdr *getSection(DataRefImpl index) const;
508  const Elf_Shdr *getSection(uint32_t index) const;
509  const Elf_Rel  *getRel(DataRefImpl Rel) const;
510  const Elf_Rela *getRela(DataRefImpl Rela) const;
511  const char     *getString(uint32_t section, uint32_t offset) const;
512  const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
513  error_code      getSymbolVersion(const Elf_Shdr *section,
514                                   const Elf_Sym *Symb,
515                                   StringRef &Version,
516                                   bool &IsDefault) const;
517  void VerifyStrTab(const Elf_Shdr *sh) const;
518
519protected:
520  const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
521  void            validateSymbol(DataRefImpl Symb) const;
522
523public:
524  error_code      getSymbolName(const Elf_Shdr *section,
525                                const Elf_Sym *Symb,
526                                StringRef &Res) const;
527  error_code      getSectionName(const Elf_Shdr *section,
528                                 StringRef &Res) const;
529  const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
530  error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
531                              bool &IsDefault) const;
532protected:
533  virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
534  virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
535  virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
536  virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
537  virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
538  virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
539  virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
540  virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
541  virtual error_code getSymbolSection(DataRefImpl Symb,
542                                      section_iterator &Res) const;
543
544  friend class DynRefImpl<target_endianness, is64Bits>;
545  virtual error_code getDynNext(DataRefImpl DynData, DynRef &Result) const;
546
547  virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
548  virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
549
550  virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
551  virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
552  virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
553  virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
554  virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
555  virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
556  virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
557  virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
558  virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
559  virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
560                                                   bool &Res) const;
561  virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
562  virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
563  virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
564                                           bool &Result) const;
565  virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
566  virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
567
568  virtual error_code getRelocationNext(DataRefImpl Rel,
569                                       RelocationRef &Res) const;
570  virtual error_code getRelocationAddress(DataRefImpl Rel,
571                                          uint64_t &Res) const;
572  virtual error_code getRelocationOffset(DataRefImpl Rel,
573                                         uint64_t &Res) const;
574  virtual error_code getRelocationSymbol(DataRefImpl Rel,
575                                         SymbolRef &Res) const;
576  virtual error_code getRelocationType(DataRefImpl Rel,
577                                       uint64_t &Res) const;
578  virtual error_code getRelocationTypeName(DataRefImpl Rel,
579                                           SmallVectorImpl<char> &Result) const;
580  virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
581                                                 int64_t &Res) const;
582  virtual error_code getRelocationValueString(DataRefImpl Rel,
583                                           SmallVectorImpl<char> &Result) const;
584
585public:
586  ELFObjectFile(MemoryBuffer *Object, error_code &ec);
587  virtual symbol_iterator begin_symbols() const;
588  virtual symbol_iterator end_symbols() const;
589
590  virtual symbol_iterator begin_dynamic_symbols() const;
591  virtual symbol_iterator end_dynamic_symbols() const;
592
593  virtual section_iterator begin_sections() const;
594  virtual section_iterator end_sections() const;
595
596  virtual library_iterator begin_libraries_needed() const;
597  virtual library_iterator end_libraries_needed() const;
598
599  virtual dyn_iterator begin_dynamic_table() const;
600  virtual dyn_iterator end_dynamic_table() const;
601
602  virtual uint8_t getBytesInAddress() const;
603  virtual StringRef getFileFormatName() const;
604  virtual StringRef getObjectType() const { return "ELF"; }
605  virtual unsigned getArch() const;
606  virtual StringRef getLoadName() const;
607  virtual error_code getSectionContents(const Elf_Shdr *sec,
608                                        StringRef &Res) const;
609
610  uint64_t getNumSections() const;
611  uint64_t getStringTableIndex() const;
612  ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
613  const Elf_Shdr *getSection(const Elf_Sym *symb) const;
614  const Elf_Shdr *getElfSection(section_iterator &It) const;
615  const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
616
617  // Methods for type inquiry through isa, cast, and dyn_cast
618  bool isDyldType() const { return isDyldELFObject; }
619  static inline bool classof(const Binary *v) {
620    return v->getType() == getELFType(target_endianness == support::little,
621                                      is64Bits);
622  }
623  static inline bool classof(const ELFObjectFile *v) { return true; }
624};
625
626// Iterate through the version definitions, and place each Elf_Verdef
627// in the VersionMap according to its index.
628template<support::endianness target_endianness, bool is64Bits>
629void ELFObjectFile<target_endianness, is64Bits>::
630                  LoadVersionDefs(const Elf_Shdr *sec) const {
631  unsigned vd_size = sec->sh_size; // Size of section in bytes
632  unsigned vd_count = sec->sh_info; // Number of Verdef entries
633  const char *sec_start = (const char*)base() + sec->sh_offset;
634  const char *sec_end = sec_start + vd_size;
635  // The first Verdef entry is at the start of the section.
636  const char *p = sec_start;
637  for (unsigned i = 0; i < vd_count; i++) {
638    if (p + sizeof(Elf_Verdef) > sec_end)
639      report_fatal_error("Section ended unexpectedly while scanning "
640                         "version definitions.");
641    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
642    if (vd->vd_version != ELF::VER_DEF_CURRENT)
643      report_fatal_error("Unexpected verdef version");
644    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
645    if (index >= VersionMap.size())
646      VersionMap.resize(index+1);
647    VersionMap[index] = VersionMapEntry(vd);
648    p += vd->vd_next;
649  }
650}
651
652// Iterate through the versions needed section, and place each Elf_Vernaux
653// in the VersionMap according to its index.
654template<support::endianness target_endianness, bool is64Bits>
655void ELFObjectFile<target_endianness, is64Bits>::
656                  LoadVersionNeeds(const Elf_Shdr *sec) const {
657  unsigned vn_size = sec->sh_size; // Size of section in bytes
658  unsigned vn_count = sec->sh_info; // Number of Verneed entries
659  const char *sec_start = (const char*)base() + sec->sh_offset;
660  const char *sec_end = sec_start + vn_size;
661  // The first Verneed entry is at the start of the section.
662  const char *p = sec_start;
663  for (unsigned i = 0; i < vn_count; i++) {
664    if (p + sizeof(Elf_Verneed) > sec_end)
665      report_fatal_error("Section ended unexpectedly while scanning "
666                         "version needed records.");
667    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
668    if (vn->vn_version != ELF::VER_NEED_CURRENT)
669      report_fatal_error("Unexpected verneed version");
670    // Iterate through the Vernaux entries
671    const char *paux = p + vn->vn_aux;
672    for (unsigned j = 0; j < vn->vn_cnt; j++) {
673      if (paux + sizeof(Elf_Vernaux) > sec_end)
674        report_fatal_error("Section ended unexpected while scanning auxiliary "
675                           "version needed records.");
676      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
677      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
678      if (index >= VersionMap.size())
679        VersionMap.resize(index+1);
680      VersionMap[index] = VersionMapEntry(vna);
681      paux += vna->vna_next;
682    }
683    p += vn->vn_next;
684  }
685}
686
687template<support::endianness target_endianness, bool is64Bits>
688void ELFObjectFile<target_endianness, is64Bits>::LoadVersionMap() const {
689  // If there is no dynamic symtab or version table, there is nothing to do.
690  if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
691    return;
692
693  // Has the VersionMap already been loaded?
694  if (VersionMap.size() > 0)
695    return;
696
697  // The first two version indexes are reserved.
698  // Index 0 is LOCAL, index 1 is GLOBAL.
699  VersionMap.push_back(VersionMapEntry());
700  VersionMap.push_back(VersionMapEntry());
701
702  if (dot_gnu_version_d_sec)
703    LoadVersionDefs(dot_gnu_version_d_sec);
704
705  if (dot_gnu_version_r_sec)
706    LoadVersionNeeds(dot_gnu_version_r_sec);
707}
708
709template<support::endianness target_endianness, bool is64Bits>
710void ELFObjectFile<target_endianness, is64Bits>
711                  ::validateSymbol(DataRefImpl Symb) const {
712  const Elf_Sym  *symb = getSymbol(Symb);
713  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
714  // FIXME: We really need to do proper error handling in the case of an invalid
715  //        input file. Because we don't use exceptions, I think we'll just pass
716  //        an error object around.
717  if (!(  symb
718        && SymbolTableSection
719        && symb >= (const Elf_Sym*)(base()
720                   + SymbolTableSection->sh_offset)
721        && symb <  (const Elf_Sym*)(base()
722                   + SymbolTableSection->sh_offset
723                   + SymbolTableSection->sh_size)))
724    // FIXME: Proper error handling.
725    report_fatal_error("Symb must point to a valid symbol!");
726}
727
728template<support::endianness target_endianness, bool is64Bits>
729error_code ELFObjectFile<target_endianness, is64Bits>
730                        ::getSymbolNext(DataRefImpl Symb,
731                                        SymbolRef &Result) const {
732  validateSymbol(Symb);
733  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
734
735  ++Symb.d.a;
736  // Check to see if we are at the end of this symbol table.
737  if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
738    // We are at the end. If there are other symbol tables, jump to them.
739    // If the symbol table is .dynsym, we are iterating dynamic symbols,
740    // and there is only one table of these.
741    if (Symb.d.b != 0) {
742      ++Symb.d.b;
743      Symb.d.a = 1; // The 0th symbol in ELF is fake.
744    }
745    // Otherwise return the terminator.
746    if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
747      Symb.d.a = std::numeric_limits<uint32_t>::max();
748      Symb.d.b = std::numeric_limits<uint32_t>::max();
749    }
750  }
751
752  Result = SymbolRef(Symb, this);
753  return object_error::success;
754}
755
756template<support::endianness target_endianness, bool is64Bits>
757error_code ELFObjectFile<target_endianness, is64Bits>
758                        ::getSymbolName(DataRefImpl Symb,
759                                        StringRef &Result) const {
760  validateSymbol(Symb);
761  const Elf_Sym *symb = getSymbol(Symb);
762  return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
763}
764
765template<support::endianness target_endianness, bool is64Bits>
766error_code ELFObjectFile<target_endianness, is64Bits>
767                        ::getSymbolVersion(SymbolRef SymRef,
768                                           StringRef &Version,
769                                           bool &IsDefault) const {
770  DataRefImpl Symb = SymRef.getRawDataRefImpl();
771  validateSymbol(Symb);
772  const Elf_Sym *symb = getSymbol(Symb);
773  return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
774                          Version, IsDefault);
775}
776
777template<support::endianness target_endianness, bool is64Bits>
778ELF::Elf64_Word ELFObjectFile<target_endianness, is64Bits>
779                      ::getSymbolTableIndex(const Elf_Sym *symb) const {
780  if (symb->st_shndx == ELF::SHN_XINDEX)
781    return ExtendedSymbolTable.lookup(symb);
782  return symb->st_shndx;
783}
784
785template<support::endianness target_endianness, bool is64Bits>
786const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
787ELFObjectFile<target_endianness, is64Bits>
788                             ::getSection(const Elf_Sym *symb) const {
789  if (symb->st_shndx == ELF::SHN_XINDEX)
790    return getSection(ExtendedSymbolTable.lookup(symb));
791  if (symb->st_shndx >= ELF::SHN_LORESERVE)
792    return 0;
793  return getSection(symb->st_shndx);
794}
795
796template<support::endianness target_endianness, bool is64Bits>
797const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
798ELFObjectFile<target_endianness, is64Bits>
799                             ::getElfSection(section_iterator &It) const {
800  llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
801  return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
802}
803
804template<support::endianness target_endianness, bool is64Bits>
805const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
806ELFObjectFile<target_endianness, is64Bits>
807                             ::getElfSymbol(symbol_iterator &It) const {
808  return getSymbol(It->getRawDataRefImpl());
809}
810
811template<support::endianness target_endianness, bool is64Bits>
812error_code ELFObjectFile<target_endianness, is64Bits>
813                        ::getSymbolFileOffset(DataRefImpl Symb,
814                                          uint64_t &Result) const {
815  validateSymbol(Symb);
816  const Elf_Sym  *symb = getSymbol(Symb);
817  const Elf_Shdr *Section;
818  switch (getSymbolTableIndex(symb)) {
819  case ELF::SHN_COMMON:
820   // Unintialized symbols have no offset in the object file
821  case ELF::SHN_UNDEF:
822    Result = UnknownAddressOrSize;
823    return object_error::success;
824  case ELF::SHN_ABS:
825    Result = symb->st_value;
826    return object_error::success;
827  default: Section = getSection(symb);
828  }
829
830  switch (symb->getType()) {
831  case ELF::STT_SECTION:
832    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
833    return object_error::success;
834  case ELF::STT_FUNC:
835  case ELF::STT_OBJECT:
836  case ELF::STT_NOTYPE:
837    Result = symb->st_value +
838             (Section ? Section->sh_offset : 0);
839    return object_error::success;
840  default:
841    Result = UnknownAddressOrSize;
842    return object_error::success;
843  }
844}
845
846template<support::endianness target_endianness, bool is64Bits>
847error_code ELFObjectFile<target_endianness, is64Bits>
848                        ::getSymbolAddress(DataRefImpl Symb,
849                                           uint64_t &Result) const {
850  validateSymbol(Symb);
851  const Elf_Sym  *symb = getSymbol(Symb);
852  const Elf_Shdr *Section;
853  switch (getSymbolTableIndex(symb)) {
854  case ELF::SHN_COMMON:
855  case ELF::SHN_UNDEF:
856    Result = UnknownAddressOrSize;
857    return object_error::success;
858  case ELF::SHN_ABS:
859    Result = symb->st_value;
860    return object_error::success;
861  default: Section = getSection(symb);
862  }
863
864  switch (symb->getType()) {
865  case ELF::STT_SECTION:
866    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
867    return object_error::success;
868  case ELF::STT_FUNC:
869  case ELF::STT_OBJECT:
870  case ELF::STT_NOTYPE:
871    Result = symb->st_value + (Section ? Section->sh_addr : 0);
872    return object_error::success;
873  default:
874    Result = UnknownAddressOrSize;
875    return object_error::success;
876  }
877}
878
879template<support::endianness target_endianness, bool is64Bits>
880error_code ELFObjectFile<target_endianness, is64Bits>
881                        ::getSymbolSize(DataRefImpl Symb,
882                                        uint64_t &Result) const {
883  validateSymbol(Symb);
884  const Elf_Sym  *symb = getSymbol(Symb);
885  if (symb->st_size == 0)
886    Result = UnknownAddressOrSize;
887  Result = symb->st_size;
888  return object_error::success;
889}
890
891template<support::endianness target_endianness, bool is64Bits>
892error_code ELFObjectFile<target_endianness, is64Bits>
893                        ::getSymbolNMTypeChar(DataRefImpl Symb,
894                                              char &Result) const {
895  validateSymbol(Symb);
896  const Elf_Sym  *symb = getSymbol(Symb);
897  const Elf_Shdr *Section = getSection(symb);
898
899  char ret = '?';
900
901  if (Section) {
902    switch (Section->sh_type) {
903    case ELF::SHT_PROGBITS:
904    case ELF::SHT_DYNAMIC:
905      switch (Section->sh_flags) {
906      case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
907        ret = 't'; break;
908      case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
909        ret = 'd'; break;
910      case ELF::SHF_ALLOC:
911      case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
912      case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
913        ret = 'r'; break;
914      }
915      break;
916    case ELF::SHT_NOBITS: ret = 'b';
917    }
918  }
919
920  switch (getSymbolTableIndex(symb)) {
921  case ELF::SHN_UNDEF:
922    if (ret == '?')
923      ret = 'U';
924    break;
925  case ELF::SHN_ABS: ret = 'a'; break;
926  case ELF::SHN_COMMON: ret = 'c'; break;
927  }
928
929  switch (symb->getBinding()) {
930  case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
931  case ELF::STB_WEAK:
932    if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
933      ret = 'w';
934    else
935      if (symb->getType() == ELF::STT_OBJECT)
936        ret = 'V';
937      else
938        ret = 'W';
939  }
940
941  if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
942    StringRef name;
943    if (error_code ec = getSymbolName(Symb, name))
944      return ec;
945    Result = StringSwitch<char>(name)
946      .StartsWith(".debug", 'N')
947      .StartsWith(".note", 'n')
948      .Default('?');
949    return object_error::success;
950  }
951
952  Result = ret;
953  return object_error::success;
954}
955
956template<support::endianness target_endianness, bool is64Bits>
957error_code ELFObjectFile<target_endianness, is64Bits>
958                        ::getSymbolType(DataRefImpl Symb,
959                                        SymbolRef::Type &Result) const {
960  validateSymbol(Symb);
961  const Elf_Sym  *symb = getSymbol(Symb);
962
963  switch (symb->getType()) {
964  case ELF::STT_NOTYPE:
965    Result = SymbolRef::ST_Unknown;
966    break;
967  case ELF::STT_SECTION:
968    Result = SymbolRef::ST_Debug;
969    break;
970  case ELF::STT_FILE:
971    Result = SymbolRef::ST_File;
972    break;
973  case ELF::STT_FUNC:
974    Result = SymbolRef::ST_Function;
975    break;
976  case ELF::STT_OBJECT:
977  case ELF::STT_COMMON:
978  case ELF::STT_TLS:
979    Result = SymbolRef::ST_Data;
980    break;
981  default:
982    Result = SymbolRef::ST_Other;
983    break;
984  }
985  return object_error::success;
986}
987
988template<support::endianness target_endianness, bool is64Bits>
989error_code ELFObjectFile<target_endianness, is64Bits>
990                        ::getSymbolFlags(DataRefImpl Symb,
991                                         uint32_t &Result) const {
992  validateSymbol(Symb);
993  const Elf_Sym  *symb = getSymbol(Symb);
994
995  Result = SymbolRef::SF_None;
996
997  if (symb->getBinding() != ELF::STB_LOCAL)
998    Result |= SymbolRef::SF_Global;
999
1000  if (symb->getBinding() == ELF::STB_WEAK)
1001    Result |= SymbolRef::SF_Weak;
1002
1003  if (symb->st_shndx == ELF::SHN_ABS)
1004    Result |= SymbolRef::SF_Absolute;
1005
1006  if (symb->getType() == ELF::STT_FILE ||
1007      symb->getType() == ELF::STT_SECTION)
1008    Result |= SymbolRef::SF_FormatSpecific;
1009
1010  if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1011    Result |= SymbolRef::SF_Undefined;
1012
1013  if (symb->getType() == ELF::STT_COMMON ||
1014      getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1015    Result |= SymbolRef::SF_Common;
1016
1017  if (symb->getType() == ELF::STT_TLS)
1018    Result |= SymbolRef::SF_ThreadLocal;
1019
1020  return object_error::success;
1021}
1022
1023template<support::endianness target_endianness, bool is64Bits>
1024error_code ELFObjectFile<target_endianness, is64Bits>
1025                        ::getSymbolSection(DataRefImpl Symb,
1026                                           section_iterator &Res) const {
1027  validateSymbol(Symb);
1028  const Elf_Sym  *symb = getSymbol(Symb);
1029  const Elf_Shdr *sec = getSection(symb);
1030  if (!sec)
1031    Res = end_sections();
1032  else {
1033    DataRefImpl Sec;
1034    Sec.p = reinterpret_cast<intptr_t>(sec);
1035    Res = section_iterator(SectionRef(Sec, this));
1036  }
1037  return object_error::success;
1038}
1039
1040template<support::endianness target_endianness, bool is64Bits>
1041error_code ELFObjectFile<target_endianness, is64Bits>
1042                        ::getSectionNext(DataRefImpl Sec, SectionRef &Result) const {
1043  const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1044  sec += Header->e_shentsize;
1045  Sec.p = reinterpret_cast<intptr_t>(sec);
1046  Result = SectionRef(Sec, this);
1047  return object_error::success;
1048}
1049
1050template<support::endianness target_endianness, bool is64Bits>
1051error_code ELFObjectFile<target_endianness, is64Bits>
1052                        ::getSectionName(DataRefImpl Sec,
1053                                         StringRef &Result) const {
1054  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1055  Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1056  return object_error::success;
1057}
1058
1059template<support::endianness target_endianness, bool is64Bits>
1060error_code ELFObjectFile<target_endianness, is64Bits>
1061                        ::getSectionAddress(DataRefImpl Sec,
1062                                            uint64_t &Result) const {
1063  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1064  Result = sec->sh_addr;
1065  return object_error::success;
1066}
1067
1068template<support::endianness target_endianness, bool is64Bits>
1069error_code ELFObjectFile<target_endianness, is64Bits>
1070                        ::getSectionSize(DataRefImpl Sec,
1071                                         uint64_t &Result) const {
1072  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1073  Result = sec->sh_size;
1074  return object_error::success;
1075}
1076
1077template<support::endianness target_endianness, bool is64Bits>
1078error_code ELFObjectFile<target_endianness, is64Bits>
1079                        ::getSectionContents(DataRefImpl Sec,
1080                                             StringRef &Result) const {
1081  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1082  const char *start = (const char*)base() + sec->sh_offset;
1083  Result = StringRef(start, sec->sh_size);
1084  return object_error::success;
1085}
1086
1087template<support::endianness target_endianness, bool is64Bits>
1088error_code ELFObjectFile<target_endianness, is64Bits>
1089                        ::getSectionContents(const Elf_Shdr *Sec,
1090                                             StringRef &Result) const {
1091  const char *start = (const char*)base() + Sec->sh_offset;
1092  Result = StringRef(start, Sec->sh_size);
1093  return object_error::success;
1094}
1095
1096template<support::endianness target_endianness, bool is64Bits>
1097error_code ELFObjectFile<target_endianness, is64Bits>
1098                        ::getSectionAlignment(DataRefImpl Sec,
1099                                              uint64_t &Result) const {
1100  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1101  Result = sec->sh_addralign;
1102  return object_error::success;
1103}
1104
1105template<support::endianness target_endianness, bool is64Bits>
1106error_code ELFObjectFile<target_endianness, is64Bits>
1107                        ::isSectionText(DataRefImpl Sec,
1108                                        bool &Result) const {
1109  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1110  if (sec->sh_flags & ELF::SHF_EXECINSTR)
1111    Result = true;
1112  else
1113    Result = false;
1114  return object_error::success;
1115}
1116
1117template<support::endianness target_endianness, bool is64Bits>
1118error_code ELFObjectFile<target_endianness, is64Bits>
1119                        ::isSectionData(DataRefImpl Sec,
1120                                        bool &Result) const {
1121  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1122  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1123      && sec->sh_type == ELF::SHT_PROGBITS)
1124    Result = true;
1125  else
1126    Result = false;
1127  return object_error::success;
1128}
1129
1130template<support::endianness target_endianness, bool is64Bits>
1131error_code ELFObjectFile<target_endianness, is64Bits>
1132                        ::isSectionBSS(DataRefImpl Sec,
1133                                       bool &Result) const {
1134  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1135  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1136      && sec->sh_type == ELF::SHT_NOBITS)
1137    Result = true;
1138  else
1139    Result = false;
1140  return object_error::success;
1141}
1142
1143template<support::endianness target_endianness, bool is64Bits>
1144error_code ELFObjectFile<target_endianness, is64Bits>
1145                        ::isSectionRequiredForExecution(DataRefImpl Sec,
1146                                                        bool &Result) const {
1147  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1148  if (sec->sh_flags & ELF::SHF_ALLOC)
1149    Result = true;
1150  else
1151    Result = false;
1152  return object_error::success;
1153}
1154
1155template<support::endianness target_endianness, bool is64Bits>
1156error_code ELFObjectFile<target_endianness, is64Bits>
1157                        ::isSectionVirtual(DataRefImpl Sec,
1158                                           bool &Result) const {
1159  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1160  if (sec->sh_type == ELF::SHT_NOBITS)
1161    Result = true;
1162  else
1163    Result = false;
1164  return object_error::success;
1165}
1166
1167template<support::endianness target_endianness, bool is64Bits>
1168error_code ELFObjectFile<target_endianness, is64Bits>::isSectionZeroInit(DataRefImpl Sec,
1169                                            bool &Result) const {
1170  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1171  // For ELF, all zero-init sections are virtual (that is, they occupy no space
1172  //   in the object image) and vice versa.
1173  if (sec->sh_flags & ELF::SHT_NOBITS)
1174    Result = true;
1175  else
1176    Result = false;
1177  return object_error::success;
1178}
1179
1180template<support::endianness target_endianness, bool is64Bits>
1181error_code ELFObjectFile<target_endianness, is64Bits>
1182                          ::sectionContainsSymbol(DataRefImpl Sec,
1183                                                  DataRefImpl Symb,
1184                                                  bool &Result) const {
1185  // FIXME: Unimplemented.
1186  Result = false;
1187  return object_error::success;
1188}
1189
1190template<support::endianness target_endianness, bool is64Bits>
1191relocation_iterator ELFObjectFile<target_endianness, is64Bits>
1192                                 ::getSectionRelBegin(DataRefImpl Sec) const {
1193  DataRefImpl RelData;
1194  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1195  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1196  if (sec != 0 && ittr != SectionRelocMap.end()) {
1197    RelData.w.a = getSection(ittr->second[0])->sh_info;
1198    RelData.w.b = ittr->second[0];
1199    RelData.w.c = 0;
1200  }
1201  return relocation_iterator(RelocationRef(RelData, this));
1202}
1203
1204template<support::endianness target_endianness, bool is64Bits>
1205relocation_iterator ELFObjectFile<target_endianness, is64Bits>
1206                                 ::getSectionRelEnd(DataRefImpl Sec) const {
1207  DataRefImpl RelData;
1208  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1209  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1210  if (sec != 0 && ittr != SectionRelocMap.end()) {
1211    // Get the index of the last relocation section for this section.
1212    std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1213    const Elf_Shdr *relocsec = getSection(relocsecindex);
1214    RelData.w.a = relocsec->sh_info;
1215    RelData.w.b = relocsecindex;
1216    RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1217  }
1218  return relocation_iterator(RelocationRef(RelData, this));
1219}
1220
1221// Relocations
1222template<support::endianness target_endianness, bool is64Bits>
1223error_code ELFObjectFile<target_endianness, is64Bits>
1224                        ::getRelocationNext(DataRefImpl Rel,
1225                                            RelocationRef &Result) const {
1226  ++Rel.w.c;
1227  const Elf_Shdr *relocsec = getSection(Rel.w.b);
1228  if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1229    // We have reached the end of the relocations for this section. See if there
1230    // is another relocation section.
1231    typename RelocMap_t::mapped_type relocseclist =
1232      SectionRelocMap.lookup(getSection(Rel.w.a));
1233
1234    // Do a binary search for the current reloc section index (which must be
1235    // present). Then get the next one.
1236    typename RelocMap_t::mapped_type::const_iterator loc =
1237      std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1238    ++loc;
1239
1240    // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1241    // to the end iterator.
1242    if (loc != relocseclist.end()) {
1243      Rel.w.b = *loc;
1244      Rel.w.a = 0;
1245    }
1246  }
1247  Result = RelocationRef(Rel, this);
1248  return object_error::success;
1249}
1250
1251template<support::endianness target_endianness, bool is64Bits>
1252error_code ELFObjectFile<target_endianness, is64Bits>
1253                        ::getRelocationSymbol(DataRefImpl Rel,
1254                                              SymbolRef &Result) const {
1255  uint32_t symbolIdx;
1256  const Elf_Shdr *sec = getSection(Rel.w.b);
1257  switch (sec->sh_type) {
1258    default :
1259      report_fatal_error("Invalid section type in Rel!");
1260    case ELF::SHT_REL : {
1261      symbolIdx = getRel(Rel)->getSymbol();
1262      break;
1263    }
1264    case ELF::SHT_RELA : {
1265      symbolIdx = getRela(Rel)->getSymbol();
1266      break;
1267    }
1268  }
1269  DataRefImpl SymbolData;
1270  IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1271  if (it == SymbolTableSectionsIndexMap.end())
1272    report_fatal_error("Relocation symbol table not found!");
1273  SymbolData.d.a = symbolIdx;
1274  SymbolData.d.b = it->second;
1275  Result = SymbolRef(SymbolData, this);
1276  return object_error::success;
1277}
1278
1279template<support::endianness target_endianness, bool is64Bits>
1280error_code ELFObjectFile<target_endianness, is64Bits>
1281                        ::getRelocationAddress(DataRefImpl Rel,
1282                                               uint64_t &Result) const {
1283  uint64_t offset;
1284  const Elf_Shdr *sec = getSection(Rel.w.b);
1285  switch (sec->sh_type) {
1286    default :
1287      report_fatal_error("Invalid section type in Rel!");
1288    case ELF::SHT_REL : {
1289      offset = getRel(Rel)->r_offset;
1290      break;
1291    }
1292    case ELF::SHT_RELA : {
1293      offset = getRela(Rel)->r_offset;
1294      break;
1295    }
1296  }
1297
1298  Result = offset;
1299  return object_error::success;
1300}
1301
1302template<support::endianness target_endianness, bool is64Bits>
1303error_code ELFObjectFile<target_endianness, is64Bits>
1304                        ::getRelocationOffset(DataRefImpl Rel,
1305                                              uint64_t &Result) const {
1306  uint64_t offset;
1307  const Elf_Shdr *sec = getSection(Rel.w.b);
1308  switch (sec->sh_type) {
1309    default :
1310      report_fatal_error("Invalid section type in Rel!");
1311    case ELF::SHT_REL : {
1312      offset = getRel(Rel)->r_offset;
1313      break;
1314    }
1315    case ELF::SHT_RELA : {
1316      offset = getRela(Rel)->r_offset;
1317      break;
1318    }
1319  }
1320
1321  Result = offset - sec->sh_addr;
1322  return object_error::success;
1323}
1324
1325template<support::endianness target_endianness, bool is64Bits>
1326error_code ELFObjectFile<target_endianness, is64Bits>
1327                        ::getRelocationType(DataRefImpl Rel,
1328                                            uint64_t &Result) const {
1329  const Elf_Shdr *sec = getSection(Rel.w.b);
1330  switch (sec->sh_type) {
1331    default :
1332      report_fatal_error("Invalid section type in Rel!");
1333    case ELF::SHT_REL : {
1334      Result = getRel(Rel)->getType();
1335      break;
1336    }
1337    case ELF::SHT_RELA : {
1338      Result = getRela(Rel)->getType();
1339      break;
1340    }
1341  }
1342  return object_error::success;
1343}
1344
1345#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1346  case ELF::enum: res = #enum; break;
1347
1348template<support::endianness target_endianness, bool is64Bits>
1349error_code ELFObjectFile<target_endianness, is64Bits>
1350                        ::getRelocationTypeName(DataRefImpl Rel,
1351                                          SmallVectorImpl<char> &Result) const {
1352  const Elf_Shdr *sec = getSection(Rel.w.b);
1353  uint8_t type;
1354  StringRef res;
1355  switch (sec->sh_type) {
1356    default :
1357      return object_error::parse_failed;
1358    case ELF::SHT_REL : {
1359      type = getRel(Rel)->getType();
1360      break;
1361    }
1362    case ELF::SHT_RELA : {
1363      type = getRela(Rel)->getType();
1364      break;
1365    }
1366  }
1367  switch (Header->e_machine) {
1368  case ELF::EM_X86_64:
1369    switch (type) {
1370      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1371      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1372      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1373      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1374      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1375      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1376      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1377      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1378      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1379      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1380      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1381      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1382      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1383      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1384      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1385      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1386      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1387      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1388      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1389      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1390      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1391      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1392      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1393      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1394      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1395      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1396      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1397      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1398      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1399      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1400      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1401      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1402    default:
1403      res = "Unknown";
1404    }
1405    break;
1406  case ELF::EM_386:
1407    switch (type) {
1408      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1409      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1410      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1411      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1412      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1413      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1414      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1415      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1416      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1417      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1418      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1419      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1420      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1421      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1422      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1423      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1424      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1425      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1426      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1427      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1428      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1429      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1430      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1431      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1432      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1433      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1434      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1435      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1436      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1437      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1438      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1439      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1440      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1441      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1442      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1443      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1444      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1445      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1446      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1447      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1448    default:
1449      res = "Unknown";
1450    }
1451    break;
1452  case ELF::EM_ARM:
1453    switch (type) {
1454      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1455      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1456      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1457      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1458      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1459      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1460      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1461      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1462      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1463      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1464      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1465      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1466      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1467      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1468      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1469      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1470      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1471      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1472      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1473      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1474      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1475      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1476      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1477      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1478      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1479      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1480      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1481      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1482      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1483      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1484      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1485      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1486      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1487      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1488      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1489      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1490      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1491      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1492      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1493      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1494      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1495      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1496      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1497      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1498      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1499      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1500      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1501      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1502      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1503      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1504      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1505      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1506      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1507      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1508      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1509      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1510      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1511      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1512      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1513      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1514      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1515      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1516      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1517      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1518      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1519      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1520      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1521      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1522      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1523      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1524      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1525      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1526      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1527      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1528      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1529      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1530      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1531      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1532      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1533      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1534      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1535      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1536      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1537      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1538      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1539      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1540      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1541      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1542      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1543      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1544      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1545      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1546      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1547      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1548      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1549      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1550      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1551      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1552      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1553      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1554      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1555      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1556      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1557      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1558      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1559      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1560      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1561      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1562      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1563      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1564      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1565      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1566      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1567      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1568      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1569      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1570      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1571      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1572      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1573      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1574      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1575      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1576      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1577      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1578      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1579      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1580      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1581      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1582      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1583      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1584      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1585    default:
1586      res = "Unknown";
1587    }
1588    break;
1589  case ELF::EM_HEXAGON:
1590    switch (type) {
1591      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1592      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1593      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1594      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1595      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1596      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1597      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1598      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1599      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1600      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1601      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1602      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1603      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1604      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1605      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1606      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1607      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1608      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1609      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1610      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1611      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1612      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1613      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1614      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1615      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1616      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1617      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1618      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1619      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1620      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1621      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1622      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1623      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1624      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1625      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1626      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1627      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1628      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1629      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1630      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1631      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1632      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1633      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
1634      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
1635      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
1636      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
1637      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
1638      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
1639      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
1640      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
1641      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
1642      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
1643      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
1644      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
1645      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
1646      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
1647      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
1648      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
1649      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
1650      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
1651      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
1652      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
1653      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
1654      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
1655      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
1656      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
1657      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
1658      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
1659      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
1660      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
1661      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
1662      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
1663      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
1664      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
1665      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
1666      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
1667      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
1668      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
1669      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
1670      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
1671      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
1672      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
1673      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
1674      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
1675      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
1676      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
1677    default:
1678      res = "Unknown";
1679    }
1680    break;
1681  default:
1682    res = "Unknown";
1683  }
1684  Result.append(res.begin(), res.end());
1685  return object_error::success;
1686}
1687
1688#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
1689
1690template<support::endianness target_endianness, bool is64Bits>
1691error_code ELFObjectFile<target_endianness, is64Bits>
1692                        ::getRelocationAdditionalInfo(DataRefImpl Rel,
1693                                                      int64_t &Result) const {
1694  const Elf_Shdr *sec = getSection(Rel.w.b);
1695  switch (sec->sh_type) {
1696    default :
1697      report_fatal_error("Invalid section type in Rel!");
1698    case ELF::SHT_REL : {
1699      Result = 0;
1700      return object_error::success;
1701    }
1702    case ELF::SHT_RELA : {
1703      Result = getRela(Rel)->r_addend;
1704      return object_error::success;
1705    }
1706  }
1707}
1708
1709template<support::endianness target_endianness, bool is64Bits>
1710error_code ELFObjectFile<target_endianness, is64Bits>
1711                        ::getRelocationValueString(DataRefImpl Rel,
1712                                          SmallVectorImpl<char> &Result) const {
1713  const Elf_Shdr *sec = getSection(Rel.w.b);
1714  uint8_t type;
1715  StringRef res;
1716  int64_t addend = 0;
1717  uint16_t symbol_index = 0;
1718  switch (sec->sh_type) {
1719    default:
1720      return object_error::parse_failed;
1721    case ELF::SHT_REL: {
1722      type = getRel(Rel)->getType();
1723      symbol_index = getRel(Rel)->getSymbol();
1724      // TODO: Read implicit addend from section data.
1725      break;
1726    }
1727    case ELF::SHT_RELA: {
1728      type = getRela(Rel)->getType();
1729      symbol_index = getRela(Rel)->getSymbol();
1730      addend = getRela(Rel)->r_addend;
1731      break;
1732    }
1733  }
1734  const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
1735  StringRef symname;
1736  if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
1737    return ec;
1738  switch (Header->e_machine) {
1739  case ELF::EM_X86_64:
1740    switch (type) {
1741    case ELF::R_X86_64_PC8:
1742    case ELF::R_X86_64_PC16:
1743    case ELF::R_X86_64_PC32: {
1744        std::string fmtbuf;
1745        raw_string_ostream fmt(fmtbuf);
1746        fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
1747        fmt.flush();
1748        Result.append(fmtbuf.begin(), fmtbuf.end());
1749      }
1750      break;
1751    case ELF::R_X86_64_8:
1752    case ELF::R_X86_64_16:
1753    case ELF::R_X86_64_32:
1754    case ELF::R_X86_64_32S:
1755    case ELF::R_X86_64_64: {
1756        std::string fmtbuf;
1757        raw_string_ostream fmt(fmtbuf);
1758        fmt << symname << (addend < 0 ? "" : "+") << addend;
1759        fmt.flush();
1760        Result.append(fmtbuf.begin(), fmtbuf.end());
1761      }
1762      break;
1763    default:
1764      res = "Unknown";
1765    }
1766    break;
1767  case ELF::EM_ARM:
1768  case ELF::EM_HEXAGON:
1769    res = symname;
1770    break;
1771  default:
1772    res = "Unknown";
1773  }
1774  if (Result.empty())
1775    Result.append(res.begin(), res.end());
1776  return object_error::success;
1777}
1778
1779// Verify that the last byte in the string table in a null.
1780template<support::endianness target_endianness, bool is64Bits>
1781void ELFObjectFile<target_endianness, is64Bits>
1782                  ::VerifyStrTab(const Elf_Shdr *sh) const {
1783  const char *strtab = (const char*)base() + sh->sh_offset;
1784  if (strtab[sh->sh_size - 1] != 0)
1785    // FIXME: Proper error handling.
1786    report_fatal_error("String table must end with a null terminator!");
1787}
1788
1789template<support::endianness target_endianness, bool is64Bits>
1790ELFObjectFile<target_endianness, is64Bits>::ELFObjectFile(MemoryBuffer *Object
1791                                                          , error_code &ec)
1792  : ObjectFile(getELFType(target_endianness == support::little, is64Bits),
1793               Object, ec)
1794  , isDyldELFObject(false)
1795  , SectionHeaderTable(0)
1796  , dot_shstrtab_sec(0)
1797  , dot_strtab_sec(0)
1798  , dot_dynstr_sec(0)
1799  , dot_dynamic_sec(0)
1800  , dot_gnu_version_sec(0)
1801  , dot_gnu_version_r_sec(0)
1802  , dot_gnu_version_d_sec(0)
1803  , dt_soname(0)
1804 {
1805
1806  const uint64_t FileSize = Data->getBufferSize();
1807
1808  if (sizeof(Elf_Ehdr) > FileSize)
1809    // FIXME: Proper error handling.
1810    report_fatal_error("File too short!");
1811
1812  Header = reinterpret_cast<const Elf_Ehdr *>(base());
1813
1814  if (Header->e_shoff == 0)
1815    return;
1816
1817  const uint64_t SectionTableOffset = Header->e_shoff;
1818
1819  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
1820    // FIXME: Proper error handling.
1821    report_fatal_error("Section header table goes past end of file!");
1822
1823  // The getNumSections() call below depends on SectionHeaderTable being set.
1824  SectionHeaderTable =
1825    reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
1826  const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
1827
1828  if (SectionTableOffset + SectionTableSize > FileSize)
1829    // FIXME: Proper error handling.
1830    report_fatal_error("Section table goes past end of file!");
1831
1832  // To find the symbol tables we walk the section table to find SHT_SYMTAB.
1833  const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
1834  const Elf_Shdr* sh = SectionHeaderTable;
1835
1836  // Reserve SymbolTableSections[0] for .dynsym
1837  SymbolTableSections.push_back(NULL);
1838
1839  for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
1840    switch (sh->sh_type) {
1841    case ELF::SHT_SYMTAB_SHNDX: {
1842      if (SymbolTableSectionHeaderIndex)
1843        // FIXME: Proper error handling.
1844        report_fatal_error("More than one .symtab_shndx!");
1845      SymbolTableSectionHeaderIndex = sh;
1846      break;
1847    }
1848    case ELF::SHT_SYMTAB: {
1849      SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
1850      SymbolTableSections.push_back(sh);
1851      break;
1852    }
1853    case ELF::SHT_DYNSYM: {
1854      if (SymbolTableSections[0] != NULL)
1855        // FIXME: Proper error handling.
1856        report_fatal_error("More than one .dynsym!");
1857      SymbolTableSectionsIndexMap[i] = 0;
1858      SymbolTableSections[0] = sh;
1859      break;
1860    }
1861    case ELF::SHT_REL:
1862    case ELF::SHT_RELA: {
1863      SectionRelocMap[getSection(sh->sh_info)].push_back(i);
1864      break;
1865    }
1866    case ELF::SHT_DYNAMIC: {
1867      if (dot_dynamic_sec != NULL)
1868        // FIXME: Proper error handling.
1869        report_fatal_error("More than one .dynamic!");
1870      dot_dynamic_sec = sh;
1871      break;
1872    }
1873    case ELF::SHT_GNU_versym: {
1874      if (dot_gnu_version_sec != NULL)
1875        // FIXME: Proper error handling.
1876        report_fatal_error("More than one .gnu.version section!");
1877      dot_gnu_version_sec = sh;
1878      break;
1879    }
1880    case ELF::SHT_GNU_verdef: {
1881      if (dot_gnu_version_d_sec != NULL)
1882        // FIXME: Proper error handling.
1883        report_fatal_error("More than one .gnu.version_d section!");
1884      dot_gnu_version_d_sec = sh;
1885      break;
1886    }
1887    case ELF::SHT_GNU_verneed: {
1888      if (dot_gnu_version_r_sec != NULL)
1889        // FIXME: Proper error handling.
1890        report_fatal_error("More than one .gnu.version_r section!");
1891      dot_gnu_version_r_sec = sh;
1892      break;
1893    }
1894    }
1895    ++sh;
1896  }
1897
1898  // Sort section relocation lists by index.
1899  for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
1900                                     e = SectionRelocMap.end(); i != e; ++i) {
1901    std::sort(i->second.begin(), i->second.end());
1902  }
1903
1904  // Get string table sections.
1905  dot_shstrtab_sec = getSection(getStringTableIndex());
1906  if (dot_shstrtab_sec) {
1907    // Verify that the last byte in the string table in a null.
1908    VerifyStrTab(dot_shstrtab_sec);
1909  }
1910
1911  // Merge this into the above loop.
1912  for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
1913                  *e = i + getNumSections() * Header->e_shentsize;
1914                   i != e; i += Header->e_shentsize) {
1915    const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
1916    if (sh->sh_type == ELF::SHT_STRTAB) {
1917      StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
1918      if (SectionName == ".strtab") {
1919        if (dot_strtab_sec != 0)
1920          // FIXME: Proper error handling.
1921          report_fatal_error("Already found section named .strtab!");
1922        dot_strtab_sec = sh;
1923        VerifyStrTab(dot_strtab_sec);
1924      } else if (SectionName == ".dynstr") {
1925        if (dot_dynstr_sec != 0)
1926          // FIXME: Proper error handling.
1927          report_fatal_error("Already found section named .dynstr!");
1928        dot_dynstr_sec = sh;
1929        VerifyStrTab(dot_dynstr_sec);
1930      }
1931    }
1932  }
1933
1934  // Build symbol name side-mapping if there is one.
1935  if (SymbolTableSectionHeaderIndex) {
1936    const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
1937                                      SymbolTableSectionHeaderIndex->sh_offset);
1938    error_code ec;
1939    for (symbol_iterator si = begin_symbols(),
1940                         se = end_symbols(); si != se; si.increment(ec)) {
1941      if (ec)
1942        report_fatal_error("Fewer extended symbol table entries than symbols!");
1943      if (*ShndxTable != ELF::SHN_UNDEF)
1944        ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
1945      ++ShndxTable;
1946    }
1947  }
1948}
1949
1950template<support::endianness target_endianness, bool is64Bits>
1951symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1952                             ::begin_symbols() const {
1953  DataRefImpl SymbolData;
1954  if (SymbolTableSections.size() <= 1) {
1955    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1956    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1957  } else {
1958    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
1959    SymbolData.d.b = 1; // The 0th table is .dynsym
1960  }
1961  return symbol_iterator(SymbolRef(SymbolData, this));
1962}
1963
1964template<support::endianness target_endianness, bool is64Bits>
1965symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1966                             ::end_symbols() const {
1967  DataRefImpl SymbolData;
1968  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1969  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1970  return symbol_iterator(SymbolRef(SymbolData, this));
1971}
1972
1973template<support::endianness target_endianness, bool is64Bits>
1974symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1975                             ::begin_dynamic_symbols() const {
1976  DataRefImpl SymbolData;
1977  if (SymbolTableSections[0] == NULL) {
1978    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1979    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1980  } else {
1981    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
1982    SymbolData.d.b = 0; // The 0th table is .dynsym
1983  }
1984  return symbol_iterator(SymbolRef(SymbolData, this));
1985}
1986
1987template<support::endianness target_endianness, bool is64Bits>
1988symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1989                             ::end_dynamic_symbols() const {
1990  DataRefImpl SymbolData;
1991  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1992  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1993  return symbol_iterator(SymbolRef(SymbolData, this));
1994}
1995
1996template<support::endianness target_endianness, bool is64Bits>
1997section_iterator ELFObjectFile<target_endianness, is64Bits>
1998                              ::begin_sections() const {
1999  DataRefImpl ret;
2000  ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
2001  return section_iterator(SectionRef(ret, this));
2002}
2003
2004template<support::endianness target_endianness, bool is64Bits>
2005section_iterator ELFObjectFile<target_endianness, is64Bits>
2006                              ::end_sections() const {
2007  DataRefImpl ret;
2008  ret.p = reinterpret_cast<intptr_t>(base()
2009                                     + Header->e_shoff
2010                                     + (Header->e_shentsize*getNumSections()));
2011  return section_iterator(SectionRef(ret, this));
2012}
2013
2014template<support::endianness target_endianness, bool is64Bits>
2015typename ELFObjectFile<target_endianness, is64Bits>::dyn_iterator
2016ELFObjectFile<target_endianness, is64Bits>::begin_dynamic_table() const {
2017  DataRefImpl DynData;
2018  if (dot_dynamic_sec == NULL || dot_dynamic_sec->sh_size == 0) {
2019    DynData.d.a = std::numeric_limits<uint32_t>::max();
2020  } else {
2021    DynData.d.a = 0;
2022  }
2023  return dyn_iterator(DynRef(DynData, this));
2024}
2025
2026template<support::endianness target_endianness, bool is64Bits>
2027typename ELFObjectFile<target_endianness, is64Bits>::dyn_iterator
2028ELFObjectFile<target_endianness, is64Bits>
2029                          ::end_dynamic_table() const {
2030  DataRefImpl DynData;
2031  DynData.d.a = std::numeric_limits<uint32_t>::max();
2032  return dyn_iterator(DynRef(DynData, this));
2033}
2034
2035template<support::endianness target_endianness, bool is64Bits>
2036error_code ELFObjectFile<target_endianness, is64Bits>
2037                        ::getDynNext(DataRefImpl DynData,
2038                                     DynRef &Result) const {
2039  ++DynData.d.a;
2040
2041  // Check to see if we are at the end of .dynamic
2042  if (DynData.d.a >= dot_dynamic_sec->getEntityCount()) {
2043    // We are at the end. Return the terminator.
2044    DynData.d.a = std::numeric_limits<uint32_t>::max();
2045  }
2046
2047  Result = DynRef(DynData, this);
2048  return object_error::success;
2049}
2050
2051template<support::endianness target_endianness, bool is64Bits>
2052StringRef
2053ELFObjectFile<target_endianness, is64Bits>::getLoadName() const {
2054  if (!dt_soname) {
2055    // Find the DT_SONAME entry
2056    dyn_iterator it = begin_dynamic_table();
2057    dyn_iterator ie = end_dynamic_table();
2058    error_code ec;
2059    while (it != ie) {
2060      if (it->getTag() == ELF::DT_SONAME)
2061        break;
2062      it.increment(ec);
2063      if (ec)
2064        report_fatal_error("dynamic table iteration failed");
2065    }
2066    if (it != ie) {
2067      if (dot_dynstr_sec == NULL)
2068        report_fatal_error("Dynamic string table is missing");
2069      dt_soname = getString(dot_dynstr_sec, it->getVal());
2070    } else {
2071      dt_soname = "";
2072    }
2073  }
2074  return dt_soname;
2075}
2076
2077template<support::endianness target_endianness, bool is64Bits>
2078library_iterator ELFObjectFile<target_endianness, is64Bits>
2079                             ::begin_libraries_needed() const {
2080  // Find the first DT_NEEDED entry
2081  dyn_iterator i = begin_dynamic_table();
2082  dyn_iterator e = end_dynamic_table();
2083  error_code ec;
2084  while (i != e) {
2085    if (i->getTag() == ELF::DT_NEEDED)
2086      break;
2087    i.increment(ec);
2088    if (ec)
2089      report_fatal_error("dynamic table iteration failed");
2090  }
2091  // Use the same DataRefImpl format as DynRef.
2092  return library_iterator(LibraryRef(i->getRawDataRefImpl(), this));
2093}
2094
2095template<support::endianness target_endianness, bool is64Bits>
2096error_code ELFObjectFile<target_endianness, is64Bits>
2097                        ::getLibraryNext(DataRefImpl Data,
2098                                         LibraryRef &Result) const {
2099  // Use the same DataRefImpl format as DynRef.
2100  dyn_iterator i = dyn_iterator(DynRef(Data, this));
2101  dyn_iterator e = end_dynamic_table();
2102
2103  // Skip the current dynamic table entry.
2104  error_code ec;
2105  if (i != e) {
2106    i.increment(ec);
2107    // TODO: proper error handling
2108    if (ec)
2109      report_fatal_error("dynamic table iteration failed");
2110  }
2111
2112  // Find the next DT_NEEDED entry.
2113  while (i != e) {
2114    if (i->getTag() == ELF::DT_NEEDED)
2115      break;
2116    i.increment(ec);
2117    if (ec)
2118      report_fatal_error("dynamic table iteration failed");
2119  }
2120  Result = LibraryRef(i->getRawDataRefImpl(), this);
2121  return object_error::success;
2122}
2123
2124template<support::endianness target_endianness, bool is64Bits>
2125error_code ELFObjectFile<target_endianness, is64Bits>
2126         ::getLibraryPath(DataRefImpl Data, StringRef &Res) const {
2127  dyn_iterator i = dyn_iterator(DynRef(Data, this));
2128  if (i == end_dynamic_table())
2129    report_fatal_error("getLibraryPath() called on iterator end");
2130
2131  if (i->getTag() != ELF::DT_NEEDED)
2132    report_fatal_error("Invalid library_iterator");
2133
2134  // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2135  // THis works as long as DT_STRTAB == .dynstr. This is true most of
2136  // the time, but the specification allows exceptions.
2137  // TODO: This should really use DT_STRTAB instead. Doing this requires
2138  // reading the program headers.
2139  if (dot_dynstr_sec == NULL)
2140    report_fatal_error("Dynamic string table is missing");
2141  Res = getString(dot_dynstr_sec, i->getVal());
2142  return object_error::success;
2143}
2144
2145template<support::endianness target_endianness, bool is64Bits>
2146library_iterator ELFObjectFile<target_endianness, is64Bits>
2147                             ::end_libraries_needed() const {
2148  dyn_iterator e = end_dynamic_table();
2149  // Use the same DataRefImpl format as DynRef.
2150  return library_iterator(LibraryRef(e->getRawDataRefImpl(), this));
2151}
2152
2153template<support::endianness target_endianness, bool is64Bits>
2154uint8_t ELFObjectFile<target_endianness, is64Bits>::getBytesInAddress() const {
2155  return is64Bits ? 8 : 4;
2156}
2157
2158template<support::endianness target_endianness, bool is64Bits>
2159StringRef ELFObjectFile<target_endianness, is64Bits>
2160                       ::getFileFormatName() const {
2161  switch(Header->e_ident[ELF::EI_CLASS]) {
2162  case ELF::ELFCLASS32:
2163    switch(Header->e_machine) {
2164    case ELF::EM_386:
2165      return "ELF32-i386";
2166    case ELF::EM_X86_64:
2167      return "ELF32-x86-64";
2168    case ELF::EM_ARM:
2169      return "ELF32-arm";
2170    case ELF::EM_HEXAGON:
2171      return "ELF32-hexagon";
2172    default:
2173      return "ELF32-unknown";
2174    }
2175  case ELF::ELFCLASS64:
2176    switch(Header->e_machine) {
2177    case ELF::EM_386:
2178      return "ELF64-i386";
2179    case ELF::EM_X86_64:
2180      return "ELF64-x86-64";
2181    default:
2182      return "ELF64-unknown";
2183    }
2184  default:
2185    // FIXME: Proper error handling.
2186    report_fatal_error("Invalid ELFCLASS!");
2187  }
2188}
2189
2190template<support::endianness target_endianness, bool is64Bits>
2191unsigned ELFObjectFile<target_endianness, is64Bits>::getArch() const {
2192  switch(Header->e_machine) {
2193  case ELF::EM_386:
2194    return Triple::x86;
2195  case ELF::EM_X86_64:
2196    return Triple::x86_64;
2197  case ELF::EM_ARM:
2198    return Triple::arm;
2199  case ELF::EM_HEXAGON:
2200    return Triple::hexagon;
2201  case ELF::EM_MIPS:
2202    return (target_endianness == support::little) ?
2203           Triple::mipsel : Triple::mips;
2204  default:
2205    return Triple::UnknownArch;
2206  }
2207}
2208
2209template<support::endianness target_endianness, bool is64Bits>
2210uint64_t ELFObjectFile<target_endianness, is64Bits>::getNumSections() const {
2211  assert(Header && "Header not initialized!");
2212  if (Header->e_shnum == ELF::SHN_UNDEF) {
2213    assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2214    return SectionHeaderTable->sh_size;
2215  }
2216  return Header->e_shnum;
2217}
2218
2219template<support::endianness target_endianness, bool is64Bits>
2220uint64_t
2221ELFObjectFile<target_endianness, is64Bits>::getStringTableIndex() const {
2222  if (Header->e_shnum == ELF::SHN_UNDEF) {
2223    if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2224      return SectionHeaderTable->sh_link;
2225    if (Header->e_shstrndx >= getNumSections())
2226      return 0;
2227  }
2228  return Header->e_shstrndx;
2229}
2230
2231
2232template<support::endianness target_endianness, bool is64Bits>
2233template<typename T>
2234inline const T *
2235ELFObjectFile<target_endianness, is64Bits>::getEntry(uint16_t Section,
2236                                                     uint32_t Entry) const {
2237  return getEntry<T>(getSection(Section), Entry);
2238}
2239
2240template<support::endianness target_endianness, bool is64Bits>
2241template<typename T>
2242inline const T *
2243ELFObjectFile<target_endianness, is64Bits>::getEntry(const Elf_Shdr * Section,
2244                                                     uint32_t Entry) const {
2245  return reinterpret_cast<const T *>(
2246           base()
2247           + Section->sh_offset
2248           + (Entry * Section->sh_entsize));
2249}
2250
2251template<support::endianness target_endianness, bool is64Bits>
2252const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
2253ELFObjectFile<target_endianness, is64Bits>::getSymbol(DataRefImpl Symb) const {
2254  return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2255}
2256
2257template<support::endianness target_endianness, bool is64Bits>
2258const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Dyn *
2259ELFObjectFile<target_endianness, is64Bits>::getDyn(DataRefImpl DynData) const {
2260  return getEntry<Elf_Dyn>(dot_dynamic_sec, DynData.d.a);
2261}
2262
2263template<support::endianness target_endianness, bool is64Bits>
2264const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rel *
2265ELFObjectFile<target_endianness, is64Bits>::getRel(DataRefImpl Rel) const {
2266  return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2267}
2268
2269template<support::endianness target_endianness, bool is64Bits>
2270const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rela *
2271ELFObjectFile<target_endianness, is64Bits>::getRela(DataRefImpl Rela) const {
2272  return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2273}
2274
2275template<support::endianness target_endianness, bool is64Bits>
2276const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
2277ELFObjectFile<target_endianness, is64Bits>::getSection(DataRefImpl Symb) const {
2278  const Elf_Shdr *sec = getSection(Symb.d.b);
2279  if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2280    // FIXME: Proper error handling.
2281    report_fatal_error("Invalid symbol table section!");
2282  return sec;
2283}
2284
2285template<support::endianness target_endianness, bool is64Bits>
2286const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
2287ELFObjectFile<target_endianness, is64Bits>::getSection(uint32_t index) const {
2288  if (index == 0)
2289    return 0;
2290  if (!SectionHeaderTable || index >= getNumSections())
2291    // FIXME: Proper error handling.
2292    report_fatal_error("Invalid section index!");
2293
2294  return reinterpret_cast<const Elf_Shdr *>(
2295         reinterpret_cast<const char *>(SectionHeaderTable)
2296         + (index * Header->e_shentsize));
2297}
2298
2299template<support::endianness target_endianness, bool is64Bits>
2300const char *ELFObjectFile<target_endianness, is64Bits>
2301                         ::getString(uint32_t section,
2302                                     ELF::Elf32_Word offset) const {
2303  return getString(getSection(section), offset);
2304}
2305
2306template<support::endianness target_endianness, bool is64Bits>
2307const char *ELFObjectFile<target_endianness, is64Bits>
2308                         ::getString(const Elf_Shdr *section,
2309                                     ELF::Elf32_Word offset) const {
2310  assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2311  if (offset >= section->sh_size)
2312    // FIXME: Proper error handling.
2313    report_fatal_error("Symbol name offset outside of string table!");
2314  return (const char *)base() + section->sh_offset + offset;
2315}
2316
2317template<support::endianness target_endianness, bool is64Bits>
2318error_code ELFObjectFile<target_endianness, is64Bits>
2319                        ::getSymbolName(const Elf_Shdr *section,
2320                                        const Elf_Sym *symb,
2321                                        StringRef &Result) const {
2322  if (symb->st_name == 0) {
2323    const Elf_Shdr *section = getSection(symb);
2324    if (!section)
2325      Result = "";
2326    else
2327      Result = getString(dot_shstrtab_sec, section->sh_name);
2328    return object_error::success;
2329  }
2330
2331  if (section == SymbolTableSections[0]) {
2332    // Symbol is in .dynsym, use .dynstr string table
2333    Result = getString(dot_dynstr_sec, symb->st_name);
2334  } else {
2335    // Use the default symbol table name section.
2336    Result = getString(dot_strtab_sec, symb->st_name);
2337  }
2338  return object_error::success;
2339}
2340
2341template<support::endianness target_endianness, bool is64Bits>
2342error_code ELFObjectFile<target_endianness, is64Bits>
2343                        ::getSectionName(const Elf_Shdr *section,
2344                                        StringRef &Result) const {
2345  Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2346  return object_error::success;
2347}
2348
2349template<support::endianness target_endianness, bool is64Bits>
2350error_code ELFObjectFile<target_endianness, is64Bits>
2351                        ::getSymbolVersion(const Elf_Shdr *section,
2352                                           const Elf_Sym *symb,
2353                                           StringRef &Version,
2354                                           bool &IsDefault) const {
2355  // Handle non-dynamic symbols.
2356  if (section != SymbolTableSections[0]) {
2357    // Non-dynamic symbols can have versions in their names
2358    // A name of the form 'foo@V1' indicates version 'V1', non-default.
2359    // A name of the form 'foo@@V2' indicates version 'V2', default version.
2360    StringRef Name;
2361    error_code ec = getSymbolName(section, symb, Name);
2362    if (ec != object_error::success)
2363      return ec;
2364    size_t atpos = Name.find('@');
2365    if (atpos == StringRef::npos) {
2366      Version = "";
2367      IsDefault = false;
2368      return object_error::success;
2369    }
2370    ++atpos;
2371    if (atpos < Name.size() && Name[atpos] == '@') {
2372      IsDefault = true;
2373      ++atpos;
2374    } else {
2375      IsDefault = false;
2376    }
2377    Version = Name.substr(atpos);
2378    return object_error::success;
2379  }
2380
2381  // This is a dynamic symbol. Look in the GNU symbol version table.
2382  if (dot_gnu_version_sec == NULL) {
2383    // No version table.
2384    Version = "";
2385    IsDefault = false;
2386    return object_error::success;
2387  }
2388
2389  // Determine the position in the symbol table of this entry.
2390  const char *sec_start = (const char*)base() + section->sh_offset;
2391  size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2392
2393  // Get the corresponding version index entry
2394  const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2395  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2396
2397  // Special markers for unversioned symbols.
2398  if (version_index == ELF::VER_NDX_LOCAL ||
2399      version_index == ELF::VER_NDX_GLOBAL) {
2400    Version = "";
2401    IsDefault = false;
2402    return object_error::success;
2403  }
2404
2405  // Lookup this symbol in the version table
2406  LoadVersionMap();
2407  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2408    report_fatal_error("Symbol has version index without corresponding "
2409                       "define or reference entry");
2410  const VersionMapEntry &entry = VersionMap[version_index];
2411
2412  // Get the version name string
2413  size_t name_offset;
2414  if (entry.isVerdef()) {
2415    // The first Verdaux entry holds the name.
2416    name_offset = entry.getVerdef()->getAux()->vda_name;
2417  } else {
2418    name_offset = entry.getVernaux()->vna_name;
2419  }
2420  Version = getString(dot_dynstr_sec, name_offset);
2421
2422  // Set IsDefault
2423  if (entry.isVerdef()) {
2424    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2425  } else {
2426    IsDefault = false;
2427  }
2428
2429  return object_error::success;
2430}
2431
2432template<support::endianness target_endianness, bool is64Bits>
2433inline DynRefImpl<target_endianness, is64Bits>
2434                 ::DynRefImpl(DataRefImpl DynP, const OwningType *Owner)
2435  : DynPimpl(DynP)
2436  , OwningObject(Owner) {}
2437
2438template<support::endianness target_endianness, bool is64Bits>
2439inline bool DynRefImpl<target_endianness, is64Bits>
2440                      ::operator==(const DynRefImpl &Other) const {
2441  return DynPimpl == Other.DynPimpl;
2442}
2443
2444template<support::endianness target_endianness, bool is64Bits>
2445inline bool DynRefImpl<target_endianness, is64Bits>
2446                      ::operator <(const DynRefImpl &Other) const {
2447  return DynPimpl < Other.DynPimpl;
2448}
2449
2450template<support::endianness target_endianness, bool is64Bits>
2451inline error_code DynRefImpl<target_endianness, is64Bits>
2452                            ::getNext(DynRefImpl &Result) const {
2453  return OwningObject->getDynNext(DynPimpl, Result);
2454}
2455
2456template<support::endianness target_endianness, bool is64Bits>
2457inline int64_t DynRefImpl<target_endianness, is64Bits>
2458                            ::getTag() const {
2459  return OwningObject->getDyn(DynPimpl)->d_tag;
2460}
2461
2462template<support::endianness target_endianness, bool is64Bits>
2463inline uint64_t DynRefImpl<target_endianness, is64Bits>
2464                            ::getVal() const {
2465  return OwningObject->getDyn(DynPimpl)->d_un.d_val;
2466}
2467
2468template<support::endianness target_endianness, bool is64Bits>
2469inline uint64_t DynRefImpl<target_endianness, is64Bits>
2470                            ::getPtr() const {
2471  return OwningObject->getDyn(DynPimpl)->d_un.d_ptr;
2472}
2473
2474template<support::endianness target_endianness, bool is64Bits>
2475inline DataRefImpl DynRefImpl<target_endianness, is64Bits>
2476                             ::getRawDataRefImpl() const {
2477  return DynPimpl;
2478}
2479
2480/// This is a generic interface for retrieving GNU symbol version
2481/// information from an ELFObjectFile.
2482static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2483                                             const SymbolRef &Sym,
2484                                             StringRef &Version,
2485                                             bool &IsDefault) {
2486  // Little-endian 32-bit
2487  if (const ELFObjectFile<support::little, false> *ELFObj =
2488          dyn_cast<ELFObjectFile<support::little, false> >(Obj))
2489    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2490
2491  // Big-endian 32-bit
2492  if (const ELFObjectFile<support::big, false> *ELFObj =
2493          dyn_cast<ELFObjectFile<support::big, false> >(Obj))
2494    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2495
2496  // Little-endian 64-bit
2497  if (const ELFObjectFile<support::little, true> *ELFObj =
2498          dyn_cast<ELFObjectFile<support::little, true> >(Obj))
2499    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2500
2501  // Big-endian 64-bit
2502  if (const ELFObjectFile<support::big, true> *ELFObj =
2503          dyn_cast<ELFObjectFile<support::big, true> >(Obj))
2504    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2505
2506  llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2507}
2508
2509}
2510}
2511
2512#endif
2513