Type.h revision 375c032468ed91991cb15edd415222815d91a3ca
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11#ifndef LLVM_TYPE_H
12#define LLVM_TYPE_H
13
14#include "llvm/AbstractTypeUser.h"
15#include "llvm/LLVMContext.h"
16#include "llvm/Support/Casting.h"
17#include "llvm/Support/DataTypes.h"
18#include "llvm/System/Atomic.h"
19#include "llvm/ADT/GraphTraits.h"
20#include <string>
21#include <vector>
22
23namespace llvm {
24
25class DerivedType;
26class PointerType;
27class IntegerType;
28class TypeMapBase;
29class raw_ostream;
30class Module;
31
32/// This file contains the declaration of the Type class.  For more "Type" type
33/// stuff, look in DerivedTypes.h.
34///
35/// The instances of the Type class are immutable: once they are created,
36/// they are never changed.  Also note that only one instance of a particular
37/// type is ever created.  Thus seeing if two types are equal is a matter of
38/// doing a trivial pointer comparison. To enforce that no two equal instances
39/// are created, Type instances can only be created via static factory methods
40/// in class Type and in derived classes.
41///
42/// Once allocated, Types are never free'd, unless they are an abstract type
43/// that is resolved to a more concrete type.
44///
45/// Types themself don't have a name, and can be named either by:
46/// - using SymbolTable instance, typically from some Module,
47/// - using convenience methods in the Module class (which uses module's
48///    SymbolTable too).
49///
50/// Opaque types are simple derived types with no state.  There may be many
51/// different Opaque type objects floating around, but two are only considered
52/// identical if they are pointer equals of each other.  This allows us to have
53/// two opaque types that end up resolving to different concrete types later.
54///
55/// Opaque types are also kinda weird and scary and different because they have
56/// to keep a list of uses of the type.  When, through linking, parsing, or
57/// bitcode reading, they become resolved, they need to find and update all
58/// users of the unknown type, causing them to reference a new, more concrete
59/// type.  Opaque types are deleted when their use list dwindles to zero users.
60///
61/// @brief Root of type hierarchy
62class Type : public AbstractTypeUser {
63public:
64  //===-------------------------------------------------------------------===//
65  /// Definitions of all of the base types for the Type system.  Based on this
66  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
67  /// Note: If you add an element to this, you need to add an element to the
68  /// Type::getPrimitiveType function, or else things will break!
69  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
70  ///
71  enum TypeID {
72    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
73    VoidTyID = 0,    ///<  0: type with no size
74    FloatTyID,       ///<  1: 32 bit floating point type
75    DoubleTyID,      ///<  2: 64 bit floating point type
76    X86_FP80TyID,    ///<  3: 80 bit floating point type (X87)
77    FP128TyID,       ///<  4: 128 bit floating point type (112-bit mantissa)
78    PPC_FP128TyID,   ///<  5: 128 bit floating point type (two 64-bits)
79    LabelTyID,       ///<  6: Labels
80    MetadataTyID,    ///<  7: Metadata
81
82    // Derived types... see DerivedTypes.h file...
83    // Make sure FirstDerivedTyID stays up to date!!!
84    IntegerTyID,     ///<  8: Arbitrary bit width integers
85    FunctionTyID,    ///<  9: Functions
86    StructTyID,      ///< 10: Structures
87    ArrayTyID,       ///< 11: Arrays
88    PointerTyID,     ///< 12: Pointers
89    OpaqueTyID,      ///< 13: Opaque: type with unknown structure
90    VectorTyID,      ///< 14: SIMD 'packed' format, or other vector type
91
92    NumTypeIDs,                         // Must remain as last defined ID
93    LastPrimitiveTyID = LabelTyID,
94    FirstDerivedTyID = IntegerTyID
95  };
96
97private:
98  TypeID   ID : 8;    // The current base type of this type.
99  bool     Abstract : 1;  // True if type contains an OpaqueType
100  unsigned SubclassData : 23; //Space for subclasses to store data
101
102  /// RefCount - This counts the number of PATypeHolders that are pointing to
103  /// this type.  When this number falls to zero, if the type is abstract and
104  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
105  /// derived types.
106  ///
107  mutable sys::cas_flag RefCount;
108
109  /// Context - This refers to the LLVMContext in which this type was uniqued.
110  LLVMContext &Context;
111  friend class LLVMContextImpl;
112
113  const Type *getForwardedTypeInternal() const;
114
115  // Some Type instances are allocated as arrays, some aren't. So we provide
116  // this method to get the right kind of destruction for the type of Type.
117  void destroy() const; // const is a lie, this does "delete this"!
118
119protected:
120  explicit Type(LLVMContext &C, TypeID id) :
121                             ID(id), Abstract(false), SubclassData(0),
122                             RefCount(0), Context(C),
123                             ForwardType(0), NumContainedTys(0),
124                             ContainedTys(0) {}
125  virtual ~Type() {
126    assert(AbstractTypeUsers.empty() && "Abstract types remain");
127  }
128
129  /// Types can become nonabstract later, if they are refined.
130  ///
131  inline void setAbstract(bool Val) { Abstract = Val; }
132
133  unsigned getRefCount() const { return RefCount; }
134
135  unsigned getSubclassData() const { return SubclassData; }
136  void setSubclassData(unsigned val) { SubclassData = val; }
137
138  /// ForwardType - This field is used to implement the union find scheme for
139  /// abstract types.  When types are refined to other types, this field is set
140  /// to the more refined type.  Only abstract types can be forwarded.
141  mutable const Type *ForwardType;
142
143
144  /// AbstractTypeUsers - Implement a list of the users that need to be notified
145  /// if I am a type, and I get resolved into a more concrete type.
146  ///
147  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
148
149  /// NumContainedTys - Keeps track of how many PATypeHandle instances there
150  /// are at the end of this type instance for the list of contained types. It
151  /// is the subclasses responsibility to set this up. Set to 0 if there are no
152  /// contained types in this type.
153  unsigned NumContainedTys;
154
155  /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
156  /// by this Type.  For example, this includes the arguments of a function
157  /// type, the elements of a structure, the pointee of a pointer, the element
158  /// type of an array, etc.  This pointer may be 0 for types that don't
159  /// contain other types (Integer, Double, Float).  In general, the subclass
160  /// should arrange for space for the PATypeHandles to be included in the
161  /// allocation of the type object and set this pointer to the address of the
162  /// first element. This allows the Type class to manipulate the ContainedTys
163  /// without understanding the subclass's placement for this array.  keeping
164  /// it here also allows the subtype_* members to be implemented MUCH more
165  /// efficiently, and dynamically very few types do not contain any elements.
166  PATypeHandle *ContainedTys;
167
168public:
169  void print(raw_ostream &O) const;
170
171  /// @brief Debugging support: print to stderr
172  void dump() const;
173
174  /// @brief Debugging support: print to stderr (use type names from context
175  /// module).
176  void dump(const Module *Context) const;
177
178  /// getContext - Fetch the LLVMContext in which this type was uniqued.
179  LLVMContext &getContext() const { return Context; }
180
181  //===--------------------------------------------------------------------===//
182  // Property accessors for dealing with types... Some of these virtual methods
183  // are defined in private classes defined in Type.cpp for primitive types.
184  //
185
186  /// getTypeID - Return the type id for the type.  This will return one
187  /// of the TypeID enum elements defined above.
188  ///
189  inline TypeID getTypeID() const { return ID; }
190
191  /// getDescription - Return the string representation of the type.
192  std::string getDescription() const;
193
194  /// isInteger - True if this is an instance of IntegerType.
195  ///
196  bool isInteger() const { return ID == IntegerTyID; }
197
198  /// isIntOrIntVector - Return true if this is an integer type or a vector of
199  /// integer types.
200  ///
201  bool isIntOrIntVector() const;
202
203  /// isFloatingPoint - Return true if this is one of the five floating point
204  /// types
205  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID ||
206      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
207
208  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
209  bool isFloatTy() const { return ID == FloatTyID; }
210
211  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
212  bool isDoubleTy() const { return ID == DoubleTyID; }
213
214  /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
215  ///
216  bool isFPOrFPVector() const;
217
218  /// isAbstract - True if the type is either an Opaque type, or is a derived
219  /// type that includes an opaque type somewhere in it.
220  ///
221  inline bool isAbstract() const { return Abstract; }
222
223  /// canLosslesslyBitCastTo - Return true if this type could be converted
224  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
225  /// are valid for types of the same size only where no re-interpretation of
226  /// the bits is done.
227  /// @brief Determine if this type could be losslessly bitcast to Ty
228  bool canLosslesslyBitCastTo(const Type *Ty) const;
229
230
231  /// Here are some useful little methods to query what type derived types are
232  /// Note that all other types can just compare to see if this == Type::xxxTy;
233  ///
234  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
235  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
236
237  /// isFirstClassType - Return true if the type is "first class", meaning it
238  /// is a valid type for a Value.
239  ///
240  inline bool isFirstClassType() const {
241    // There are more first-class kinds than non-first-class kinds, so a
242    // negative test is simpler than a positive one.
243    return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
244  }
245
246  /// isSingleValueType - Return true if the type is a valid type for a
247  /// virtual register in codegen.  This includes all first-class types
248  /// except struct and array types.
249  ///
250  inline bool isSingleValueType() const {
251    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
252            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
253  }
254
255  /// isAggregateType - Return true if the type is an aggregate type. This
256  /// means it is valid as the first operand of an insertvalue or
257  /// extractvalue instruction. This includes struct and array types, but
258  /// does not include vector types.
259  ///
260  inline bool isAggregateType() const {
261    return ID == StructTyID || ID == ArrayTyID;
262  }
263
264  /// isSized - Return true if it makes sense to take the size of this type.  To
265  /// get the actual size for a particular target, it is reasonable to use the
266  /// TargetData subsystem to do this.
267  ///
268  bool isSized() const {
269    // If it's a primitive, it is always sized.
270    if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
271      return true;
272    // If it is not something that can have a size (e.g. a function or label),
273    // it doesn't have a size.
274    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
275      return false;
276    // If it is something that can have a size and it's concrete, it definitely
277    // has a size, otherwise we have to try harder to decide.
278    return !isAbstract() || isSizedDerivedType();
279  }
280
281  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
282  /// primitive type.  These are fixed by LLVM and are not target dependent.
283  /// This will return zero if the type does not have a size or is not a
284  /// primitive type.
285  ///
286  /// Note that this may not reflect the size of memory allocated for an
287  /// instance of the type or the number of bytes that are written when an
288  /// instance of the type is stored to memory. The TargetData class provides
289  /// additional query functions to provide this information.
290  ///
291  unsigned getPrimitiveSizeInBits() const;
292
293  /// getScalarSizeInBits - If this is a vector type, return the
294  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
295  /// getPrimitiveSizeInBits value for this type.
296  unsigned getScalarSizeInBits() const;
297
298  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
299  /// is only valid on floating point types.  If the FP type does not
300  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
301  int getFPMantissaWidth() const;
302
303  /// getForwardedType - Return the type that this type has been resolved to if
304  /// it has been resolved to anything.  This is used to implement the
305  /// union-find algorithm for type resolution, and shouldn't be used by general
306  /// purpose clients.
307  const Type *getForwardedType() const {
308    if (!ForwardType) return 0;
309    return getForwardedTypeInternal();
310  }
311
312  /// getVAArgsPromotedType - Return the type an argument of this type
313  /// will be promoted to if passed through a variable argument
314  /// function.
315  const Type *getVAArgsPromotedType(LLVMContext &C) const;
316
317  /// getScalarType - If this is a vector type, return the element type,
318  /// otherwise return this.
319  const Type *getScalarType() const;
320
321  //===--------------------------------------------------------------------===//
322  // Type Iteration support
323  //
324  typedef PATypeHandle *subtype_iterator;
325  subtype_iterator subtype_begin() const { return ContainedTys; }
326  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
327
328  /// getContainedType - This method is used to implement the type iterator
329  /// (defined a the end of the file).  For derived types, this returns the
330  /// types 'contained' in the derived type.
331  ///
332  const Type *getContainedType(unsigned i) const {
333    assert(i < NumContainedTys && "Index out of range!");
334    return ContainedTys[i].get();
335  }
336
337  /// getNumContainedTypes - Return the number of types in the derived type.
338  ///
339  unsigned getNumContainedTypes() const { return NumContainedTys; }
340
341  //===--------------------------------------------------------------------===//
342  // Static members exported by the Type class itself.  Useful for getting
343  // instances of Type.
344  //
345
346  /// getPrimitiveType - Return a type based on an identifier.
347  static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
348
349  //===--------------------------------------------------------------------===//
350  // These are the builtin types that are always available...
351  //
352  static const Type *getVoidTy(LLVMContext &C);
353  static const Type *getLabelTy(LLVMContext &C);
354  static const Type *getFloatTy(LLVMContext &C);
355  static const Type *getDoubleTy(LLVMContext &C);
356  static const Type *getMetadataTy(LLVMContext &C);
357  static const Type *getX86_FP80Ty(LLVMContext &C);
358  static const Type *getFP128Ty(LLVMContext &C);
359  static const Type *getPPC_FP128Ty(LLVMContext &C);
360  static const IntegerType *getInt1Ty(LLVMContext &C);
361  static const IntegerType *getInt8Ty(LLVMContext &C);
362  static const IntegerType *getInt16Ty(LLVMContext &C);
363  static const IntegerType *getInt32Ty(LLVMContext &C);
364  static const IntegerType *getInt64Ty(LLVMContext &C);
365
366  /// Methods for support type inquiry through isa, cast, and dyn_cast:
367  static inline bool classof(const Type *) { return true; }
368
369  void addRef() const {
370    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
371    sys::AtomicIncrement(&RefCount);
372  }
373
374  void dropRef() const {
375    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
376    assert(RefCount && "No objects are currently referencing this object!");
377
378    // If this is the last PATypeHolder using this object, and there are no
379    // PATypeHandles using it, the type is dead, delete it now.
380    sys::cas_flag OldCount = sys::AtomicDecrement(&RefCount);
381    if (OldCount == 0 && AbstractTypeUsers.empty())
382      this->destroy();
383  }
384
385  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
386  /// it.  This function is called primarily by the PATypeHandle class.
387  ///
388  void addAbstractTypeUser(AbstractTypeUser *U) const;
389
390  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
391  /// no longer has a handle to the type.  This function is called primarily by
392  /// the PATypeHandle class.  When there are no users of the abstract type, it
393  /// is annihilated, because there is no way to get a reference to it ever
394  /// again.
395  ///
396  void removeAbstractTypeUser(AbstractTypeUser *U) const;
397
398  /// getPointerTo - Return a pointer to the current type.  This is equivalent
399  /// to PointerType::get(Foo, AddrSpace).
400  PointerType *getPointerTo(unsigned AddrSpace = 0) const;
401
402private:
403  /// isSizedDerivedType - Derived types like structures and arrays are sized
404  /// iff all of the members of the type are sized as well.  Since asking for
405  /// their size is relatively uncommon, move this operation out of line.
406  bool isSizedDerivedType() const;
407
408  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
409  virtual void typeBecameConcrete(const DerivedType *AbsTy);
410
411protected:
412  // PromoteAbstractToConcrete - This is an internal method used to calculate
413  // change "Abstract" from true to false when types are refined.
414  void PromoteAbstractToConcrete();
415  friend class TypeMapBase;
416};
417
418//===----------------------------------------------------------------------===//
419// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
420// These are defined here because they MUST be inlined, yet are dependent on
421// the definition of the Type class.
422//
423inline void PATypeHandle::addUser() {
424  assert(Ty && "Type Handle has a null type!");
425  if (Ty->isAbstract())
426    Ty->addAbstractTypeUser(User);
427}
428inline void PATypeHandle::removeUser() {
429  if (Ty->isAbstract())
430    Ty->removeAbstractTypeUser(User);
431}
432
433// Define inline methods for PATypeHolder.
434
435/// get - This implements the forwarding part of the union-find algorithm for
436/// abstract types.  Before every access to the Type*, we check to see if the
437/// type we are pointing to is forwarding to a new type.  If so, we drop our
438/// reference to the type.
439///
440inline Type* PATypeHolder::get() const {
441  const Type *NewTy = Ty->getForwardedType();
442  if (!NewTy) return const_cast<Type*>(Ty);
443  return *const_cast<PATypeHolder*>(this) = NewTy;
444}
445
446inline void PATypeHolder::addRef() {
447  assert(Ty && "Type Holder has a null type!");
448  if (Ty->isAbstract())
449    Ty->addRef();
450}
451
452inline void PATypeHolder::dropRef() {
453  if (Ty->isAbstract())
454    Ty->dropRef();
455}
456
457
458//===----------------------------------------------------------------------===//
459// Provide specializations of GraphTraits to be able to treat a type as a
460// graph of sub types...
461
462template <> struct GraphTraits<Type*> {
463  typedef Type NodeType;
464  typedef Type::subtype_iterator ChildIteratorType;
465
466  static inline NodeType *getEntryNode(Type *T) { return T; }
467  static inline ChildIteratorType child_begin(NodeType *N) {
468    return N->subtype_begin();
469  }
470  static inline ChildIteratorType child_end(NodeType *N) {
471    return N->subtype_end();
472  }
473};
474
475template <> struct GraphTraits<const Type*> {
476  typedef const Type NodeType;
477  typedef Type::subtype_iterator ChildIteratorType;
478
479  static inline NodeType *getEntryNode(const Type *T) { return T; }
480  static inline ChildIteratorType child_begin(NodeType *N) {
481    return N->subtype_begin();
482  }
483  static inline ChildIteratorType child_end(NodeType *N) {
484    return N->subtype_end();
485  }
486};
487
488template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
489  return Ty.getTypeID() == Type::PointerTyID;
490}
491
492raw_ostream &operator<<(raw_ostream &OS, const Type &T);
493
494} // End llvm namespace
495
496#endif
497