TargetData.h revision 9085750d3126618ab1b3a4104c34bc504f8b09f4
1//===-- llvm/Target/TargetData.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines target properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_TARGET_TARGETDATA_H
21#define LLVM_TARGET_TARGETDATA_H
22
23#include "llvm/Pass.h"
24#include "llvm/Support/DataTypes.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/ADT/SmallVector.h"
27#include <string>
28
29namespace llvm {
30
31class Value;
32class Type;
33class IntegerType;
34class StructType;
35class StructLayout;
36class GlobalVariable;
37class LLVMContext;
38
39/// Enum used to categorize the alignment types stored by TargetAlignElem
40enum AlignTypeEnum {
41  INTEGER_ALIGN = 'i',               ///< Integer type alignment
42  VECTOR_ALIGN = 'v',                ///< Vector type alignment
43  FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
44  AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
45  STACK_ALIGN = 's'                  ///< Stack objects alignment
46};
47/// Target alignment element.
48///
49/// Stores the alignment data associated with a given alignment type (pointer,
50/// integer, vector, float) and type bit width.
51///
52/// @note The unusual order of elements in the structure attempts to reduce
53/// padding and make the structure slightly more cache friendly.
54struct TargetAlignElem {
55  AlignTypeEnum       AlignType : 8;  //< Alignment type (AlignTypeEnum)
56  unsigned char       ABIAlign;       //< ABI alignment for this type/bitw
57  unsigned char       PrefAlign;      //< Pref. alignment for this type/bitw
58  uint32_t            TypeBitWidth;   //< Type bit width
59
60  /// Initializer
61  static TargetAlignElem get(AlignTypeEnum align_type, unsigned char abi_align,
62                             unsigned char pref_align, uint32_t bit_width);
63  /// Equality predicate
64  bool operator==(const TargetAlignElem &rhs) const;
65  /// output stream operator
66  std::ostream &dump(std::ostream &os) const;
67};
68
69class TargetData : public ImmutablePass {
70private:
71  bool          LittleEndian;          ///< Defaults to false
72  unsigned char PointerMemSize;        ///< Pointer size in bytes
73  unsigned char PointerABIAlign;       ///< Pointer ABI alignment
74  unsigned char PointerPrefAlign;      ///< Pointer preferred alignment
75
76  //! Where the primitive type alignment data is stored.
77  /*!
78   @sa init().
79   @note Could support multiple size pointer alignments, e.g., 32-bit pointers
80   vs. 64-bit pointers by extending TargetAlignment, but for now, we don't.
81   */
82  SmallVector<TargetAlignElem, 16> Alignments;
83  //! Alignment iterator shorthand
84  typedef SmallVector<TargetAlignElem, 16>::iterator align_iterator;
85  //! Constant alignment iterator shorthand
86  typedef SmallVector<TargetAlignElem, 16>::const_iterator align_const_iterator;
87  //! Invalid alignment.
88  /*!
89    This member is a signal that a requested alignment type and bit width were
90    not found in the SmallVector.
91   */
92  static const TargetAlignElem InvalidAlignmentElem;
93
94  // Opaque pointer for the StructType -> StructLayout map.
95  mutable void* LayoutMap;
96
97  //! Set/initialize target alignments
98  void setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
99                    unsigned char pref_align, uint32_t bit_width);
100  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
101                            bool ABIAlign, const Type *Ty) const;
102  //! Internal helper method that returns requested alignment for type.
103  unsigned char getAlignment(const Type *Ty, bool abi_or_pref) const;
104
105  /// Valid alignment predicate.
106  ///
107  /// Predicate that tests a TargetAlignElem reference returned by get() against
108  /// InvalidAlignmentElem.
109  inline bool validAlignment(const TargetAlignElem &align) const {
110    return (&align != &InvalidAlignmentElem);
111  }
112
113public:
114  /// Default ctor.
115  ///
116  /// @note This has to exist, because this is a pass, but it should never be
117  /// used.
118  TargetData() : ImmutablePass(&ID) {
119    llvm_report_error("Bad TargetData ctor used.  "
120                      "Tool did not specify a TargetData to use?");
121  }
122
123  /// Constructs a TargetData from a specification string. See init().
124  explicit TargetData(const std::string &TargetDescription)
125    : ImmutablePass(&ID) {
126    init(TargetDescription);
127  }
128
129  /// Initialize target data from properties stored in the module.
130  explicit TargetData(const Module *M);
131
132  TargetData(const TargetData &TD) :
133    ImmutablePass(&ID),
134    LittleEndian(TD.isLittleEndian()),
135    PointerMemSize(TD.PointerMemSize),
136    PointerABIAlign(TD.PointerABIAlign),
137    PointerPrefAlign(TD.PointerPrefAlign),
138    Alignments(TD.Alignments),
139    LayoutMap(0)
140  { }
141
142  ~TargetData();  // Not virtual, do not subclass this class
143
144  //! Parse a target data layout string and initialize TargetData alignments.
145  void init(const std::string &TargetDescription);
146
147  /// Target endianness...
148  bool          isLittleEndian()       const { return     LittleEndian; }
149  bool          isBigEndian()          const { return    !LittleEndian; }
150
151  /// getStringRepresentation - Return the string representation of the
152  /// TargetData.  This representation is in the same format accepted by the
153  /// string constructor above.
154  std::string getStringRepresentation() const;
155  /// Target pointer alignment
156  unsigned char getPointerABIAlignment() const { return PointerABIAlign; }
157  /// Return target's alignment for stack-based pointers
158  unsigned char getPointerPrefAlignment() const { return PointerPrefAlign; }
159  /// Target pointer size
160  unsigned char getPointerSize()         const { return PointerMemSize; }
161  /// Target pointer size, in bits
162  unsigned char getPointerSizeInBits()   const { return 8*PointerMemSize; }
163
164  /// Size examples:
165  ///
166  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
167  /// ----        ----------  ---------------  ---------------
168  ///  i1            1           8                8
169  ///  i8            8           8                8
170  ///  i19          19          24               32
171  ///  i32          32          32               32
172  ///  i100        100         104              128
173  ///  i128        128         128              128
174  ///  Float        32          32               32
175  ///  Double       64          64               64
176  ///  X86_FP80     80          80               96
177  ///
178  /// [*] The alloc size depends on the alignment, and thus on the target.
179  ///     These values are for x86-32 linux.
180
181  /// getTypeSizeInBits - Return the number of bits necessary to hold the
182  /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
183  uint64_t getTypeSizeInBits(const Type* Ty) const;
184
185  /// getTypeStoreSize - Return the maximum number of bytes that may be
186  /// overwritten by storing the specified type.  For example, returns 5
187  /// for i36 and 10 for x86_fp80.
188  uint64_t getTypeStoreSize(const Type *Ty) const {
189    return (getTypeSizeInBits(Ty)+7)/8;
190  }
191
192  /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
193  /// overwritten by storing the specified type; always a multiple of 8.  For
194  /// example, returns 40 for i36 and 80 for x86_fp80.
195  uint64_t getTypeStoreSizeInBits(const Type *Ty) const {
196    return 8*getTypeStoreSize(Ty);
197  }
198
199  /// getTypeAllocSize - Return the offset in bytes between successive objects
200  /// of the specified type, including alignment padding.  This is the amount
201  /// that alloca reserves for this type.  For example, returns 12 or 16 for
202  /// x86_fp80, depending on alignment.
203  uint64_t getTypeAllocSize(const Type* Ty) const {
204    // Round up to the next alignment boundary.
205    return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
206  }
207
208  /// getTypeAllocSizeInBits - Return the offset in bits between successive
209  /// objects of the specified type, including alignment padding; always a
210  /// multiple of 8.  This is the amount that alloca reserves for this type.
211  /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
212  uint64_t getTypeAllocSizeInBits(const Type* Ty) const {
213    return 8*getTypeAllocSize(Ty);
214  }
215
216  /// getABITypeAlignment - Return the minimum ABI-required alignment for the
217  /// specified type.
218  unsigned char getABITypeAlignment(const Type *Ty) const;
219
220  /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
221  /// for the specified type when it is part of a call frame.
222  unsigned char getCallFrameTypeAlignment(const Type *Ty) const;
223
224
225  /// getPrefTypeAlignment - Return the preferred stack/global alignment for
226  /// the specified type.  This is always at least as good as the ABI alignment.
227  unsigned char getPrefTypeAlignment(const Type *Ty) const;
228
229  /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
230  /// specified type, returned as log2 of the value (a shift amount).
231  ///
232  unsigned char getPreferredTypeAlignmentShift(const Type *Ty) const;
233
234  /// getIntPtrType - Return an unsigned integer type that is the same size or
235  /// greater to the host pointer size.
236  ///
237  const IntegerType *getIntPtrType(LLVMContext &C) const;
238
239  /// getIndexedOffset - return the offset from the beginning of the type for
240  /// the specified indices.  This is used to implement getelementptr.
241  ///
242  uint64_t getIndexedOffset(const Type *Ty,
243                            Value* const* Indices, unsigned NumIndices) const;
244
245  /// getStructLayout - Return a StructLayout object, indicating the alignment
246  /// of the struct, its size, and the offsets of its fields.  Note that this
247  /// information is lazily cached.
248  const StructLayout *getStructLayout(const StructType *Ty) const;
249
250  /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
251  /// objects.  If a TargetData object is alive when types are being refined and
252  /// removed, this method must be called whenever a StructType is removed to
253  /// avoid a dangling pointer in this cache.
254  void InvalidateStructLayoutInfo(const StructType *Ty) const;
255
256  /// getPreferredAlignment - Return the preferred alignment of the specified
257  /// global.  This includes an explicitly requested alignment (if the global
258  /// has one).
259  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
260
261  /// getPreferredAlignmentLog - Return the preferred alignment of the
262  /// specified global, returned in log form.  This includes an explicitly
263  /// requested alignment (if the global has one).
264  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
265
266  /// RoundUpAlignment - Round the specified value up to the next alignment
267  /// boundary specified by Alignment.  For example, 7 rounded up to an
268  /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
269  /// is 8 because it is already aligned.
270  template <typename UIntTy>
271  static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
272    assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
273    return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
274  }
275
276  static char ID; // Pass identification, replacement for typeid
277};
278
279/// StructLayout - used to lazily calculate structure layout information for a
280/// target machine, based on the TargetData structure.
281///
282class StructLayout {
283  uint64_t StructSize;
284  unsigned StructAlignment;
285  unsigned NumElements;
286  uint64_t MemberOffsets[1];  // variable sized array!
287public:
288
289  uint64_t getSizeInBytes() const {
290    return StructSize;
291  }
292
293  uint64_t getSizeInBits() const {
294    return 8*StructSize;
295  }
296
297  unsigned getAlignment() const {
298    return StructAlignment;
299  }
300
301  /// getElementContainingOffset - Given a valid byte offset into the structure,
302  /// return the structure index that contains it.
303  ///
304  unsigned getElementContainingOffset(uint64_t Offset) const;
305
306  uint64_t getElementOffset(unsigned Idx) const {
307    assert(Idx < NumElements && "Invalid element idx!");
308    return MemberOffsets[Idx];
309  }
310
311  uint64_t getElementOffsetInBits(unsigned Idx) const {
312    return getElementOffset(Idx)*8;
313  }
314
315private:
316  friend class TargetData;   // Only TargetData can create this class
317  StructLayout(const StructType *ST, const TargetData &TD);
318};
319
320} // End llvm namespace
321
322#endif
323