Type.h revision 207f2d4056ac6991419603179911cb09cf4a9966
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Type class.  For more "Type" type
11// stuff, look in DerivedTypes.h.
12//
13// Note that instances of the Type class are immutable: once they are created,
14// they are never changed.  Also note that only one instance of a particular
15// type is ever created.  Thus seeing if two types are equal is a matter of
16// doing a trivial pointer comparison.
17//
18// Types, once allocated, are never free'd, unless they are an abstract type
19// that is resolved to a more concrete type.
20//
21// Opaque types are simple derived types with no state.  There may be many
22// different Opaque type objects floating around, but two are only considered
23// identical if they are pointer equals of each other.  This allows us to have
24// two opaque types that end up resolving to different concrete types later.
25//
26// Opaque types are also kinda wierd and scary and different because they have
27// to keep a list of uses of the type.  When, through linking, parsing, or
28// bytecode reading, they become resolved, they need to find and update all
29// users of the unknown type, causing them to reference a new, more concrete
30// type.  Opaque types are deleted when their use list dwindles to zero users.
31//
32// Opaque types are considered to be first-class types.
33//
34//===----------------------------------------------------------------------===//
35
36#ifndef LLVM_TYPE_H
37#define LLVM_TYPE_H
38
39#include "AbstractTypeUser.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/ADT/GraphTraits.h"
42#include "llvm/ADT/iterator"
43#include <vector>
44
45namespace llvm {
46
47class ArrayType;
48class DerivedType;
49class FunctionType;
50class OpaqueType;
51class PointerType;
52class StructType;
53class PackedType;
54
55class Type {
56public:
57  ///===-------------------------------------------------------------------===//
58  /// Definitions of all of the base types for the Type system.  Based on this
59  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
60  /// Note: If you add an element to this, you need to add an element to the
61  /// Type::getPrimitiveType function, or else things will break!
62  ///
63  enum TypeID {
64    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
65    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
66    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
67    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
68    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
69    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
70    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
71    LabelTyID     ,                     // 12   : Labels...
72
73    // Derived types... see DerivedTypes.h file...
74    // Make sure FirstDerivedTyID stays up to date!!!
75    FunctionTyID  , StructTyID,         // Functions... Structs...
76    ArrayTyID     , PointerTyID,        // Array... pointer...
77    OpaqueTyID,                         // Opaque type instances...
78    PackedTyID,                         // SIMD 'packed' format...
79    //...
80
81    NumTypeIDs,                         // Must remain as last defined ID
82    LastPrimitiveTyID = LabelTyID,
83    FirstDerivedTyID = FunctionTyID,
84  };
85
86private:
87  TypeID   ID : 8;    // The current base type of this type.
88  bool     Abstract;  // True if type contains an OpaqueType
89
90  /// RefCount - This counts the number of PATypeHolders that are pointing to
91  /// this type.  When this number falls to zero, if the type is abstract and
92  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
93  /// derived types.
94  ///
95  mutable unsigned RefCount;
96
97  const Type *getForwardedTypeInternal() const;
98protected:
99  Type(const std::string& Name, TypeID id);
100  virtual ~Type() {}
101
102  /// Types can become nonabstract later, if they are refined.
103  ///
104  inline void setAbstract(bool Val) { Abstract = Val; }
105
106  // PromoteAbstractToConcrete - This is an internal method used to calculate
107  // change "Abstract" from true to false when types are refined.
108  void PromoteAbstractToConcrete();
109
110  unsigned getRefCount() const { return RefCount; }
111
112  /// ForwardType - This field is used to implement the union find scheme for
113  /// abstract types.  When types are refined to other types, this field is set
114  /// to the more refined type.  Only abstract types can be forwarded.
115  mutable const Type *ForwardType;
116
117  /// ContainedTys - The list of types contained by this one.  For example, this
118  /// includes the arguments of a function type, the elements of the structure,
119  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
120  /// class wastes some space for types that do not contain anything (such as
121  /// primitive types).  However, keeping it here allows the subtype_* members
122  /// to be implemented MUCH more efficiently, and dynamically very few types do
123  /// not contain any elements (most are derived).
124  std::vector<PATypeHandle> ContainedTys;
125
126public:
127  virtual void print(std::ostream &O) const;
128
129  /// @brief Debugging support: print to stderr
130  virtual void dump() const;
131
132  //===--------------------------------------------------------------------===//
133  // Property accessors for dealing with types... Some of these virtual methods
134  // are defined in private classes defined in Type.cpp for primitive types.
135  //
136
137  /// getTypeID - Return the type id for the type.  This will return one
138  /// of the TypeID enum elements defined above.
139  ///
140  inline TypeID getTypeID() const { return ID; }
141
142  /// getDescription - Return the string representation of the type...
143  const std::string &getDescription() const;
144
145  /// isSigned - Return whether an integral numeric type is signed.  This is
146  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
147  /// Float and Double.
148  ///
149  bool isSigned() const {
150    return ID == SByteTyID || ID == ShortTyID ||
151           ID == IntTyID || ID == LongTyID;
152  }
153
154  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
155  /// the complement of isSigned... nonnumeric types return false as they do
156  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
157  /// ULongTy
158  ///
159  bool isUnsigned() const {
160    return ID == UByteTyID || ID == UShortTyID ||
161           ID == UIntTyID || ID == ULongTyID;
162  }
163
164  /// isInteger - Equivalent to isSigned() || isUnsigned()
165  ///
166  bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; }
167
168  /// isIntegral - Returns true if this is an integral type, which is either
169  /// BoolTy or one of the Integer types.
170  ///
171  bool isIntegral() const { return isInteger() || this == BoolTy; }
172
173  /// isFloatingPoint - Return true if this is one of the two floating point
174  /// types
175  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
176
177  /// isAbstract - True if the type is either an Opaque type, or is a derived
178  /// type that includes an opaque type somewhere in it.
179  ///
180  inline bool isAbstract() const { return Abstract; }
181
182  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
183  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
184  ///
185  bool isLosslesslyConvertibleTo(const Type *Ty) const;
186
187
188  /// Here are some useful little methods to query what type derived types are
189  /// Note that all other types can just compare to see if this == Type::xxxTy;
190  ///
191  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
192  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
193
194  /// isFirstClassType - Return true if the value is holdable in a register.
195  inline bool isFirstClassType() const {
196    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
197            ID == PointerTyID || ID == PackedTyID || ID == OpaqueTyID;
198  }
199
200  /// isSized - Return true if it makes sense to take the size of this type.  To
201  /// get the actual size for a particular target, it is reasonable to use the
202  /// TargetData subsystem to do this.
203  ///
204  bool isSized() const {
205    return (ID >= BoolTyID && ID <= DoubleTyID) || ID == PointerTyID ||
206           isSizedDerivedType();
207  }
208
209  /// getPrimitiveSize - Return the basic size of this type if it is a primitive
210  /// type.  These are fixed by LLVM and are not target dependent.  This will
211  /// return zero if the type does not have a size or is not a primitive type.
212  ///
213  unsigned getPrimitiveSize() const;
214
215  /// getUnsignedVersion - If this is an integer type, return the unsigned
216  /// variant of this type.  For example int -> uint.
217  const Type *getUnsignedVersion() const;
218
219  /// getSignedVersion - If this is an integer type, return the signed variant
220  /// of this type.  For example uint -> int.
221  const Type *getSignedVersion() const;
222
223  /// getForwaredType - Return the type that this type has been resolved to if
224  /// it has been resolved to anything.  This is used to implement the
225  /// union-find algorithm for type resolution, and shouldn't be used by general
226  /// purpose clients.
227  const Type *getForwardedType() const {
228    if (!ForwardType) return 0;
229    return getForwardedTypeInternal();
230  }
231
232  //===--------------------------------------------------------------------===//
233  // Type Iteration support
234  //
235  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
236  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
237  subtype_iterator subtype_end() const { return ContainedTys.end(); }
238
239  /// getContainedType - This method is used to implement the type iterator
240  /// (defined a the end of the file).  For derived types, this returns the
241  /// types 'contained' in the derived type.
242  ///
243  const Type *getContainedType(unsigned i) const {
244    assert(i < ContainedTys.size() && "Index out of range!");
245    return ContainedTys[i];
246  }
247
248  /// getNumContainedTypes - Return the number of types in the derived type.
249  ///
250  unsigned getNumContainedTypes() const { return ContainedTys.size(); }
251
252  //===--------------------------------------------------------------------===//
253  // Static members exported by the Type class itself.  Useful for getting
254  // instances of Type.
255  //
256
257  /// getPrimitiveType - Return a type based on an identifier.
258  static const Type *getPrimitiveType(TypeID IDNumber);
259
260  //===--------------------------------------------------------------------===//
261  // These are the builtin types that are always available...
262  //
263  static Type *VoidTy , *BoolTy;
264  static Type *SByteTy, *UByteTy,
265              *ShortTy, *UShortTy,
266              *IntTy  , *UIntTy,
267              *LongTy , *ULongTy;
268  static Type *FloatTy, *DoubleTy;
269
270  static Type* LabelTy;
271
272  /// Methods for support type inquiry through isa, cast, and dyn_cast:
273  static inline bool classof(const Type *T) { return true; }
274
275#include "llvm/Type.def"
276
277  // Virtual methods used by callbacks below.  These should only be implemented
278  // in the DerivedType class.
279  virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
280    abort(); // Only on derived types!
281  }
282  virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
283    abort(); // Only on derived types!
284  }
285
286  void addRef() const {
287    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
288    ++RefCount;
289  }
290
291  void dropRef() const {
292    assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
293    assert(RefCount && "No objects are currently referencing this object!");
294
295    // If this is the last PATypeHolder using this object, and there are no
296    // PATypeHandles using it, the type is dead, delete it now.
297    if (--RefCount == 0)
298      RefCountIsZero();
299  }
300private:
301  /// isSizedDerivedType - Derived types like structures and arrays are sized
302  /// iff all of the members of the type are sized as well.  Since asking for
303  /// their size is relatively uncommon, move this operation out of line.
304  bool isSizedDerivedType() const;
305
306  virtual void RefCountIsZero() const {
307    abort(); // only on derived types!
308  }
309
310};
311
312//===----------------------------------------------------------------------===//
313// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
314// These are defined here because they MUST be inlined, yet are dependent on
315// the definition of the Type class.  Of course Type derives from Value, which
316// contains an AbstractTypeUser instance, so there is no good way to factor out
317// the code.  Hence this bit of uglyness.
318//
319// In the long term, Type should not derive from Value, allowing
320// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
321// nastyness entirely.
322//
323inline void PATypeHandle::addUser() {
324  assert(Ty && "Type Handle has a null type!");
325  if (Ty->isAbstract())
326    Ty->addAbstractTypeUser(User);
327}
328inline void PATypeHandle::removeUser() {
329  if (Ty->isAbstract())
330    Ty->removeAbstractTypeUser(User);
331}
332
333inline void PATypeHandle::removeUserFromConcrete() {
334  if (!Ty->isAbstract())
335    Ty->removeAbstractTypeUser(User);
336}
337
338// Define inline methods for PATypeHolder...
339
340inline void PATypeHolder::addRef() {
341  if (Ty->isAbstract())
342    Ty->addRef();
343}
344
345inline void PATypeHolder::dropRef() {
346  if (Ty->isAbstract())
347    Ty->dropRef();
348}
349
350/// get - This implements the forwarding part of the union-find algorithm for
351/// abstract types.  Before every access to the Type*, we check to see if the
352/// type we are pointing to is forwarding to a new type.  If so, we drop our
353/// reference to the type.
354///
355inline Type* PATypeHolder::get() const {
356  const Type *NewTy = Ty->getForwardedType();
357  if (!NewTy) return const_cast<Type*>(Ty);
358  return *const_cast<PATypeHolder*>(this) = NewTy;
359}
360
361
362
363//===----------------------------------------------------------------------===//
364// Provide specializations of GraphTraits to be able to treat a type as a
365// graph of sub types...
366
367template <> struct GraphTraits<Type*> {
368  typedef Type NodeType;
369  typedef Type::subtype_iterator ChildIteratorType;
370
371  static inline NodeType *getEntryNode(Type *T) { return T; }
372  static inline ChildIteratorType child_begin(NodeType *N) {
373    return N->subtype_begin();
374  }
375  static inline ChildIteratorType child_end(NodeType *N) {
376    return N->subtype_end();
377  }
378};
379
380template <> struct GraphTraits<const Type*> {
381  typedef const Type NodeType;
382  typedef Type::subtype_iterator ChildIteratorType;
383
384  static inline NodeType *getEntryNode(const Type *T) { return T; }
385  static inline ChildIteratorType child_begin(NodeType *N) {
386    return N->subtype_begin();
387  }
388  static inline ChildIteratorType child_end(NodeType *N) {
389    return N->subtype_end();
390  }
391};
392
393template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
394  return Ty.getTypeID() == Type::PointerTyID;
395}
396
397std::ostream &operator<<(std::ostream &OS, const Type &T);
398
399} // End llvm namespace
400
401#endif
402