Pass.h revision e37879c23bfd97c9537b4e2398710256c289984c
1//===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a base class that indicates that a specified class is a
11// transformation pass implementation.
12//
13// Passes are designed this way so that it is possible to run passes in a cache
14// and organizationally optimal order without having to specify it at the front
15// end.  This allows arbitrary passes to be strung together and have them
16// executed as effeciently as possible.
17//
18// Passes should extend one of the classes below, depending on the guarantees
19// that it can make about what will be modified as it is run.  For example, most
20// global optimizations should derive from FunctionPass, because they do not add
21// or delete functions, they operate on the internals of the function.
22//
23// Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24// bottom), so the APIs exposed by these files are also automatically available
25// to all users of this file.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_PASS_H
30#define LLVM_PASS_H
31
32#include "llvm/Support/Streams.h"
33#include <vector>
34#include <deque>
35#include <map>
36#include <iosfwd>
37#include <typeinfo>
38#include <cassert>
39
40namespace llvm {
41
42class Value;
43class BasicBlock;
44class Function;
45class Module;
46class AnalysisUsage;
47class PassInfo;
48class ImmutablePass;
49class BasicBlockPassManager;
50class ModulePassManager;
51class PMStack;
52class AnalysisResolver;
53class PMDataManager;
54
55// AnalysisID - Use the PassInfo to identify a pass...
56typedef const PassInfo* AnalysisID;
57
58/// Different types of internal pass managers. External pass managers
59/// (PassManager and FunctionPassManager) are not represented here.
60/// Ordering of pass manager types is important here.
61enum PassManagerType {
62  PMT_Unknown = 0,
63  PMT_ModulePassManager = 1, /// MPPassManager
64  PMT_CallGraphPassManager,  /// CGPassManager
65  PMT_FunctionPassManager,   /// FPPassManager
66  PMT_LoopPassManager,       /// LPPassManager
67  PMT_BasicBlockPassManager  /// BBPassManager
68};
69
70typedef enum PassManagerType PassManagerType;
71
72//===----------------------------------------------------------------------===//
73/// Pass interface - Implemented by all 'passes'.  Subclass this if you are an
74/// interprocedural optimization or you do not fit into any of the more
75/// constrained passes described below.
76///
77class Pass {
78  AnalysisResolver *Resolver;  // Used to resolve analysis
79  const PassInfo *PassInfoCache;
80
81  // AnalysisImpls - This keeps track of which passes implement the interfaces
82  // that are required by the current pass (to implement getAnalysis()).
83  //
84  std::vector<std::pair<const PassInfo*, Pass*> > AnalysisImpls;
85
86  void operator=(const Pass&);  // DO NOT IMPLEMENT
87  Pass(const Pass &);           // DO NOT IMPLEMENT
88public:
89  Pass() : Resolver(0), PassInfoCache(0) {}
90  virtual ~Pass() {} // Destructor is virtual so we can be subclassed
91
92  /// getPassName - Return a nice clean name for a pass.  This usually
93  /// implemented in terms of the name that is registered by one of the
94  /// Registration templates, but can be overloaded directly, and if nothing
95  /// else is available, C++ RTTI will be consulted to get a SOMEWHAT
96  /// intelligible name for the pass.
97  ///
98  virtual const char *getPassName() const;
99
100  /// getPassInfo - Return the PassInfo data structure that corresponds to this
101  /// pass...  If the pass has not been registered, this will return null.
102  ///
103  const PassInfo *getPassInfo() const;
104
105  /// runPass - Run this pass, returning true if a modification was made to the
106  /// module argument.  This should be implemented by all concrete subclasses.
107  ///
108  virtual bool runPass(Module &M) { return false; }
109  virtual bool runPass(BasicBlock&) { return false; }
110
111  /// print - Print out the internal state of the pass.  This is called by
112  /// Analyze to print out the contents of an analysis.  Otherwise it is not
113  /// necessary to implement this method.  Beware that the module pointer MAY be
114  /// null.  This automatically forwards to a virtual function that does not
115  /// provide the Module* in case the analysis doesn't need it it can just be
116  /// ignored.
117  ///
118  virtual void print(std::ostream &O, const Module *M) const;
119  void print(std::ostream *O, const Module *M) const { if (O) print(*O, M); }
120  void dump() const; // dump - call print(std::cerr, 0);
121
122  virtual void assignPassManager(PMStack &PMS,
123				 PassManagerType T = PMT_Unknown) {}
124  // Access AnalysisResolver
125  inline void setResolver(AnalysisResolver *AR) { Resolver = AR; }
126  inline AnalysisResolver *getResolver() { return Resolver; }
127
128  /// getAnalysisUsage - This function should be overriden by passes that need
129  /// analysis information to do their job.  If a pass specifies that it uses a
130  /// particular analysis result to this function, it can then use the
131  /// getAnalysis<AnalysisType>() function, below.
132  ///
133  virtual void getAnalysisUsage(AnalysisUsage &Info) const {
134    // By default, no analysis results are used, all are invalidated.
135  }
136
137  /// releaseMemory() - This member can be implemented by a pass if it wants to
138  /// be able to release its memory when it is no longer needed.  The default
139  /// behavior of passes is to hold onto memory for the entire duration of their
140  /// lifetime (which is the entire compile time).  For pipelined passes, this
141  /// is not a big deal because that memory gets recycled every time the pass is
142  /// invoked on another program unit.  For IP passes, it is more important to
143  /// free memory when it is unused.
144  ///
145  /// Optionally implement this function to release pass memory when it is no
146  /// longer used.
147  ///
148  virtual void releaseMemory() {}
149
150  // dumpPassStructure - Implement the -debug-passes=PassStructure option
151  virtual void dumpPassStructure(unsigned Offset = 0);
152
153  template<typename AnalysisClass>
154  static const PassInfo *getClassPassInfo() {
155    return lookupPassInfo(typeid(AnalysisClass));
156  }
157
158  // lookupPassInfo - Return the pass info object for the specified pass class,
159  // or null if it is not known.
160  static const PassInfo *lookupPassInfo(const std::type_info &TI);
161
162  /// getAnalysisToUpdate<AnalysisType>() - This function is used by subclasses
163  /// to get to the analysis information that might be around that needs to be
164  /// updated.  This is different than getAnalysis in that it can fail (ie the
165  /// analysis results haven't been computed), so should only be used if you
166  /// provide the capability to update an analysis that exists.  This method is
167  /// often used by transformation APIs to update analysis results for a pass
168  /// automatically as the transform is performed.
169  ///
170  template<typename AnalysisType>
171  AnalysisType *getAnalysisToUpdate() const; // Defined in PassAnalysisSupport.h
172
173  /// mustPreserveAnalysisID - This method serves the same function as
174  /// getAnalysisToUpdate, but works if you just have an AnalysisID.  This
175  /// obviously cannot give you a properly typed instance of the class if you
176  /// don't have the class name available (use getAnalysisToUpdate if you do),
177  /// but it can tell you if you need to preserve the pass at least.
178  ///
179  bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
180
181  /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
182  /// to the analysis information that they claim to use by overriding the
183  /// getAnalysisUsage function.
184  ///
185  template<typename AnalysisType>
186  AnalysisType &getAnalysis() const; // Defined in PassAnalysisSupport.h
187
188  template<typename AnalysisType>
189  AnalysisType &getAnalysisID(const PassInfo *PI) const;
190
191};
192
193inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
194  P.print(OS, 0); return OS;
195}
196
197//===----------------------------------------------------------------------===//
198/// ModulePass class - This class is used to implement unstructured
199/// interprocedural optimizations and analyses.  ModulePasses may do anything
200/// they want to the program.
201///
202class ModulePass : public Pass {
203public:
204  /// runOnModule - Virtual method overriden by subclasses to process the module
205  /// being operated on.
206  virtual bool runOnModule(Module &M) = 0;
207
208  virtual bool runPass(Module &M) { return runOnModule(M); }
209  virtual bool runPass(BasicBlock&) { return false; }
210
211  virtual void assignPassManager(PMStack &PMS,
212				 PassManagerType T = PMT_ModulePassManager);
213  // Force out-of-line virtual method.
214  virtual ~ModulePass();
215};
216
217
218//===----------------------------------------------------------------------===//
219/// ImmutablePass class - This class is used to provide information that does
220/// not need to be run.  This is useful for things like target information and
221/// "basic" versions of AnalysisGroups.
222///
223class ImmutablePass : public ModulePass {
224public:
225  /// initializePass - This method may be overriden by immutable passes to allow
226  /// them to perform various initialization actions they require.  This is
227  /// primarily because an ImmutablePass can "require" another ImmutablePass,
228  /// and if it does, the overloaded version of initializePass may get access to
229  /// these passes with getAnalysis<>.
230  ///
231  virtual void initializePass() {}
232
233  /// ImmutablePasses are never run.
234  ///
235  virtual bool runOnModule(Module &M) { return false; }
236
237  // Force out-of-line virtual method.
238  virtual ~ImmutablePass();
239};
240
241//===----------------------------------------------------------------------===//
242/// FunctionPass class - This class is used to implement most global
243/// optimizations.  Optimizations should subclass this class if they meet the
244/// following constraints:
245///
246///  1. Optimizations are organized globally, i.e., a function at a time
247///  2. Optimizing a function does not cause the addition or removal of any
248///     functions in the module
249///
250class FunctionPass : public ModulePass {
251public:
252  /// doInitialization - Virtual method overridden by subclasses to do
253  /// any necessary per-module initialization.
254  ///
255  virtual bool doInitialization(Module &M) { return false; }
256
257  /// runOnFunction - Virtual method overriden by subclasses to do the
258  /// per-function processing of the pass.
259  ///
260  virtual bool runOnFunction(Function &F) = 0;
261
262  /// doFinalization - Virtual method overriden by subclasses to do any post
263  /// processing needed after all passes have run.
264  ///
265  virtual bool doFinalization(Module &M) { return false; }
266
267  /// runOnModule - On a module, we run this pass by initializing,
268  /// ronOnFunction'ing once for every function in the module, then by
269  /// finalizing.
270  ///
271  virtual bool runOnModule(Module &M);
272
273  /// run - On a function, we simply initialize, run the function, then
274  /// finalize.
275  ///
276  bool run(Function &F);
277
278  virtual void assignPassManager(PMStack &PMS,
279				 PassManagerType T = PMT_FunctionPassManager);
280};
281
282
283
284//===----------------------------------------------------------------------===//
285/// BasicBlockPass class - This class is used to implement most local
286/// optimizations.  Optimizations should subclass this class if they
287/// meet the following constraints:
288///   1. Optimizations are local, operating on either a basic block or
289///      instruction at a time.
290///   2. Optimizations do not modify the CFG of the contained function, or any
291///      other basic block in the function.
292///   3. Optimizations conform to all of the constraints of FunctionPasses.
293///
294class BasicBlockPass : public FunctionPass {
295public:
296  /// doInitialization - Virtual method overridden by subclasses to do
297  /// any necessary per-module initialization.
298  ///
299  virtual bool doInitialization(Module &M) { return false; }
300
301  /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
302  /// to do any necessary per-function initialization.
303  ///
304  virtual bool doInitialization(Function &F) { return false; }
305
306  /// runOnBasicBlock - Virtual method overriden by subclasses to do the
307  /// per-basicblock processing of the pass.
308  ///
309  virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
310
311  /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
312  /// do any post processing needed after all passes have run.
313  ///
314  virtual bool doFinalization(Function &F) { return false; }
315
316  /// doFinalization - Virtual method overriden by subclasses to do any post
317  /// processing needed after all passes have run.
318  ///
319  virtual bool doFinalization(Module &M) { return false; }
320
321
322  // To run this pass on a function, we simply call runOnBasicBlock once for
323  // each function.
324  //
325  bool runOnFunction(Function &F);
326
327  /// To run directly on the basic block, we initialize, runOnBasicBlock, then
328  /// finalize.
329  ///
330  virtual bool runPass(Module &M) { return false; }
331  virtual bool runPass(BasicBlock &BB);
332
333  virtual void assignPassManager(PMStack &PMS,
334				 PassManagerType T = PMT_BasicBlockPassManager);
335};
336
337/// PMStack
338/// Top level pass manager (see PasManager.cpp) maintains active Pass Managers
339/// using PMStack. Each Pass implements assignPassManager() to connect itself
340/// with appropriate manager. assignPassManager() walks PMStack to find
341/// suitable manager.
342///
343/// PMStack is just a wrapper around standard deque that overrides pop() and
344/// push() methods.
345class PMStack {
346public:
347  typedef std::deque<PMDataManager *>::reverse_iterator iterator;
348  iterator begin() { return S.rbegin(); }
349  iterator end() { return S.rend(); }
350
351  void handleLastUserOverflow();
352
353  void pop();
354  inline PMDataManager *top() { return S.back(); }
355  void push(Pass *P);
356  inline bool empty() { return S.empty(); }
357
358  void dump();
359private:
360  std::deque<PMDataManager *> S;
361};
362
363
364/// If the user specifies the -time-passes argument on an LLVM tool command line
365/// then the value of this boolean will be true, otherwise false.
366/// @brief This is the storage for the -time-passes option.
367extern bool TimePassesIsEnabled;
368
369} // End llvm namespace
370
371// Include support files that contain important APIs commonly used by Passes,
372// but that we want to separate out to make it easier to read the header files.
373//
374#include "llvm/PassSupport.h"
375#include "llvm/PassAnalysisSupport.h"
376
377#endif
378