Type.h revision 4fe16d607d11e29d742208894909733f5ad01f8f
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11#ifndef LLVM_TYPE_H
12#define LLVM_TYPE_H
13
14#include "llvm/AbstractTypeUser.h"
15#include "llvm/Support/Casting.h"
16#include "llvm/Support/DataTypes.h"
17#include "llvm/Support/Streams.h"
18#include "llvm/ADT/GraphTraits.h"
19#include "llvm/ADT/iterator"
20#include <string>
21#include <vector>
22
23namespace llvm {
24
25class ArrayType;
26class DerivedType;
27class FunctionType;
28class OpaqueType;
29class PointerType;
30class StructType;
31class PackedType;
32class TypeMapBase;
33
34/// This file contains the declaration of the Type class.  For more "Type" type
35/// stuff, look in DerivedTypes.h.
36///
37/// The instances of the Type class are immutable: once they are created,
38/// they are never changed.  Also note that only one instance of a particular
39/// type is ever created.  Thus seeing if two types are equal is a matter of
40/// doing a trivial pointer comparison. To enforce that no two equal instances
41/// are created, Type instances can only be created via static factory methods
42/// in class Type and in derived classes.
43///
44/// Once allocated, Types are never free'd, unless they are an abstract type
45/// that is resolved to a more concrete type.
46///
47/// Types themself don't have a name, and can be named either by:
48/// - using SymbolTable instance, typically from some Module,
49/// - using convenience methods in the Module class (which uses module's
50///    SymbolTable too).
51///
52/// Opaque types are simple derived types with no state.  There may be many
53/// different Opaque type objects floating around, but two are only considered
54/// identical if they are pointer equals of each other.  This allows us to have
55/// two opaque types that end up resolving to different concrete types later.
56///
57/// Opaque types are also kinda weird and scary and different because they have
58/// to keep a list of uses of the type.  When, through linking, parsing, or
59/// bytecode reading, they become resolved, they need to find and update all
60/// users of the unknown type, causing them to reference a new, more concrete
61/// type.  Opaque types are deleted when their use list dwindles to zero users.
62///
63/// @brief Root of type hierarchy
64class Type : public AbstractTypeUser {
65public:
66  ///===-------------------------------------------------------------------===//
67  /// Definitions of all of the base types for the Type system.  Based on this
68  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
69  /// Note: If you add an element to this, you need to add an element to the
70  /// Type::getPrimitiveType function, or else things will break!
71  ///
72  enum TypeID {
73    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
74    VoidTyID = 0  , Int1TyID,           //  0, 1: Basics...
75    Int8TyID,                           //  2   :  8 bit type...
76    Int16TyID,                          //  3   : 16 bit type...
77    Int32TyID,                          //  4   : 32 bit type...
78    Int64TyID,                          //  5   : 64 bit type...
79    FloatTyID, DoubleTyID,              //  6, 7: Floating point types...
80    LabelTyID,                          //  8   : Labels...
81
82    // Derived types... see DerivedTypes.h file...
83    // Make sure FirstDerivedTyID stays up to date!!!
84    FunctionTyID  , StructTyID,         // Functions... Structs...
85    ArrayTyID     , PointerTyID,        // Array... pointer...
86    OpaqueTyID,                         // Opaque type instances...
87    PackedTyID,                         // SIMD 'packed' format...
88    BC_ONLY_PackedStructTyID,           // packed struct, for BC rep only
89    //...
90
91    NumTypeIDs,                         // Must remain as last defined ID
92    LastPrimitiveTyID = LabelTyID,
93    FirstDerivedTyID = FunctionTyID
94  };
95
96private:
97  TypeID   ID : 8;    // The current base type of this type.
98  bool     Abstract : 1;  // True if type contains an OpaqueType
99  bool     SubclassData : 1; //Space for subclasses to store a flag
100
101  /// RefCount - This counts the number of PATypeHolders that are pointing to
102  /// this type.  When this number falls to zero, if the type is abstract and
103  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
104  /// derived types.
105  ///
106  mutable unsigned RefCount;
107
108  const Type *getForwardedTypeInternal() const;
109protected:
110  Type(const char *Name, TypeID id);
111  Type(TypeID id) : ID(id), Abstract(false), RefCount(0), ForwardType(0) {}
112  virtual ~Type() {
113    assert(AbstractTypeUsers.empty());
114  }
115
116  /// Types can become nonabstract later, if they are refined.
117  ///
118  inline void setAbstract(bool Val) { Abstract = Val; }
119
120  unsigned getRefCount() const { return RefCount; }
121
122  bool getSubclassData() const { return SubclassData; }
123  void setSubclassData(bool b) { SubclassData = b; }
124
125  /// ForwardType - This field is used to implement the union find scheme for
126  /// abstract types.  When types are refined to other types, this field is set
127  /// to the more refined type.  Only abstract types can be forwarded.
128  mutable const Type *ForwardType;
129
130  /// ContainedTys - The list of types contained by this one.  For example, this
131  /// includes the arguments of a function type, the elements of the structure,
132  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
133  /// class wastes some space for types that do not contain anything (such as
134  /// primitive types).  However, keeping it here allows the subtype_* members
135  /// to be implemented MUCH more efficiently, and dynamically very few types do
136  /// not contain any elements (most are derived).
137  std::vector<PATypeHandle> ContainedTys;
138
139  /// AbstractTypeUsers - Implement a list of the users that need to be notified
140  /// if I am a type, and I get resolved into a more concrete type.
141  ///
142  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
143public:
144  void print(std::ostream &O) const;
145  void print(std::ostream *O) const { if (O) print(*O); }
146
147  /// @brief Debugging support: print to stderr
148  void dump() const;
149
150  //===--------------------------------------------------------------------===//
151  // Property accessors for dealing with types... Some of these virtual methods
152  // are defined in private classes defined in Type.cpp for primitive types.
153  //
154
155  /// getTypeID - Return the type id for the type.  This will return one
156  /// of the TypeID enum elements defined above.
157  ///
158  inline TypeID getTypeID() const { return ID; }
159
160  /// getDescription - Return the string representation of the type...
161  const std::string &getDescription() const;
162
163  /// isInteger - Equivalent to isSigned() || isUnsigned()
164  ///
165  bool isInteger() const { return ID >= Int8TyID && ID <= Int64TyID; }
166
167  /// isIntegral - Returns true if this is an integral type, which is either
168  /// Int1Ty or one of the Integer types.
169  ///
170  bool isIntegral() const { return isInteger() || this == Int1Ty; }
171
172  /// isFloatingPoint - Return true if this is one of the two floating point
173  /// types
174  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
175
176  /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
177  ///
178  bool isFPOrFPVector() const;
179
180  /// isAbstract - True if the type is either an Opaque type, or is a derived
181  /// type that includes an opaque type somewhere in it.
182  ///
183  inline bool isAbstract() const { return Abstract; }
184
185  /// canLosslesslyBitCastTo - Return true if this type could be converted
186  /// with a lossless BitCast to type 'Ty'. For example, uint to int. BitCasts
187  /// are valid for types of the same size only where no re-interpretation of
188  /// the bits is done.
189  /// @brief Determine if this type could be losslessly bitcast to Ty
190  bool canLosslesslyBitCastTo(const Type *Ty) const;
191
192
193  /// Here are some useful little methods to query what type derived types are
194  /// Note that all other types can just compare to see if this == Type::xxxTy;
195  ///
196  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
197  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
198
199  /// isFirstClassType - Return true if the value is holdable in a register.
200  ///
201  inline bool isFirstClassType() const {
202    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
203            ID == PointerTyID || ID == PackedTyID;
204  }
205
206  /// isSized - Return true if it makes sense to take the size of this type.  To
207  /// get the actual size for a particular target, it is reasonable to use the
208  /// TargetData subsystem to do this.
209  ///
210  bool isSized() const {
211    // If it's a primitive, it is always sized.
212    if (ID >= Int1TyID && ID <= DoubleTyID || ID == PointerTyID)
213      return true;
214    // If it is not something that can have a size (e.g. a function or label),
215    // it doesn't have a size.
216    if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID)
217      return false;
218    // If it is something that can have a size and it's concrete, it definitely
219    // has a size, otherwise we have to try harder to decide.
220    return !isAbstract() || isSizedDerivedType();
221  }
222
223  /// getPrimitiveSize - Return the basic size of this type if it is a primitive
224  /// type.  These are fixed by LLVM and are not target dependent.  This will
225  /// return zero if the type does not have a size or is not a primitive type.
226  ///
227  unsigned getPrimitiveSize() const;
228  unsigned getPrimitiveSizeInBits() const;
229
230  /// getIntegralTypeMask - Return a bitmask with ones set for all of the bits
231  /// that can be set by an unsigned version of this type.  This is 0xFF for
232  /// sbyte/ubyte, 0xFFFF for shorts, etc.
233  uint64_t getIntegralTypeMask() const {
234    assert(isIntegral() && "This only works for integral types!");
235    return ~uint64_t(0UL) >> (64-getPrimitiveSizeInBits());
236  }
237
238  /// getForwaredType - Return the type that this type has been resolved to if
239  /// it has been resolved to anything.  This is used to implement the
240  /// union-find algorithm for type resolution, and shouldn't be used by general
241  /// purpose clients.
242  const Type *getForwardedType() const {
243    if (!ForwardType) return 0;
244    return getForwardedTypeInternal();
245  }
246
247  /// getVAArgsPromotedType - Return the type an argument of this type
248  /// will be promoted to if passed through a variable argument
249  /// function.
250  const Type *getVAArgsPromotedType() const {
251    if (ID == Int1TyID || ID == Int8TyID || ID == Int16TyID)
252      return Type::Int32Ty;
253    else if (ID == FloatTyID)
254      return Type::DoubleTy;
255    else
256      return this;
257  }
258
259  //===--------------------------------------------------------------------===//
260  // Type Iteration support
261  //
262  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
263  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
264  subtype_iterator subtype_end() const { return ContainedTys.end(); }
265
266  /// getContainedType - This method is used to implement the type iterator
267  /// (defined a the end of the file).  For derived types, this returns the
268  /// types 'contained' in the derived type.
269  ///
270  const Type *getContainedType(unsigned i) const {
271    assert(i < ContainedTys.size() && "Index out of range!");
272    return ContainedTys[i];
273  }
274
275  /// getNumContainedTypes - Return the number of types in the derived type.
276  ///
277  typedef std::vector<PATypeHandle>::size_type size_type;
278  size_type getNumContainedTypes() const { return ContainedTys.size(); }
279
280  //===--------------------------------------------------------------------===//
281  // Static members exported by the Type class itself.  Useful for getting
282  // instances of Type.
283  //
284
285  /// getPrimitiveType - Return a type based on an identifier.
286  static const Type *getPrimitiveType(TypeID IDNumber);
287
288  //===--------------------------------------------------------------------===//
289  // These are the builtin types that are always available...
290  //
291  static Type *VoidTy , *Int1Ty;
292  static Type *Int8Ty , *Int16Ty,
293              *Int32Ty, *Int64Ty;
294  static Type *FloatTy, *DoubleTy;
295
296  static Type* LabelTy;
297
298  /// Methods for support type inquiry through isa, cast, and dyn_cast:
299  static inline bool classof(const Type *T) { return true; }
300
301  void addRef() const {
302    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
303    ++RefCount;
304  }
305
306  void dropRef() const {
307    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
308    assert(RefCount && "No objects are currently referencing this object!");
309
310    // If this is the last PATypeHolder using this object, and there are no
311    // PATypeHandles using it, the type is dead, delete it now.
312    if (--RefCount == 0 && AbstractTypeUsers.empty())
313      delete this;
314  }
315
316  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
317  /// it.  This function is called primarily by the PATypeHandle class.
318  ///
319  void addAbstractTypeUser(AbstractTypeUser *U) const {
320    assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
321    AbstractTypeUsers.push_back(U);
322  }
323
324  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
325  /// no longer has a handle to the type.  This function is called primarily by
326  /// the PATypeHandle class.  When there are no users of the abstract type, it
327  /// is annihilated, because there is no way to get a reference to it ever
328  /// again.
329  ///
330  void removeAbstractTypeUser(AbstractTypeUser *U) const;
331
332private:
333  /// isSizedDerivedType - Derived types like structures and arrays are sized
334  /// iff all of the members of the type are sized as well.  Since asking for
335  /// their size is relatively uncommon, move this operation out of line.
336  bool isSizedDerivedType() const;
337
338  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
339  virtual void typeBecameConcrete(const DerivedType *AbsTy);
340
341protected:
342  // PromoteAbstractToConcrete - This is an internal method used to calculate
343  // change "Abstract" from true to false when types are refined.
344  void PromoteAbstractToConcrete();
345  friend class TypeMapBase;
346};
347
348//===----------------------------------------------------------------------===//
349// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
350// These are defined here because they MUST be inlined, yet are dependent on
351// the definition of the Type class.
352//
353inline void PATypeHandle::addUser() {
354  assert(Ty && "Type Handle has a null type!");
355  if (Ty->isAbstract())
356    Ty->addAbstractTypeUser(User);
357}
358inline void PATypeHandle::removeUser() {
359  if (Ty->isAbstract())
360    Ty->removeAbstractTypeUser(User);
361}
362
363// Define inline methods for PATypeHolder...
364
365inline void PATypeHolder::addRef() {
366  if (Ty->isAbstract())
367    Ty->addRef();
368}
369
370inline void PATypeHolder::dropRef() {
371  if (Ty->isAbstract())
372    Ty->dropRef();
373}
374
375
376//===----------------------------------------------------------------------===//
377// Provide specializations of GraphTraits to be able to treat a type as a
378// graph of sub types...
379
380template <> struct GraphTraits<Type*> {
381  typedef Type NodeType;
382  typedef Type::subtype_iterator ChildIteratorType;
383
384  static inline NodeType *getEntryNode(Type *T) { return T; }
385  static inline ChildIteratorType child_begin(NodeType *N) {
386    return N->subtype_begin();
387  }
388  static inline ChildIteratorType child_end(NodeType *N) {
389    return N->subtype_end();
390  }
391};
392
393template <> struct GraphTraits<const Type*> {
394  typedef const Type NodeType;
395  typedef Type::subtype_iterator ChildIteratorType;
396
397  static inline NodeType *getEntryNode(const Type *T) { return T; }
398  static inline ChildIteratorType child_begin(NodeType *N) {
399    return N->subtype_begin();
400  }
401  static inline ChildIteratorType child_end(NodeType *N) {
402    return N->subtype_end();
403  }
404};
405
406template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
407  return Ty.getTypeID() == Type::PointerTyID;
408}
409
410std::ostream &operator<<(std::ostream &OS, const Type &T);
411
412} // End llvm namespace
413
414#endif
415