Type.h revision 1608769abeb1430dc34f31ffac0d9850f99ae36a
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Type class.  For more "Type"
11// stuff, look in DerivedTypes.h.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TYPE_H
16#define LLVM_TYPE_H
17
18#include "llvm/Support/Casting.h"
19
20namespace llvm {
21
22class PointerType;
23class IntegerType;
24class raw_ostream;
25class Module;
26class LLVMContext;
27class LLVMContextImpl;
28template<class GraphType> struct GraphTraits;
29
30/// The instances of the Type class are immutable: once they are created,
31/// they are never changed.  Also note that only one instance of a particular
32/// type is ever created.  Thus seeing if two types are equal is a matter of
33/// doing a trivial pointer comparison. To enforce that no two equal instances
34/// are created, Type instances can only be created via static factory methods
35/// in class Type and in derived classes.  Once allocated, Types are never
36/// free'd.
37///
38class Type {
39public:
40  //===--------------------------------------------------------------------===//
41  /// Definitions of all of the base types for the Type system.  Based on this
42  /// value, you can cast to a class defined in DerivedTypes.h.
43  /// Note: If you add an element to this, you need to add an element to the
44  /// Type::getPrimitiveType function, or else things will break!
45  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
46  ///
47  enum TypeID {
48    // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
49    VoidTyID = 0,    ///<  0: type with no size
50    FloatTyID,       ///<  1: 32-bit floating point type
51    DoubleTyID,      ///<  2: 64-bit floating point type
52    X86_FP80TyID,    ///<  3: 80-bit floating point type (X87)
53    FP128TyID,       ///<  4: 128-bit floating point type (112-bit mantissa)
54    PPC_FP128TyID,   ///<  5: 128-bit floating point type (two 64-bits, PowerPC)
55    LabelTyID,       ///<  6: Labels
56    MetadataTyID,    ///<  7: Metadata
57    X86_MMXTyID,     ///<  8: MMX vectors (64 bits, X86 specific)
58
59    // Derived types... see DerivedTypes.h file.
60    // Make sure FirstDerivedTyID stays up to date!
61    IntegerTyID,     ///<  9: Arbitrary bit width integers
62    FunctionTyID,    ///< 10: Functions
63    StructTyID,      ///< 11: Structures
64    ArrayTyID,       ///< 12: Arrays
65    PointerTyID,     ///< 13: Pointers
66    VectorTyID,      ///< 14: SIMD 'packed' format, or other vector type
67
68    NumTypeIDs,                         // Must remain as last defined ID
69    LastPrimitiveTyID = X86_MMXTyID,
70    FirstDerivedTyID = IntegerTyID
71  };
72
73private:
74  /// Context - This refers to the LLVMContext in which this type was uniqued.
75  LLVMContext &Context;
76
77  TypeID   ID : 8;            // The current base type of this type.
78  unsigned SubclassData : 24; // Space for subclasses to store data
79
80protected:
81  friend class LLVMContextImpl;
82  explicit Type(LLVMContext &C, TypeID tid)
83    : Context(C), ID(tid), SubclassData(0),
84      NumContainedTys(0), ContainedTys(0) {}
85  ~Type() {}
86
87  unsigned getSubclassData() const { return SubclassData; }
88  void setSubclassData(unsigned val) {
89    SubclassData = val;
90    // Ensure we don't have any accidental truncation.
91    assert(SubclassData == val && "Subclass data too large for field");
92  }
93
94  /// NumContainedTys - Keeps track of how many Type*'s there are in the
95  /// ContainedTys list.
96  unsigned NumContainedTys;
97
98  /// ContainedTys - A pointer to the array of Types contained by this Type.
99  /// For example, this includes the arguments of a function type, the elements
100  /// of a structure, the pointee of a pointer, the element type of an array,
101  /// etc.  This pointer may be 0 for types that don't contain other types
102  /// (Integer, Double, Float).
103  Type * const *ContainedTys;
104
105public:
106  void print(raw_ostream &O) const;
107  void dump() const;
108
109  /// getContext - Return the LLVMContext in which this type was uniqued.
110  LLVMContext &getContext() const { return Context; }
111
112  //===--------------------------------------------------------------------===//
113  // Accessors for working with types.
114  //
115
116  /// getTypeID - Return the type id for the type.  This will return one
117  /// of the TypeID enum elements defined above.
118  ///
119  TypeID getTypeID() const { return ID; }
120
121  /// isVoidTy - Return true if this is 'void'.
122  bool isVoidTy() const { return ID == VoidTyID; }
123
124  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
125  bool isFloatTy() const { return ID == FloatTyID; }
126
127  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
128  bool isDoubleTy() const { return ID == DoubleTyID; }
129
130  /// isX86_FP80Ty - Return true if this is x86 long double.
131  bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
132
133  /// isFP128Ty - Return true if this is 'fp128'.
134  bool isFP128Ty() const { return ID == FP128TyID; }
135
136  /// isPPC_FP128Ty - Return true if this is powerpc long double.
137  bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
138
139  /// isFloatingPointTy - Return true if this is one of the five floating point
140  /// types
141  bool isFloatingPointTy() const {
142    return ID == FloatTyID || ID == DoubleTyID ||
143      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID;
144  }
145
146  /// isX86_MMXTy - Return true if this is X86 MMX.
147  bool isX86_MMXTy() const { return ID == X86_MMXTyID; }
148
149  /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
150  ///
151  bool isFPOrFPVectorTy() const;
152
153  /// isLabelTy - Return true if this is 'label'.
154  bool isLabelTy() const { return ID == LabelTyID; }
155
156  /// isMetadataTy - Return true if this is 'metadata'.
157  bool isMetadataTy() const { return ID == MetadataTyID; }
158
159  /// isIntegerTy - True if this is an instance of IntegerType.
160  ///
161  bool isIntegerTy() const { return ID == IntegerTyID; }
162
163  /// isIntegerTy - Return true if this is an IntegerType of the given width.
164  bool isIntegerTy(unsigned Bitwidth) const;
165
166  /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
167  /// integer types.
168  ///
169  bool isIntOrIntVectorTy() const;
170
171  /// isFunctionTy - True if this is an instance of FunctionType.
172  ///
173  bool isFunctionTy() const { return ID == FunctionTyID; }
174
175  /// isStructTy - True if this is an instance of StructType.
176  ///
177  bool isStructTy() const { return ID == StructTyID; }
178
179  /// isArrayTy - True if this is an instance of ArrayType.
180  ///
181  bool isArrayTy() const { return ID == ArrayTyID; }
182
183  /// isPointerTy - True if this is an instance of PointerType.
184  ///
185  bool isPointerTy() const { return ID == PointerTyID; }
186
187  /// isVectorTy - True if this is an instance of VectorType.
188  ///
189  bool isVectorTy() const { return ID == VectorTyID; }
190
191  /// canLosslesslyBitCastTo - Return true if this type could be converted
192  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
193  /// are valid for types of the same size only where no re-interpretation of
194  /// the bits is done.
195  /// @brief Determine if this type could be losslessly bitcast to Ty
196  bool canLosslesslyBitCastTo(Type *Ty) const;
197
198  /// isEmptyTy - Return true if this type is empty, that is, it has no
199  /// elements or all its elements are empty.
200  bool isEmptyTy() const;
201
202  /// Here are some useful little methods to query what type derived types are
203  /// Note that all other types can just compare to see if this == Type::xxxTy;
204  ///
205  bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
206  bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
207
208  /// isFirstClassType - Return true if the type is "first class", meaning it
209  /// is a valid type for a Value.
210  ///
211  bool isFirstClassType() const {
212    return ID != FunctionTyID && ID != VoidTyID;
213  }
214
215  /// isSingleValueType - Return true if the type is a valid type for a
216  /// register in codegen.  This includes all first-class types except struct
217  /// and array types.
218  ///
219  bool isSingleValueType() const {
220    return (ID != VoidTyID && isPrimitiveType()) ||
221            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
222  }
223
224  /// isAggregateType - Return true if the type is an aggregate type. This
225  /// means it is valid as the first operand of an insertvalue or
226  /// extractvalue instruction. This includes struct and array types, but
227  /// does not include vector types.
228  ///
229  bool isAggregateType() const {
230    return ID == StructTyID || ID == ArrayTyID;
231  }
232
233  /// isSized - Return true if it makes sense to take the size of this type.  To
234  /// get the actual size for a particular target, it is reasonable to use the
235  /// TargetData subsystem to do this.
236  ///
237  bool isSized() const {
238    // If it's a primitive, it is always sized.
239    if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID ||
240        ID == X86_MMXTyID)
241      return true;
242    // If it is not something that can have a size (e.g. a function or label),
243    // it doesn't have a size.
244    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
245      return false;
246    // Otherwise we have to try harder to decide.
247    return isSizedDerivedType();
248  }
249
250  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
251  /// primitive type.  These are fixed by LLVM and are not target dependent.
252  /// This will return zero if the type does not have a size or is not a
253  /// primitive type.
254  ///
255  /// Note that this may not reflect the size of memory allocated for an
256  /// instance of the type or the number of bytes that are written when an
257  /// instance of the type is stored to memory. The TargetData class provides
258  /// additional query functions to provide this information.
259  ///
260  unsigned getPrimitiveSizeInBits() const;
261
262  /// getScalarSizeInBits - If this is a vector type, return the
263  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
264  /// getPrimitiveSizeInBits value for this type.
265  unsigned getScalarSizeInBits();
266
267  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
268  /// is only valid on floating point types.  If the FP type does not
269  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
270  int getFPMantissaWidth() const;
271
272  /// getScalarType - If this is a vector type, return the element type,
273  /// otherwise return 'this'.
274  Type *getScalarType();
275
276  /// getNumElements - If this is a vector type, return the number of elements,
277  /// otherwise return zero.
278  unsigned getNumElements();
279
280  //===--------------------------------------------------------------------===//
281  // Type Iteration support.
282  //
283  typedef Type * const *subtype_iterator;
284  subtype_iterator subtype_begin() const { return ContainedTys; }
285  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
286
287  /// getContainedType - This method is used to implement the type iterator
288  /// (defined a the end of the file).  For derived types, this returns the
289  /// types 'contained' in the derived type.
290  ///
291  Type *getContainedType(unsigned i) const {
292    assert(i < NumContainedTys && "Index out of range!");
293    return ContainedTys[i];
294  }
295
296  /// getNumContainedTypes - Return the number of types in the derived type.
297  ///
298  unsigned getNumContainedTypes() const { return NumContainedTys; }
299
300  //===--------------------------------------------------------------------===//
301  // Static members exported by the Type class itself.  Useful for getting
302  // instances of Type.
303  //
304
305  /// getPrimitiveType - Return a type based on an identifier.
306  static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
307
308  //===--------------------------------------------------------------------===//
309  // These are the builtin types that are always available.
310  //
311  static Type *getVoidTy(LLVMContext &C);
312  static Type *getLabelTy(LLVMContext &C);
313  static Type *getFloatTy(LLVMContext &C);
314  static Type *getDoubleTy(LLVMContext &C);
315  static Type *getMetadataTy(LLVMContext &C);
316  static Type *getX86_FP80Ty(LLVMContext &C);
317  static Type *getFP128Ty(LLVMContext &C);
318  static Type *getPPC_FP128Ty(LLVMContext &C);
319  static Type *getX86_MMXTy(LLVMContext &C);
320  static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
321  static IntegerType *getInt1Ty(LLVMContext &C);
322  static IntegerType *getInt8Ty(LLVMContext &C);
323  static IntegerType *getInt16Ty(LLVMContext &C);
324  static IntegerType *getInt32Ty(LLVMContext &C);
325  static IntegerType *getInt64Ty(LLVMContext &C);
326
327  //===--------------------------------------------------------------------===//
328  // Convenience methods for getting pointer types with one of the above builtin
329  // types as pointee.
330  //
331  static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
332  static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
333  static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
334  static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
335  static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
336  static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
337  static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
338  static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
339  static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
340  static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
341  static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
342  static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
343
344  /// Methods for support type inquiry through isa, cast, and dyn_cast:
345  static inline bool classof(const Type *) { return true; }
346
347  /// getPointerTo - Return a pointer to the current type.  This is equivalent
348  /// to PointerType::get(Foo, AddrSpace).
349  PointerType *getPointerTo(unsigned AddrSpace = 0);
350
351private:
352  /// isSizedDerivedType - Derived types like structures and arrays are sized
353  /// iff all of the members of the type are sized as well.  Since asking for
354  /// their size is relatively uncommon, move this operation out of line.
355  bool isSizedDerivedType() const;
356};
357
358// Printing of types.
359static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
360  T.print(OS);
361  return OS;
362}
363
364// allow isa<PointerType>(x) to work without DerivedTypes.h included.
365template <> struct isa_impl<PointerType, Type> {
366  static inline bool doit(const Type &Ty) {
367    return Ty.getTypeID() == Type::PointerTyID;
368  }
369};
370
371
372//===----------------------------------------------------------------------===//
373// Provide specializations of GraphTraits to be able to treat a type as a
374// graph of sub types.
375
376
377template <> struct GraphTraits<Type*> {
378  typedef Type NodeType;
379  typedef Type::subtype_iterator ChildIteratorType;
380
381  static inline NodeType *getEntryNode(Type *T) { return T; }
382  static inline ChildIteratorType child_begin(NodeType *N) {
383    return N->subtype_begin();
384  }
385  static inline ChildIteratorType child_end(NodeType *N) {
386    return N->subtype_end();
387  }
388};
389
390template <> struct GraphTraits<const Type*> {
391  typedef const Type NodeType;
392  typedef Type::subtype_iterator ChildIteratorType;
393
394  static inline NodeType *getEntryNode(NodeType *T) { return T; }
395  static inline ChildIteratorType child_begin(NodeType *N) {
396    return N->subtype_begin();
397  }
398  static inline ChildIteratorType child_end(NodeType *N) {
399    return N->subtype_end();
400  }
401};
402
403} // End llvm namespace
404
405#endif
406