Pass.h revision c2f12ab5e5258a949c0cfff074bf57fe0c08d4e5
1//===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a base class that indicates that a specified class is a
11// transformation pass implementation.
12//
13// Passes are designed this way so that it is possible to run passes in a cache
14// and organizationally optimal order without having to specify it at the front
15// end.  This allows arbitrary passes to be strung together and have them
16// executed as effeciently as possible.
17//
18// Passes should extend one of the classes below, depending on the guarantees
19// that it can make about what will be modified as it is run.  For example, most
20// global optimizations should derive from FunctionPass, because they do not add
21// or delete functions, they operate on the internals of the function.
22//
23// Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24// bottom), so the APIs exposed by these files are also automatically available
25// to all users of this file.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_PASS_H
30#define LLVM_PASS_H
31
32#include "llvm/Support/DataTypes.h"
33#include "llvm/Support/Streams.h"
34#include <vector>
35#include <deque>
36#include <map>
37#include <iosfwd>
38#include <cassert>
39
40namespace llvm {
41
42class Value;
43class BasicBlock;
44class Function;
45class Module;
46class AnalysisUsage;
47class PassInfo;
48class ImmutablePass;
49class PMStack;
50class AnalysisResolver;
51class PMDataManager;
52
53// AnalysisID - Use the PassInfo to identify a pass...
54typedef const PassInfo* AnalysisID;
55
56/// Different types of internal pass managers. External pass managers
57/// (PassManager and FunctionPassManager) are not represented here.
58/// Ordering of pass manager types is important here.
59enum PassManagerType {
60  PMT_Unknown = 0,
61  PMT_ModulePassManager = 1, /// MPPassManager
62  PMT_CallGraphPassManager,  /// CGPassManager
63  PMT_FunctionPassManager,   /// FPPassManager
64  PMT_LoopPassManager,       /// LPPassManager
65  PMT_BasicBlockPassManager, /// BBPassManager
66  PMT_Last
67};
68
69//===----------------------------------------------------------------------===//
70/// Pass interface - Implemented by all 'passes'.  Subclass this if you are an
71/// interprocedural optimization or you do not fit into any of the more
72/// constrained passes described below.
73///
74class Pass {
75  AnalysisResolver *Resolver;  // Used to resolve analysis
76  intptr_t PassID;
77
78  // AnalysisImpls - This keeps track of which passes implement the interfaces
79  // that are required by the current pass (to implement getAnalysis()).
80  //
81  std::vector<std::pair<const PassInfo*, Pass*> > AnalysisImpls;
82
83  void operator=(const Pass&);  // DO NOT IMPLEMENT
84  Pass(const Pass &);           // DO NOT IMPLEMENT
85public:
86  explicit Pass(intptr_t pid) : Resolver(0), PassID(pid) {}
87  explicit Pass(const void *pid) : Resolver(0), PassID((intptr_t)pid) {}
88  virtual ~Pass();
89
90  /// getPassName - Return a nice clean name for a pass.  This usually
91  /// implemented in terms of the name that is registered by one of the
92  /// Registration templates, but can be overloaded directly, and if nothing
93  /// else is available, C++ RTTI will be consulted to get a SOMEWHAT
94  /// intelligible name for the pass.
95  ///
96  virtual const char *getPassName() const;
97
98  /// getPassInfo - Return the PassInfo data structure that corresponds to this
99  /// pass...  If the pass has not been registered, this will return null.
100  ///
101  const PassInfo *getPassInfo() const;
102
103  /// print - Print out the internal state of the pass.  This is called by
104  /// Analyze to print out the contents of an analysis.  Otherwise it is not
105  /// necessary to implement this method.  Beware that the module pointer MAY be
106  /// null.  This automatically forwards to a virtual function that does not
107  /// provide the Module* in case the analysis doesn't need it it can just be
108  /// ignored.
109  ///
110  virtual void print(std::ostream &O, const Module *M) const;
111  void print(std::ostream *O, const Module *M) const { if (O) print(*O, M); }
112  void dump() const; // dump - call print(std::cerr, 0);
113
114  /// Each pass is responsible for assigning a pass manager to itself.
115  /// PMS is the stack of available pass manager.
116  virtual void assignPassManager(PMStack &PMS,
117                                 PassManagerType T = PMT_Unknown) {}
118  /// Check if available pass managers are suitable for this pass or not.
119  virtual void preparePassManager(PMStack &PMS) {}
120
121  ///  Return what kind of Pass Manager can manage this pass.
122  virtual PassManagerType getPotentialPassManagerType() const {
123    return PMT_Unknown;
124  }
125
126  // Access AnalysisResolver
127  inline void setResolver(AnalysisResolver *AR) {
128    assert (!Resolver && "Resolver is already set");
129    Resolver = AR;
130  }
131  inline AnalysisResolver *getResolver() {
132    assert (Resolver && "Resolver is not set");
133    return Resolver;
134  }
135
136  /// getAnalysisUsage - This function should be overriden by passes that need
137  /// analysis information to do their job.  If a pass specifies that it uses a
138  /// particular analysis result to this function, it can then use the
139  /// getAnalysis<AnalysisType>() function, below.
140  ///
141  virtual void getAnalysisUsage(AnalysisUsage &Info) const {
142    // By default, no analysis results are used, all are invalidated.
143  }
144
145  /// releaseMemory() - This member can be implemented by a pass if it wants to
146  /// be able to release its memory when it is no longer needed.  The default
147  /// behavior of passes is to hold onto memory for the entire duration of their
148  /// lifetime (which is the entire compile time).  For pipelined passes, this
149  /// is not a big deal because that memory gets recycled every time the pass is
150  /// invoked on another program unit.  For IP passes, it is more important to
151  /// free memory when it is unused.
152  ///
153  /// Optionally implement this function to release pass memory when it is no
154  /// longer used.
155  ///
156  virtual void releaseMemory() {}
157
158  /// verifyAnalysis() - This member can be implemented by a analysis pass to
159  /// check state of analysis information.
160  virtual void verifyAnalysis() const {}
161
162  // dumpPassStructure - Implement the -debug-passes=PassStructure option
163  virtual void dumpPassStructure(unsigned Offset = 0);
164
165  template<typename AnalysisClass>
166  static const PassInfo *getClassPassInfo() {
167    return lookupPassInfo(intptr_t(&AnalysisClass::ID));
168  }
169
170  // lookupPassInfo - Return the pass info object for the specified pass class,
171  // or null if it is not known.
172  static const PassInfo *lookupPassInfo(intptr_t TI);
173
174  /// getAnalysisToUpdate<AnalysisType>() - This function is used by subclasses
175  /// to get to the analysis information that might be around that needs to be
176  /// updated.  This is different than getAnalysis in that it can fail (ie the
177  /// analysis results haven't been computed), so should only be used if you
178  /// provide the capability to update an analysis that exists.  This method is
179  /// often used by transformation APIs to update analysis results for a pass
180  /// automatically as the transform is performed.
181  ///
182  template<typename AnalysisType>
183  AnalysisType *getAnalysisToUpdate() const; // Defined in PassAnalysisSupport.h
184
185  /// mustPreserveAnalysisID - This method serves the same function as
186  /// getAnalysisToUpdate, but works if you just have an AnalysisID.  This
187  /// obviously cannot give you a properly typed instance of the class if you
188  /// don't have the class name available (use getAnalysisToUpdate if you do),
189  /// but it can tell you if you need to preserve the pass at least.
190  ///
191  bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
192
193  /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
194  /// to the analysis information that they claim to use by overriding the
195  /// getAnalysisUsage function.
196  ///
197  template<typename AnalysisType>
198  AnalysisType &getAnalysis() const; // Defined in PassAnalysisSupport.h
199
200  template<typename AnalysisType>
201  AnalysisType &getAnalysis(Function &F); // Defined in PassanalysisSupport.h
202
203  template<typename AnalysisType>
204  AnalysisType &getAnalysisID(const PassInfo *PI) const;
205
206  template<typename AnalysisType>
207  AnalysisType &getAnalysisID(const PassInfo *PI, Function &F);
208};
209
210inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
211  P.print(OS, 0); return OS;
212}
213
214//===----------------------------------------------------------------------===//
215/// ModulePass class - This class is used to implement unstructured
216/// interprocedural optimizations and analyses.  ModulePasses may do anything
217/// they want to the program.
218///
219class ModulePass : public Pass {
220public:
221  /// runOnModule - Virtual method overriden by subclasses to process the module
222  /// being operated on.
223  virtual bool runOnModule(Module &M) = 0;
224
225  virtual void assignPassManager(PMStack &PMS,
226                                 PassManagerType T = PMT_ModulePassManager);
227
228  ///  Return what kind of Pass Manager can manage this pass.
229  virtual PassManagerType getPotentialPassManagerType() const {
230    return PMT_ModulePassManager;
231  }
232
233  explicit ModulePass(intptr_t pid) : Pass(pid) {}
234  explicit ModulePass(const void *pid) : Pass(pid) {}
235  // Force out-of-line virtual method.
236  virtual ~ModulePass();
237};
238
239
240//===----------------------------------------------------------------------===//
241/// ImmutablePass class - This class is used to provide information that does
242/// not need to be run.  This is useful for things like target information and
243/// "basic" versions of AnalysisGroups.
244///
245class ImmutablePass : public ModulePass {
246public:
247  /// initializePass - This method may be overriden by immutable passes to allow
248  /// them to perform various initialization actions they require.  This is
249  /// primarily because an ImmutablePass can "require" another ImmutablePass,
250  /// and if it does, the overloaded version of initializePass may get access to
251  /// these passes with getAnalysis<>.
252  ///
253  virtual void initializePass() {}
254
255  /// ImmutablePasses are never run.
256  ///
257  bool runOnModule(Module &M) { return false; }
258
259  explicit ImmutablePass(intptr_t pid) : ModulePass(pid) {}
260  explicit ImmutablePass(const void *pid) : ModulePass(pid) {}
261
262  // Force out-of-line virtual method.
263  virtual ~ImmutablePass();
264};
265
266//===----------------------------------------------------------------------===//
267/// FunctionPass class - This class is used to implement most global
268/// optimizations.  Optimizations should subclass this class if they meet the
269/// following constraints:
270///
271///  1. Optimizations are organized globally, i.e., a function at a time
272///  2. Optimizing a function does not cause the addition or removal of any
273///     functions in the module
274///
275class FunctionPass : public Pass {
276public:
277  explicit FunctionPass(intptr_t pid) : Pass(pid) {}
278  explicit FunctionPass(const void *pid) : Pass(pid) {}
279
280  /// doInitialization - Virtual method overridden by subclasses to do
281  /// any necessary per-module initialization.
282  ///
283  virtual bool doInitialization(Module &M) { return false; }
284
285  /// runOnFunction - Virtual method overriden by subclasses to do the
286  /// per-function processing of the pass.
287  ///
288  virtual bool runOnFunction(Function &F) = 0;
289
290  /// doFinalization - Virtual method overriden by subclasses to do any post
291  /// processing needed after all passes have run.
292  ///
293  virtual bool doFinalization(Module &M) { return false; }
294
295  /// runOnModule - On a module, we run this pass by initializing,
296  /// ronOnFunction'ing once for every function in the module, then by
297  /// finalizing.
298  ///
299  virtual bool runOnModule(Module &M);
300
301  /// run - On a function, we simply initialize, run the function, then
302  /// finalize.
303  ///
304  bool run(Function &F);
305
306  virtual void assignPassManager(PMStack &PMS,
307                                 PassManagerType T = PMT_FunctionPassManager);
308
309  ///  Return what kind of Pass Manager can manage this pass.
310  virtual PassManagerType getPotentialPassManagerType() const {
311    return PMT_FunctionPassManager;
312  }
313};
314
315
316
317//===----------------------------------------------------------------------===//
318/// BasicBlockPass class - This class is used to implement most local
319/// optimizations.  Optimizations should subclass this class if they
320/// meet the following constraints:
321///   1. Optimizations are local, operating on either a basic block or
322///      instruction at a time.
323///   2. Optimizations do not modify the CFG of the contained function, or any
324///      other basic block in the function.
325///   3. Optimizations conform to all of the constraints of FunctionPasses.
326///
327class BasicBlockPass : public Pass {
328public:
329  explicit BasicBlockPass(intptr_t pid) : Pass(pid) {}
330  explicit BasicBlockPass(const void *pid) : Pass(pid) {}
331
332  /// doInitialization - Virtual method overridden by subclasses to do
333  /// any necessary per-module initialization.
334  ///
335  virtual bool doInitialization(Module &M) { return false; }
336
337  /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
338  /// to do any necessary per-function initialization.
339  ///
340  virtual bool doInitialization(Function &F) { return false; }
341
342  /// runOnBasicBlock - Virtual method overriden by subclasses to do the
343  /// per-basicblock processing of the pass.
344  ///
345  virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
346
347  /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
348  /// do any post processing needed after all passes have run.
349  ///
350  virtual bool doFinalization(Function &F) { return false; }
351
352  /// doFinalization - Virtual method overriden by subclasses to do any post
353  /// processing needed after all passes have run.
354  ///
355  virtual bool doFinalization(Module &M) { return false; }
356
357
358  // To run this pass on a function, we simply call runOnBasicBlock once for
359  // each function.
360  //
361  bool runOnFunction(Function &F);
362
363  virtual void assignPassManager(PMStack &PMS,
364                                 PassManagerType T = PMT_BasicBlockPassManager);
365
366  ///  Return what kind of Pass Manager can manage this pass.
367  virtual PassManagerType getPotentialPassManagerType() const {
368    return PMT_BasicBlockPassManager;
369  }
370};
371
372/// PMStack
373/// Top level pass manager (see PassManager.cpp) maintains active Pass Managers
374/// using PMStack. Each Pass implements assignPassManager() to connect itself
375/// with appropriate manager. assignPassManager() walks PMStack to find
376/// suitable manager.
377///
378/// PMStack is just a wrapper around standard deque that overrides pop() and
379/// push() methods.
380class PMStack {
381public:
382  typedef std::deque<PMDataManager *>::reverse_iterator iterator;
383  iterator begin() { return S.rbegin(); }
384  iterator end() { return S.rend(); }
385
386  void handleLastUserOverflow();
387
388  void pop();
389  inline PMDataManager *top() { return S.back(); }
390  void push(PMDataManager *PM);
391  inline bool empty() { return S.empty(); }
392
393  void dump();
394private:
395  std::deque<PMDataManager *> S;
396};
397
398
399/// If the user specifies the -time-passes argument on an LLVM tool command line
400/// then the value of this boolean will be true, otherwise false.
401/// @brief This is the storage for the -time-passes option.
402extern bool TimePassesIsEnabled;
403
404} // End llvm namespace
405
406// Include support files that contain important APIs commonly used by Passes,
407// but that we want to separate out to make it easier to read the header files.
408//
409#include "llvm/PassSupport.h"
410#include "llvm/PassAnalysisSupport.h"
411
412#endif
413