Pass.h revision 1fca5ff62bb2ecb5bfc8974f4dbfc56e9d3ca721
1//===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a base class that indicates that a specified class is a
11// transformation pass implementation.
12//
13// Pass's are designed this way so that it is possible to run passes in a cache
14// and organizationally optimal order without having to specify it at the front
15// end.  This allows arbitrary passes to be strung together and have them
16// executed as effeciently as possible.
17//
18// Passes should extend one of the classes below, depending on the guarantees
19// that it can make about what will be modified as it is run.  For example, most
20// global optimizations should derive from FunctionPass, because they do not add
21// or delete functions, they operate on the internals of the function.
22//
23// Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24// bottom), so the APIs exposed by these files are also automatically available
25// to all users of this file.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_PASS_H
30#define LLVM_PASS_H
31
32#include <vector>
33#include <map>
34#include <iosfwd>
35#include <typeinfo>
36#include <cassert>
37
38namespace llvm {
39
40class Value;
41class BasicBlock;
42class Function;
43class Module;
44class AnalysisUsage;
45class PassInfo;
46class ImmutablePass;
47template<class UnitType> class PassManagerT;
48struct AnalysisResolver;
49
50// AnalysisID - Use the PassInfo to identify a pass...
51typedef const PassInfo* AnalysisID;
52
53//===----------------------------------------------------------------------===//
54/// Pass interface - Implemented by all 'passes'.  Subclass this if you are an
55/// interprocedural optimization or you do not fit into any of the more
56/// constrained passes described below.
57///
58class Pass {
59  friend struct AnalysisResolver;
60  AnalysisResolver *Resolver;  // AnalysisResolver this pass is owned by...
61  const PassInfo *PassInfoCache;
62
63  // AnalysisImpls - This keeps track of which passes implement the interfaces
64  // that are required by the current pass (to implement getAnalysis()).
65  //
66  std::vector<std::pair<const PassInfo*, Pass*> > AnalysisImpls;
67
68  void operator=(const Pass&);  // DO NOT IMPLEMENT
69  Pass(const Pass &);           // DO NOT IMPLEMENT
70public:
71  Pass() : Resolver(0), PassInfoCache(0) {}
72  virtual ~Pass() {} // Destructor is virtual so we can be subclassed
73
74  /// getPassName - Return a nice clean name for a pass.  This usually
75  /// implemented in terms of the name that is registered by one of the
76  /// Registration templates, but can be overloaded directly, and if nothing
77  /// else is available, C++ RTTI will be consulted to get a SOMEWHAT
78  /// intelligible name for the pass.
79  ///
80  virtual const char *getPassName() const;
81
82  /// getPassInfo - Return the PassInfo data structure that corresponds to this
83  /// pass...  If the pass has not been registered, this will return null.
84  ///
85  const PassInfo *getPassInfo() const;
86
87  /// runPass - Run this pass, returning true if a modification was made to the
88  /// module argument.  This should be implemented by all concrete subclasses.
89  ///
90  virtual bool runPass(Module &M) = 0;
91
92  /// print - Print out the internal state of the pass.  This is called by
93  /// Analyze to print out the contents of an analysis.  Otherwise it is not
94  /// necessary to implement this method.  Beware that the module pointer MAY be
95  /// null.  This automatically forwards to a virtual function that does not
96  /// provide the Module* in case the analysis doesn't need it it can just be
97  /// ignored.
98  ///
99  virtual void print(std::ostream &O, const Module *M) const { print(O); }
100  virtual void print(std::ostream &O) const;
101  void dump() const; // dump - call print(std::cerr, 0);
102
103
104  /// getAnalysisUsage - This function should be overriden by passes that need
105  /// analysis information to do their job.  If a pass specifies that it uses a
106  /// particular analysis result to this function, it can then use the
107  /// getAnalysis<AnalysisType>() function, below.
108  ///
109  virtual void getAnalysisUsage(AnalysisUsage &Info) const {
110    // By default, no analysis results are used, all are invalidated.
111  }
112
113  /// releaseMemory() - This member can be implemented by a pass if it wants to
114  /// be able to release its memory when it is no longer needed.  The default
115  /// behavior of passes is to hold onto memory for the entire duration of their
116  /// lifetime (which is the entire compile time).  For pipelined passes, this
117  /// is not a big deal because that memory gets recycled every time the pass is
118  /// invoked on another program unit.  For IP passes, it is more important to
119  /// free memory when it is unused.
120  ///
121  /// Optionally implement this function to release pass memory when it is no
122  /// longer used.
123  ///
124  virtual void releaseMemory() {}
125
126  // dumpPassStructure - Implement the -debug-passes=PassStructure option
127  virtual void dumpPassStructure(unsigned Offset = 0);
128
129
130  // getPassInfo - Static method to get the pass information from a class name.
131  template<typename AnalysisClass>
132  static const PassInfo *getClassPassInfo() {
133    return lookupPassInfo(typeid(AnalysisClass));
134  }
135
136  // lookupPassInfo - Return the pass info object for the specified pass class,
137  // or null if it is not known.
138  static const PassInfo *lookupPassInfo(const std::type_info &TI);
139
140  /// getAnalysisToUpdate<AnalysisType>() - This function is used by subclasses
141  /// to get to the analysis information that might be around that needs to be
142  /// updated.  This is different than getAnalysis in that it can fail (ie the
143  /// analysis results haven't been computed), so should only be used if you
144  /// provide the capability to update an analysis that exists.  This method is
145  /// often used by transformation APIs to update analysis results for a pass
146  /// automatically as the transform is performed.
147  ///
148  template<typename AnalysisType>
149  AnalysisType *getAnalysisToUpdate() const; // Defined in PassAnalysisSupport.h
150
151  /// mustPreserveAnalysisID - This method serves the same function as
152  /// getAnalysisToUpdate, but works if you just have an AnalysisID.  This
153  /// obviously cannot give you a properly typed instance of the class if you
154  /// don't have the class name available (use getAnalysisToUpdate if you do),
155  /// but it can tell you if you need to preserve the pass at least.
156  ///
157  bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
158
159  /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
160  /// to the analysis information that they claim to use by overriding the
161  /// getAnalysisUsage function.
162  ///
163  template<typename AnalysisType>
164  AnalysisType &getAnalysis() const {
165    assert(Resolver && "Pass has not been inserted into a PassManager object!");
166    const PassInfo *PI = getClassPassInfo<AnalysisType>();
167    return getAnalysisID<AnalysisType>(PI);
168  }
169
170  template<typename AnalysisType>
171  AnalysisType &getAnalysisID(const PassInfo *PI) const {
172    assert(Resolver && "Pass has not been inserted into a PassManager object!");
173    assert(PI && "getAnalysis for unregistered pass!");
174
175    // PI *must* appear in AnalysisImpls.  Because the number of passes used
176    // should be a small number, we just do a linear search over a (dense)
177    // vector.
178    Pass *ResultPass = 0;
179    for (unsigned i = 0; ; ++i) {
180      assert(i != AnalysisImpls.size() &&
181             "getAnalysis*() called on an analysis that was not "
182             "'required' by pass!");
183      if (AnalysisImpls[i].first == PI) {
184        ResultPass = AnalysisImpls[i].second;
185        break;
186      }
187    }
188
189    // Because the AnalysisType may not be a subclass of pass (for
190    // AnalysisGroups), we must use dynamic_cast here to potentially adjust the
191    // return pointer (because the class may multiply inherit, once from pass,
192    // once from AnalysisType).
193    //
194    AnalysisType *Result = dynamic_cast<AnalysisType*>(ResultPass);
195    assert(Result && "Pass does not implement interface required!");
196    return *Result;
197  }
198
199private:
200  friend class PassManagerT<Module>;
201  friend class PassManagerT<Function>;
202  friend class PassManagerT<BasicBlock>;
203};
204
205inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
206  P.print(OS, 0); return OS;
207}
208
209//===----------------------------------------------------------------------===//
210/// ModulePass class - This class is used to implement unstructured
211/// interprocedural optimizations and analyses.  ModulePass's may do anything
212/// they want to the program.
213///
214class ModulePass : public Pass {
215public:
216  /// runOnModule - Virtual method overriden by subclasses to process the module
217  /// being operated on.
218  virtual bool runOnModule(Module &M) = 0;
219
220  bool runPass(Module &M) { return runOnModule(M); }
221
222  virtual void addToPassManager(PassManagerT<Module> *PM, AnalysisUsage &AU);
223};
224
225
226//===----------------------------------------------------------------------===//
227/// ImmutablePass class - This class is used to provide information that does
228/// not need to be run.  This is useful for things like target information and
229/// "basic" versions of AnalysisGroups.
230///
231class ImmutablePass : public ModulePass {
232public:
233  /// initializePass - This method may be overriden by immutable passes to allow
234  /// them to perform various initialization actions they require.  This is
235  /// primarily because an ImmutablePass can "require" another ImmutablePass,
236  /// and if it does, the overloaded version of initializePass may get access to
237  /// these passes with getAnalysis<>.
238  ///
239  virtual void initializePass() {}
240
241  /// ImmutablePasses are never run.
242  ///
243  virtual bool runOnModule(Module &M) { return false; }
244
245private:
246  friend class PassManagerT<Module>;
247  virtual void addToPassManager(PassManagerT<Module> *PM, AnalysisUsage &AU);
248};
249
250//===----------------------------------------------------------------------===//
251/// FunctionPass class - This class is used to implement most global
252/// optimizations.  Optimizations should subclass this class if they meet the
253/// following constraints:
254///
255///  1. Optimizations are organized globally, i.e., a function at a time
256///  2. Optimizing a function does not cause the addition or removal of any
257///     functions in the module
258///
259class FunctionPass : public ModulePass {
260public:
261  /// doInitialization - Virtual method overridden by subclasses to do
262  /// any necessary per-module initialization.
263  ///
264  virtual bool doInitialization(Module &M) { return false; }
265
266  /// runOnFunction - Virtual method overriden by subclasses to do the
267  /// per-function processing of the pass.
268  ///
269  virtual bool runOnFunction(Function &F) = 0;
270
271  /// doFinalization - Virtual method overriden by subclasses to do any post
272  /// processing needed after all passes have run.
273  ///
274  virtual bool doFinalization(Module &M) { return false; }
275
276  /// runOnModule - On a module, we run this pass by initializing,
277  /// ronOnFunction'ing once for every function in the module, then by
278  /// finalizing.
279  ///
280  virtual bool runOnModule(Module &M);
281
282  /// run - On a function, we simply initialize, run the function, then
283  /// finalize.
284  ///
285  bool run(Function &F);
286
287private:
288  friend class PassManagerT<Module>;
289  friend class PassManagerT<Function>;
290  friend class PassManagerT<BasicBlock>;
291  virtual void addToPassManager(PassManagerT<Module> *PM, AnalysisUsage &AU);
292  virtual void addToPassManager(PassManagerT<Function> *PM, AnalysisUsage &AU);
293};
294
295
296
297//===----------------------------------------------------------------------===//
298/// BasicBlockPass class - This class is used to implement most local
299/// optimizations.  Optimizations should subclass this class if they
300/// meet the following constraints:
301///   1. Optimizations are local, operating on either a basic block or
302///      instruction at a time.
303///   2. Optimizations do not modify the CFG of the contained function, or any
304///      other basic block in the function.
305///   3. Optimizations conform to all of the constraints of FunctionPass's.
306///
307struct BasicBlockPass : public FunctionPass {
308  /// doInitialization - Virtual method overridden by subclasses to do
309  /// any necessary per-module initialization.
310  ///
311  virtual bool doInitialization(Module &M) { return false; }
312
313  /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
314  /// to do any necessary per-function initialization.
315  ///
316  virtual bool doInitialization(Function &F) { return false; }
317
318  /// runOnBasicBlock - Virtual method overriden by subclasses to do the
319  /// per-basicblock processing of the pass.
320  ///
321  virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
322
323  /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
324  /// do any post processing needed after all passes have run.
325  ///
326  virtual bool doFinalization(Function &F) { return false; }
327
328  /// doFinalization - Virtual method overriden by subclasses to do any post
329  /// processing needed after all passes have run.
330  ///
331  virtual bool doFinalization(Module &M) { return false; }
332
333
334  // To run this pass on a function, we simply call runOnBasicBlock once for
335  // each function.
336  //
337  bool runOnFunction(Function &F);
338
339  /// To run directly on the basic block, we initialize, runOnBasicBlock, then
340  /// finalize.
341  ///
342  bool runPass(BasicBlock &BB);
343
344private:
345  friend class PassManagerT<Function>;
346  friend class PassManagerT<BasicBlock>;
347  virtual void addToPassManager(PassManagerT<Function> *PM, AnalysisUsage &AU);
348  virtual void addToPassManager(PassManagerT<BasicBlock> *PM,AnalysisUsage &AU);
349};
350
351/// If the user specifies the -time-passes argument on an LLVM tool command line
352/// then the value of this boolean will be true, otherwise false.
353/// @brief This is the storage for the -time-passes option.
354extern bool TimePassesIsEnabled;
355
356} // End llvm namespace
357
358// Include support files that contain important APIs commonly used by Passes,
359// but that we want to separate out to make it easier to read the header files.
360//
361#include "llvm/PassSupport.h"
362#include "llvm/PassAnalysisSupport.h"
363
364#endif
365