Type.h revision 336e06bd0f7037cfc4bf6d6579d13b848bcebe1e
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_TYPE_H
11#define LLVM_TYPE_H
12
13#include "llvm/AbstractTypeUser.h"
14#include "llvm/Support/Casting.h"
15#include "llvm/System/DataTypes.h"
16#include "llvm/ADT/GraphTraits.h"
17#include <string>
18#include <vector>
19
20namespace llvm {
21
22class DerivedType;
23class PointerType;
24class IntegerType;
25class TypeMapBase;
26class raw_ostream;
27class Module;
28class LLVMContext;
29
30/// This file contains the declaration of the Type class.  For more "Type" type
31/// stuff, look in DerivedTypes.h.
32///
33/// The instances of the Type class are immutable: once they are created,
34/// they are never changed.  Also note that only one instance of a particular
35/// type is ever created.  Thus seeing if two types are equal is a matter of
36/// doing a trivial pointer comparison. To enforce that no two equal instances
37/// are created, Type instances can only be created via static factory methods
38/// in class Type and in derived classes.
39///
40/// Once allocated, Types are never free'd, unless they are an abstract type
41/// that is resolved to a more concrete type.
42///
43/// Types themself don't have a name, and can be named either by:
44/// - using SymbolTable instance, typically from some Module,
45/// - using convenience methods in the Module class (which uses module's
46///    SymbolTable too).
47///
48/// Opaque types are simple derived types with no state.  There may be many
49/// different Opaque type objects floating around, but two are only considered
50/// identical if they are pointer equals of each other.  This allows us to have
51/// two opaque types that end up resolving to different concrete types later.
52///
53/// Opaque types are also kinda weird and scary and different because they have
54/// to keep a list of uses of the type.  When, through linking, parsing, or
55/// bitcode reading, they become resolved, they need to find and update all
56/// users of the unknown type, causing them to reference a new, more concrete
57/// type.  Opaque types are deleted when their use list dwindles to zero users.
58///
59/// @brief Root of type hierarchy
60class Type : public AbstractTypeUser {
61public:
62  //===-------------------------------------------------------------------===//
63  /// Definitions of all of the base types for the Type system.  Based on this
64  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
65  /// Note: If you add an element to this, you need to add an element to the
66  /// Type::getPrimitiveType function, or else things will break!
67  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
68  ///
69  enum TypeID {
70    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
71    VoidTyID = 0,    ///<  0: type with no size
72    FloatTyID,       ///<  1: 32 bit floating point type
73    DoubleTyID,      ///<  2: 64 bit floating point type
74    X86_FP80TyID,    ///<  3: 80 bit floating point type (X87)
75    FP128TyID,       ///<  4: 128 bit floating point type (112-bit mantissa)
76    PPC_FP128TyID,   ///<  5: 128 bit floating point type (two 64-bits)
77    LabelTyID,       ///<  6: Labels
78    MetadataTyID,    ///<  7: Metadata
79
80    // Derived types... see DerivedTypes.h file...
81    // Make sure FirstDerivedTyID stays up to date!!!
82    IntegerTyID,     ///<  8: Arbitrary bit width integers
83    FunctionTyID,    ///<  9: Functions
84    StructTyID,      ///< 10: Structures
85    ArrayTyID,       ///< 11: Arrays
86    PointerTyID,     ///< 12: Pointers
87    OpaqueTyID,      ///< 13: Opaque: type with unknown structure
88    VectorTyID,      ///< 14: SIMD 'packed' format, or other vector type
89
90    NumTypeIDs,                         // Must remain as last defined ID
91    LastPrimitiveTyID = LabelTyID,
92    FirstDerivedTyID = IntegerTyID
93  };
94
95private:
96  TypeID   ID : 8;    // The current base type of this type.
97  bool     Abstract : 1;  // True if type contains an OpaqueType
98  unsigned SubclassData : 23; //Space for subclasses to store data
99
100  /// RefCount - This counts the number of PATypeHolders that are pointing to
101  /// this type.  When this number falls to zero, if the type is abstract and
102  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
103  /// derived types.
104  ///
105  mutable unsigned RefCount;
106
107  /// Context - This refers to the LLVMContext in which this type was uniqued.
108  LLVMContext &Context;
109  friend class LLVMContextImpl;
110
111  const Type *getForwardedTypeInternal() const;
112
113  // Some Type instances are allocated as arrays, some aren't. So we provide
114  // this method to get the right kind of destruction for the type of Type.
115  void destroy() const; // const is a lie, this does "delete this"!
116
117protected:
118  explicit Type(LLVMContext &C, TypeID id) :
119                             ID(id), Abstract(false), SubclassData(0),
120                             RefCount(0), Context(C),
121                             ForwardType(0), NumContainedTys(0),
122                             ContainedTys(0) {}
123  virtual ~Type() {
124    assert(AbstractTypeUsers.empty() && "Abstract types remain");
125  }
126
127  /// Types can become nonabstract later, if they are refined.
128  ///
129  inline void setAbstract(bool Val) { Abstract = Val; }
130
131  unsigned getRefCount() const { return RefCount; }
132
133  unsigned getSubclassData() const { return SubclassData; }
134  void setSubclassData(unsigned val) { SubclassData = val; }
135
136  /// ForwardType - This field is used to implement the union find scheme for
137  /// abstract types.  When types are refined to other types, this field is set
138  /// to the more refined type.  Only abstract types can be forwarded.
139  mutable const Type *ForwardType;
140
141
142  /// AbstractTypeUsers - Implement a list of the users that need to be notified
143  /// if I am a type, and I get resolved into a more concrete type.
144  ///
145  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
146
147  /// NumContainedTys - Keeps track of how many PATypeHandle instances there
148  /// are at the end of this type instance for the list of contained types. It
149  /// is the subclasses responsibility to set this up. Set to 0 if there are no
150  /// contained types in this type.
151  unsigned NumContainedTys;
152
153  /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
154  /// by this Type.  For example, this includes the arguments of a function
155  /// type, the elements of a structure, the pointee of a pointer, the element
156  /// type of an array, etc.  This pointer may be 0 for types that don't
157  /// contain other types (Integer, Double, Float).  In general, the subclass
158  /// should arrange for space for the PATypeHandles to be included in the
159  /// allocation of the type object and set this pointer to the address of the
160  /// first element. This allows the Type class to manipulate the ContainedTys
161  /// without understanding the subclass's placement for this array.  keeping
162  /// it here also allows the subtype_* members to be implemented MUCH more
163  /// efficiently, and dynamically very few types do not contain any elements.
164  PATypeHandle *ContainedTys;
165
166public:
167  void print(raw_ostream &O) const;
168
169  /// @brief Debugging support: print to stderr
170  void dump() const;
171
172  /// @brief Debugging support: print to stderr (use type names from context
173  /// module).
174  void dump(const Module *Context) const;
175
176  /// getContext - Fetch the LLVMContext in which this type was uniqued.
177  LLVMContext &getContext() const { return Context; }
178
179  //===--------------------------------------------------------------------===//
180  // Property accessors for dealing with types... Some of these virtual methods
181  // are defined in private classes defined in Type.cpp for primitive types.
182  //
183
184  /// getTypeID - Return the type id for the type.  This will return one
185  /// of the TypeID enum elements defined above.
186  ///
187  inline TypeID getTypeID() const { return ID; }
188
189  /// isVoidTy - Return true if this is 'void'.
190  bool isVoidTy() const { return ID == VoidTyID; }
191
192  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
193  bool isFloatTy() const { return ID == FloatTyID; }
194
195  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
196  bool isDoubleTy() const { return ID == DoubleTyID; }
197
198  /// isX86_FP80Ty - Return true if this is x86 long double.
199  bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
200
201  /// isFP128Ty - Return true if this is 'fp128'.
202  bool isFP128Ty() const { return ID == FP128TyID; }
203
204  /// isPPC_FP128Ty - Return true if this is powerpc long double.
205  bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
206
207  /// isLabelTy - Return true if this is 'label'.
208  bool isLabelTy() const { return ID == LabelTyID; }
209
210  /// isMetadataTy - Return true if this is 'metadata'.
211  bool isMetadataTy() const { return ID == MetadataTyID; }
212
213  /// getDescription - Return the string representation of the type.
214  std::string getDescription() const;
215
216  /// isInteger - True if this is an instance of IntegerType.
217  ///
218  bool isInteger() const { return ID == IntegerTyID; }
219
220  /// isIntOrIntVector - Return true if this is an integer type or a vector of
221  /// integer types.
222  ///
223  bool isIntOrIntVector() const;
224
225  /// isFloatingPoint - Return true if this is one of the five floating point
226  /// types
227  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID ||
228      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
229
230  /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
231  ///
232  bool isFPOrFPVector() const;
233
234  /// isAbstract - True if the type is either an Opaque type, or is a derived
235  /// type that includes an opaque type somewhere in it.
236  ///
237  inline bool isAbstract() const { return Abstract; }
238
239  /// canLosslesslyBitCastTo - Return true if this type could be converted
240  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
241  /// are valid for types of the same size only where no re-interpretation of
242  /// the bits is done.
243  /// @brief Determine if this type could be losslessly bitcast to Ty
244  bool canLosslesslyBitCastTo(const Type *Ty) const;
245
246
247  /// Here are some useful little methods to query what type derived types are
248  /// Note that all other types can just compare to see if this == Type::xxxTy;
249  ///
250  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
251  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
252
253  /// isFirstClassType - Return true if the type is "first class", meaning it
254  /// is a valid type for a Value.
255  ///
256  inline bool isFirstClassType() const {
257    // There are more first-class kinds than non-first-class kinds, so a
258    // negative test is simpler than a positive one.
259    return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
260  }
261
262  /// isSingleValueType - Return true if the type is a valid type for a
263  /// virtual register in codegen.  This includes all first-class types
264  /// except struct and array types.
265  ///
266  inline bool isSingleValueType() const {
267    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
268            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
269  }
270
271  /// isAggregateType - Return true if the type is an aggregate type. This
272  /// means it is valid as the first operand of an insertvalue or
273  /// extractvalue instruction. This includes struct and array types, but
274  /// does not include vector types.
275  ///
276  inline bool isAggregateType() const {
277    return ID == StructTyID || ID == ArrayTyID;
278  }
279
280  /// isSized - Return true if it makes sense to take the size of this type.  To
281  /// get the actual size for a particular target, it is reasonable to use the
282  /// TargetData subsystem to do this.
283  ///
284  bool isSized() const {
285    // If it's a primitive, it is always sized.
286    if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
287      return true;
288    // If it is not something that can have a size (e.g. a function or label),
289    // it doesn't have a size.
290    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
291      return false;
292    // If it is something that can have a size and it's concrete, it definitely
293    // has a size, otherwise we have to try harder to decide.
294    return !isAbstract() || isSizedDerivedType();
295  }
296
297  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
298  /// primitive type.  These are fixed by LLVM and are not target dependent.
299  /// This will return zero if the type does not have a size or is not a
300  /// primitive type.
301  ///
302  /// Note that this may not reflect the size of memory allocated for an
303  /// instance of the type or the number of bytes that are written when an
304  /// instance of the type is stored to memory. The TargetData class provides
305  /// additional query functions to provide this information.
306  ///
307  unsigned getPrimitiveSizeInBits() const;
308
309  /// getScalarSizeInBits - If this is a vector type, return the
310  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
311  /// getPrimitiveSizeInBits value for this type.
312  unsigned getScalarSizeInBits() const;
313
314  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
315  /// is only valid on floating point types.  If the FP type does not
316  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
317  int getFPMantissaWidth() const;
318
319  /// getForwardedType - Return the type that this type has been resolved to if
320  /// it has been resolved to anything.  This is used to implement the
321  /// union-find algorithm for type resolution, and shouldn't be used by general
322  /// purpose clients.
323  const Type *getForwardedType() const {
324    if (!ForwardType) return 0;
325    return getForwardedTypeInternal();
326  }
327
328  /// getVAArgsPromotedType - Return the type an argument of this type
329  /// will be promoted to if passed through a variable argument
330  /// function.
331  const Type *getVAArgsPromotedType(LLVMContext &C) const;
332
333  /// getScalarType - If this is a vector type, return the element type,
334  /// otherwise return this.
335  const Type *getScalarType() const;
336
337  //===--------------------------------------------------------------------===//
338  // Type Iteration support
339  //
340  typedef PATypeHandle *subtype_iterator;
341  subtype_iterator subtype_begin() const { return ContainedTys; }
342  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
343
344  /// getContainedType - This method is used to implement the type iterator
345  /// (defined a the end of the file).  For derived types, this returns the
346  /// types 'contained' in the derived type.
347  ///
348  const Type *getContainedType(unsigned i) const {
349    assert(i < NumContainedTys && "Index out of range!");
350    return ContainedTys[i].get();
351  }
352
353  /// getNumContainedTypes - Return the number of types in the derived type.
354  ///
355  unsigned getNumContainedTypes() const { return NumContainedTys; }
356
357  //===--------------------------------------------------------------------===//
358  // Static members exported by the Type class itself.  Useful for getting
359  // instances of Type.
360  //
361
362  /// getPrimitiveType - Return a type based on an identifier.
363  static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
364
365  //===--------------------------------------------------------------------===//
366  // These are the builtin types that are always available...
367  //
368  static const Type *getVoidTy(LLVMContext &C);
369  static const Type *getLabelTy(LLVMContext &C);
370  static const Type *getFloatTy(LLVMContext &C);
371  static const Type *getDoubleTy(LLVMContext &C);
372  static const Type *getMetadataTy(LLVMContext &C);
373  static const Type *getX86_FP80Ty(LLVMContext &C);
374  static const Type *getFP128Ty(LLVMContext &C);
375  static const Type *getPPC_FP128Ty(LLVMContext &C);
376  static const IntegerType *getInt1Ty(LLVMContext &C);
377  static const IntegerType *getInt8Ty(LLVMContext &C);
378  static const IntegerType *getInt16Ty(LLVMContext &C);
379  static const IntegerType *getInt32Ty(LLVMContext &C);
380  static const IntegerType *getInt64Ty(LLVMContext &C);
381
382  //===--------------------------------------------------------------------===//
383  // Convenience methods for getting pointer types with one of the above builtin
384  // types as pointee.
385  //
386  static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
387  static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
388  static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
389  static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
390  static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
391  static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
392  static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
393  static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
394  static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
395  static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
396
397  /// Methods for support type inquiry through isa, cast, and dyn_cast:
398  static inline bool classof(const Type *) { return true; }
399
400  void addRef() const {
401    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
402    ++RefCount;
403  }
404
405  void dropRef() const {
406    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
407    assert(RefCount && "No objects are currently referencing this object!");
408
409    // If this is the last PATypeHolder using this object, and there are no
410    // PATypeHandles using it, the type is dead, delete it now.
411    if (--RefCount == 0 && AbstractTypeUsers.empty())
412      this->destroy();
413  }
414
415  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
416  /// it.  This function is called primarily by the PATypeHandle class.
417  ///
418  void addAbstractTypeUser(AbstractTypeUser *U) const;
419
420  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
421  /// no longer has a handle to the type.  This function is called primarily by
422  /// the PATypeHandle class.  When there are no users of the abstract type, it
423  /// is annihilated, because there is no way to get a reference to it ever
424  /// again.
425  ///
426  void removeAbstractTypeUser(AbstractTypeUser *U) const;
427
428  /// getPointerTo - Return a pointer to the current type.  This is equivalent
429  /// to PointerType::get(Foo, AddrSpace).
430  const PointerType *getPointerTo(unsigned AddrSpace = 0) const;
431
432private:
433  /// isSizedDerivedType - Derived types like structures and arrays are sized
434  /// iff all of the members of the type are sized as well.  Since asking for
435  /// their size is relatively uncommon, move this operation out of line.
436  bool isSizedDerivedType() const;
437
438  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
439  virtual void typeBecameConcrete(const DerivedType *AbsTy);
440
441protected:
442  // PromoteAbstractToConcrete - This is an internal method used to calculate
443  // change "Abstract" from true to false when types are refined.
444  void PromoteAbstractToConcrete();
445  friend class TypeMapBase;
446};
447
448//===----------------------------------------------------------------------===//
449// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
450// These are defined here because they MUST be inlined, yet are dependent on
451// the definition of the Type class.
452//
453inline void PATypeHandle::addUser() {
454  assert(Ty && "Type Handle has a null type!");
455  if (Ty->isAbstract())
456    Ty->addAbstractTypeUser(User);
457}
458inline void PATypeHandle::removeUser() {
459  if (Ty->isAbstract())
460    Ty->removeAbstractTypeUser(User);
461}
462
463// Define inline methods for PATypeHolder.
464
465/// get - This implements the forwarding part of the union-find algorithm for
466/// abstract types.  Before every access to the Type*, we check to see if the
467/// type we are pointing to is forwarding to a new type.  If so, we drop our
468/// reference to the type.
469///
470inline Type* PATypeHolder::get() const {
471  const Type *NewTy = Ty->getForwardedType();
472  if (!NewTy) return const_cast<Type*>(Ty);
473  return *const_cast<PATypeHolder*>(this) = NewTy;
474}
475
476inline void PATypeHolder::addRef() {
477  assert(Ty && "Type Holder has a null type!");
478  if (Ty->isAbstract())
479    Ty->addRef();
480}
481
482inline void PATypeHolder::dropRef() {
483  if (Ty->isAbstract())
484    Ty->dropRef();
485}
486
487
488//===----------------------------------------------------------------------===//
489// Provide specializations of GraphTraits to be able to treat a type as a
490// graph of sub types...
491
492template <> struct GraphTraits<Type*> {
493  typedef Type NodeType;
494  typedef Type::subtype_iterator ChildIteratorType;
495
496  static inline NodeType *getEntryNode(Type *T) { return T; }
497  static inline ChildIteratorType child_begin(NodeType *N) {
498    return N->subtype_begin();
499  }
500  static inline ChildIteratorType child_end(NodeType *N) {
501    return N->subtype_end();
502  }
503};
504
505template <> struct GraphTraits<const Type*> {
506  typedef const Type NodeType;
507  typedef Type::subtype_iterator ChildIteratorType;
508
509  static inline NodeType *getEntryNode(const Type *T) { return T; }
510  static inline ChildIteratorType child_begin(NodeType *N) {
511    return N->subtype_begin();
512  }
513  static inline ChildIteratorType child_end(NodeType *N) {
514    return N->subtype_end();
515  }
516};
517
518template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
519  return Ty.getTypeID() == Type::PointerTyID;
520}
521
522raw_ostream &operator<<(raw_ostream &OS, const Type &T);
523
524} // End llvm namespace
525
526#endif
527