Type.h revision 2a4a4b54ada1d998340a7e3364ac4d80fa783a82
1//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=//
2//
3// This file contains the declaration of the Type class.  For more "Type" type
4// stuff, look in DerivedTypes.h.
5//
6// Note that instances of the Type class are immutable: once they are created,
7// they are never changed.  Also note that only one instance of a particular
8// type is ever created.  Thus seeing if two types are equal is a matter of
9// doing a trivial pointer comparison.
10//
11// Types, once allocated, are never free'd.
12//
13// Opaque types are simple derived types with no state.  There may be many
14// different Opaque type objects floating around, but two are only considered
15// identical if they are pointer equals of each other.  This allows us to have
16// two opaque types that end up resolving to different concrete types later.
17//
18// Opaque types are also kinda wierd and scary and different because they have
19// to keep a list of uses of the type.  When, through linking, parsing, or
20// bytecode reading, they become resolved, they need to find and update all
21// users of the unknown type, causing them to reference a new, more concrete
22// type.  Opaque types are deleted when their use list dwindles to zero users.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_TYPE_H
27#define LLVM_TYPE_H
28
29#include "llvm/Value.h"
30#include "Support/GraphTraits.h"
31#include "Support/iterator"
32
33class DerivedType;
34class FunctionType;
35class ArrayType;
36class PointerType;
37class StructType;
38class OpaqueType;
39
40class Type : public Value {
41public:
42  ///===-------------------------------------------------------------------===//
43  /// Definitions of all of the base types for the Type system.  Based on this
44  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
45  /// Note: If you add an element to this, you need to add an element to the
46  /// Type::getPrimitiveType function, or else things will break!
47  ///
48  enum PrimitiveID {
49    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
50    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
51    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
52    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
53    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
54
55    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
56
57    TypeTyID,                           // 12   : Type definitions
58    LabelTyID     ,                     // 13   : Labels...
59
60    // Derived types... see DerivedTypes.h file...
61    // Make sure FirstDerivedTyID stays up to date!!!
62    FunctionTyID  , StructTyID,         // Functions... Structs...
63    ArrayTyID     , PointerTyID,        // Array... pointer...
64    OpaqueTyID,                         // Opaque type instances...
65    //PackedTyID  ,                     // SIMD 'packed' format... TODO
66    //...
67
68    NumPrimitiveIDs,                    // Must remain as last defined ID
69    FirstDerivedTyID = FunctionTyID,
70  };
71
72private:
73  PrimitiveID ID;        // The current base type of this type...
74  unsigned    UID;       // The unique ID number for this class
75  bool        Abstract;  // True if type contains an OpaqueType
76
77protected:
78  /// ctor is protected, so only subclasses can create Type objects...
79  Type(const std::string &Name, PrimitiveID id);
80  virtual ~Type() {}
81
82  /// setName - Associate the name with this type in the symbol table, but don't
83  /// set the local name to be equal specified name.
84  ///
85  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
86
87  /// Types can become nonabstract later, if they are refined.
88  ///
89  inline void setAbstract(bool Val) { Abstract = Val; }
90
91  /// isTypeAbstract - This method is used to calculate the Abstract bit.
92  ///
93  bool isTypeAbstract();
94public:
95  virtual void print(std::ostream &O) const;
96
97  //===--------------------------------------------------------------------===//
98  // Property accessors for dealing with types... Some of these virtual methods
99  // are defined in private classes defined in Type.cpp for primitive types.
100  //
101
102  /// getPrimitiveID - Return the base type of the type.  This will return one
103  /// of the PrimitiveID enum elements defined above.
104  ///
105  inline PrimitiveID getPrimitiveID() const { return ID; }
106
107  /// getUniqueID - Returns the UID of the type.  This can be thought of as a
108  /// small integer version of the pointer to the type class.  Two types that
109  /// are structurally different have different UIDs.  This can be used for
110  /// indexing types into an array.
111  ///
112  inline unsigned getUniqueID() const { return UID; }
113
114  /// getDescription - Return the string representation of the type...
115  const std::string &getDescription() const;
116
117  /// isSigned - Return whether an integral numeric type is signed.  This is
118  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
119  /// Float and Double.
120  //
121  virtual bool isSigned() const { return 0; }
122
123  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
124  /// the complement of isSigned... nonnumeric types return false as they do
125  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
126  /// ULongTy
127  ///
128  virtual bool isUnsigned() const { return 0; }
129
130  /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
131  /// single virtual function invocation.
132  ///
133  virtual bool isInteger() const { return 0; }
134
135  /// isIntegral - Returns true if this is an integral type, which is either
136  /// BoolTy or one of the Integer types.
137  ///
138  bool isIntegral() const { return isInteger() || this == BoolTy; }
139
140  /// isFloatingPoint - Return true if this is one of the two floating point
141  /// types
142  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
143
144  /// isAbstract - True if the type is either an Opaque type, or is a derived
145  /// type that includes an opaque type somewhere in it.
146  ///
147  inline bool isAbstract() const { return Abstract; }
148
149  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
150  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
151  ///
152  bool isLosslesslyConvertibleTo(const Type *Ty) const;
153
154
155  /// Here are some useful little methods to query what type derived types are
156  /// Note that all other types can just compare to see if this == Type::xxxTy;
157  ///
158  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
159  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
160
161  /// isFirstClassType - Return true if the value is holdable in a register.
162  inline bool isFirstClassType() const {
163    return isPrimitiveType() || ID == PointerTyID;
164  }
165
166  /// isSized - Return true if it makes sense to take the size of this type.  To
167  /// get the actual size for a particular target, it is reasonable to use the
168  /// TargetData subsystem to do this.
169  ///
170  bool isSized() const {
171    return ID != VoidTyID && ID != TypeTyID &&
172           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
173  }
174
175  /// getPrimitiveSize - Return the basic size of this type if it is a primative
176  /// type.  These are fixed by LLVM and are not target dependent.  This will
177  /// return zero if the type does not have a size or is not a primitive type.
178  ///
179  unsigned getPrimitiveSize() const;
180
181
182  //===--------------------------------------------------------------------===//
183  // Type Iteration support
184  //
185  class TypeIterator;
186  typedef TypeIterator subtype_iterator;
187  inline subtype_iterator subtype_begin() const;   // DEFINED BELOW
188  inline subtype_iterator subtype_end() const;     // DEFINED BELOW
189
190  /// getContainedType - This method is used to implement the type iterator
191  /// (defined a the end of the file).  For derived types, this returns the
192  /// types 'contained' in the derived type, returning 0 when 'i' becomes
193  /// invalid. This allows the user to iterate over the types in a struct, for
194  /// example, really easily.
195  ///
196  virtual const Type *getContainedType(unsigned i) const { return 0; }
197
198  /// getNumContainedTypes - Return the number of types in the derived type
199  virtual unsigned getNumContainedTypes() const { return 0; }
200
201  //===--------------------------------------------------------------------===//
202  // Static members exported by the Type class itself.  Useful for getting
203  // instances of Type.
204  //
205
206  /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
207  static const Type *getPrimitiveType(PrimitiveID IDNumber);
208  static const Type *getUniqueIDType(unsigned UID);
209
210  //===--------------------------------------------------------------------===//
211  // These are the builtin types that are always available...
212  //
213  static Type *VoidTy , *BoolTy;
214  static Type *SByteTy, *UByteTy,
215              *ShortTy, *UShortTy,
216              *IntTy  , *UIntTy,
217              *LongTy , *ULongTy;
218  static Type *FloatTy, *DoubleTy;
219
220  static Type *TypeTy , *LabelTy;
221
222  /// Methods for support type inquiry through isa, cast, and dyn_cast:
223  static inline bool classof(const Type *T) { return true; }
224  static inline bool classof(const Value *V) {
225    return V->getValueType() == Value::TypeVal;
226  }
227
228#include "llvm/Type.def"
229
230private:
231  class TypeIterator : public bidirectional_iterator<const Type, ptrdiff_t> {
232    const Type * const Ty;
233    unsigned Idx;
234
235    typedef TypeIterator _Self;
236  public:
237    inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
238    inline ~TypeIterator() {}
239
240    inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
241    inline bool operator!=(const _Self& x) const { return !operator==(x); }
242
243    inline pointer operator*() const { return Ty->getContainedType(Idx); }
244    inline pointer operator->() const { return operator*(); }
245
246    inline _Self& operator++() { ++Idx; return *this; } // Preincrement
247    inline _Self operator++(int) { // Postincrement
248      _Self tmp = *this; ++*this; return tmp;
249    }
250
251    inline _Self& operator--() { --Idx; return *this; }  // Predecrement
252    inline _Self operator--(int) { // Postdecrement
253      _Self tmp = *this; --*this; return tmp;
254    }
255  };
256};
257
258inline Type::TypeIterator Type::subtype_begin() const {
259  return TypeIterator(this, 0);
260}
261
262inline Type::TypeIterator Type::subtype_end() const {
263  return TypeIterator(this, getNumContainedTypes());
264}
265
266
267// Provide specializations of GraphTraits to be able to treat a type as a
268// graph of sub types...
269
270template <> struct GraphTraits<Type*> {
271  typedef Type NodeType;
272  typedef Type::subtype_iterator ChildIteratorType;
273
274  static inline NodeType *getEntryNode(Type *T) { return T; }
275  static inline ChildIteratorType child_begin(NodeType *N) {
276    return N->subtype_begin();
277  }
278  static inline ChildIteratorType child_end(NodeType *N) {
279    return N->subtype_end();
280  }
281};
282
283template <> struct GraphTraits<const Type*> {
284  typedef const Type NodeType;
285  typedef Type::subtype_iterator ChildIteratorType;
286
287  static inline NodeType *getEntryNode(const Type *T) { return T; }
288  static inline ChildIteratorType child_begin(NodeType *N) {
289    return N->subtype_begin();
290  }
291  static inline ChildIteratorType child_end(NodeType *N) {
292    return N->subtype_end();
293  }
294};
295
296template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
297  return Ty.getPrimitiveID() == Type::PointerTyID;
298}
299
300#endif
301