Type.h revision 18961504fc2b299578dba817900a0696cf3ccc4d
1//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=//
2//
3// This file contains the declaration of the Type class.  For more "Type" type
4// stuff, look in DerivedTypes.h.
5//
6// Note that instances of the Type class are immutable: once they are created,
7// they are never changed.  Also note that only one instance of a particular
8// type is ever created.  Thus seeing if two types are equal is a matter of
9// doing a trivial pointer comparison.
10//
11// Types, once allocated, are never free'd.
12//
13// Opaque types are simple derived types with no state.  There may be many
14// different Opaque type objects floating around, but two are only considered
15// identical if they are pointer equals of each other.  This allows us to have
16// two opaque types that end up resolving to different concrete types later.
17//
18// Opaque types are also kinda wierd and scary and different because they have
19// to keep a list of uses of the type.  When, through linking, parsing, or
20// bytecode reading, they become resolved, they need to find and update all
21// users of the unknown type, causing them to reference a new, more concrete
22// type.  Opaque types are deleted when their use list dwindles to zero users.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_TYPE_H
27#define LLVM_TYPE_H
28
29#include "llvm/Value.h"
30#include "Support/GraphTraits.h"
31
32class DerivedType;
33class FunctionType;
34class ArrayType;
35class PointerType;
36class StructType;
37class OpaqueType;
38
39class Type : public Value {
40public:
41  //===--------------------------------------------------------------------===//
42  // Definitions of all of the base types for the Type system.  Based on this
43  // value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
44  // Note: If you add an element to this, you need to add an element to the
45  // Type::getPrimitiveType function, or else things will break!
46  //
47  enum PrimitiveID {
48    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
49    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
50    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
51    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
52    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
53
54    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
55
56    TypeTyID,                           // 12   : Type definitions
57    LabelTyID     ,                     // 13   : Labels...
58
59    // Derived types... see DerivedTypes.h file...
60    // Make sure FirstDerivedTyID stays up to date!!!
61    FunctionTyID  , StructTyID,         // Functions... Structs...
62    ArrayTyID     , PointerTyID,        // Array... pointer...
63    OpaqueTyID,                         // Opaque type instances...
64    //PackedTyID  ,                     // SIMD 'packed' format... TODO
65    //...
66
67    NumPrimitiveIDs,                    // Must remain as last defined ID
68    FirstDerivedTyID = FunctionTyID,
69  };
70
71private:
72  PrimitiveID ID;        // The current base type of this type...
73  unsigned    UID;       // The unique ID number for this class
74  std::string Desc;      // The printed name of the string...
75  bool        Abstract;  // True if type contains an OpaqueType
76  bool        Recursive; // True if the type is recursive
77
78protected:
79  // ctor is protected, so only subclasses can create Type objects...
80  Type(const std::string &Name, PrimitiveID id);
81  virtual ~Type() {}
82
83  // When types are refined, they update their description to be more concrete.
84  //
85  inline void setDescription(const std::string &D) { Desc = D; }
86
87  // setName - Associate the name with this type in the symbol table, but don't
88  // set the local name to be equal specified name.
89  //
90  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
91
92  // Types can become nonabstract later, if they are refined.
93  //
94  inline void setAbstract(bool Val) { Abstract = Val; }
95
96  // Types can become recursive later, if they are refined.
97  //
98  inline void setRecursive(bool Val) { Recursive = Val; }
99
100public:
101  virtual void print(std::ostream &O) const;
102
103  //===--------------------------------------------------------------------===//
104  // Property accessors for dealing with types...
105  //
106
107  // getPrimitiveID - Return the base type of the type.  This will return one
108  // of the PrimitiveID enum elements defined above.
109  //
110  inline PrimitiveID getPrimitiveID() const { return ID; }
111
112  // getUniqueID - Returns the UID of the type.  This can be thought of as a
113  // small integer version of the pointer to the type class.  Two types that are
114  // structurally different have different UIDs.  This can be used for indexing
115  // types into an array.
116  //
117  inline unsigned getUniqueID() const { return UID; }
118
119  // getDescription - Return the string representation of the type...
120  inline const std::string &getDescription() const { return Desc; }
121
122  // isSigned - Return whether a numeric type is signed.
123  virtual bool isSigned() const { return 0; }
124
125  // isUnsigned - Return whether a numeric type is unsigned.  This is not
126  // quite the complement of isSigned... nonnumeric types return false as they
127  // do with isSigned.
128  //
129  virtual bool isUnsigned() const { return 0; }
130
131  // isIntegral - Equilivent to isSigned() || isUnsigned, but with only a single
132  // virtual function invocation.
133  //
134  virtual bool isIntegral() const { return 0; }
135
136  // isFloatingPoint - Return true if this is one of the two floating point
137  // types
138  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
139
140  // isAbstract - True if the type is either an Opaque type, or is a derived
141  // type that includes an opaque type somewhere in it.
142  //
143  inline bool isAbstract() const { return Abstract; }
144
145  // isRecursive - True if the type graph contains a cycle.
146  //
147  inline bool isRecursive() const { return Recursive; }
148
149  // isLosslesslyConvertableTo - Return true if this type can be converted to
150  // 'Ty' without any reinterpretation of bits.  For example, uint to int.
151  //
152  bool isLosslesslyConvertableTo(const Type *Ty) const;
153
154
155  // Here are some useful little methods to query what type derived types are
156  // Note that all other types can just compare to see if this == Type::xxxTy;
157  //
158  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
159  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
160
161  // isFirstClassType - Return true if the value is holdable in a register.
162  inline bool isFirstClassType() const {
163    return isPrimitiveType() || ID == PointerTyID;
164  }
165
166  // isSized - Return true if it makes sense to take the size of this type.  To
167  // get the actual size for a particular target, it is reasonable to use the
168  // TargetData subsystem to do this.
169  //
170  bool isSized() const {
171    return ID != VoidTyID && ID != TypeTyID &&
172           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
173  }
174
175  // getPrimitiveSize - Return the basic size of this type if it is a primative
176  // type.  These are fixed by LLVM and are not target dependant.  This will
177  // return zero if the type does not have a size or is not a primitive type.
178  //
179  unsigned getPrimitiveSize() const;
180
181
182  //===--------------------------------------------------------------------===//
183  // Type Iteration support
184  //
185  class TypeIterator;
186  typedef TypeIterator subtype_iterator;
187  inline subtype_iterator subtype_begin() const;   // DEFINED BELOW
188  inline subtype_iterator subtype_end() const;     // DEFINED BELOW
189
190  // getContainedType - This method is used to implement the type iterator
191  // (defined a the end of the file).  For derived types, this returns the types
192  // 'contained' in the derived type, returning 0 when 'i' becomes invalid. This
193  // allows the user to iterate over the types in a struct, for example, really
194  // easily.
195  //
196  virtual const Type *getContainedType(unsigned i) const { return 0; }
197
198  // getNumContainedTypes - Return the number of types in the derived type
199  virtual unsigned getNumContainedTypes() const { return 0; }
200
201  //===--------------------------------------------------------------------===//
202  // Static members exported by the Type class itself.  Useful for getting
203  // instances of Type.
204  //
205
206  // getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
207  static const Type *getPrimitiveType(PrimitiveID IDNumber);
208  static const Type *getUniqueIDType(unsigned UID);
209
210  //===--------------------------------------------------------------------===//
211  // These are the builtin types that are always available...
212  //
213  static Type *VoidTy , *BoolTy;
214  static Type *SByteTy, *UByteTy,
215              *ShortTy, *UShortTy,
216              *IntTy  , *UIntTy,
217              *LongTy , *ULongTy;
218  static Type *FloatTy, *DoubleTy;
219
220  static Type *TypeTy , *LabelTy;
221
222  // Methods for support type inquiry through isa, cast, and dyn_cast:
223  static inline bool classof(const Type *T) { return true; }
224  static inline bool classof(const Value *V) {
225    return V->getValueType() == Value::TypeVal;
226  }
227
228#include "llvm/Type.def"
229
230private:
231  class TypeIterator : public std::bidirectional_iterator<const Type,
232		                                          ptrdiff_t> {
233    const Type * const Ty;
234    unsigned Idx;
235
236    typedef TypeIterator _Self;
237  public:
238    inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
239    inline ~TypeIterator() {}
240
241    inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
242    inline bool operator!=(const _Self& x) const { return !operator==(x); }
243
244    inline pointer operator*() const { return Ty->getContainedType(Idx); }
245    inline pointer operator->() const { return operator*(); }
246
247    inline _Self& operator++() { ++Idx; return *this; } // Preincrement
248    inline _Self operator++(int) { // Postincrement
249      _Self tmp = *this; ++*this; return tmp;
250    }
251
252    inline _Self& operator--() { --Idx; return *this; }  // Predecrement
253    inline _Self operator--(int) { // Postdecrement
254      _Self tmp = *this; --*this; return tmp;
255    }
256  };
257};
258
259inline Type::TypeIterator Type::subtype_begin() const {
260  return TypeIterator(this, 0);
261}
262
263inline Type::TypeIterator Type::subtype_end() const {
264  return TypeIterator(this, getNumContainedTypes());
265}
266
267
268// Provide specializations of GraphTraits to be able to treat a type as a
269// graph of sub types...
270
271template <> struct GraphTraits<Type*> {
272  typedef Type NodeType;
273  typedef Type::subtype_iterator ChildIteratorType;
274
275  static inline NodeType *getEntryNode(Type *T) { return T; }
276  static inline ChildIteratorType child_begin(NodeType *N) {
277    return N->subtype_begin();
278  }
279  static inline ChildIteratorType child_end(NodeType *N) {
280    return N->subtype_end();
281  }
282};
283
284template <> struct GraphTraits<const Type*> {
285  typedef const Type NodeType;
286  typedef Type::subtype_iterator ChildIteratorType;
287
288  static inline NodeType *getEntryNode(const Type *T) { return T; }
289  static inline ChildIteratorType child_begin(NodeType *N) {
290    return N->subtype_begin();
291  }
292  static inline ChildIteratorType child_end(NodeType *N) {
293    return N->subtype_end();
294  }
295};
296
297template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
298  return Ty.getPrimitiveID() == Type::PointerTyID;
299}
300
301#endif
302