Type.h revision 1c5164e9cff87b9682fcf620c7aac099ff378e18
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3// This file contains the declaration of the Type class.  For more "Type" type
4// stuff, look in DerivedTypes.h.
5//
6// Note that instances of the Type class are immutable: once they are created,
7// they are never changed.  Also note that only one instance of a particular
8// type is ever created.  Thus seeing if two types are equal is a matter of
9// doing a trivial pointer comparison.
10//
11// Types, once allocated, are never free'd.
12//
13// Opaque types are simple derived types with no state.  There may be many
14// different Opaque type objects floating around, but two are only considered
15// identical if they are pointer equals of each other.  This allows us to have
16// two opaque types that end up resolving to different concrete types later.
17//
18// Opaque types are also kinda wierd and scary and different because they have
19// to keep a list of uses of the type.  When, through linking, parsing, or
20// bytecode reading, they become resolved, they need to find and update all
21// users of the unknown type, causing them to reference a new, more concrete
22// type.  Opaque types are deleted when their use list dwindles to zero users.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_TYPE_H
27#define LLVM_TYPE_H
28
29#include "llvm/Value.h"
30#include "Support/GraphTraits.h"
31#include "Support/iterator"
32
33class DerivedType;
34class FunctionType;
35class ArrayType;
36class PointerType;
37class StructType;
38class OpaqueType;
39
40struct Type : public Value {
41  ///===-------------------------------------------------------------------===//
42  /// Definitions of all of the base types for the Type system.  Based on this
43  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
44  /// Note: If you add an element to this, you need to add an element to the
45  /// Type::getPrimitiveType function, or else things will break!
46  ///
47  enum PrimitiveID {
48    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
49    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
50    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
51    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
52    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
53
54    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
55
56    TypeTyID,                           // 12   : Type definitions
57    LabelTyID     ,                     // 13   : Labels...
58
59    // Derived types... see DerivedTypes.h file...
60    // Make sure FirstDerivedTyID stays up to date!!!
61    FunctionTyID  , StructTyID,         // Functions... Structs...
62    ArrayTyID     , PointerTyID,        // Array... pointer...
63    OpaqueTyID,                         // Opaque type instances...
64    //PackedTyID  ,                     // SIMD 'packed' format... TODO
65    //...
66
67    NumPrimitiveIDs,                    // Must remain as last defined ID
68    FirstDerivedTyID = FunctionTyID,
69  };
70
71private:
72  PrimitiveID ID;        // The current base type of this type...
73  unsigned    UID;       // The unique ID number for this class
74  bool        Abstract;  // True if type contains an OpaqueType
75
76  const Type *getForwardedTypeInternal() const;
77protected:
78  /// ctor is protected, so only subclasses can create Type objects...
79  Type(const std::string &Name, PrimitiveID id);
80  virtual ~Type() {}
81
82  /// setName - Associate the name with this type in the symbol table, but don't
83  /// set the local name to be equal specified name.
84  ///
85  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
86
87  /// Types can become nonabstract later, if they are refined.
88  ///
89  inline void setAbstract(bool Val) { Abstract = Val; }
90
91  /// isTypeAbstract - This method is used to calculate the Abstract bit.
92  ///
93  bool isTypeAbstract();
94
95  /// ForwardType - This field is used to implement the union find scheme for
96  /// abstract types.  When types are refined to other types, this field is set
97  /// to the more refined type.  Only abstract types can be forwarded.
98  mutable const Type *ForwardType;
99
100public:
101  virtual void print(std::ostream &O) const;
102
103  //===--------------------------------------------------------------------===//
104  // Property accessors for dealing with types... Some of these virtual methods
105  // are defined in private classes defined in Type.cpp for primitive types.
106  //
107
108  /// getPrimitiveID - Return the base type of the type.  This will return one
109  /// of the PrimitiveID enum elements defined above.
110  ///
111  inline PrimitiveID getPrimitiveID() const { return ID; }
112
113  /// getUniqueID - Returns the UID of the type.  This can be thought of as a
114  /// small integer version of the pointer to the type class.  Two types that
115  /// are structurally different have different UIDs.  This can be used for
116  /// indexing types into an array.
117  ///
118  inline unsigned getUniqueID() const { return UID; }
119
120  /// getDescription - Return the string representation of the type...
121  const std::string &getDescription() const;
122
123  /// isSigned - Return whether an integral numeric type is signed.  This is
124  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
125  /// Float and Double.
126  //
127  virtual bool isSigned() const { return 0; }
128
129  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
130  /// the complement of isSigned... nonnumeric types return false as they do
131  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
132  /// ULongTy
133  ///
134  virtual bool isUnsigned() const { return 0; }
135
136  /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
137  /// single virtual function invocation.
138  ///
139  virtual bool isInteger() const { return 0; }
140
141  /// isIntegral - Returns true if this is an integral type, which is either
142  /// BoolTy or one of the Integer types.
143  ///
144  bool isIntegral() const { return isInteger() || this == BoolTy; }
145
146  /// isFloatingPoint - Return true if this is one of the two floating point
147  /// types
148  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
149
150  /// isAbstract - True if the type is either an Opaque type, or is a derived
151  /// type that includes an opaque type somewhere in it.
152  ///
153  inline bool isAbstract() const { return Abstract; }
154
155  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
156  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
157  ///
158  bool isLosslesslyConvertibleTo(const Type *Ty) const;
159
160
161  /// Here are some useful little methods to query what type derived types are
162  /// Note that all other types can just compare to see if this == Type::xxxTy;
163  ///
164  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
165  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
166
167  /// isFirstClassType - Return true if the value is holdable in a register.
168  inline bool isFirstClassType() const {
169    return isPrimitiveType() || ID == PointerTyID;
170  }
171
172  /// isSized - Return true if it makes sense to take the size of this type.  To
173  /// get the actual size for a particular target, it is reasonable to use the
174  /// TargetData subsystem to do this.
175  ///
176  bool isSized() const {
177    return ID != VoidTyID && ID != TypeTyID &&
178           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
179  }
180
181  /// getPrimitiveSize - Return the basic size of this type if it is a primative
182  /// type.  These are fixed by LLVM and are not target dependent.  This will
183  /// return zero if the type does not have a size or is not a primitive type.
184  ///
185  unsigned getPrimitiveSize() const;
186
187  /// getForwaredType - Return the type that this type has been resolved to if
188  /// it has been resolved to anything.  This is used to implement the
189  /// union-find algorithm for type resolution.
190  const Type *getForwardedType() const {
191    if (!ForwardType) return 0;
192    return getForwardedTypeInternal();
193  }
194
195  //===--------------------------------------------------------------------===//
196  // Type Iteration support
197  //
198  class TypeIterator;
199  typedef TypeIterator subtype_iterator;
200  inline subtype_iterator subtype_begin() const;   // DEFINED BELOW
201  inline subtype_iterator subtype_end() const;     // DEFINED BELOW
202
203  /// getContainedType - This method is used to implement the type iterator
204  /// (defined a the end of the file).  For derived types, this returns the
205  /// types 'contained' in the derived type, returning 0 when 'i' becomes
206  /// invalid. This allows the user to iterate over the types in a struct, for
207  /// example, really easily.
208  ///
209  virtual const Type *getContainedType(unsigned i) const { return 0; }
210
211  /// getNumContainedTypes - Return the number of types in the derived type
212  virtual unsigned getNumContainedTypes() const { return 0; }
213
214  //===--------------------------------------------------------------------===//
215  // Static members exported by the Type class itself.  Useful for getting
216  // instances of Type.
217  //
218
219  /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
220  static const Type *getPrimitiveType(PrimitiveID IDNumber);
221  static const Type *getUniqueIDType(unsigned UID);
222
223  //===--------------------------------------------------------------------===//
224  // These are the builtin types that are always available...
225  //
226  static Type *VoidTy , *BoolTy;
227  static Type *SByteTy, *UByteTy,
228              *ShortTy, *UShortTy,
229              *IntTy  , *UIntTy,
230              *LongTy , *ULongTy;
231  static Type *FloatTy, *DoubleTy;
232
233  static Type *TypeTy , *LabelTy;
234
235  /// Methods for support type inquiry through isa, cast, and dyn_cast:
236  static inline bool classof(const Type *T) { return true; }
237  static inline bool classof(const Value *V) {
238    return V->getValueType() == Value::TypeVal;
239  }
240
241#include "llvm/Type.def"
242
243private:
244  class TypeIterator : public bidirectional_iterator<const Type, ptrdiff_t> {
245    const Type * const Ty;
246    unsigned Idx;
247
248    typedef TypeIterator _Self;
249  public:
250    inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
251    inline ~TypeIterator() {}
252
253    inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
254    inline bool operator!=(const _Self& x) const { return !operator==(x); }
255
256    inline pointer operator*() const { return Ty->getContainedType(Idx); }
257    inline pointer operator->() const { return operator*(); }
258
259    inline _Self& operator++() { ++Idx; return *this; } // Preincrement
260    inline _Self operator++(int) { // Postincrement
261      _Self tmp = *this; ++*this; return tmp;
262    }
263
264    inline _Self& operator--() { --Idx; return *this; }  // Predecrement
265    inline _Self operator--(int) { // Postdecrement
266      _Self tmp = *this; --*this; return tmp;
267    }
268  };
269};
270
271inline Type::TypeIterator Type::subtype_begin() const {
272  return TypeIterator(this, 0);
273}
274
275inline Type::TypeIterator Type::subtype_end() const {
276  return TypeIterator(this, getNumContainedTypes());
277}
278
279
280// Provide specializations of GraphTraits to be able to treat a type as a
281// graph of sub types...
282
283template <> struct GraphTraits<Type*> {
284  typedef Type NodeType;
285  typedef Type::subtype_iterator ChildIteratorType;
286
287  static inline NodeType *getEntryNode(Type *T) { return T; }
288  static inline ChildIteratorType child_begin(NodeType *N) {
289    return N->subtype_begin();
290  }
291  static inline ChildIteratorType child_end(NodeType *N) {
292    return N->subtype_end();
293  }
294};
295
296template <> struct GraphTraits<const Type*> {
297  typedef const Type NodeType;
298  typedef Type::subtype_iterator ChildIteratorType;
299
300  static inline NodeType *getEntryNode(const Type *T) { return T; }
301  static inline ChildIteratorType child_begin(NodeType *N) {
302    return N->subtype_begin();
303  }
304  static inline ChildIteratorType child_end(NodeType *N) {
305    return N->subtype_end();
306  }
307};
308
309template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
310  return Ty.getPrimitiveID() == Type::PointerTyID;
311}
312
313#endif
314