Type.h revision 3e3bcbd222dace4b725b39e47d326ca767c8c5d8
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Type class.  For more "Type" type
11// stuff, look in DerivedTypes.h.
12//
13// Note that instances of the Type class are immutable: once they are created,
14// they are never changed.  Also note that only one instance of a particular
15// type is ever created.  Thus seeing if two types are equal is a matter of
16// doing a trivial pointer comparison.
17//
18// Types, once allocated, are never free'd.
19//
20// Opaque types are simple derived types with no state.  There may be many
21// different Opaque type objects floating around, but two are only considered
22// identical if they are pointer equals of each other.  This allows us to have
23// two opaque types that end up resolving to different concrete types later.
24//
25// Opaque types are also kinda wierd and scary and different because they have
26// to keep a list of uses of the type.  When, through linking, parsing, or
27// bytecode reading, they become resolved, they need to find and update all
28// users of the unknown type, causing them to reference a new, more concrete
29// type.  Opaque types are deleted when their use list dwindles to zero users.
30//
31//===----------------------------------------------------------------------===//
32
33#ifndef LLVM_TYPE_H
34#define LLVM_TYPE_H
35
36#include "llvm/Value.h"
37#include "Support/GraphTraits.h"
38#include "Support/iterator"
39#include <vector>
40
41namespace llvm {
42
43class DerivedType;
44class FunctionType;
45class ArrayType;
46class PointerType;
47class StructType;
48class OpaqueType;
49
50struct Type : public Value {
51  ///===-------------------------------------------------------------------===//
52  /// Definitions of all of the base types for the Type system.  Based on this
53  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
54  /// Note: If you add an element to this, you need to add an element to the
55  /// Type::getPrimitiveType function, or else things will break!
56  ///
57  enum PrimitiveID {
58    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
59    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
60    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
61    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
62    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
63
64    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
65
66    TypeTyID,                           // 12   : Type definitions
67    LabelTyID     ,                     // 13   : Labels...
68
69    // Derived types... see DerivedTypes.h file...
70    // Make sure FirstDerivedTyID stays up to date!!!
71    FunctionTyID  , StructTyID,         // Functions... Structs...
72    ArrayTyID     , PointerTyID,        // Array... pointer...
73    OpaqueTyID,                         // Opaque type instances...
74    //PackedTyID  ,                     // SIMD 'packed' format... TODO
75    //...
76
77    NumPrimitiveIDs,                    // Must remain as last defined ID
78    FirstDerivedTyID = FunctionTyID,
79  };
80
81private:
82  PrimitiveID ID;        // The current base type of this type...
83  unsigned    UID;       // The unique ID number for this class
84  bool        Abstract;  // True if type contains an OpaqueType
85
86  /// RefCount - This counts the number of PATypeHolders that are pointing to
87  /// this type.  When this number falls to zero, if the type is abstract and
88  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
89  /// derived types.
90  ///
91  mutable unsigned RefCount;
92
93  const Type *getForwardedTypeInternal() const;
94protected:
95  /// ctor is protected, so only subclasses can create Type objects...
96  Type(PrimitiveID id);
97  virtual ~Type() {}
98
99  /// setName - Associate the name with this type in the symbol table, but don't
100  /// set the local name to be equal specified name.
101  ///
102  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
103
104  /// Types can become nonabstract later, if they are refined.
105  ///
106  inline void setAbstract(bool Val) { Abstract = Val; }
107
108  /// isTypeAbstract - This method is used to calculate the Abstract bit.
109  ///
110  bool isTypeAbstract();
111
112  /// ForwardType - This field is used to implement the union find scheme for
113  /// abstract types.  When types are refined to other types, this field is set
114  /// to the more refined type.  Only abstract types can be forwarded.
115  mutable const Type *ForwardType;
116
117  /// ContainedTys - The list of types contained by this one.  For example, this
118  /// includes the arguments of a function type, the elements of the structure,
119  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
120  /// class wastes some space for types that do not contain anything (such as
121  /// primitive types).  However, keeping it here allows the subtype_* members
122  /// to be implemented MUCH more efficiently, and dynamically very few types do
123  /// not contain any elements (most are derived).
124  std::vector<PATypeHandle> ContainedTys;
125
126public:
127  virtual void print(std::ostream &O) const;
128
129  //===--------------------------------------------------------------------===//
130  // Property accessors for dealing with types... Some of these virtual methods
131  // are defined in private classes defined in Type.cpp for primitive types.
132  //
133
134  /// getPrimitiveID - Return the base type of the type.  This will return one
135  /// of the PrimitiveID enum elements defined above.
136  ///
137  inline PrimitiveID getPrimitiveID() const { return ID; }
138
139  /// getUniqueID - Returns the UID of the type.  This can be thought of as a
140  /// small integer version of the pointer to the type class.  Two types that
141  /// are structurally different have different UIDs.  This can be used for
142  /// indexing types into an array.
143  ///
144  inline unsigned getUniqueID() const { return UID; }
145
146  /// getDescription - Return the string representation of the type...
147  const std::string &getDescription() const;
148
149  /// isSigned - Return whether an integral numeric type is signed.  This is
150  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
151  /// Float and Double.
152  ///
153  virtual bool isSigned() const { return 0; }
154
155  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
156  /// the complement of isSigned... nonnumeric types return false as they do
157  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
158  /// ULongTy
159  ///
160  virtual bool isUnsigned() const { return 0; }
161
162  /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
163  /// single virtual function invocation.
164  ///
165  virtual bool isInteger() const { return 0; }
166
167  /// isIntegral - Returns true if this is an integral type, which is either
168  /// BoolTy or one of the Integer types.
169  ///
170  bool isIntegral() const { return isInteger() || this == BoolTy; }
171
172  /// isFloatingPoint - Return true if this is one of the two floating point
173  /// types
174  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
175
176  /// isAbstract - True if the type is either an Opaque type, or is a derived
177  /// type that includes an opaque type somewhere in it.
178  ///
179  inline bool isAbstract() const { return Abstract; }
180
181  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
182  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
183  ///
184  bool isLosslesslyConvertibleTo(const Type *Ty) const;
185
186
187  /// Here are some useful little methods to query what type derived types are
188  /// Note that all other types can just compare to see if this == Type::xxxTy;
189  ///
190  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
191  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
192
193  /// isFirstClassType - Return true if the value is holdable in a register.
194  inline bool isFirstClassType() const {
195    return (ID != VoidTyID && ID < TypeTyID) || ID == PointerTyID;
196  }
197
198  /// isSized - Return true if it makes sense to take the size of this type.  To
199  /// get the actual size for a particular target, it is reasonable to use the
200  /// TargetData subsystem to do this.
201  ///
202  bool isSized() const {
203    return ID != VoidTyID && ID != TypeTyID &&
204           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
205  }
206
207  /// getPrimitiveSize - Return the basic size of this type if it is a primative
208  /// type.  These are fixed by LLVM and are not target dependent.  This will
209  /// return zero if the type does not have a size or is not a primitive type.
210  ///
211  unsigned getPrimitiveSize() const;
212
213  /// getForwaredType - Return the type that this type has been resolved to if
214  /// it has been resolved to anything.  This is used to implement the
215  /// union-find algorithm for type resolution.
216  const Type *getForwardedType() const {
217    if (!ForwardType) return 0;
218    return getForwardedTypeInternal();
219  }
220
221  //===--------------------------------------------------------------------===//
222  // Type Iteration support
223  //
224  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
225  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
226  subtype_iterator subtype_end() const { return ContainedTys.end(); }
227
228  /// getContainedType - This method is used to implement the type iterator
229  /// (defined a the end of the file).  For derived types, this returns the
230  /// types 'contained' in the derived type.
231  ///
232  const Type *getContainedType(unsigned i) const {
233    assert(i < ContainedTys.size() && "Index out of range!");
234    return ContainedTys[i];
235  }
236
237  /// getNumContainedTypes - Return the number of types in the derived type.
238  ///
239  unsigned getNumContainedTypes() const { return ContainedTys.size(); }
240
241  //===--------------------------------------------------------------------===//
242  // Static members exported by the Type class itself.  Useful for getting
243  // instances of Type.
244  //
245
246  /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
247  static const Type *getPrimitiveType(PrimitiveID IDNumber);
248  static const Type *getUniqueIDType(unsigned UID);
249
250  //===--------------------------------------------------------------------===//
251  // These are the builtin types that are always available...
252  //
253  static Type *VoidTy , *BoolTy;
254  static Type *SByteTy, *UByteTy,
255              *ShortTy, *UShortTy,
256              *IntTy  , *UIntTy,
257              *LongTy , *ULongTy;
258  static Type *FloatTy, *DoubleTy;
259
260  static Type *TypeTy , *LabelTy;
261
262  /// Methods for support type inquiry through isa, cast, and dyn_cast:
263  static inline bool classof(const Type *T) { return true; }
264  static inline bool classof(const Value *V) {
265    return V->getValueType() == Value::TypeVal;
266  }
267
268#include "llvm/Type.def"
269
270  // Virtual methods used by callbacks below.  These should only be implemented
271  // in the DerivedType class.
272  virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
273    abort(); // Only on derived types!
274  }
275  virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
276    abort(); // Only on derived types!
277  }
278
279  void addRef() const {
280    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
281    ++RefCount;
282  }
283
284  void dropRef() const {
285    assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
286    assert(RefCount && "No objects are currently referencing this object!");
287
288    // If this is the last PATypeHolder using this object, and there are no
289    // PATypeHandles using it, the type is dead, delete it now.
290    if (--RefCount == 0)
291      RefCountIsZero();
292  }
293private:
294  virtual void RefCountIsZero() const {
295    abort(); // only on derived types!
296  }
297
298};
299
300//===----------------------------------------------------------------------===//
301// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
302// These are defined here because they MUST be inlined, yet are dependent on
303// the definition of the Type class.  Of course Type derives from Value, which
304// contains an AbstractTypeUser instance, so there is no good way to factor out
305// the code.  Hence this bit of uglyness.
306//
307// In the long term, Type should not derive from Value, allowing
308// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
309// nastyness entirely.
310//
311inline void PATypeHandle::addUser() {
312  assert(Ty && "Type Handle has a null type!");
313  if (Ty->isAbstract())
314    Ty->addAbstractTypeUser(User);
315}
316inline void PATypeHandle::removeUser() {
317  if (Ty->isAbstract())
318    Ty->removeAbstractTypeUser(User);
319}
320
321inline void PATypeHandle::removeUserFromConcrete() {
322  if (!Ty->isAbstract())
323    Ty->removeAbstractTypeUser(User);
324}
325
326// Define inline methods for PATypeHolder...
327
328inline void PATypeHolder::addRef() {
329  if (Ty->isAbstract())
330    Ty->addRef();
331}
332
333inline void PATypeHolder::dropRef() {
334  if (Ty->isAbstract())
335    Ty->dropRef();
336}
337
338/// get - This implements the forwarding part of the union-find algorithm for
339/// abstract types.  Before every access to the Type*, we check to see if the
340/// type we are pointing to is forwarding to a new type.  If so, we drop our
341/// reference to the type.
342///
343inline const Type* PATypeHolder::get() const {
344  const Type *NewTy = Ty->getForwardedType();
345  if (!NewTy) return Ty;
346  return *const_cast<PATypeHolder*>(this) = NewTy;
347}
348
349
350
351//===----------------------------------------------------------------------===//
352// Provide specializations of GraphTraits to be able to treat a type as a
353// graph of sub types...
354
355template <> struct GraphTraits<Type*> {
356  typedef Type NodeType;
357  typedef Type::subtype_iterator ChildIteratorType;
358
359  static inline NodeType *getEntryNode(Type *T) { return T; }
360  static inline ChildIteratorType child_begin(NodeType *N) {
361    return N->subtype_begin();
362  }
363  static inline ChildIteratorType child_end(NodeType *N) {
364    return N->subtype_end();
365  }
366};
367
368template <> struct GraphTraits<const Type*> {
369  typedef const Type NodeType;
370  typedef Type::subtype_iterator ChildIteratorType;
371
372  static inline NodeType *getEntryNode(const Type *T) { return T; }
373  static inline ChildIteratorType child_begin(NodeType *N) {
374    return N->subtype_begin();
375  }
376  static inline ChildIteratorType child_end(NodeType *N) {
377    return N->subtype_end();
378  }
379};
380
381template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
382  return Ty.getPrimitiveID() == Type::PointerTyID;
383}
384
385} // End llvm namespace
386
387#endif
388