Type.h revision 12e8ad6858ccf3c0487c16297b6810fcc92d0026
1//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=//
2//
3// This file contains the declaration of the Type class.  For more "Type" type
4// stuff, look in DerivedTypes.h.
5//
6// Note that instances of the Type class are immutable: once they are created,
7// they are never changed.  Also note that only one instance of a particular
8// type is ever created.  Thus seeing if two types are equal is a matter of
9// doing a trivial pointer comparison.
10//
11// Types, once allocated, are never free'd.
12//
13// Opaque types are simple derived types with no state.  There may be many
14// different Opaque type objects floating around, but two are only considered
15// identical if they are pointer equals of each other.  This allows us to have
16// two opaque types that end up resolving to different concrete types later.
17//
18// Opaque types are also kinda wierd and scary and different because they have
19// to keep a list of uses of the type.  When, through linking, parsing, or
20// bytecode reading, they become resolved, they need to find and update all
21// users of the unknown type, causing them to reference a new, more concrete
22// type.  Opaque types are deleted when their use list dwindles to zero users.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_TYPE_H
27#define LLVM_TYPE_H
28
29#include "llvm/Value.h"
30#include "Support/GraphTraits.h"
31
32class DerivedType;
33class FunctionType;
34class ArrayType;
35class PointerType;
36class StructType;
37class OpaqueType;
38
39class Type : public Value {
40public:
41  //===--------------------------------------------------------------------===//
42  // Definitions of all of the base types for the Type system.  Based on this
43  // value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
44  // Note: If you add an element to this, you need to add an element to the
45  // Type::getPrimitiveType function, or else things will break!
46  //
47  enum PrimitiveID {
48    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
49    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
50    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
51    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
52    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
53
54    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
55
56    TypeTyID,                           // 12   : Type definitions
57    LabelTyID     ,                     // 13   : Labels...
58
59    // Derived types... see DerivedTypes.h file...
60    // Make sure FirstDerivedTyID stays up to date!!!
61    FunctionTyID  , StructTyID,         // Functions... Structs...
62    ArrayTyID     , PointerTyID,        // Array... pointer...
63    OpaqueTyID,                         // Opaque type instances...
64    //PackedTyID  ,                     // SIMD 'packed' format... TODO
65    //...
66
67    NumPrimitiveIDs,                    // Must remain as last defined ID
68    FirstDerivedTyID = FunctionTyID,
69  };
70
71private:
72  PrimitiveID ID;        // The current base type of this type...
73  unsigned    UID;       // The unique ID number for this class
74  std::string Desc;      // The printed name of the string...
75  bool        Abstract;  // True if type contains an OpaqueType
76  bool        Recursive; // True if the type is recursive
77
78protected:
79  // ctor is protected, so only subclasses can create Type objects...
80  Type(const std::string &Name, PrimitiveID id);
81  virtual ~Type() {}
82
83  // When types are refined, they update their description to be more concrete.
84  //
85  inline void setDescription(const std::string &D) { Desc = D; }
86
87  // setName - Associate the name with this type in the symbol table, but don't
88  // set the local name to be equal specified name.
89  //
90  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
91
92  // Types can become nonabstract later, if they are refined.
93  //
94  inline void setAbstract(bool Val) { Abstract = Val; }
95
96  // Types can become recursive later, if they are refined.
97  //
98  inline void setRecursive(bool Val) { Recursive = Val; }
99
100public:
101  virtual void print(std::ostream &O) const;
102
103  //===--------------------------------------------------------------------===//
104  // Property accessors for dealing with types...
105  //
106
107  // getPrimitiveID - Return the base type of the type.  This will return one
108  // of the PrimitiveID enum elements defined above.
109  //
110  inline PrimitiveID getPrimitiveID() const { return ID; }
111
112  // getUniqueID - Returns the UID of the type.  This can be thought of as a
113  // small integer version of the pointer to the type class.  Two types that are
114  // structurally different have different UIDs.  This can be used for indexing
115  // types into an array.
116  //
117  inline unsigned getUniqueID() const { return UID; }
118
119  // getDescription - Return the string representation of the type...
120  inline const std::string &getDescription() const { return Desc; }
121
122  // isSigned - Return whether a numeric type is signed.
123  virtual bool isSigned() const { return 0; }
124
125  // isUnsigned - Return whether a numeric type is unsigned.  This is not
126  // quite the complement of isSigned... nonnumeric types return false as they
127  // do with isSigned.
128  //
129  virtual bool isUnsigned() const { return 0; }
130
131  // isIntegral - Equilivent to isSigned() || isUnsigned, but with only a single
132  // virtual function invocation.
133  //
134  virtual bool isIntegral() const { return 0; }
135
136  // isFloatingPoint - Return true if this is one of the two floating point
137  // types
138  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
139
140  // isAbstract - True if the type is either an Opaque type, or is a derived
141  // type that includes an opaque type somewhere in it.
142  //
143  inline bool isAbstract() const { return Abstract; }
144
145  // isRecursive - True if the type graph contains a cycle.
146  //
147  inline bool isRecursive() const { return Recursive; }
148
149  // isLosslesslyConvertableTo - Return true if this type can be converted to
150  // 'Ty' without any reinterpretation of bits.  For example, uint to int.
151  //
152  bool isLosslesslyConvertableTo(const Type *Ty) const;
153
154  // isSized - Return true if it makes sense to take the size of this type.  To
155  // get the actual size for a particular target, it is reasonable to use the
156  // TargetData subsystem to do this.
157  //
158  bool isSized() const {
159    return ID != TypeTyID && ID != FunctionTyID && ID != OpaqueTyID;
160  }
161
162  //===--------------------------------------------------------------------===//
163  // Type Iteration support
164  //
165  class TypeIterator;
166  typedef TypeIterator subtype_iterator;
167  inline subtype_iterator subtype_begin() const;   // DEFINED BELOW
168  inline subtype_iterator subtype_end() const;     // DEFINED BELOW
169
170  // getContainedType - This method is used to implement the type iterator
171  // (defined a the end of the file).  For derived types, this returns the types
172  // 'contained' in the derived type, returning 0 when 'i' becomes invalid. This
173  // allows the user to iterate over the types in a struct, for example, really
174  // easily.
175  //
176  virtual const Type *getContainedType(unsigned i) const { return 0; }
177
178  // getNumContainedTypes - Return the number of types in the derived type
179  virtual unsigned getNumContainedTypes() const { return 0; }
180
181  //===--------------------------------------------------------------------===//
182  // Static members exported by the Type class itself.  Useful for getting
183  // instances of Type.
184  //
185
186  // getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
187  static const Type *getPrimitiveType(PrimitiveID IDNumber);
188  static const Type *getUniqueIDType(unsigned UID);
189
190  //===--------------------------------------------------------------------===//
191  // These are the builtin types that are always available...
192  //
193  static Type *VoidTy , *BoolTy;
194  static Type *SByteTy, *UByteTy,
195              *ShortTy, *UShortTy,
196              *IntTy  , *UIntTy,
197              *LongTy , *ULongTy;
198  static Type *FloatTy, *DoubleTy;
199
200  static Type *TypeTy , *LabelTy;
201
202  // Here are some useful little methods to query what type derived types are
203  // Note that all other types can just compare to see if this == Type::xxxTy;
204  //
205  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
206  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
207
208  // isFirstClassType - Return true if the value is holdable in a register.
209  inline bool isFirstClassType() const {
210    return isPrimitiveType() || ID == PointerTyID;
211  }
212
213  // Methods for support type inquiry through isa, cast, and dyn_cast:
214  static inline bool classof(const Type *T) { return true; }
215  static inline bool classof(const Value *V) {
216    return V->getValueType() == Value::TypeVal;
217  }
218
219  // Methods for determining the subtype of this Type. This section defines a
220  // family of isArrayType(), isLabelType(),  etc functions...
221  //
222#define HANDLE_DERV_TYPE(NAME, CLASS)                                     \
223  inline bool is##NAME##Type() const { return ID == NAME##TyID; }
224
225#include "llvm/Type.def"
226
227private:
228  class TypeIterator : public std::bidirectional_iterator<const Type,
229		                                          ptrdiff_t> {
230    const Type * const Ty;
231    unsigned Idx;
232
233    typedef TypeIterator _Self;
234  public:
235    inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
236    inline ~TypeIterator() {}
237
238    inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
239    inline bool operator!=(const _Self& x) const { return !operator==(x); }
240
241    inline pointer operator*() const { return Ty->getContainedType(Idx); }
242    inline pointer operator->() const { return operator*(); }
243
244    inline _Self& operator++() { ++Idx; return *this; } // Preincrement
245    inline _Self operator++(int) { // Postincrement
246      _Self tmp = *this; ++*this; return tmp;
247    }
248
249    inline _Self& operator--() { --Idx; return *this; }  // Predecrement
250    inline _Self operator--(int) { // Postdecrement
251      _Self tmp = *this; --*this; return tmp;
252    }
253  };
254};
255
256inline Type::TypeIterator Type::subtype_begin() const {
257  return TypeIterator(this, 0);
258}
259
260inline Type::TypeIterator Type::subtype_end() const {
261  return TypeIterator(this, getNumContainedTypes());
262}
263
264
265// Provide specializations of GraphTraits to be able to treat a type as a
266// graph of sub types...
267
268template <> struct GraphTraits<Type*> {
269  typedef Type NodeType;
270  typedef Type::subtype_iterator ChildIteratorType;
271
272  static inline NodeType *getEntryNode(Type *T) { return T; }
273  static inline ChildIteratorType child_begin(NodeType *N) {
274    return N->subtype_begin();
275  }
276  static inline ChildIteratorType child_end(NodeType *N) {
277    return N->subtype_end();
278  }
279};
280
281template <> struct GraphTraits<const Type*> {
282  typedef const Type NodeType;
283  typedef Type::subtype_iterator ChildIteratorType;
284
285  static inline NodeType *getEntryNode(const Type *T) { return T; }
286  static inline ChildIteratorType child_begin(NodeType *N) {
287    return N->subtype_begin();
288  }
289  static inline ChildIteratorType child_end(NodeType *N) {
290    return N->subtype_end();
291  }
292};
293
294#endif
295